linux/drivers/mtd/ubi/build.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) International Business Machines Corp., 2006
   3 * Copyright (c) Nokia Corporation, 2007
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License as published by
   7 * the Free Software Foundation; either version 2 of the License, or
   8 * (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  13 * the GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18 *
  19 * Author: Artem Bityutskiy (Битюцкий Артём),
  20 *         Frank Haverkamp
  21 */
  22
  23/*
  24 * This file includes UBI initialization and building of UBI devices.
  25 *
  26 * When UBI is initialized, it attaches all the MTD devices specified as the
  27 * module load parameters or the kernel boot parameters. If MTD devices were
  28 * specified, UBI does not attach any MTD device, but it is possible to do
  29 * later using the "UBI control device".
  30 */
  31
  32#include <linux/err.h>
  33#include <linux/module.h>
  34#include <linux/moduleparam.h>
  35#include <linux/stringify.h>
  36#include <linux/namei.h>
  37#include <linux/stat.h>
  38#include <linux/miscdevice.h>
  39#include <linux/mtd/partitions.h>
  40#include <linux/log2.h>
  41#include <linux/kthread.h>
  42#include <linux/kernel.h>
  43#include <linux/slab.h>
  44#include "ubi.h"
  45
  46/* Maximum length of the 'mtd=' parameter */
  47#define MTD_PARAM_LEN_MAX 64
  48
  49/* Maximum number of comma-separated items in the 'mtd=' parameter */
  50#define MTD_PARAM_MAX_COUNT 3
  51
  52/* Maximum value for the number of bad PEBs per 1024 PEBs */
  53#define MAX_MTD_UBI_BEB_LIMIT 768
  54
  55#ifdef CONFIG_MTD_UBI_MODULE
  56#define ubi_is_module() 1
  57#else
  58#define ubi_is_module() 0
  59#endif
  60
  61/**
  62 * struct mtd_dev_param - MTD device parameter description data structure.
  63 * @name: MTD character device node path, MTD device name, or MTD device number
  64 *        string
  65 * @vid_hdr_offs: VID header offset
  66 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs
  67 */
  68struct mtd_dev_param {
  69        char name[MTD_PARAM_LEN_MAX];
  70        int vid_hdr_offs;
  71        int max_beb_per1024;
  72};
  73
  74/* Numbers of elements set in the @mtd_dev_param array */
  75static int __initdata mtd_devs;
  76
  77/* MTD devices specification parameters */
  78static struct mtd_dev_param __initdata mtd_dev_param[UBI_MAX_DEVICES];
  79#ifdef CONFIG_MTD_UBI_FASTMAP
  80/* UBI module parameter to enable fastmap automatically on non-fastmap images */
  81static bool fm_autoconvert;
  82#endif
  83/* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
  84struct class *ubi_class;
  85
  86/* Slab cache for wear-leveling entries */
  87struct kmem_cache *ubi_wl_entry_slab;
  88
  89/* UBI control character device */
  90static struct miscdevice ubi_ctrl_cdev = {
  91        .minor = MISC_DYNAMIC_MINOR,
  92        .name = "ubi_ctrl",
  93        .fops = &ubi_ctrl_cdev_operations,
  94};
  95
  96/* All UBI devices in system */
  97static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
  98
  99/* Serializes UBI devices creations and removals */
 100DEFINE_MUTEX(ubi_devices_mutex);
 101
 102/* Protects @ubi_devices and @ubi->ref_count */
 103static DEFINE_SPINLOCK(ubi_devices_lock);
 104
 105/* "Show" method for files in '/<sysfs>/class/ubi/' */
 106static ssize_t ubi_version_show(struct class *class,
 107                                struct class_attribute *attr, char *buf)
 108{
 109        return sprintf(buf, "%d\n", UBI_VERSION);
 110}
 111
 112/* UBI version attribute ('/<sysfs>/class/ubi/version') */
 113static struct class_attribute ubi_version =
 114        __ATTR(version, S_IRUGO, ubi_version_show, NULL);
 115
 116static ssize_t dev_attribute_show(struct device *dev,
 117                                  struct device_attribute *attr, char *buf);
 118
 119/* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
 120static struct device_attribute dev_eraseblock_size =
 121        __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
 122static struct device_attribute dev_avail_eraseblocks =
 123        __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
 124static struct device_attribute dev_total_eraseblocks =
 125        __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
 126static struct device_attribute dev_volumes_count =
 127        __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
 128static struct device_attribute dev_max_ec =
 129        __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
 130static struct device_attribute dev_reserved_for_bad =
 131        __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
 132static struct device_attribute dev_bad_peb_count =
 133        __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
 134static struct device_attribute dev_max_vol_count =
 135        __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
 136static struct device_attribute dev_min_io_size =
 137        __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
 138static struct device_attribute dev_bgt_enabled =
 139        __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
 140static struct device_attribute dev_mtd_num =
 141        __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
 142
 143/**
 144 * ubi_volume_notify - send a volume change notification.
 145 * @ubi: UBI device description object
 146 * @vol: volume description object of the changed volume
 147 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
 148 *
 149 * This is a helper function which notifies all subscribers about a volume
 150 * change event (creation, removal, re-sizing, re-naming, updating). Returns
 151 * zero in case of success and a negative error code in case of failure.
 152 */
 153int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
 154{
 155        struct ubi_notification nt;
 156
 157        ubi_do_get_device_info(ubi, &nt.di);
 158        ubi_do_get_volume_info(ubi, vol, &nt.vi);
 159
 160#ifdef CONFIG_MTD_UBI_FASTMAP
 161        switch (ntype) {
 162        case UBI_VOLUME_ADDED:
 163        case UBI_VOLUME_REMOVED:
 164        case UBI_VOLUME_RESIZED:
 165        case UBI_VOLUME_RENAMED:
 166                if (ubi_update_fastmap(ubi)) {
 167                        ubi_err("Unable to update fastmap!");
 168                        ubi_ro_mode(ubi);
 169                }
 170        }
 171#endif
 172        return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
 173}
 174
 175/**
 176 * ubi_notify_all - send a notification to all volumes.
 177 * @ubi: UBI device description object
 178 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
 179 * @nb: the notifier to call
 180 *
 181 * This function walks all volumes of UBI device @ubi and sends the @ntype
 182 * notification for each volume. If @nb is %NULL, then all registered notifiers
 183 * are called, otherwise only the @nb notifier is called. Returns the number of
 184 * sent notifications.
