linux/drivers/parisc/ccio-dma.c
<<
>>
Prefs
   1/*
   2** ccio-dma.c:
   3**      DMA management routines for first generation cache-coherent machines.
   4**      Program U2/Uturn in "Virtual Mode" and use the I/O MMU.
   5**
   6**      (c) Copyright 2000 Grant Grundler
   7**      (c) Copyright 2000 Ryan Bradetich
   8**      (c) Copyright 2000 Hewlett-Packard Company
   9**
  10** This program is free software; you can redistribute it and/or modify
  11** it under the terms of the GNU General Public License as published by
  12** the Free Software Foundation; either version 2 of the License, or
  13** (at your option) any later version.
  14**
  15**
  16**  "Real Mode" operation refers to U2/Uturn chip operation.
  17**  U2/Uturn were designed to perform coherency checks w/o using
  18**  the I/O MMU - basically what x86 does.
  19**
  20**  Philipp Rumpf has a "Real Mode" driver for PCX-W machines at:
  21**      CVSROOT=:pserver:anonymous@198.186.203.37:/cvsroot/linux-parisc
  22**      cvs -z3 co linux/arch/parisc/kernel/dma-rm.c
  23**
  24**  I've rewritten his code to work under TPG's tree. See ccio-rm-dma.c.
  25**
  26**  Drawbacks of using Real Mode are:
  27**      o outbound DMA is slower - U2 won't prefetch data (GSC+ XQL signal).
  28**      o Inbound DMA less efficient - U2 can't use DMA_FAST attribute.
  29**      o Ability to do scatter/gather in HW is lost.
  30**      o Doesn't work under PCX-U/U+ machines since they didn't follow
  31**        the coherency design originally worked out. Only PCX-W does.
  32*/
  33
  34#include <linux/types.h>
  35#include <linux/kernel.h>
  36#include <linux/init.h>
  37#include <linux/mm.h>
  38#include <linux/spinlock.h>
  39#include <linux/slab.h>
  40#include <linux/string.h>
  41#include <linux/pci.h>
  42#include <linux/reboot.h>
  43#include <linux/proc_fs.h>
  44#include <linux/seq_file.h>
  45#include <linux/scatterlist.h>
  46#include <linux/iommu-helper.h>
  47#include <linux/export.h>
  48
  49#include <asm/byteorder.h>
  50#include <asm/cache.h>          /* for L1_CACHE_BYTES */
  51#include <asm/uaccess.h>
  52#include <asm/page.h>
  53#include <asm/dma.h>
  54#include <asm/io.h>
  55#include <asm/hardware.h>       /* for register_module() */
  56#include <asm/parisc-device.h>
  57
  58/* 
  59** Choose "ccio" since that's what HP-UX calls it.
  60** Make it easier for folks to migrate from one to the other :^)
  61*/
  62#define MODULE_NAME "ccio"
  63
  64#undef DEBUG_CCIO_RES
  65#undef DEBUG_CCIO_RUN
  66#undef DEBUG_CCIO_INIT
  67#undef DEBUG_CCIO_RUN_SG
  68
  69#ifdef CONFIG_PROC_FS
  70/* depends on proc fs support. But costs CPU performance. */
  71#undef CCIO_COLLECT_STATS
  72#endif
  73
  74#include <asm/runway.h>         /* for proc_runway_root */
  75
  76#ifdef DEBUG_CCIO_INIT
  77#define DBG_INIT(x...)  printk(x)
  78#else
  79#define DBG_INIT(x...)
  80#endif
  81
  82#ifdef DEBUG_CCIO_RUN
  83#define DBG_RUN(x...)   printk(x)
  84#else
  85#define DBG_RUN(x...)
  86#endif
  87
  88#ifdef DEBUG_CCIO_RES
  89#define DBG_RES(x...)   printk(x)
  90#else
  91#define DBG_RES(x...)
  92#endif
  93
  94#ifdef DEBUG_CCIO_RUN_SG
  95#define DBG_RUN_SG(x...) printk(x)
  96#else
  97#define DBG_RUN_SG(x...)
  98#endif
  99
 100#define CCIO_INLINE     inline
 101#define WRITE_U32(value, addr) __raw_writel(value, addr)
 102#define READ_U32(addr) __raw_readl(addr)
 103
 104#define U2_IOA_RUNWAY 0x580
 105#define U2_BC_GSC     0x501
 106#define UTURN_IOA_RUNWAY 0x581
 107#define UTURN_BC_GSC     0x502
 108
 109#define IOA_NORMAL_MODE      0x00020080 /* IO_CONTROL to turn on CCIO        */
 110#define CMD_TLB_DIRECT_WRITE 35         /* IO_COMMAND for I/O TLB Writes     */
 111#define CMD_TLB_PURGE        33         /* IO_COMMAND to Purge I/O TLB entry */
 112
 113struct ioa_registers {
 114        /* Runway Supervisory Set */
 115        int32_t    unused1[12];
 116        uint32_t   io_command;             /* Offset 12 */
 117        uint32_t   io_status;              /* Offset 13 */
 118        uint32_t   io_control;             /* Offset 14 */
 119        int32_t    unused2[1];
 120
 121        /* Runway Auxiliary Register Set */
 122        uint32_t   io_err_resp;            /* Offset  0 */
 123        uint32_t   io_err_info;            /* Offset  1 */
 124        uint32_t   io_err_req;             /* Offset  2 */
 125        uint32_t   io_err_resp_hi;         /* Offset  3 */
 126        uint32_t   io_tlb_entry_m;         /* Offset  4 */
 127        uint32_t   io_tlb_entry_l;         /* Offset  5 */
 128        uint32_t   unused3[1];
 129        uint32_t   io_pdir_base;           /* Offset  7 */
 130        uint32_t   io_io_low_hv;           /* Offset  8 */
 131        uint32_t   io_io_high_hv;          /* Offset  9 */
 132        uint32_t   unused4[1];
 133        uint32_t   io_chain_id_mask;       /* Offset 11 */
 134        uint32_t   unused5[2];
 135        uint32_t   io_io_low;              /* Offset 14 */
 136        uint32_t   io_io_high;             /* Offset 15 */
 137};
 138
 139/*
 140** IOA Registers
 141** -------------
 142**
 143** Runway IO_CONTROL Register (+0x38)
 144** 
 145** The Runway IO_CONTROL register controls the forwarding of transactions.
 146**
 147** | 0  ...  13  |  14 15 | 16 ... 21 | 22 | 23 24 |  25 ... 31 |
 148** |    HV       |   TLB  |  reserved | HV | mode  |  reserved  |
 149**
 150** o mode field indicates the address translation of transactions
 151**   forwarded from Runway to GSC+:
 152**       Mode Name     Value        Definition
 153**       Off (default)   0          Opaque to matching addresses.
 154**       Include         1          Transparent for matching addresses.
 155**       Peek            3          Map matching addresses.
 156**
 157**       + "Off" mode: Runway transactions which match the I/O range
 158**         specified by the IO_IO_LOW/IO_IO_HIGH registers will be ignored.
 159**       + "Include" mode: all addresses within the I/O range specified
 160**         by the IO_IO_LOW and IO_IO_HIGH registers are transparently
 161**         forwarded. This is the I/O Adapter's normal operating mode.
 162**       + "Peek" mode: used during system configuration to initialize the
 163**         GSC+ bus. Runway Write_Shorts in the address range specified by
 164**         IO_IO_LOW and IO_IO_HIGH are forwarded through the I/O Adapter
 165**         *AND* the GSC+ address is remapped to the Broadcast Physical
 166**         Address space by setting the 14 high order address bits of the
 167**         32 bit GSC+ address to ones.
 168**
 169** o TLB field affects transactions which are forwarded from GSC+ to Runway.
 170**   "Real" mode is the poweron default.
 171** 
 172**   TLB Mode  Value  Description
 173**   Real        0    No TLB translation. Address is directly mapped and the
 174**                    virtual address is composed of selected physical bits.
 175**   Error       1    Software fills the TLB manually.
 176**   Normal      2    IOA fetches IO TLB misses from IO PDIR (in host memory).
 177**
 178**
 179** IO_IO_LOW_HV   +0x60 (HV dependent)
 180** IO_IO_HIGH_HV  +0x64 (HV dependent)
 181** IO_IO_LOW      +0x78 (Architected register)
 182** IO_IO_HIGH     +0x7c (Architected register)
 183**
 184** IO_IO_LOW and IO_IO_HIGH set the lower and upper bounds of the
 185** I/O Adapter address space, respectively.