 185 */
 186int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
 187{
 188        struct ubi_notification nt;
 189        int i, count = 0;
 190
 191        ubi_do_get_device_info(ubi, &nt.di);
 192
 193        mutex_lock(&ubi->device_mutex);
 194        for (i = 0; i < ubi->vtbl_slots; i++) {
 195                /*
 196                 * Since the @ubi->device is locked, and we are not going to
 197                 * change @ubi->volumes, we do not have to lock
 198                 * @ubi->volumes_lock.
 199                 */
 200                if (!ubi->volumes[i])
 201                        continue;
 202
 203                ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
 204                if (nb)
 205                        nb->notifier_call(nb, ntype, &nt);
 206                else
 207                        blocking_notifier_call_chain(&ubi_notifiers, ntype,
 208                                                     &nt);
 209                count += 1;
 210        }
 211        mutex_unlock(&ubi->device_mutex);
 212
 213        return count;
 214}
 215
 216/**
 217 * ubi_enumerate_volumes - send "add" notification for all existing volumes.
 218 * @nb: the notifier to call
 219 *
 220 * This function walks all UBI devices and volumes and sends the
 221 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
 222 * registered notifiers are called, otherwise only the @nb notifier is called.
 223 * Returns the number of sent notifications.
 224 */
 225int ubi_enumerate_volumes(struct notifier_block *nb)
 226{
 227        int i, count = 0;
 228
 229        /*
 230         * Since the @ubi_devices_mutex is locked, and we are not going to
 231         * change @ubi_devices, we do not have to lock @ubi_devices_lock.
 232         */
 233        for (i = 0; i < UBI_MAX_DEVICES; i++) {
 234                struct ubi_device *ubi = ubi_devices[i];
 235
 236                if (!ubi)
 237                        continue;
 238                count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
 239        }
 240
 241        return count;
 242}
 243
 244/**
 245 * ubi_get_device - get UBI device.
 246 * @ubi_num: UBI device number
 247 *
 248 * This function returns UBI device description object for UBI device number
 249 * @ubi_num, or %NULL if the device does not exist. This function increases the
 250 * device reference count to prevent removal of the device. In other words, the
 251 * device cannot be removed if its reference count is not zero.
 252 */
 253struct ubi_device *ubi_get_device(int ubi_num)
 254{
 255        struct ubi_device *ubi;
 256
 257        spin_lock(&ubi_devices_lock);
 258        ubi = ubi_devices[ubi_num];
 259        if (ubi) {
 260                ubi_assert(ubi->ref_count >= 0);
 261                ubi->ref_count += 1;
 262                get_device(&ubi->dev);
 263        }
 264        spin_unlock(&ubi_devices_lock);
 265
 266        return ubi;
 267}
 268
 269/**
 270 * ubi_put_device - drop an UBI device reference.
 271 * @ubi: UBI device description object
 272 */
 273void ubi_put_device(struct ubi_device *ubi)
 274{
 275        spin_lock(&ubi_devices_lock);
 276        ubi->ref_count -= 1;
 277        put_device(&ubi->dev);
 278        spin_unlock(&ubi_devices_lock);
 279}
 280
 281/**
 282 * ubi_get_by_major - get UBI device by character device major number.
 283 * @major: major number
 284 *
 285 * This function is similar to 'ubi_get_device()', but it searches the device
 286 * by its major number.
 287 */
 288struct ubi_device *ubi_get_by_major(int major)
 289{
 290        int i;
 291        struct ubi_device *ubi;
 292
 293        spin_lock(&ubi_devices_lock);
 294        for (i = 0; i < UBI_MAX_DEVICES; i++) {
 295                ubi = ubi_devices[i];
 296                if (ubi && MAJOR(ubi->cdev.dev) == major) {
 297                        ubi_assert(ubi->ref_count >= 0);
 298                        ubi->ref_count += 1;
 299                        get_device(&ubi->dev);
 300                        spin_unlock(&ubi_devices_lock);
 301                        return ubi;
 302                }
 303        }
 304        spin_unlock(&ubi_devices_lock);
 305
 306        return NULL;
 307}
 308
 309/**
 310 * ubi_major2num - get UBI device number by character device major number.
 311 * @major: major number
 312 *
 313 * This function searches UBI device number object by its major number. If UBI
 314 * device was not found, this function returns -ENODEV, otherwise the UBI device
 315 * number is returned.
 316 */
 317int ubi_major2num(int major)
 318{
 319        int i, ubi_num = -ENODEV;
 320
 321        spin_lock(&ubi_devices_lock);
 322        for (i = 0; i < UBI_MAX_DEVICES; i++) {
 323                struct ubi_device *ubi = ubi_devices[i];
 324
 325                if (ubi && MAJOR(ubi->cdev.dev) == major) {
 326                        ubi_num = ubi->ubi_num;
 327                        break;
 328                }
 329        }
 330        spin_unlock(&ubi_devices_lock);
 331
 332        return ubi_num;
 333}
 334
 335/* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
 336static ssize_t dev_attribute_show(struct device *dev,
 337                                  struct device_attribute *attr, char *buf)
 338{
 339        ssize_t ret;
 340        struct ubi_device *ubi;
 341
 342        /*
 343         * The below code looks weird, but it actually makes sense. We get the
 344         * UBI device reference from the contained 'struct ubi_device'. But it
 345         * is unclear if the device was removed or not yet. Indeed, if the
 346         * device was removed before we increased its reference count,
 347         * 'ubi_get_device()' will return -ENODEV and we fail.
 348         *
 349         * Remember, 'struct ubi_device' is freed in the release function, so
 350         * we still can use 'ubi->ubi_num'.
 351         */
 352        ubi = container_of(dev, struct ubi_device, dev);
 353        ubi = ubi_get_device(ubi->ubi_num);
 354        if (!ubi)
 355                return -ENODEV;
 356
 357        if (attr == &dev_eraseblock_size)
 358                ret = sprintf(buf, "%d\n", ubi->leb_size);
 359        else if (attr == &dev_avail_eraseblocks)
 360                ret = sprintf(buf, "%d\n", ubi->avail_pebs);
 361        else if (attr == &dev_total_eraseblocks)
 362                ret = sprintf(buf, "%d\n", ubi->good_peb_count);
 363        else if (attr == &dev_volumes_count)
 364                ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
 365        else if (attr == &dev_max_ec)
 366                ret = sprintf(buf, "%d\n", ubi->max_ec);
 367        else if (attr == &dev_reserved_for_bad)
 368                ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
 369        else if (attr == &dev_bad_peb_count)
 370                ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
 371        else if (attr == &dev_max_vol_count)
 372                ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
 373        else if (attr == &dev_min_io_size)
 374                ret = sprintf(buf, "%d\n", ubi->min_io_size);
 375        else if (attr == &dev_bgt_enabled)
 376                ret = sprintf(buf, "%d\n", ubi->thread_enabled);
 377        else if (attr == &dev_mtd_num)
 378                ret = sprintf(buf, "%d\n", ubi->mtd->index);
 379        else
 380                ret = -EINVAL;
 381
 382        ubi_put_device(ubi);
 383        return ret;
 384}
 385
 386static void dev_release(struct device *dev)
 387{
 388        struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
 389
 390        kfree(ubi);
 391}
 392
 393/**
 394 * ubi_sysfs_init - initialize sysfs for an UBI device.
 395 * @ubi: UBI device description object
 396 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
 397 *       taken
 398 *
 399 * This function returns zero in case of success and a negative error code in
 400 * case of failure.
 401 */
 402static int ubi_sysfs_init(struct ubi_device *ubi, int *ref)
 403{
 404        int err;
 405
 406        ubi->dev.release = dev_release;
 407        ubi->dev.devt = ubi->cdev.dev;
 408        ubi->dev.class = ubi_class;
 409        dev_set_name(&ubi->dev, UBI_NAME_STR"%d", ubi->ubi_num);
 410        err = device_register(&ubi->dev);
 411        if (err)
 412                return err;
 413
 414        *ref = 1;
 415        err = device_create_file(&ubi->dev, &dev_eraseblock_size);
 416        if (err)
 417                return err;
 418        err = device_create_file(&ubi->dev, &dev_avail_eraseblocks);
 419        if (err)
 420                return err;
 421        err = device_create_file(&ubi->dev, &dev_total_eraseblocks);
 422        if (err)
 423                return err;
 424        err = device_create_file(&ubi->dev, &dev_volumes_count);
 425        if (err)
 426                return err;
 427        err = device_create_file(&ubi->dev, &dev_max_ec);
 428        if (err)
 429                return err;
 430        err = device_create_file(&ubi->dev, &dev_reserved_for_bad);
 431        if (err)
 432                return err;
 433        err = device_create_file(&ubi->dev, &dev_bad_peb_count);
 434        if (err)
 435                return err;
 436        err = device_create_file(&ubi->dev, &dev_max_vol_count);
 437        if (err)
 438                return err;
 439        err = device_create_file(&ubi->dev, &dev_min_io_size);
 440        if (err)
 441                return err;
 442        err = device_create_file(&ubi->dev, &dev_bgt_enabled);
 443        if (err)
 444                return err;
 445        err = device_create_file(&ubi->dev, &dev_mtd_num);
 446        return err;
 447}
 448
 449/**
 450 * ubi_sysfs_close - close sysfs for an UBI device.
 451 * @ubi: UBI device description object
 452 */
 453static void ubi_sysfs_close(struct ubi_device *ubi)
 454{
 455        device_remove_file(&ubi->dev, &dev_mtd_num);
 456        device_remove_file(&ubi->dev, &dev_bgt_enabled);
 457        device_remove_file(&ubi->dev, &dev_min_io_size);
 458        device_remove_file(&ubi->dev, &dev_max_vol_count);
 459        device_remove_file(&ubi->dev, &dev_bad_peb_count);
 460        device_remove_file(&ubi->dev, &dev_reserved_for_bad);
 461        device_remove_file(&ubi->dev, &dev_max_ec);
 462        device_remove_file(&ubi->dev, &dev_volumes_count);
 463        device_remove_file(&ubi->dev, &dev_total_eraseblocks);
 464        device_remove_file(&ubi->dev, &dev_avail_eraseblocks);
 465        device_remove_file(&ubi->dev, &dev_eraseblock_size);
 466        device_unregister(&ubi->dev);
 467}
 468
 469/**
 470 * kill_volumes - destroy all user volumes.
 471 * @ubi: UBI device description object
 472 */
 473static void kill_volumes(struct ubi_device *ubi)
 474{
 475        int i;
 476
 477        for (i = 0; i < ubi->vtbl_slots; i++)
 478                if (ubi->volumes[i])
 479                        ubi_free_volume(ubi, ubi->volumes[i]);
 480}
 481
 482/**
 483 * uif_init - initialize user interfaces for an UBI device.
 484 * @ubi: UBI device description object
 485 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
 486 *       taken, otherwise set to %0
 487 *
 488 * This function initializes various user interfaces for an UBI device. If the
 489 * initialization fails at an early stage, this function frees all the
 490 * resources it allocated, returns an error, and @ref is set to %0. However,
 491 * if the initialization fails after the UBI device was registered in the
 492 * driver core subsystem, this function takes a reference to @ubi->dev, because
 493 * otherwise the release function ('dev_release()') would free whole @ubi
 494 * object. The @ref argument is set to %1 in this case. The caller has to put
 495 * this reference.
 496 *
 497 * This function returns zero in case of success and a negative error code in
 498 * case of failure.
 499 */
 500static int uif_init(struct ubi_device *ubi, int *ref)
 501{
 502        int i, err;
 503        dev_t dev;
 504
 505        *ref = 0;
 506        sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
 507
 508        /*
 509         * Major numbers for the UBI character devices are allocated
 510         * dynamically. Major numbers of volume character devices are
 511         * equivalent to ones of the corresponding UBI character device. Minor
 512         * numbers of UBI character devices are 0, while minor numbers of
 513         * volume character devices start from 1. Thus, we allocate one major
 514         * number and ubi->vtbl_slots + 1 minor numbers.
 515         */
 516        err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
 517        if (err) {
 518                ubi_err("cannot register UBI character devices");
 519                return err;
 520        }
 521
 522        ubi_assert(MINOR(dev) == 0);
 523        cdev_init(&ubi->cdev, &ubi_cdev_operations);
 524        dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
 525        ubi->cdev.owner = THIS_MODULE;
 526
 527        err = cdev_add(&ubi->cdev, dev, 1);
 528        if (err) {
 529                ubi_err("cannot add character device");
 530                goto out_unreg;
 531        }
 532
 533        err = ubi_sysfs_init(ubi, ref);
 534        if (err)
 535                goto out_sysfs;
 536
 537        for (i = 0; i < ubi->vtbl_slots; i++)
 538                if (ubi->volumes[i]) {
 539                        err = ubi_add_volume(ubi, ubi->volumes[i]);
 540                        if (err) {
 541                                ubi_err("cannot add volume %d", i);
 542                                goto out_volumes;
 543                        }
 544                }
 545
 546        return 0;
 547
 548out_volumes:
 549        kill_volumes(ubi);
 550out_sysfs:
 551        if (*ref)
 552                get_device(&ubi->dev);
 553        ubi_sysfs_close(ubi);
 554        cdev_del(&ubi->cdev);
 555out_unreg:
 556        unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
 557        ubi_err("cannot initialize UBI %s, error %d", ubi->ubi_name, err);
 558        return err;
 559}
 560
 561/**
 562 * uif_close - close user interfaces for an UBI device.