 186**
 187** 0  ... 7 | 8 ... 15 |  16   ...   31 |
 188** 11111111 | 11111111 |      address   |
 189**
 190** Each LOW/HIGH pair describes a disjoint address space region.
 191** (2 per GSC+ port). Each incoming Runway transaction address is compared
 192** with both sets of LOW/HIGH registers. If the address is in the range
 193** greater than or equal to IO_IO_LOW and less than IO_IO_HIGH the transaction
 194** for forwarded to the respective GSC+ bus.
 195** Specify IO_IO_LOW equal to or greater than IO_IO_HIGH to avoid specifying
 196** an address space region.
 197**
 198** In order for a Runway address to reside within GSC+ extended address space:
 199**      Runway Address [0:7]    must identically compare to 8'b11111111
 200**      Runway Address [8:11]   must be equal to IO_IO_LOW(_HV)[16:19]
 201**      Runway Address [12:23]  must be greater than or equal to
 202**                 IO_IO_LOW(_HV)[20:31] and less than IO_IO_HIGH(_HV)[20:31].
 203**      Runway Address [24:39]  is not used in the comparison.
 204**
 205** When the Runway transaction is forwarded to GSC+, the GSC+ address is
 206** as follows:
 207**      GSC+ Address[0:3]       4'b1111
 208**      GSC+ Address[4:29]      Runway Address[12:37]
 209**      GSC+ Address[30:31]     2'b00
 210**
 211** All 4 Low/High registers must be initialized (by PDC) once the lower bus
 212** is interrogated and address space is defined. The operating system will
 213** modify the architectural IO_IO_LOW and IO_IO_HIGH registers following
 214** the PDC initialization.  However, the hardware version dependent IO_IO_LOW
 215** and IO_IO_HIGH registers should not be subsequently altered by the OS.
 216** 
 217** Writes to both sets of registers will take effect immediately, bypassing
 218** the queues, which ensures that subsequent Runway transactions are checked
 219** against the updated bounds values. However reads are queued, introducing
 220** the possibility of a read being bypassed by a subsequent write to the same
 221** register. This sequence can be avoided by having software wait for read
 222** returns before issuing subsequent writes.
 223*/
 224
 225struct ioc {
 226        struct ioa_registers __iomem *ioc_regs;  /* I/O MMU base address */
 227        u8  *res_map;                   /* resource map, bit == pdir entry */
 228        u64 *pdir_base;                 /* physical base address */
 229        u32 pdir_size;                  /* bytes, function of IOV Space size */
 230        u32 res_hint;                   /* next available IOVP - 
 231                                           circular search */
 232        u32 res_size;                   /* size of resource map in bytes */
 233        spinlock_t res_lock;
 234
 235#ifdef CCIO_COLLECT_STATS
 236#define CCIO_SEARCH_SAMPLE 0x100
 237        unsigned long avg_search[CCIO_SEARCH_SAMPLE];
 238        unsigned long avg_idx;            /* current index into avg_search */
 239        unsigned long used_pages;
 240        unsigned long msingle_calls;
 241        unsigned long msingle_pages;
 242        unsigned long msg_calls;
 243        unsigned long msg_pages;
 244        unsigned long usingle_calls;
 245        unsigned long usingle_pages;
 246        unsigned long usg_calls;
 247        unsigned long usg_pages;
 248#endif
 249        unsigned short cujo20_bug;
 250
 251        /* STUFF We don't need in performance path */
 252        u32 chainid_shift;              /* specify bit location of chain_id */
 253        struct ioc *next;               /* Linked list of discovered iocs */
 254        const char *name;               /* device name from firmware */
 255        unsigned int hw_path;           /* the hardware path this ioc is associatd with */
 256        struct pci_dev *fake_pci_dev;   /* the fake pci_dev for non-pci devs */
 257        struct resource mmio_region[2]; /* The "routed" MMIO regions */
 258};
 259
 260static struct ioc *ioc_list;
 261static int ioc_count;
 262
 263/**************************************************************
 264*
 265*   I/O Pdir Resource Management
 266*
 267*   Bits set in the resource map are in use.
 268*   Each bit can represent a number of pages.
 269*   LSbs represent lower addresses (IOVA's).
 270*
 271*   This was was copied from sba_iommu.c. Don't try to unify
 272*   the two resource managers unless a way to have different
 273*   allocation policies is also adjusted. We'd like to avoid
 274*   I/O TLB thrashing by having resource allocation policy
 275*   match the I/O TLB replacement policy.
 276*
 277***************************************************************/
 278#define IOVP_SIZE PAGE_SIZE
 279#define IOVP_SHIFT PAGE_SHIFT
 280#define IOVP_MASK PAGE_MASK
 281
 282/* Convert from IOVP to IOVA and vice versa. */
 283#define CCIO_IOVA(iovp,offset) ((iovp) | (offset))
 284#define CCIO_IOVP(iova) ((iova) & IOVP_MASK)
 285
 286#define PDIR_INDEX(iovp)    ((iovp)>>IOVP_SHIFT)
 287#define MKIOVP(pdir_idx)    ((long)(pdir_idx) << IOVP_SHIFT)
 288#define MKIOVA(iovp,offset) (dma_addr_t)((long)iovp | (long)offset)
 289
 290/*
 291** Don't worry about the 150% average search length on a miss.
 292** If the search wraps around, and passes the res_hint, it will
 293** cause the kernel to panic anyhow.
 294*/
 295#define CCIO_SEARCH_LOOP(ioc, res_idx, mask, size)  \
 296       for(; res_ptr < res_end; ++res_ptr) { \
 297                int ret;\
 298                unsigned int idx;\
 299                idx = (unsigned int)((unsigned long)res_ptr - (unsigned long)ioc->res_map); \
 300                ret = iommu_is_span_boundary(idx << 3, pages_needed, 0, boundary_size);\
 301                if ((0 == (*res_ptr & mask)) && !ret) { \
 302                        *res_ptr |= mask; \
 303                        res_idx = idx;\
 304                        ioc->res_hint = res_idx + (size >> 3); \
 305                        goto resource_found; \
 306                } \
 307        }
 308
 309#define CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, size) \
 310       u##size *res_ptr = (u##size *)&((ioc)->res_map[ioa->res_hint & ~((size >> 3) - 1)]); \
 311       u##size *res_end = (u##size *)&(ioc)->res_map[ioa->res_size]; \
 312       CCIO_SEARCH_LOOP(ioc, res_idx, mask, size); \
 313       res_ptr = (u##size *)&(ioc)->res_map[0]; \
 314       CCIO_SEARCH_LOOP(ioa, res_idx, mask, size);
 315
 316/*
 317** Find available bit in this ioa's resource map.
 318** Use a "circular" search:
 319**   o Most IOVA's are "temporary" - avg search time should be small.
 320** o keep a history of what happened for debugging
 321** o KISS.
 322**
 323** Perf optimizations:
 324** o search for log2(size) bits at a time.
 325** o search for available resource bits using byte/word/whatever.
 326** o use different search for "large" (eg > 4 pages) or "very large"
 327**   (eg > 16 pages) mappings.
 328*/
 329
 330/**
 331 * ccio_alloc_range - Allocate pages in the ioc's resource map.
 332 * @ioc: The I/O Controller.
 333 * @pages_needed: The requested number of pages to be mapped into the
 334 * I/O Pdir...
 335 *
 336 * This function searches the resource map of the ioc to locate a range
 337 * of available pages for the requested size.
 338 */
 339static int
 340ccio_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
 341{
 342        unsigned int pages_needed = size >> IOVP_SHIFT;
 343        unsigned int res_idx;
 344        unsigned long boundary_size;
 345#ifdef CCIO_COLLECT_STATS
 346        unsigned long cr_start = mfctl(16);
 347#endif
 348        
 349        BUG_ON(pages_needed == 0);
 350        BUG_ON((pages_needed * IOVP_SIZE) > DMA_CHUNK_SIZE);
 351     
 352        DBG_RES("%s() size: %d pages_needed %d\n", 
 353                __func__, size, pages_needed);
 354
 355        /*
 356        ** "seek and ye shall find"...praying never hurts either...
 357        ** ggg sacrifices another 710 to the computer gods.
 358        */
 359
 360        boundary_size = ALIGN((unsigned long long)dma_get_seg_boundary(dev) + 1,
 361                              1ULL << IOVP_SHIFT) >> IOVP_SHIFT;
 362
 363        if (pages_needed <= 8) {
 364                /*
 365                 * LAN traffic will not thrash the TLB IFF the same NIC
 366                 * uses 8 adjacent pages to map separate payload data.
 367                 * ie the same byte in the resource bit map.
 368                 */
 369#if 0
 370                /* FIXME: bit search should shift it's way through
 371                 * an unsigned long - not byte at a time. As it is now,
 372                 * we effectively allocate this byte to this mapping.
 373                 */
 374                unsigned long mask = ~(~0UL >> pages_needed);
 375                CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 8);
 376#else
 377                CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xff, 8);
 378#endif
 379        } else if (pages_needed <= 16) {
 380                CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xffff, 16);
 381        } else if (pages_needed <= 32) {
 382                CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~(unsigned int)0, 32);
 383#ifdef __LP64__
 384        } else if (pages_needed <= 64) {
 385                CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~0UL, 64);
 386#endif
 387        } else {
 388                panic("%s: %s() Too many pages to map. pages_needed: %u\n",
 389                       __FILE__,  __func__, pages_needed);
 390        }
 391
 392        panic("%s: %s() I/O MMU is out of mapping resources.\n", __FILE__,
 393              __func__);
 394        
 395resource_found:
 396        
 397        DBG_RES("%s() res_idx %d res_hint: %d\n",
 398                __func__, res_idx, ioc->res_hint);
 399
 400#ifdef CCIO_COLLECT_STATS
 401        {
 402                unsigned long cr_end = mfctl(16);
 403                unsigned long tmp = cr_end - cr_start;
 404                /* check for roll over */
 405                cr_start = (cr_end < cr_start) ?  -(tmp) : (tmp);
 406        }
 407        ioc->avg_search[ioc->avg_idx++] = cr_start;
 408        ioc->avg_idx &= CCIO_SEARCH_SAMPLE - 1;
 409        ioc->used_pages += pages_needed;
 410#endif
 411        /* 
 412        ** return the bit address.
 413        */
 414        return res_idx << 3;
 415}
 416
 417#define CCIO_FREE_MAPPINGS(ioc, res_idx, mask, size) \
 418        u##size *res_ptr = (u##size *)&((ioc)->res_map[res_idx]); \
 419        BUG_ON((*res_ptr & mask) != mask); \
 420        *res_ptr &= ~(mask);
 421
 422/**
 423 * ccio_free_range - Free pages from the ioc's resource map.
 424 * @ioc: The I/O Controller.
 425 * @iova: The I/O Virtual Address.
 426 * @pages_mapped: The requested number of pages to be freed from the
 427 * I/O Pdir.
 428 *
 429 * This function frees the resouces allocated for the iova.
 430 */
 431static void
 432ccio_free_range(struct ioc *ioc, dma_addr_t iova, unsigned long pages_mapped)
 433{
 434        unsigned long iovp = CCIO_IOVP(iova);
 435        unsigned int res_idx = PDIR_INDEX(iovp) >> 3;
 436
 437        BUG_ON(pages_mapped == 0);
 438        BUG_ON((pages_mapped * IOVP_SIZE) > DMA_CHUNK_SIZE);
 439        BUG_ON(pages_mapped > BITS_PER_LONG);
 440
 441        DBG_RES("%s():  res_idx: %d pages_mapped %d\n", 
 442                __func__, res_idx, pages_mapped);
 443
 444#ifdef CCIO_COLLECT_STATS
 445        ioc->used_pages -= pages_mapped;
 446#endif
 447
 448        if(pages_mapped <= 8) {
 449#if 0
 450                /* see matching comments in alloc_range */
 451                unsigned long mask = ~(~0UL >> pages_mapped);
 452                CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 8);
 453#else
 454                CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffUL, 8);
 455#endif
 456        } else if(pages_mapped <= 16) {
 457                CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffffUL, 16);
 458        } else if(pages_mapped <= 32) {
 459                CCIO_FREE_MAPPINGS(ioc, res_idx, ~(unsigned int)0, 32);
 460#ifdef __LP64__
 461        } else if(pages_mapped <= 64) {
 462                CCIO_FREE_MAPPINGS(ioc, res_idx, ~0UL, 64);
 463#endif
 464        } else {
 465                panic("%s:%s() Too many pages to unmap.\n", __FILE__,
 466                      __func__);
 467        }
 468}
 469
 470/****************************************************************
 471**
 472**          CCIO dma_ops support routines
 473**
 474*****************************************************************/
 475
 476typedef unsigned long space_t;
 477#define KERNEL_SPACE 0
 478
 479/*
 480** DMA "Page Type" and Hints 
 481** o if SAFE_DMA isn't set, mapping is for FAST_DMA. SAFE_DMA should be
 482**   set for subcacheline DMA transfers since we don't want to damage the
 483**   other part of a cacheline.
 484** o SAFE_DMA must be set for "memory" allocated via pci_alloc_consistent().
 485**   This bit tells U2 to do R/M/W for partial cachelines. "Streaming"
 486**   data can avoid this if the mapping covers full cache lines.
 487** o STOP_MOST is needed for atomicity across cachelines.
 488**   Apparently only "some EISA devices" need this.
 489**   Using CONFIG_ISA is hack. Only the IOA with EISA under it needs
 490**   to use this hint iff the EISA devices needs this feature.
 491**   According to the U2 ERS, STOP_MOST enabled pages hurt performance.
 492** o PREFETCH should *not* be set for cases like Multiple PCI devices
 493**   behind GSCtoPCI (dino) bus converter. Only one cacheline per GSC
 494**   device can be fetched and multiply DMA streams will thrash the
 495**   prefetch buffer and burn memory bandwidth. See 6.7.3 "Prefetch Rules
 496**   and Invalidation of Prefetch Entries".
 497**
 498** FIXME: the default hints need to be per GSC device - not global.
 499** 
 500** HP-UX dorks: linux device driver programming model is totally different
 501**    than HP-UX's. HP-UX always sets HINT_PREFETCH since it's drivers
 502**    do special things to work on non-coherent platforms...linux has to
 503**    be much more careful with this.
 504*/
 505#define IOPDIR_VALID    0x01UL
 506#define HINT_SAFE_DMA   0x02UL  /* used for pci_alloc_consistent() pages */
 507#ifdef CONFIG_EISA
 508#define HINT_STOP_MOST  0x04UL  /* LSL support */
 509#else
 510#define HINT_STOP_MOST  0x00UL  /* only needed for "some EISA devices" */
 511#endif
 512#define HINT_UDPATE_ENB 0x08UL  /* not used/supported by U2 */
 513#define HINT_PREFETCH   0x10UL  /* for outbound pages which are not SAFE */
 514
 515
 516/*
 517** Use direction (ie PCI_DMA_TODEVICE) to pick hint.
 518** ccio_alloc_consistent() depends on this to get SAFE_DMA
 519** when it passes in BIDIRECTIONAL flag.
 520*/
 521static u32 hint_lookup[] = {
 522        [PCI_DMA_BIDIRECTIONAL] = HINT_STOP_MOST | HINT_SAFE_DMA | IOPDIR_VALID,
 523        [PCI_DMA_TODEVICE]      = HINT_STOP_MOST | HINT_PREFETCH | IOPDIR_VALID,
 524        [PCI_DMA_FROMDEVICE]    = HINT_STOP_MOST | IOPDIR_VALID,
 525};
 526
 527/**
 528 * ccio_io_pdir_entry - Initialize an I/O Pdir.
 529 * @pdir_ptr: A pointer into I/O Pdir.
 530 * @sid: The Space Identifier.
 531 * @vba: The virtual address.
 532 * @hints: The DMA Hint.
 533 *
 534 * Given a virtual address (vba, arg2) and space id, (sid, arg1),
 535 * load the I/O PDIR entry pointed to by pdir_ptr (arg0). Each IO Pdir
 536 * entry consists of 8 bytes as shown below (MSB == bit 0):
 537 *
 538 *
 539 * WORD 0:
 540 * +------+----------------+-----------------------------------------------+
 541 * | Phys | Virtual Index  |               Phys                            |
 542 * | 0:3  |     0:11       |               4:19                            |
 543 * |4 bits|   12 bits      |              16 bits                          |
 544 * +------+----------------+-----------------------------------------------+
 545 * WORD 1:
 546 * +-----------------------+-----------------------------------------------+
 547 * |      Phys    |  Rsvd  | Prefetch |Update |Rsvd  |Lock  |Safe  |Valid  |
 548 * |     20:39    |        | Enable   |Enable |      |Enable|DMA   |       |
 549 * |    20 bits   | 5 bits | 1 bit    |1 bit  |2 bits|1 bit |1 bit |1 bit  |
 550 * +-----------------------+-----------------------------------------------+
 551 *
 552 * The virtual index field is filled with the results of the LCI
 553 * (Load Coherence Index) instruction.  The 8 bits used for the virtual
 554 * index are bits 12:19 of the value returned by LCI.