 563 * @ubi: UBI device description object
 564 *
 565 * Note, since this function un-registers UBI volume device objects (@vol->dev),
 566 * the memory allocated voe the volumes is freed as well (in the release
 567 * function).
 568 */
 569static void uif_close(struct ubi_device *ubi)
 570{
 571        kill_volumes(ubi);
 572        ubi_sysfs_close(ubi);
 573        cdev_del(&ubi->cdev);
 574        unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
 575}
 576
 577/**
 578 * ubi_free_internal_volumes - free internal volumes.
 579 * @ubi: UBI device description object
 580 */
 581void ubi_free_internal_volumes(struct ubi_device *ubi)
 582{
 583        int i;
 584
 585        for (i = ubi->vtbl_slots;
 586             i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
 587                kfree(ubi->volumes[i]->eba_tbl);
 588                kfree(ubi->volumes[i]);
 589        }
 590}
 591
 592static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024)
 593{
 594        int limit, device_pebs;
 595        uint64_t device_size;
 596
 597        if (!max_beb_per1024)
 598                return 0;
 599
 600        /*
 601         * Here we are using size of the entire flash chip and
 602         * not just the MTD partition size because the maximum
 603         * number of bad eraseblocks is a percentage of the
 604         * whole device and bad eraseblocks are not fairly
 605         * distributed over the flash chip. So the worst case
 606         * is that all the bad eraseblocks of the chip are in
 607         * the MTD partition we are attaching (ubi->mtd).
 608         */
 609        device_size = mtd_get_device_size(ubi->mtd);
 610        device_pebs = mtd_div_by_eb(device_size, ubi->mtd);
 611        limit = mult_frac(device_pebs, max_beb_per1024, 1024);
 612
 613        /* Round it up */
 614        if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs)
 615                limit += 1;
 616
 617        return limit;
 618}
 619
 620/**
 621 * io_init - initialize I/O sub-system for a given UBI device.
 622 * @ubi: UBI device description object
 623 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
 624 *
 625 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
 626 * assumed:
 627 *   o EC header is always at offset zero - this cannot be changed;
 628 *   o VID header starts just after the EC header at the closest address
 629 *     aligned to @io->hdrs_min_io_size;
 630 *   o data starts just after the VID header at the closest address aligned to
 631 *     @io->min_io_size
 632 *
 633 * This function returns zero in case of success and a negative error code in
 634 * case of failure.
 635 */
 636static int io_init(struct ubi_device *ubi, int max_beb_per1024)
 637{
 638        dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb));
 639        dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry));
 640
 641        if (ubi->mtd->numeraseregions != 0) {
 642                /*
 643                 * Some flashes have several erase regions. Different regions
 644                 * may have different eraseblock size and other
 645                 * characteristics. It looks like mostly multi-region flashes
 646                 * have one "main" region and one or more small regions to
 647                 * store boot loader code or boot parameters or whatever. I
 648                 * guess we should just pick the largest region. But this is
 649                 * not implemented.
 650                 */
 651                ubi_err("multiple regions, not implemented");
 652                return -EINVAL;
 653        }
 654
 655        if (ubi->vid_hdr_offset < 0)
 656                return -EINVAL;
 657
 658        /*
 659         * Note, in this implementation we support MTD devices with 0x7FFFFFFF
 660         * physical eraseblocks maximum.
 661         */
 662
 663        ubi->peb_size   = ubi->mtd->erasesize;
 664        ubi->peb_count  = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
 665        ubi->flash_size = ubi->mtd->size;
 666
 667        if (mtd_can_have_bb(ubi->mtd)) {
 668                ubi->bad_allowed = 1;
 669                ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024);
 670        }
 671
 672        if (ubi->mtd->type == MTD_NORFLASH) {
 673                ubi_assert(ubi->mtd->writesize == 1);
 674                ubi->nor_flash = 1;
 675        }
 676
 677        ubi->min_io_size = ubi->mtd->writesize;
 678        ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
 679
 680        /*
 681         * Make sure minimal I/O unit is power of 2. Note, there is no
 682         * fundamental reason for this assumption. It is just an optimization
 683         * which allows us to avoid costly division operations.
 684         */
 685        if (!is_power_of_2(ubi->min_io_size)) {
 686                ubi_err("min. I/O unit (%d) is not power of 2",
 687                        ubi->min_io_size);
 688                return -EINVAL;
 689        }
 690
 691        ubi_assert(ubi->hdrs_min_io_size > 0);
 692        ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
 693        ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
 694
 695        ubi->max_write_size = ubi->mtd->writebufsize;
 696        /*
 697         * Maximum write size has to be greater or equivalent to min. I/O
 698         * size, and be multiple of min. I/O size.
 699         */
 700        if (ubi->max_write_size < ubi->min_io_size ||
 701            ubi->max_write_size % ubi->min_io_size ||
 702            !is_power_of_2(ubi->max_write_size)) {
 703                ubi_err("bad write buffer size %d for %d min. I/O unit",
 704                        ubi->max_write_size, ubi->min_io_size);
 705                return -EINVAL;
 706        }
 707
 708        /* Calculate default aligned sizes of EC and VID headers */
 709        ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
 710        ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
 711
 712        dbg_gen("min_io_size      %d", ubi->min_io_size);
 713        dbg_gen("max_write_size   %d", ubi->max_write_size);
 714        dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
 715        dbg_gen("ec_hdr_alsize    %d", ubi->ec_hdr_alsize);
 716        dbg_gen("vid_hdr_alsize   %d", ubi->vid_hdr_alsize);
 717
 718        if (ubi->vid_hdr_offset == 0)
 719                /* Default offset */
 720                ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
 721                                      ubi->ec_hdr_alsize;
 722        else {
 723                ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
 724                                                ~(ubi->hdrs_min_io_size - 1);
 725                ubi->vid_hdr_shift = ubi->vid_hdr_offset -
 726                                                ubi->vid_hdr_aloffset;
 727        }
 728
 729        /* Similar for the data offset */
 730        ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE;
 731        ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
 732
 733        dbg_gen("vid_hdr_offset   %d", ubi->vid_hdr_offset);
 734        dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
 735        dbg_gen("vid_hdr_shift    %d", ubi->vid_hdr_shift);
 736        dbg_gen("leb_start        %d", ubi->leb_start);
 737
 738        /* The shift must be aligned to 32-bit boundary */
 739        if (ubi->vid_hdr_shift % 4) {
 740                ubi_err("unaligned VID header shift %d",
 741                        ubi->vid_hdr_shift);
 742                return -EINVAL;
 743        }
 744
 745        /* Check sanity */
 746        if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
 747            ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
 748            ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
 749            ubi->leb_start & (ubi->min_io_size - 1)) {
 750                ubi_err("bad VID header (%d) or data offsets (%d)",
 751                        ubi->vid_hdr_offset, ubi->leb_start);
 752                return -EINVAL;
 753        }
 754
 755        /*
 756         * Set maximum amount of physical erroneous eraseblocks to be 10%.