 555 */ 
 556static void CCIO_INLINE
 557ccio_io_pdir_entry(u64 *pdir_ptr, space_t sid, unsigned long vba,
 558                   unsigned long hints)
 559{
 560        register unsigned long pa;
 561        register unsigned long ci; /* coherent index */
 562
 563        /* We currently only support kernel addresses */
 564        BUG_ON(sid != KERNEL_SPACE);
 565
 566        mtsp(sid,1);
 567
 568        /*
 569        ** WORD 1 - low order word
 570        ** "hints" parm includes the VALID bit!
 571        ** "dep" clobbers the physical address offset bits as well.
 572        */
 573        pa = virt_to_phys(vba);
 574        asm volatile("depw  %1,31,12,%0" : "+r" (pa) : "r" (hints));
 575        ((u32 *)pdir_ptr)[1] = (u32) pa;
 576
 577        /*
 578        ** WORD 0 - high order word
 579        */
 580
 581#ifdef __LP64__
 582        /*
 583        ** get bits 12:15 of physical address
 584        ** shift bits 16:31 of physical address
 585        ** and deposit them
 586        */
 587        asm volatile ("extrd,u %1,15,4,%0" : "=r" (ci) : "r" (pa));
 588        asm volatile ("extrd,u %1,31,16,%0" : "+r" (pa) : "r" (pa));
 589        asm volatile ("depd  %1,35,4,%0" : "+r" (pa) : "r" (ci));
 590#else
 591        pa = 0;
 592#endif
 593        /*
 594        ** get CPU coherency index bits
 595        ** Grab virtual index [0:11]
 596        ** Deposit virt_idx bits into I/O PDIR word
 597        */
 598        asm volatile ("lci %%r0(%%sr1, %1), %0" : "=r" (ci) : "r" (vba));
 599        asm volatile ("extru %1,19,12,%0" : "+r" (ci) : "r" (ci));
 600        asm volatile ("depw  %1,15,12,%0" : "+r" (pa) : "r" (ci));
 601
 602        ((u32 *)pdir_ptr)[0] = (u32) pa;
 603
 604
 605        /* FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
 606        **        PCX-U/U+ do. (eg C200/C240)
 607        **        PCX-T'? Don't know. (eg C110 or similar K-class)
 608        **
 609        ** See PDC_MODEL/option 0/SW_CAP word for "Non-coherent IO-PDIR bit".
 610        ** Hopefully we can patch (NOP) these out at boot time somehow.
 611        **
 612        ** "Since PCX-U employs an offset hash that is incompatible with
 613        ** the real mode coherence index generation of U2, the PDIR entry
 614        ** must be flushed to memory to retain coherence."
 615        */
 616        asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr));
 617        asm volatile("sync");
 618}
 619
 620/**
 621 * ccio_clear_io_tlb - Remove stale entries from the I/O TLB.
 622 * @ioc: The I/O Controller.
 623 * @iovp: The I/O Virtual Page.
 624 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
 625 *
 626 * Purge invalid I/O PDIR entries from the I/O TLB.
 627 *
 628 * FIXME: Can we change the byte_cnt to pages_mapped?
 629 */
 630static CCIO_INLINE void
 631ccio_clear_io_tlb(struct ioc *ioc, dma_addr_t iovp, size_t byte_cnt)
 632{
 633        u32 chain_size = 1 << ioc->chainid_shift;
 634
 635        iovp &= IOVP_MASK;      /* clear offset bits, just want pagenum */
 636        byte_cnt += chain_size;
 637
 638        while(byte_cnt > chain_size) {
 639                WRITE_U32(CMD_TLB_PURGE | iovp, &ioc->ioc_regs->io_command);
 640                iovp += chain_size;
 641                byte_cnt -= chain_size;
 642        }
 643}
 644
 645/**
 646 * ccio_mark_invalid - Mark the I/O Pdir entries invalid.
 647 * @ioc: The I/O Controller.
 648 * @iova: The I/O Virtual Address.
 649 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
 650 *
 651 * Mark the I/O Pdir entries invalid and blow away the corresponding I/O
 652 * TLB entries.
 653 *
 654 * FIXME: at some threshold it might be "cheaper" to just blow
 655 *        away the entire I/O TLB instead of individual entries.
 656 *
 657 * FIXME: Uturn has 256 TLB entries. We don't need to purge every
 658 *        PDIR entry - just once for each possible TLB entry.
 659 *        (We do need to maker I/O PDIR entries invalid regardless).
 660 *
 661 * FIXME: Can we change byte_cnt to pages_mapped?
 662 */ 
 663static CCIO_INLINE void
 664ccio_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
 665{
 666        u32 iovp = (u32)CCIO_IOVP(iova);
 667        size_t saved_byte_cnt;
 668
 669        /* round up to nearest page size */
 670        saved_byte_cnt = byte_cnt = ALIGN(byte_cnt, IOVP_SIZE);
 671
 672        while(byte_cnt > 0) {
 673                /* invalidate one page at a time */
 674                unsigned int idx = PDIR_INDEX(iovp);
 675                char *pdir_ptr = (char *) &(ioc->pdir_base[idx]);
 676
 677                BUG_ON(idx >= (ioc->pdir_size / sizeof(u64)));
 678                pdir_ptr[7] = 0;        /* clear only VALID bit */ 
 679                /*
 680                ** FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
 681                **   PCX-U/U+ do. (eg C200/C240)
 682                ** See PDC_MODEL/option 0/SW_CAP for "Non-coherent IO-PDIR bit".
 683                **
 684                ** Hopefully someone figures out how to patch (NOP) the
 685                ** FDC/SYNC out at boot time.
 686                */
 687                asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr[7]));
 688
 689                iovp     += IOVP_SIZE;
 690                byte_cnt -= IOVP_SIZE;
 691        }
 692
 693        asm volatile("sync");
 694        ccio_clear_io_tlb(ioc, CCIO_IOVP(iova), saved_byte_cnt);
 695}
 696
 697/****************************************************************
 698**
 699**          CCIO dma_ops
 700**
 701*****************************************************************/
 702
 703/**
 704 * ccio_dma_supported - Verify the IOMMU supports the DMA address range.
 705 * @dev: The PCI device.
 706 * @mask: A bit mask describing the DMA address range of the device.
 707 *
 708 * This function implements the pci_dma_supported function.
 709 */
 710static int 
 711ccio_dma_supported(struct device *dev, u64 mask)
 712{
 713        if(dev == NULL) {
 714                printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n");
 715                BUG();
 716                return 0;
 717        }
 718
 719        /* only support 32-bit devices (ie PCI/GSC) */
 720        return (int)(mask == 0xffffffffUL);
 721}
 722
 723/**
 724 * ccio_map_single - Map an address range into the IOMMU.
 725 * @dev: The PCI device.
 726 * @addr: The start address of the DMA region.
 727 * @size: The length of the DMA region.
 728 * @direction: The direction of the DMA transaction (to/from device).
 729 *
 730 * This function implements the pci_map_single function.
 731 */
 732static dma_addr_t 
 733ccio_map_single(struct device *dev, void *addr, size_t size,
 734                enum dma_data_direction direction)
 735{
 736        int idx;
 737        struct ioc *ioc;
 738        unsigned long flags;
 739        dma_addr_t iovp;
 740        dma_addr_t offset;
 741        u64 *pdir_start;
 742        unsigned long hint = hint_lookup[(int)direction];
 743
 744        BUG_ON(!dev);
 745        ioc = GET_IOC(dev);
 746
 747        BUG_ON(size <= 0);
 748
 749        /* save offset bits */
 750        offset = ((unsigned long) addr) & ~IOVP_MASK;
 751
 752        /* round up to nearest IOVP_SIZE */
 753        size = ALIGN(size + offset, IOVP_SIZE);
 754        spin_lock_irqsave(&ioc->res_lock, flags);
 755
 756#ifdef CCIO_COLLECT_STATS
 757        ioc->msingle_calls++;
 758        ioc->msingle_pages += size >> IOVP_SHIFT;
 759#endif
 760
 761        idx = ccio_alloc_range(ioc, dev, size);
 762        iovp = (dma_addr_t)MKIOVP(idx);
 763
 764        pdir_start = &(ioc->pdir_base[idx]);
 765
 766        DBG_RUN("%s() 0x%p -> 0x%lx size: %0x%x\n",
 767                __func__, addr, (long)iovp | offset, size);
 768
 769        /* If not cacheline aligned, force SAFE_DMA on the whole mess */
 770        if((size % L1_CACHE_BYTES) || ((unsigned long)addr % L1_CACHE_BYTES))
 771                hint |= HINT_SAFE_DMA;
 772
 773        while(size > 0) {
 774                ccio_io_pdir_entry(pdir_start, KERNEL_SPACE, (unsigned long)addr, hint);
 775
 776                DBG_RUN(" pdir %p %08x%08x\n",
 777                        pdir_start,
 778                        (u32) (((u32 *) pdir_start)[0]),
 779                        (u32) (((u32 *) pdir_start)[1]));
 780                ++pdir_start;
 781                addr += IOVP_SIZE;
 782                size -= IOVP_SIZE;
 783        }
 784
 785        spin_unlock_irqrestore(&ioc->res_lock, flags);
 786
 787        /* form complete address */
 788        return CCIO_IOVA(iovp, offset);
 789}
 790
 791/**
 792 * ccio_unmap_single - Unmap an address range from the IOMMU.
 793 * @dev: The PCI device.
 794 * @addr: The start address of the DMA region.
 795 * @size: The length of the DMA region.
 796 * @direction: The direction of the DMA transaction (to/from device).
 797 *
 798 * This function implements the pci_unmap_single function.
 799 */
 800static void 
 801ccio_unmap_single(struct device *dev, dma_addr_t iova, size_t size, 
 802                  enum dma_data_direction direction)
 803{
 804        struct ioc *ioc;
 805        unsigned long flags; 
 806        dma_addr_t offset = iova & ~IOVP_MASK;
 807        
 808        BUG_ON(!dev);
 809        ioc = GET_IOC(dev);
 810
 811        DBG_RUN("%s() iovp 0x%lx/%x\n",
 812                __func__, (long)iova, size);
 813
 814        iova ^= offset;        /* clear offset bits */
 815        size += offset;
 816        size = ALIGN(size, IOVP_SIZE);
 817
 818        spin_lock_irqsave(&ioc->res_lock, flags);
 819
 820#ifdef CCIO_COLLECT_STATS
 821        ioc->usingle_calls++;
 822        ioc->usingle_pages += size >> IOVP_SHIFT;
 823#endif
 824
 825        ccio_mark_invalid(ioc, iova, size);
 826        ccio_free_range(ioc, iova, (size >> IOVP_SHIFT));
 827        spin_unlock_irqrestore(&ioc->res_lock, flags);
 828}
 829
 830/**
 831 * ccio_alloc_consistent - Allocate a consistent DMA mapping.
 832 * @dev: The PCI device.
 833 * @size: The length of the DMA region.
 834 * @dma_handle: The DMA address handed back to the device (not the cpu).
 835 *
 836 * This function implements the pci_alloc_consistent function.
 837 */
 838static void * 
 839ccio_alloc_consistent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag)
 840{
 841      void *ret;
 842#if 0
 843/* GRANT Need to establish hierarchy for non-PCI devs as well
 844** and then provide matching gsc_map_xxx() functions for them as well.
 845*/
 846        if(!hwdev) {
 847                /* only support PCI */
 848                *dma_handle = 0;
 849                return 0;
 850        }
 851#endif
 852        ret = (void *) __get_free_pages(flag, get_order(size));
 853
 854        if (ret) {
 855                memset(ret, 0, size);
 856                *dma_handle = ccio_map_single(dev, ret, size, PCI_DMA_BIDIRECTIONAL);
 857        }
 858
 859        return ret;
 860}
 861
 862/**
 863 * ccio_free_consistent - Free a consistent DMA mapping.
 864 * @dev: The PCI device.
 865 * @size: The length of the DMA region.
 866 * @cpu_addr: The cpu address returned from the ccio_alloc_consistent.
 867 * @dma_handle: The device address returned from the ccio_alloc_consistent.
 868 *
 869 * This function implements the pci_free_consistent function.
 870 */
 871static void 
 872ccio_free_consistent(struct device *dev, size_t size, void *cpu_addr, 
 873                     dma_addr_t dma_handle)
 874{
 875        ccio_unmap_single(dev, dma_handle, size, 0);
 876        free_pages((unsigned long)cpu_addr, get_order(size));
 877}
 878
 879/*
 880** Since 0 is a valid pdir_base index value, can't use that
 881** to determine if a value is valid or not. Use a flag to indicate
 882** the SG list entry contains a valid pdir index.
 883*/
 884#define PIDE_FLAG 0x80000000UL
 885
 886#ifdef CCIO_COLLECT_STATS
 887#define IOMMU_MAP_STATS
 888#endif
 889#include "iommu-helpers.h"
 890
 891/**
 892 * ccio_map_sg - Map the scatter/gather list into the IOMMU.
 893 * @dev: The PCI device.
 894 * @sglist: The scatter/gather list to be mapped in the IOMMU.
 895 * @nents: The number of entries in the scatter/gather list.
 896 * @direction: The direction of the DMA transaction (to/from device).
 897 *
 898 * This function implements the pci_map_sg function.
 899 */
 900static int
 901ccio_map_sg(struct device *dev, struct scatterlist *sglist, int nents, 
 902            enum dma_data_direction direction)
 903{
 904        struct ioc *ioc;
 905        int coalesced, filled = 0;
 906        unsigned long flags;
 907        unsigned long hint = hint_lookup[(int)direction];
 908        unsigned long prev_len = 0, current_len = 0;
 909        int i;
 910        
 911        BUG_ON(!dev);
 912        ioc = GET_IOC(dev);
 913        
 914        DBG_RUN_SG("%s() START %d entries\n", __func__, nents);
 915
 916        /* Fast path single entry scatterlists. */
 917        if (nents == 1) {
 918                sg_dma_address(sglist) = ccio_map_single(dev,
 919                                (void *)sg_virt_addr(sglist), sglist->length,
 920                                direction);
 921                sg_dma_len(sglist) = sglist->length;
 922                return 1;
 923        }
 924
 925        for(i = 0; i < nents; i++)
 926                prev_len += sglist[i].length;
 927        
 928        spin_lock_irqsave(&ioc->res_lock, flags);
 929
 930#ifdef CCIO_COLLECT_STATS
 931        ioc->msg_calls++;
 932#endif
 933
 934        /*
 935        ** First coalesce the chunks and allocate I/O pdir space
 936        **
 937        ** If this is one DMA stream, we can properly map using the
 938        ** correct virtual address associated with each DMA page.
 939        ** w/o this association, we wouldn't have coherent DMA!
 940        ** Access to the virtual address is what forces a two pass algorithm.
 941        */
 942        coalesced = iommu_coalesce_chunks(ioc, dev, sglist, nents, ccio_alloc_range);
 943
 944        /*
 945        ** Program the I/O Pdir
 946        **
 947        ** map the virtual addresses to the I/O Pdir
 948        ** o dma_address will contain the pdir index
 949        ** o dma_len will contain the number of bytes to map 
 950        ** o page/offset contain the virtual address.
 951        */
 952        filled = iommu_fill_pdir(ioc, sglist, nents, hint, ccio_io_pdir_entry);
 953
 954        spin_unlock_irqrestore(&ioc->res_lock, flags);
 955
 956        BUG_ON(coalesced != filled);
 957
 958        DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled);
 959
 960        for (i = 0; i < filled; i++)
 961                current_len += sg_dma_len(sglist + i);
 962
 963        BUG_ON(current_len != prev_len);
 964
 965        return filled;
 966}
 967
 968/**
 969 * ccio_unmap_sg - Unmap the scatter/gather list from the IOMMU.
 970 * @dev: The PCI device.
 971 * @sglist: The scatter/gather list to be unmapped from the IOMMU.
 972 * @nents: The number of entries in the scatter/gather list.