 757         * Erroneous PEB are those which have read errors.
 758         */
 759        ubi->max_erroneous = ubi->peb_count / 10;
 760        if (ubi->max_erroneous < 16)
 761                ubi->max_erroneous = 16;
 762        dbg_gen("max_erroneous    %d", ubi->max_erroneous);
 763
 764        /*
 765         * It may happen that EC and VID headers are situated in one minimal
 766         * I/O unit. In this case we can only accept this UBI image in
 767         * read-only mode.
 768         */
 769        if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
 770                ubi_warn("EC and VID headers are in the same minimal I/O unit, switch to read-only mode");
 771                ubi->ro_mode = 1;
 772        }
 773
 774        ubi->leb_size = ubi->peb_size - ubi->leb_start;
 775
 776        if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
 777                ubi_msg("MTD device %d is write-protected, attach in read-only mode",
 778                        ubi->mtd->index);
 779                ubi->ro_mode = 1;
 780        }
 781
 782        /*
 783         * Note, ideally, we have to initialize @ubi->bad_peb_count here. But
 784         * unfortunately, MTD does not provide this information. We should loop
 785         * over all physical eraseblocks and invoke mtd->block_is_bad() for
 786         * each physical eraseblock. So, we leave @ubi->bad_peb_count
 787         * uninitialized so far.
 788         */
 789
 790        return 0;
 791}
 792
 793/**
 794 * autoresize - re-size the volume which has the "auto-resize" flag set.
 795 * @ubi: UBI device description object
 796 * @vol_id: ID of the volume to re-size
 797 *
 798 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in
 799 * the volume table to the largest possible size. See comments in ubi-header.h
 800 * for more description of the flag. Returns zero in case of success and a
 801 * negative error code in case of failure.
 802 */
 803static int autoresize(struct ubi_device *ubi, int vol_id)
 804{
 805        struct ubi_volume_desc desc;
 806        struct ubi_volume *vol = ubi->volumes[vol_id];
 807        int err, old_reserved_pebs = vol->reserved_pebs;
 808
 809        if (ubi->ro_mode) {
 810                ubi_warn("skip auto-resize because of R/O mode");
 811                return 0;
 812        }
 813
 814        /*
 815         * Clear the auto-resize flag in the volume in-memory copy of the
 816         * volume table, and 'ubi_resize_volume()' will propagate this change
 817         * to the flash.
 818         */
 819        ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
 820
 821        if (ubi->avail_pebs == 0) {
 822                struct ubi_vtbl_record vtbl_rec;
 823
 824                /*
 825                 * No available PEBs to re-size the volume, clear the flag on
 826                 * flash and exit.
 827                 */
 828                vtbl_rec = ubi->vtbl[vol_id];
 829                err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
 830                if (err)
 831                        ubi_err("cannot clean auto-resize flag for volume %d",
 832                                vol_id);
 833        } else {
 834                desc.vol = vol;
 835                err = ubi_resize_volume(&desc,
 836                                        old_reserved_pebs + ubi->avail_pebs);
 837                if (err)
 838                        ubi_err("cannot auto-resize volume %d", vol_id);
 839        }
 840
 841        if (err)
 842                return err;
 843
 844        ubi_msg("volume %d (\"%s\") re-sized from %d to %d LEBs", vol_id,
 845                vol->name, old_reserved_pebs, vol->reserved_pebs);
 846        return 0;
 847}
 848
 849/**
 850 * ubi_attach_mtd_dev - attach an MTD device.
 851 * @mtd: MTD device description object
 852 * @ubi_num: number to assign to the new UBI device
 853 * @vid_hdr_offset: VID header offset
 854 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
 855 *
 856 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
 857 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
 858 * which case this function finds a vacant device number and assigns it
 859 * automatically. Returns the new UBI device number in case of success and a
 860 * negative error code in case of failure.
 861 *
 862 * Note, the invocations of this function has to be serialized by the
 863 * @ubi_devices_mutex.
 864 */
 865int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num,
 866                       int vid_hdr_offset, int max_beb_per1024)
 867{
 868        struct ubi_device *ubi;
 869        int i, err, ref = 0;
 870
 871        if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT)
 872                return -EINVAL;
 873
 874        if (!max_beb_per1024)
 875                max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT;
 876
 877        /*
 878         * Check if we already have the same MTD device attached.
 879         *
 880         * Note, this function assumes that UBI devices creations and deletions
 881         * are serialized, so it does not take the &ubi_devices_lock.
 882         */
 883        for (i = 0; i < UBI_MAX_DEVICES; i++) {
 884                ubi = ubi_devices[i];
 885                if (ubi && mtd->index == ubi->mtd->index) {
 886                        ubi_err("mtd%d is already attached to ubi%d",
 887                                mtd->index, i);
 888                        return -EEXIST;
 889                }
 890        }
 891
 892        /*
 893         * Make sure this MTD device is not emulated on top of an UBI volume
 894         * already. Well, generally this recursion works fine, but there are
 895         * different problems like the UBI module takes a reference to itself
 896         * by attaching (and thus, opening) the emulated MTD device. This
 897         * results in inability to unload the module. And in general it makes
 898         * no sense to attach emulated MTD devices, so we prohibit this.
 899         */
 900        if (mtd->type == MTD_UBIVOLUME) {
 901                ubi_err("refuse attaching mtd%d - it is already emulated on top of UBI",
 902                        mtd->index);
 903                return -EINVAL;
 904        }
 905
 906        if (ubi_num == UBI_DEV_NUM_AUTO) {
 907                /* Search for an empty slot in the @ubi_devices array */
 908                for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
 909                        if (!ubi_devices[ubi_num])
 910                                break;
 911                if (ubi_num == UBI_MAX_DEVICES) {
 912                        ubi_err("only %d UBI devices may be created",
 913                                UBI_MAX_DEVICES);
 914                        return -ENFILE;
 915                }
 916        } else {
 917                if (ubi_num >= UBI_MAX_DEVICES)
 918                        return -EINVAL;
 919
 920                /* Make sure ubi_num is not busy */
 921                if (ubi_devices[ubi_num]) {
 922                        ubi_err("ubi%d already exists", ubi_num);
 923                        return -EEXIST;
 924                }
 925        }
 926
 927        ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
 928        if (!ubi)
 929                return -ENOMEM;
 930
 931        ubi->mtd = mtd;
 932        ubi->ubi_num = ubi_num;
 933        ubi->vid_hdr_offset = vid_hdr_offset;
 934        ubi->autoresize_vol_id = -1;
 935
 936#ifdef CONFIG_MTD_UBI_FASTMAP
 937        ubi->fm_pool.used = ubi->fm_pool.size = 0;
 938        ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0;
 939
 940        /*
 941         * fm_pool.max_size is 5% of the total number of PEBs but it's also
 942         * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE.
 943         */
 944        ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size,
 945                ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE);
 946        if (ubi->fm_pool.max_size < UBI_FM_MIN_POOL_SIZE)
 947                ubi->fm_pool.max_size = UBI_FM_MIN_POOL_SIZE;
 948
 949        ubi->fm_wl_pool.max_size = UBI_FM_WL_POOL_SIZE;
 950        ubi->fm_disabled = !fm_autoconvert;
 951
 952        if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd)
 953            <= UBI_FM_MAX_START) {
 954                ubi_err("More than %i PEBs are needed for fastmap, sorry.",
 955                        UBI_FM_MAX_START);
 956                ubi->fm_disabled = 1;
 957        }
 958
 959        ubi_msg("default fastmap pool size: %d", ubi->fm_pool.max_size);
 960        ubi_msg("default fastmap WL pool size: %d", ubi->fm_wl_pool.max_size);
 961#else
 962        ubi->fm_disabled = 1;
 963#endif
 964        mutex_init(&ubi->buf_mutex);
 965        mutex_init(&ubi->ckvol_mutex);
 966        mutex_init(&ubi->device_mutex);
 967        spin_lock_init(&ubi->volumes_lock);
 968        mutex_init(&ubi->fm_mutex);
 969        init_rwsem(&ubi->fm_sem);
 970
 971        ubi_msg("attaching mtd%d to ubi%d", mtd->index, ubi_num);
 972
 973        err = io_init(ubi, max_beb_per1024);
 974        if (err)
 975                goto out_free;
 976
 977        err = -ENOMEM;
 978        ubi->peb_buf = vmalloc(ubi->peb_size);
 979        if (!ubi->peb_buf)
 980                goto out_free;
 981
 982#ifdef CONFIG_MTD_UBI_FASTMAP
 983        ubi->fm_size = ubi_calc_fm_size(ubi);
 984        ubi->fm_buf = vzalloc(ubi->fm_size);
 985        if (!ubi->fm_buf)
 986                goto out_free;
 987#endif
 988        err = ubi_attach(ubi, 0);
 989        if (err) {
 990                ubi_err("failed to attach mtd%d, error %d", mtd->index, err);
 991                goto out_free;
 992        }
 993
 994        if (ubi->autoresize_vol_id != -1) {
 995                err = autoresize(ubi, ubi->autoresize_vol_id);
 996                if (err)
 997                        goto out_detach;
 998        }
 999
1000        err = uif_init(ubi, &ref);
1001        if (err)
1002                goto out_detach;
1003
1004        err = ubi_debugfs_init_dev(ubi);
1005        if (err)
1006                goto out_uif;
1007
1008        ubi->bgt_thread = kthread_create(ubi_thread, ubi, ubi->bgt_name);
1009        if (IS_ERR(ubi->bgt_thread)) {
1010                err = PTR_ERR(ubi->bgt_thread);
1011                ubi_err("cannot spawn \"%s\", error %d", ubi->bgt_name,
1012                        err);
1013                goto out_debugfs;
1014        }
1015
1016        ubi_msg("attached mtd%d (name \"%s\", size %llu MiB) to ubi%d",
1017                mtd->index, mtd->name, ubi->flash_size >> 20, ubi_num);
1018        ubi_msg("PEB size: %d bytes (%d KiB), LEB size: %d bytes",
1019                ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size);
1020        ubi_msg("min./max. I/O unit sizes: %d/%d, sub-page size %d",
1021                ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size);
1022        ubi_msg("VID header offset: %d (aligned %d), data offset: %d",
1023                ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start);
1024        ubi_msg("good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d",
1025                ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count);
1026        ubi_msg("user volume: %d, internal volumes: %d, max. volumes count: %d",
1027                ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT,
1028                ubi->vtbl_slots);
1029        ubi_msg("max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u",
1030                ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD,
1031                ubi->image_seq);
1032        ubi_msg("available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d",
1033                ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs);
1034
1035        /*
1036         * The below lock makes sure we do not race with 'ubi_thread()' which
1037         * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
1038         */
1039        spin_lock(&ubi->wl_lock);
1040        ubi->thread_enabled = 1;
1041        wake_up_process(ubi->bgt_thread);
1042        spin_unlock(&ubi->wl_lock);
1043
1044        ubi_devices[ubi_num] = ubi;
1045        ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
1046        return ubi_num;
1047
1048out_debugfs:
1049        ubi_debugfs_exit_dev(ubi);
1050out_uif:
1051        get_device(&ubi->dev);
1052        ubi_assert(ref);
1053        uif_close(ubi);
1054out_detach:
1055        ubi_wl_close(ubi);
1056        ubi_free_internal_volumes(ubi);
1057        vfree(ubi->vtbl);
1058out_free:
1059        vfree(ubi->peb_buf);
1060        vfree(ubi->fm_buf);
1061        if (ref)
1062                put_device(&ubi->dev);
1063        else
1064                kfree(ubi);
1065        return err;
1066}
1067
1068/**
1069 * ubi_detach_mtd_dev - detach an MTD device.
1070 * @ubi_num: UBI device number to detach from
1071 * @anyway: detach MTD even if device reference count is not zero
1072 *
1073 * This function destroys an UBI device number @ubi_num and detaches the
1074 * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1075 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1076 * exist.
1077 *
1078 * Note, the invocations of this function has to be serialized by the
1079 * @ubi_devices_mutex.