 973 * @direction: The direction of the DMA transaction (to/from device).
 974 *
 975 * This function implements the pci_unmap_sg function.
 976 */
 977static void 
 978ccio_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents, 
 979              enum dma_data_direction direction)
 980{
 981        struct ioc *ioc;
 982
 983        BUG_ON(!dev);
 984        ioc = GET_IOC(dev);
 985
 986        DBG_RUN_SG("%s() START %d entries,  %08lx,%x\n",
 987                __func__, nents, sg_virt_addr(sglist), sglist->length);
 988
 989#ifdef CCIO_COLLECT_STATS
 990        ioc->usg_calls++;
 991#endif
 992
 993        while(sg_dma_len(sglist) && nents--) {
 994
 995#ifdef CCIO_COLLECT_STATS
 996                ioc->usg_pages += sg_dma_len(sglist) >> PAGE_SHIFT;
 997#endif
 998                ccio_unmap_single(dev, sg_dma_address(sglist),
 999                                  sg_dma_len(sglist), direction);
1000                ++sglist;
1001        }
1002
1003        DBG_RUN_SG("%s() DONE (nents %d)\n", __func__, nents);
1004}
1005
1006static struct hppa_dma_ops ccio_ops = {
1007        .dma_supported =        ccio_dma_supported,
1008        .alloc_consistent =     ccio_alloc_consistent,
1009        .alloc_noncoherent =    ccio_alloc_consistent,
1010        .free_consistent =      ccio_free_consistent,
1011        .map_single =           ccio_map_single,
1012        .unmap_single =         ccio_unmap_single,
1013        .map_sg =               ccio_map_sg,
1014        .unmap_sg =             ccio_unmap_sg,
1015        .dma_sync_single_for_cpu =      NULL,   /* NOP for U2/Uturn */
1016        .dma_sync_single_for_device =   NULL,   /* NOP for U2/Uturn */
1017        .dma_sync_sg_for_cpu =          NULL,   /* ditto */
1018        .dma_sync_sg_for_device =               NULL,   /* ditto */
1019};
1020
1021#ifdef CONFIG_PROC_FS
1022static int ccio_proc_info(struct seq_file *m, void *p)
1023{
1024        int len = 0;
1025        struct ioc *ioc = ioc_list;
1026
1027        while (ioc != NULL) {
1028                unsigned int total_pages = ioc->res_size << 3;
1029#ifdef CCIO_COLLECT_STATS
1030                unsigned long avg = 0, min, max;
1031                int j;
1032#endif
1033
1034                len += seq_printf(m, "%s\n", ioc->name);
1035                
1036                len += seq_printf(m, "Cujo 2.0 bug    : %s\n",
1037                                  (ioc->cujo20_bug ? "yes" : "no"));
1038                
1039                len += seq_printf(m, "IO PDIR size    : %d bytes (%d entries)\n",
1040                               total_pages * 8, total_pages);
1041
1042#ifdef CCIO_COLLECT_STATS
1043                len += seq_printf(m, "IO PDIR entries : %ld free  %ld used (%d%%)\n",
1044                                  total_pages - ioc->used_pages, ioc->used_pages,
1045                                  (int)(ioc->used_pages * 100 / total_pages));
1046#endif
1047
1048                len += seq_printf(m, "Resource bitmap : %d bytes (%d pages)\n", 
1049                                  ioc->res_size, total_pages);
1050
1051#ifdef CCIO_COLLECT_STATS
1052                min = max = ioc->avg_search[0];
1053                for(j = 0; j < CCIO_SEARCH_SAMPLE; ++j) {
1054                        avg += ioc->avg_search[j];
1055                        if(ioc->avg_search[j] > max) 
1056                                max = ioc->avg_search[j];
1057                        if(ioc->avg_search[j] < min) 
1058                                min = ioc->avg_search[j];
1059                }
1060                avg /= CCIO_SEARCH_SAMPLE;
1061                len += seq_printf(m, "  Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n",
1062                                  min, avg, max);
1063
1064                len += seq_printf(m, "pci_map_single(): %8ld calls  %8ld pages (avg %d/1000)\n",
1065                                  ioc->msingle_calls, ioc->msingle_pages,
1066                                  (int)((ioc->msingle_pages * 1000)/ioc->msingle_calls));
1067
1068                /* KLUGE - unmap_sg calls unmap_single for each mapped page */
1069                min = ioc->usingle_calls - ioc->usg_calls;
1070                max = ioc->usingle_pages - ioc->usg_pages;
1071                len += seq_printf(m, "pci_unmap_single: %8ld calls  %8ld pages (avg %d/1000)\n",
1072                                  min, max, (int)((max * 1000)/min));
1073 
1074                len += seq_printf(m, "pci_map_sg()    : %8ld calls  %8ld pages (avg %d/1000)\n",
1075                                  ioc->msg_calls, ioc->msg_pages,
1076                                  (int)((ioc->msg_pages * 1000)/ioc->msg_calls));
1077
1078                len += seq_printf(m, "pci_unmap_sg()  : %8ld calls  %8ld pages (avg %d/1000)\n\n\n",
1079                                  ioc->usg_calls, ioc->usg_pages,
1080                                  (int)((ioc->usg_pages * 1000)/ioc->usg_calls));
1081#endif  /* CCIO_COLLECT_STATS */
1082
1083                ioc = ioc->next;
1084        }
1085
1086        return 0;
1087}
1088
1089static int ccio_proc_info_open(struct inode *inode, struct file *file)
1090{
1091        return single_open(file, &ccio_proc_info, NULL);
1092}
1093
1094static const struct file_operations ccio_proc_info_fops = {
1095        .owner = THIS_MODULE,
1096        .open = ccio_proc_info_open,
1097        .read = seq_read,
1098        .llseek = seq_lseek,
1099        .release = single_release,
1100};
1101
1102static int ccio_proc_bitmap_info(struct seq_file *m, void *p)
1103{
1104        int len = 0;
1105        struct ioc *ioc = ioc_list;
1106
1107        while (ioc != NULL) {
1108                u32 *res_ptr = (u32 *)ioc->res_map;
1109                int j;
1110
1111                for (j = 0; j < (ioc->res_size / sizeof(u32)); j++) {
1112                        if ((j & 7) == 0)
1113                                len += seq_puts(m, "\n   ");
1114                        len += seq_printf(m, "%08x", *res_ptr);
1115                        res_ptr++;
1116                }
1117                len += seq_puts(m, "\n\n");
1118                ioc = ioc->next;
1119                break; /* XXX - remove me */
1120        }
1121
1122        return 0;
1123}
1124
1125static int ccio_proc_bitmap_open(struct inode *inode, struct file *file)
1126{
1127        return single_open(file, &ccio_proc_bitmap_info, NULL);
1128}
1129
1130static const struct file_operations ccio_proc_bitmap_fops = {
1131        .owner = THIS_MODULE,
1132        .open = ccio_proc_bitmap_open,
1133        .read = seq_read,
1134        .llseek = seq_lseek,
1135        .release = single_release,
1136};
1137#endif /* CONFIG_PROC_FS */
1138
1139/**
1140 * ccio_find_ioc - Find the ioc in the ioc_list
1141 * @hw_path: The hardware path of the ioc.
1142 *
1143 * This function searches the ioc_list for an ioc that matches
1144 * the provide hardware path.
1145 */
1146static struct ioc * ccio_find_ioc(int hw_path)
1147{
1148        int i;
1149        struct ioc *ioc;
1150
1151        ioc = ioc_list;
1152        for (i = 0; i < ioc_count; i++) {
1153                if (ioc->hw_path == hw_path)
1154                        return ioc;
1155
1156                ioc = ioc->next;
1157        }
1158
1159        return NULL;
1160}
1161
1162/**
1163 * ccio_get_iommu - Find the iommu which controls this device
1164 * @dev: The parisc device.
1165 *
1166 * This function searches through the registered IOMMU's and returns
1167 * the appropriate IOMMU for the device based on its hardware path.
1168 */
1169void * ccio_get_iommu(const struct parisc_device *dev)
1170{
1171        dev = find_pa_parent_type(dev, HPHW_IOA);
1172        if (!dev)
1173                return NULL;
1174
1175        return ccio_find_ioc(dev->hw_path);
1176}
1177
1178#define CUJO_20_STEP       0x10000000   /* inc upper nibble */
1179
1180/* Cujo 2.0 has a bug which will silently corrupt data being transferred
1181 * to/from certain pages.  To avoid this happening, we mark these pages
1182 * as `used', and ensure that nothing will try to allocate from them.