1080 */
1081int ubi_detach_mtd_dev(int ubi_num, int anyway)
1082{
1083        struct ubi_device *ubi;
1084
1085        if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1086                return -EINVAL;
1087
1088        ubi = ubi_get_device(ubi_num);
1089        if (!ubi)
1090                return -EINVAL;
1091
1092        spin_lock(&ubi_devices_lock);
1093        put_device(&ubi->dev);
1094        ubi->ref_count -= 1;
1095        if (ubi->ref_count) {
1096                if (!anyway) {
1097                        spin_unlock(&ubi_devices_lock);
1098                        return -EBUSY;
1099                }
1100                /* This may only happen if there is a bug */
1101                ubi_err("%s reference count %d, destroy anyway",
1102                        ubi->ubi_name, ubi->ref_count);
1103        }
1104        ubi_devices[ubi_num] = NULL;
1105        spin_unlock(&ubi_devices_lock);
1106
1107        ubi_assert(ubi_num == ubi->ubi_num);
1108        ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1109        ubi_msg("detaching mtd%d from ubi%d", ubi->mtd->index, ubi_num);
1110#ifdef CONFIG_MTD_UBI_FASTMAP
1111        /* If we don't write a new fastmap at detach time we lose all
1112         * EC updates that have been made since the last written fastmap. */
1113        ubi_update_fastmap(ubi);
1114#endif
1115        /*
1116         * Before freeing anything, we have to stop the background thread to
1117         * prevent it from doing anything on this device while we are freeing.
1118         */
1119        if (ubi->bgt_thread)
1120                kthread_stop(ubi->bgt_thread);
1121
1122        /*
1123         * Get a reference to the device in order to prevent 'dev_release()'
1124         * from freeing the @ubi object.
1125         */
1126        get_device(&ubi->dev);
1127
1128        ubi_debugfs_exit_dev(ubi);
1129        uif_close(ubi);
1130
1131        ubi_wl_close(ubi);
1132        ubi_free_internal_volumes(ubi);
1133        vfree(ubi->vtbl);
1134        put_mtd_device(ubi->mtd);
1135        vfree(ubi->peb_buf);
1136        vfree(ubi->fm_buf);
1137        ubi_msg("mtd%d is detached from ubi%d", ubi->mtd->index, ubi->ubi_num);
1138        put_device(&ubi->dev);
1139        return 0;
1140}
1141
1142/**
1143 * open_mtd_by_chdev - open an MTD device by its character device node path.
1144 * @mtd_dev: MTD character device node path
1145 *
1146 * This helper function opens an MTD device by its character node device path.
1147 * Returns MTD device description object in case of success and a negative
1148 * error code in case of failure.
1149 */
1150static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
1151{
1152        int err, major, minor, mode;
1153        struct path path;
1154
1155        /* Probably this is an MTD character device node path */
1156        err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
1157        if (err)
1158                return ERR_PTR(err);
1159
1160        /* MTD device number is defined by the major / minor numbers */
1161        major = imajor(path.dentry->d_inode);
1162        minor = iminor(path.dentry->d_inode);
1163        mode = path.dentry->d_inode->i_mode;
1164        path_put(&path);
1165        if (major != MTD_CHAR_MAJOR || !S_ISCHR(mode))
1166                return ERR_PTR(-EINVAL);
1167
1168        if (minor & 1)
1169                /*
1170                 * Just do not think the "/dev/mtdrX" devices support is need,
1171                 * so do not support them to avoid doing extra work.
1172                 */
1173                return ERR_PTR(-EINVAL);
1174
1175        return get_mtd_device(NULL, minor / 2);
1176}
1177
1178/**
1179 * open_mtd_device - open MTD device by name, character device path, or number.
1180 * @mtd_dev: name, character device node path, or MTD device device number
1181 *
1182 * This function tries to open and MTD device described by @mtd_dev string,
1183 * which is first treated as ASCII MTD device number, and if it is not true, it
1184 * is treated as MTD device name, and if that is also not true, it is treated
1185 * as MTD character device node path. Returns MTD device description object in
1186 * case of success and a negative error code in case of failure.
1187 */
1188static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1189{
1190        struct mtd_info *mtd;
1191        int mtd_num;
1192        char *endp;
1193
1194        mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1195        if (*endp != '\0' || mtd_dev == endp) {
1196                /*
1197                 * This does not look like an ASCII integer, probably this is
1198                 * MTD device name.
1199                 */
1200                mtd = get_mtd_device_nm(mtd_dev);
1201                if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV)
1202                        /* Probably this is an MTD character device node path */
1203                        mtd = open_mtd_by_chdev(mtd_dev);
1204        } else
1205                mtd = get_mtd_device(NULL, mtd_num);
1206
1207        return mtd;
1208}
1209
1210static int __init ubi_init(void)
1211{
1212        int err, i, k;
1213
1214        /* Ensure that EC and VID headers have correct size */
1215        BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1216        BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1217
1218        if (mtd_devs > UBI_MAX_DEVICES) {
1219                ubi_err("too many MTD devices, maximum is %d", UBI_MAX_DEVICES);
1220                return -EINVAL;
1221        }
1222
1223        /* Create base sysfs directory and sysfs files */
1224        ubi_class = class_create(THIS_MODULE, UBI_NAME_STR);
1225        if (IS_ERR(ubi_class)) {
1226                err = PTR_ERR(ubi_class);
1227                ubi_err("cannot create UBI class");
1228                goto out;
1229        }
1230
1231        err = class_create_file(ubi_class, &ubi_version);
1232        if (err) {
1233                ubi_err("cannot create sysfs file");
1234                goto out_class;
1235        }
1236
1237        err = misc_register(&ubi_ctrl_cdev);
1238        if (err) {
1239                ubi_err("cannot register device");
1240                goto out_version;
1241        }
1242
1243        ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1244                                              sizeof(struct ubi_wl_entry),
1245                                              0, 0, NULL);
1246        if (!ubi_wl_entry_slab)
1247                goto out_dev_unreg;
1248
1249        err = ubi_debugfs_init();
1250        if (err)
1251                goto out_slab;
1252
1253
1254        /* Attach MTD devices */
1255        for (i = 0; i < mtd_devs; i++) {
1256                struct mtd_dev_param *p = &mtd_dev_param[i];
1257                struct mtd_info *mtd;
1258
1259                cond_resched();
1260
1261                mtd = open_mtd_device(p->name);
1262                if (IS_ERR(mtd)) {
1263                        err = PTR_ERR(mtd);
1264                        goto out_detach;
1265                }
1266
1267                mutex_lock(&ubi_devices_mutex);
1268                err = ubi_attach_mtd_dev(mtd, UBI_DEV_NUM_AUTO,
1269                                         p->vid_hdr_offs, p->max_beb_per1024);
1270                mutex_unlock(&ubi_devices_mutex);
1271                if (err < 0) {
1272                        ubi_err("cannot attach mtd%d", mtd->index);
1273                        put_mtd_device(mtd);
1274
1275                        /*
1276                         * Originally UBI stopped initializing on any error.