1183 */
1184void ccio_cujo20_fixup(struct parisc_device *cujo, u32 iovp)
1185{
1186        unsigned int idx;
1187        struct parisc_device *dev = parisc_parent(cujo);
1188        struct ioc *ioc = ccio_get_iommu(dev);
1189        u8 *res_ptr;
1190
1191        ioc->cujo20_bug = 1;
1192        res_ptr = ioc->res_map;
1193        idx = PDIR_INDEX(iovp) >> 3;
1194
1195        while (idx < ioc->res_size) {
1196                res_ptr[idx] |= 0xff;
1197                idx += PDIR_INDEX(CUJO_20_STEP) >> 3;
1198        }
1199}
1200
1201#if 0
1202/* GRANT -  is this needed for U2 or not? */
1203
1204/*
1205** Get the size of the I/O TLB for this I/O MMU.
1206**
1207** If spa_shift is non-zero (ie probably U2),
1208** then calculate the I/O TLB size using spa_shift.
1209**
1210** Otherwise we are supposed to get the IODC entry point ENTRY TLB
1211** and execute it. However, both U2 and Uturn firmware supplies spa_shift.
1212** I think only Java (K/D/R-class too?) systems don't do this.
1213*/
1214static int
1215ccio_get_iotlb_size(struct parisc_device *dev)
1216{
1217        if (dev->spa_shift == 0) {
1218                panic("%s() : Can't determine I/O TLB size.\n", __func__);
1219        }
1220        return (1 << dev->spa_shift);
1221}
1222#else
1223
1224/* Uturn supports 256 TLB entries */
1225#define CCIO_CHAINID_SHIFT      8
1226#define CCIO_CHAINID_MASK       0xff
1227#endif /* 0 */
1228
1229/* We *can't* support JAVA (T600). Venture there at your own risk. */
1230static const struct parisc_device_id ccio_tbl[] = {
1231        { HPHW_IOA, HVERSION_REV_ANY_ID, U2_IOA_RUNWAY, 0xb }, /* U2 */
1232        { HPHW_IOA, HVERSION_REV_ANY_ID, UTURN_IOA_RUNWAY, 0xb }, /* UTurn */
1233        { 0, }
1234};
1235
1236static int ccio_probe(struct parisc_device *dev);
1237
1238static struct parisc_driver ccio_driver = {
1239        .name =         "ccio",
1240        .id_table =     ccio_tbl,
1241        .probe =        ccio_probe,
1242};
1243
1244/**
1245 * ccio_ioc_init - Initialize the I/O Controller
1246 * @ioc: The I/O Controller.
1247 *
1248 * Initialize the I/O Controller which includes setting up the
1249 * I/O Page Directory, the resource map, and initalizing the
1250 * U2/Uturn chip into virtual mode.
1251 */
1252static void
1253ccio_ioc_init(struct ioc *ioc)
1254{
1255        int i;
1256        unsigned int iov_order;
1257        u32 iova_space_size;
1258
1259        /*
1260        ** Determine IOVA Space size from memory size.
1261        **
1262        ** Ideally, PCI drivers would register the maximum number
1263        ** of DMA they can have outstanding for each device they
1264        ** own.  Next best thing would be to guess how much DMA
1265        ** can be outstanding based on PCI Class/sub-class. Both
1266        ** methods still require some "extra" to support PCI
1267        ** Hot-Plug/Removal of PCI cards. (aka PCI OLARD).
1268        */
1269
1270        iova_space_size = (u32) (totalram_pages / count_parisc_driver(&ccio_driver));
1271
1272        /* limit IOVA space size to 1MB-1GB */
1273
1274        if (iova_space_size < (1 << (20 - PAGE_SHIFT))) {
1275                iova_space_size =  1 << (20 - PAGE_SHIFT);
1276#ifdef __LP64__
1277        } else if (iova_space_size > (1 << (30 - PAGE_SHIFT))) {
1278                iova_space_size =  1 << (30 - PAGE_SHIFT);
1279#endif
1280        }
1281
1282        /*
1283        ** iova space must be log2() in size.
1284        ** thus, pdir/res_map will also be log2().
1285        */
1286
1287        /* We could use larger page sizes in order to *decrease* the number
1288        ** of mappings needed.  (ie 8k pages means 1/2 the mappings).
1289        **
1290        ** Note: Grant Grunder says "Using 8k I/O pages isn't trivial either
1291        **   since the pages must also be physically contiguous - typically
1292        **   this is the case under linux."
1293        */
1294
1295        iov_order = get_order(iova_space_size << PAGE_SHIFT);
1296
1297        /* iova_space_size is now bytes, not pages */
1298        iova_space_size = 1 << (iov_order + PAGE_SHIFT);
1299
1300        ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64);
1301
1302        BUG_ON(ioc->pdir_size > 8 * 1024 * 1024);   /* max pdir size <= 8MB */
1303
1304        /* Verify it's a power of two */
1305        BUG_ON((1 << get_order(ioc->pdir_size)) != (ioc->pdir_size >> PAGE_SHIFT));
1306
1307        DBG_INIT("%s() hpa 0x%p mem %luMB IOV %dMB (%d bits)\n",
1308                        __func__, ioc->ioc_regs,
1309                        (unsigned long) totalram_pages >> (20 - PAGE_SHIFT),
1310                        iova_space_size>>20,
1311                        iov_order + PAGE_SHIFT);
1312
1313        ioc->pdir_base = (u64 *)__get_free_pages(GFP_KERNEL, 
1314                                                 get_order(ioc->pdir_size));
1315        if(NULL == ioc->pdir_base) {
1316                panic("%s() could not allocate I/O Page Table\n", __func__);
1317        }
1318        memset(ioc->pdir_base, 0, ioc->pdir_size);
1319
1320        BUG_ON((((unsigned long)ioc->pdir_base) & PAGE_MASK) != (unsigned long)ioc->pdir_base);
1321        DBG_INIT(" base %p\n", ioc->pdir_base);
1322
1323        /* resource map size dictated by pdir_size */
1324        ioc->res_size = (ioc->pdir_size / sizeof(u64)) >> 3;
1325        DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size);
1326        
1327        ioc->res_map = (u8 *)__get_free_pages(GFP_KERNEL, 
1328                                              get_order(ioc->res_size));
1329        if(NULL == ioc->res_map) {
1330                panic("%s() could not allocate resource map\n", __func__);
1331        }
1332        memset(ioc->res_map, 0, ioc->res_size);
1333
1334        /* Initialize the res_hint to 16 */
1335        ioc->res_hint = 16;
1336
1337        /* Initialize the spinlock */
1338        spin_lock_init(&ioc->res_lock);
1339
1340        /*
1341        ** Chainid is the upper most bits of an IOVP used to determine
1342        ** which TLB entry an IOVP will use.
1343        */
1344        ioc->chainid_shift = get_order(iova_space_size) + PAGE_SHIFT - CCIO_CHAINID_SHIFT;
1345        DBG_INIT(" chainid_shift 0x%x\n", ioc->chainid_shift);
1346
1347        /*
1348        ** Initialize IOA hardware
1349        */
1350        WRITE_U32(CCIO_CHAINID_MASK << ioc->chainid_shift, 
1351                  &ioc->ioc_regs->io_chain_id_mask);
1352
1353        WRITE_U32(virt_to_phys(ioc->pdir_base), 
1354                  &ioc->ioc_regs->io_pdir_base);
1355
1356        /*
1357        ** Go to "Virtual Mode"
1358        */
1359        WRITE_U32(IOA_NORMAL_MODE, &ioc->ioc_regs->io_control);
1360
1361        /*
1362        ** Initialize all I/O TLB entries to 0 (Valid bit off).
1363        */
1364        WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_m);
1365        WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_l);
1366
1367        for(i = 1 << CCIO_CHAINID_SHIFT; i ; i--) {
1368                WRITE_U32((CMD_TLB_DIRECT_WRITE | (i << ioc->chainid_shift)),
1369                          &ioc->ioc_regs->io_command);
1370        }
1371}
1372
1373static void __init
1374ccio_init_resource(struct resource *res, char *name, void __iomem *ioaddr)
1375{
1376        int result;
1377
1378        res->parent = NULL;
1379        res->flags = IORESOURCE_MEM;
1380        /*
1381         * bracing ((signed) ...) are required for 64bit kernel because
1382         * we only want to sign extend the lower 16 bits of the register.