1277                         * However, later on it was found out that this
1278                         * behavior is not very good when UBI is compiled into
1279                         * the kernel and the MTD devices to attach are passed
1280                         * through the command line. Indeed, UBI failure
1281                         * stopped whole boot sequence.
1282                         *
1283                         * To fix this, we changed the behavior for the
1284                         * non-module case, but preserved the old behavior for
1285                         * the module case, just for compatibility. This is a
1286                         * little inconsistent, though.
1287                         */
1288                        if (ubi_is_module())
1289                                goto out_detach;
1290                }
1291        }
1292
1293        return 0;
1294
1295out_detach:
1296        for (k = 0; k < i; k++)
1297                if (ubi_devices[k]) {
1298                        mutex_lock(&ubi_devices_mutex);
1299                        ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1300                        mutex_unlock(&ubi_devices_mutex);
1301                }
1302        ubi_debugfs_exit();
1303out_slab:
1304        kmem_cache_destroy(ubi_wl_entry_slab);
1305out_dev_unreg:
1306        misc_deregister(&ubi_ctrl_cdev);
1307out_version:
1308        class_remove_file(ubi_class, &ubi_version);
1309out_class:
1310        class_destroy(ubi_class);
1311out:
1312        ubi_err("UBI error: cannot initialize UBI, error %d", err);
1313        return err;
1314}
1315late_initcall(ubi_init);
1316
1317static void __exit ubi_exit(void)
1318{
1319        int i;
1320
1321        for (i = 0; i < UBI_MAX_DEVICES; i++)
1322                if (ubi_devices[i]) {
1323                        mutex_lock(&ubi_devices_mutex);
1324                        ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1325                        mutex_unlock(&ubi_devices_mutex);
1326                }
1327        ubi_debugfs_exit();
1328        kmem_cache_destroy(ubi_wl_entry_slab);
1329        misc_deregister(&ubi_ctrl_cdev);
1330        class_remove_file(ubi_class, &ubi_version);
1331        class_destroy(ubi_class);
1332}
1333module_exit(ubi_exit);
1334
1335/**
1336 * bytes_str_to_int - convert a number of bytes string into an integer.
1337 * @str: the string to convert
1338 *
1339 * This function returns positive resulting integer in case of success and a
1340 * negative error code in case of failure.
1341 */
1342static int __init bytes_str_to_int(const char *str)
1343{
1344        char *endp;
1345        unsigned long result;
1346
1347        result = simple_strtoul(str, &endp, 0);
1348        if (str == endp || result >= INT_MAX) {
1349                ubi_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1350                return -EINVAL;
1351        }
1352
1353        switch (*endp) {
1354        case 'G':
1355                result *= 1024;
1356        case 'M':
1357                result *= 1024;
1358        case 'K':
1359                result *= 1024;
1360                if (endp[1] == 'i' && endp[2] == 'B')
1361                        endp += 2;
1362        case '\0':
1363                break;
1364        default:
1365                ubi_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1366                return -EINVAL;
1367        }
1368
1369        return result;
1370}
1371
1372/**
1373 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1374 * @val: the parameter value to parse
1375 * @kp: not used
1376 *
1377 * This function returns zero in case of success and a negative error code in
1378 * case of error.
1379 */
1380static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1381{
1382        int i, len;
1383        struct mtd_dev_param *p;
1384        char buf[MTD_PARAM_LEN_MAX];
1385        char *pbuf = &buf[0];
1386        char *tokens[MTD_PARAM_MAX_COUNT];
1387
1388        if (!val)
1389                return -EINVAL;
1390
1391        if (mtd_devs == UBI_MAX_DEVICES) {
1392                ubi_err("UBI error: too many parameters, max. is %d\n",
1393                        UBI_MAX_DEVICES);
1394                return -EINVAL;
1395        }
1396
1397        len = strnlen(val, MTD_PARAM_LEN_MAX);
1398        if (len == MTD_PARAM_LEN_MAX) {
1399                ubi_err("UBI error: parameter \"%s\" is too long, max. is %d\n",
1400                        val, MTD_PARAM_LEN_MAX);
1401                return -EINVAL;
1402        }
1403
1404        if (len == 0) {
1405                pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n");
1406                return 0;
1407        }
1408
1409        strcpy(buf, val);
1410
1411        /* Get rid of the final newline */
1412        if (buf[len - 1] == '\n')
1413                buf[len - 1] = '\0';
1414
1415        for (i = 0; i < MTD_PARAM_MAX_COUNT; i++)
1416                tokens[i] = strsep(&pbuf, ",");
1417
1418        if (pbuf) {
1419                ubi_err("UBI error: too many arguments at \"%s\"\n", val);
1420                return -EINVAL;
1421        }
1422
1423        p = &mtd_dev_param[mtd_devs];
1424        strcpy(&p->name[0], tokens[0]);
1425
1426        if (tokens[1])
1427                p->vid_hdr_offs = bytes_str_to_int(tokens[1]);
1428
1429        if (p->vid_hdr_offs < 0)
1430                return p->vid_hdr_offs;
1431
1432        if (tokens[2]) {
1433                int err = kstrtoint(tokens[2], 10, &p->max_beb_per1024);
1434
1435                if (err) {
1436                        ubi_err("UBI error: bad value for max_beb_per1024 parameter: %s",
1437                                tokens[2]);
1438                        return -EINVAL;
1439                }
1440        }
1441
1442        mtd_devs += 1;
1443        return 0;
1444}
1445
1446module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000);
1447MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024]].\n"
1448                      "Multiple \"mtd\" parameters may be specified.\n"
1449                      "MTD devices may be specified by their number, name, or path to the MTD character device node.\n"
1450                      "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n"
1451                      "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value ("
1452                      __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n"
1453                      "\n"
1454                      "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n"
1455                      "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n"
1456                      "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n"
1457                      "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device).");
1458#ifdef CONFIG_MTD_UBI_FASTMAP
1459module_param(fm_autoconvert, bool, 0644);
1460MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap.");
1461#endif
1462MODULE_VERSION(__stringify(UBI_VERSION));
1463MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1464MODULE_AUTHOR("Artem Bityutskiy");
1465MODULE_LICENSE("GPL");
1466