1383         * The upper 16-bits of range registers are hardcoded to 0xffff.
1384         */
1385        res->start = (unsigned long)((signed) READ_U32(ioaddr) << 16);
1386        res->end = (unsigned long)((signed) (READ_U32(ioaddr + 4) << 16) - 1);
1387        res->name = name;
1388        /*
1389         * Check if this MMIO range is disable
1390         */
1391        if (res->end + 1 == res->start)
1392                return;
1393
1394        /* On some platforms (e.g. K-Class), we have already registered
1395         * resources for devices reported by firmware. Some are children
1396         * of ccio.
1397         * "insert" ccio ranges in the mmio hierarchy (/proc/iomem).
1398         */
1399        result = insert_resource(&iomem_resource, res);
1400        if (result < 0) {
1401                printk(KERN_ERR "%s() failed to claim CCIO bus address space (%08lx,%08lx)\n", 
1402                        __func__, (unsigned long)res->start, (unsigned long)res->end);
1403        }
1404}
1405
1406static void __init ccio_init_resources(struct ioc *ioc)
1407{
1408        struct resource *res = ioc->mmio_region;
1409        char *name = kmalloc(14, GFP_KERNEL);
1410
1411        snprintf(name, 14, "GSC Bus [%d/]", ioc->hw_path);
1412
1413        ccio_init_resource(res, name, &ioc->ioc_regs->io_io_low);
1414        ccio_init_resource(res + 1, name, &ioc->ioc_regs->io_io_low_hv);
1415}
1416
1417static int new_ioc_area(struct resource *res, unsigned long size,
1418                unsigned long min, unsigned long max, unsigned long align)
1419{
1420        if (max <= min)
1421                return -EBUSY;
1422
1423        res->start = (max - size + 1) &~ (align - 1);
1424        res->end = res->start + size;
1425        
1426        /* We might be trying to expand the MMIO range to include
1427         * a child device that has already registered it's MMIO space.
1428         * Use "insert" instead of request_resource().
1429         */
1430        if (!insert_resource(&iomem_resource, res))
1431                return 0;
1432
1433        return new_ioc_area(res, size, min, max - size, align);
1434}
1435
1436static int expand_ioc_area(struct resource *res, unsigned long size,
1437                unsigned long min, unsigned long max, unsigned long align)
1438{
1439        unsigned long start, len;
1440
1441        if (!res->parent)
1442                return new_ioc_area(res, size, min, max, align);
1443
1444        start = (res->start - size) &~ (align - 1);
1445        len = res->end - start + 1;
1446        if (start >= min) {
1447                if (!adjust_resource(res, start, len))
1448                        return 0;
1449        }
1450
1451        start = res->start;
1452        len = ((size + res->end + align) &~ (align - 1)) - start;
1453        if (start + len <= max) {
1454                if (!adjust_resource(res, start, len))
1455                        return 0;
1456        }
1457
1458        return -EBUSY;
1459}
1460
1461/*
1462 * Dino calls this function.  Beware that we may get called on systems
1463 * which have no IOC (725, B180, C160L, etc) but do have a Dino.
1464 * So it's legal to find no parent IOC.
1465 *
1466 * Some other issues: one of the resources in the ioc may be unassigned.
1467 */
1468int ccio_allocate_resource(const struct parisc_device *dev,
1469                struct resource *res, unsigned long size,
1470                unsigned long min, unsigned long max, unsigned long align)
1471{
1472        struct resource *parent = &iomem_resource;
1473        struct ioc *ioc = ccio_get_iommu(dev);
1474        if (!ioc)
1475                goto out;
1476
1477        parent = ioc->mmio_region;
1478        if (parent->parent &&
1479            !allocate_resource(parent, res, size, min, max, align, NULL, NULL))
1480                return 0;
1481
1482        if ((parent + 1)->parent &&
1483            !allocate_resource(parent + 1, res, size, min, max, align,
1484                                NULL, NULL))
1485                return 0;
1486
1487        if (!expand_ioc_area(parent, size, min, max, align)) {
1488                __raw_writel(((parent->start)>>16) | 0xffff0000,
1489                             &ioc->ioc_regs->io_io_low);
1490                __raw_writel(((parent->end)>>16) | 0xffff0000,
1491                             &ioc->ioc_regs->io_io_high);
1492        } else if (!expand_ioc_area(parent + 1, size, min, max, align)) {
1493                parent++;
1494                __raw_writel(((parent->start)>>16) | 0xffff0000,
1495                             &ioc->ioc_regs->io_io_low_hv);
1496                __raw_writel(((parent->end)>>16) | 0xffff0000,
1497                             &ioc->ioc_regs->io_io_high_hv);
1498        } else {
1499                return -EBUSY;
1500        }
1501
1502 out:
1503        return allocate_resource(parent, res, size, min, max, align, NULL,NULL);
1504}
1505
1506int ccio_request_resource(const struct parisc_device *dev,
1507                struct resource *res)
1508{
1509        struct resource *parent;
1510        struct ioc *ioc = ccio_get_iommu(dev);
1511
1512        if (!ioc) {
1513                parent = &iomem_resource;
1514        } else if ((ioc->mmio_region->start <= res->start) &&
1515                        (res->end <= ioc->mmio_region->end)) {
1516                parent = ioc->mmio_region;
1517        } else if (((ioc->mmio_region + 1)->start <= res->start) &&
1518                        (res->end <= (ioc->mmio_region + 1)->end)) {
1519                parent = ioc->mmio_region + 1;
1520        } else {
1521                return -EBUSY;
1522        }
1523
1524        /* "transparent" bus bridges need to register MMIO resources
1525         * firmware assigned them. e.g. children of hppb.c (e.g. K-class)
1526         * registered their resources in the PDC "bus walk" (See
1527         * arch/parisc/kernel/inventory.c).
1528         */
1529        return insert_resource(parent, res);
1530}
1531
1532/**
1533 * ccio_probe - Determine if ccio should claim this device.
1534 * @dev: The device which has been found
1535 *
1536 * Determine if ccio should claim this chip (return 0) or not (return 1).
1537 * If so, initialize the chip and tell other partners in crime they
1538 * have work to do.
1539 */
1540static int __init ccio_probe(struct parisc_device *dev)
1541{
1542        int i;
1543        struct ioc *ioc, **ioc_p = &ioc_list;
1544
1545        ioc = kzalloc(sizeof(struct ioc), GFP_KERNEL);
1546        if (ioc == NULL) {
1547                printk(KERN_ERR MODULE_NAME ": memory allocation failure\n");
1548                return 1;
1549        }
1550
1551        ioc->name = dev->id.hversion == U2_IOA_RUNWAY ? "U2" : "UTurn";
1552
1553        printk(KERN_INFO "Found %s at 0x%lx\n", ioc->name,
1554                (unsigned long)dev->hpa.start);
1555
1556        for (i = 0; i < ioc_count; i++) {
1557                ioc_p = &(*ioc_p)->next;
1558        }
1559        *ioc_p = ioc;
1560
1561        ioc->hw_path = dev->hw_path;
1562        ioc->ioc_regs = ioremap_nocache(dev->hpa.start, 4096);
1563        ccio_ioc_init(ioc);
1564        ccio_init_resources(ioc);
1565        hppa_dma_ops = &ccio_ops;
1566        dev->dev.platform_data = kzalloc(sizeof(struct pci_hba_data), GFP_KERNEL);
1567
1568        /* if this fails, no I/O cards will work, so may as well bug */
1569        BUG_ON(dev->dev.platform_data == NULL);
1570        HBA_DATA(dev->dev.platform_data)->iommu = ioc;
1571
1572#ifdef CONFIG_PROC_FS
1573        if (ioc_count == 0) {
1574                proc_create(MODULE_NAME, 0, proc_runway_root,
1575                            &ccio_proc_info_fops);
1576                proc_create(MODULE_NAME"-bitmap", 0, proc_runway_root,
1577                            &ccio_proc_bitmap_fops);
1578        }
1579#endif
1580        ioc_count++;
1581
1582        parisc_has_iommu();
1583        return 0;
1584}
1585
1586/**
1587 * ccio_init - ccio initialization procedure.
1588 *
1589 * Register this driver.
1590 */
1591void __init ccio_init(void)
1592{
1593        register_parisc_driver(&ccio_driver);
1594}
1595
1596