linux/fs/ubifs/debug.c
<<
>>
Prefs
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Artem Bityutskiy (Битюцкий Артём)
  20 *          Adrian Hunter
  21 */
  22
  23/*
  24 * This file implements most of the debugging stuff which is compiled in only
  25 * when it is enabled. But some debugging check functions are implemented in
  26 * corresponding subsystem, just because they are closely related and utilize
  27 * various local functions of those subsystems.
  28 */
  29
  30#include <linux/module.h>
  31#include <linux/debugfs.h>
  32#include <linux/math64.h>
  33#include <linux/uaccess.h>
  34#include <linux/random.h>
  35#include "ubifs.h"
  36
  37static DEFINE_SPINLOCK(dbg_lock);
  38
  39static const char *get_key_fmt(int fmt)
  40{
  41        switch (fmt) {
  42        case UBIFS_SIMPLE_KEY_FMT:
  43                return "simple";
  44        default:
  45                return "unknown/invalid format";
  46        }
  47}
  48
  49static const char *get_key_hash(int hash)
  50{
  51        switch (hash) {
  52        case UBIFS_KEY_HASH_R5:
  53                return "R5";
  54        case UBIFS_KEY_HASH_TEST:
  55                return "test";
  56        default:
  57                return "unknown/invalid name hash";
  58        }
  59}
  60
  61static const char *get_key_type(int type)
  62{
  63        switch (type) {
  64        case UBIFS_INO_KEY:
  65                return "inode";
  66        case UBIFS_DENT_KEY:
  67                return "direntry";
  68        case UBIFS_XENT_KEY:
  69                return "xentry";
  70        case UBIFS_DATA_KEY:
  71                return "data";
  72        case UBIFS_TRUN_KEY:
  73                return "truncate";
  74        default:
  75                return "unknown/invalid key";
  76        }
  77}
  78
  79static const char *get_dent_type(int type)
  80{
  81        switch (type) {
  82        case UBIFS_ITYPE_REG:
  83                return "file";
  84        case UBIFS_ITYPE_DIR:
  85                return "dir";
  86        case UBIFS_ITYPE_LNK:
  87                return "symlink";
  88        case UBIFS_ITYPE_BLK:
  89                return "blkdev";
  90        case UBIFS_ITYPE_CHR:
  91                return "char dev";
  92        case UBIFS_ITYPE_FIFO:
  93                return "fifo";
  94        case UBIFS_ITYPE_SOCK:
  95                return "socket";
  96        default:
  97                return "unknown/invalid type";
  98        }
  99}
 100
 101const char *dbg_snprintf_key(const struct ubifs_info *c,
 102                             const union ubifs_key *key, char *buffer, int len)
 103{
 104        char *p = buffer;
 105        int type = key_type(c, key);
 106
 107        if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
 108                switch (type) {
 109                case UBIFS_INO_KEY:
 110                        len -= snprintf(p, len, "(%lu, %s)",
 111                                        (unsigned long)key_inum(c, key),
 112                                        get_key_type(type));
 113                        break;
 114                case UBIFS_DENT_KEY:
 115                case UBIFS_XENT_KEY:
 116                        len -= snprintf(p, len, "(%lu, %s, %#08x)",
 117                                        (unsigned long)key_inum(c, key),
 118                                        get_key_type(type), key_hash(c, key));
 119                        break;
 120                case UBIFS_DATA_KEY:
 121                        len -= snprintf(p, len, "(%lu, %s, %u)",
 122                                        (unsigned long)key_inum(c, key),
 123                                        get_key_type(type), key_block(c, key));
 124                        break;
 125                case UBIFS_TRUN_KEY:
 126                        len -= snprintf(p, len, "(%lu, %s)",
 127                                        (unsigned long)key_inum(c, key),
 128                                        get_key_type(type));
 129                        break;
 130                default:
 131                        len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
 132                                        key->u32[0], key->u32[1]);
 133                }
 134        } else
 135                len -= snprintf(p, len, "bad key format %d", c->key_fmt);
 136        ubifs_assert(len > 0);
 137        return p;
 138}
 139
 140const char *dbg_ntype(int type)
 141{
 142        switch (type) {
 143        case UBIFS_PAD_NODE:
 144                return "padding node";
 145        case UBIFS_SB_NODE:
 146                return "superblock node";
 147        case UBIFS_MST_NODE:
 148                return "master node";
 149        case UBIFS_REF_NODE:
 150                return "reference node";
 151        case UBIFS_INO_NODE:
 152                return "inode node";
 153        case UBIFS_DENT_NODE:
 154                return "direntry node";
 155        case UBIFS_XENT_NODE:
 156                return "xentry node";
 157        case UBIFS_DATA_NODE:
 158                return "data node";
 159        case UBIFS_TRUN_NODE:
 160                return "truncate node";
 161        case UBIFS_IDX_NODE:
 162                return "indexing node";
 163        case UBIFS_CS_NODE:
 164                return "commit start node";
 165        case UBIFS_ORPH_NODE:
 166                return "orphan node";
 167        default:
 168                return "unknown node";
 169        }
 170}
 171
 172static const char *dbg_gtype(int type)
 173{
 174        switch (type) {
 175        case UBIFS_NO_NODE_GROUP:
 176                return "no node group";
 177        case UBIFS_IN_NODE_GROUP:
 178                return "in node group";
 179        case UBIFS_LAST_OF_NODE_GROUP:
 180                return "last of node group";
 181        default:
 182                return "unknown";
 183        }
 184}
 185
 186const char *dbg_cstate(int cmt_state)
 187{
 188        switch (cmt_state) {
 189        case COMMIT_RESTING:
 190                return "commit resting";
 191        case COMMIT_BACKGROUND:
 192                return "background commit requested";
 193        case COMMIT_REQUIRED:
 194                return "commit required";
 195        case COMMIT_RUNNING_BACKGROUND:
 196                return "BACKGROUND commit running";
 197        case COMMIT_RUNNING_REQUIRED:
 198                return "commit running and required";
 199        case COMMIT_BROKEN:
 200                return "broken commit";
 201        default:
 202                return "unknown commit state";
 203        }
 204}
 205
 206const char *dbg_jhead(int jhead)
 207{
 208        switch (jhead) {
 209        case GCHD:
 210                return "0 (GC)";
 211        case BASEHD:
 212                return "1 (base)";
 213        case DATAHD:
 214                return "2 (data)";
 215        default:
 216                return "unknown journal head";
 217        }
 218}
 219
 220static void dump_ch(const struct ubifs_ch *ch)
 221{
 222        pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
 223        pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
 224        pr_err("\tnode_type      %d (%s)\n", ch->node_type,
 225               dbg_ntype(ch->node_type));
 226        pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
 227               dbg_gtype(ch->group_type));
 228        pr_err("\tsqnum          %llu\n",
 229               (unsigned long long)le64_to_cpu(ch->sqnum));
 230        pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
 231}
 232
 233void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
 234{
 235        const struct ubifs_inode *ui = ubifs_inode(inode);
 236        struct qstr nm = { .name = NULL };
 237        union ubifs_key key;
 238        struct ubifs_dent_node *dent, *pdent = NULL;
 239        int count = 2;
 240
 241        pr_err("Dump in-memory inode:");
 242        pr_err("\tinode          %lu\n", inode->i_ino);
 243        pr_err("\tsize           %llu\n",
 244               (unsigned long long)i_size_read(inode));
 245        pr_err("\tnlink          %u\n", inode->i_nlink);
 246        pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
 247        pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
 248        pr_err("\tatime          %u.%u\n",
 249               (unsigned int)inode->i_atime.tv_sec,
 250               (unsigned int)inode->i_atime.tv_nsec);
 251        pr_err("\tmtime          %u.%u\n",
 252               (unsigned int)inode->i_mtime.tv_sec,
 253               (unsigned int)inode->i_mtime.tv_nsec);
 254        pr_err("\tctime          %u.%u\n",
 255               (unsigned int)inode->i_ctime.tv_sec,
 256               (unsigned int)inode->i_ctime.tv_nsec);
 257        pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
 258        pr_err("\txattr_size     %u\n", ui->xattr_size);
 259        pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
 260        pr_err("\txattr_names    %u\n", ui->xattr_names);
 261        pr_err("\tdirty          %u\n", ui->dirty);
 262        pr_err("\txattr          %u\n", ui->xattr);
 263        pr_err("\tbulk_read      %u\n", ui->xattr);
 264        pr_err("\tsynced_i_size  %llu\n",
 265               (unsigned long long)ui->synced_i_size);
 266        pr_err("\tui_size        %llu\n",
 267               (unsigned long long)ui->ui_size);
 268        pr_err("\tflags          %d\n", ui->flags);
 269        pr_err("\tcompr_type     %d\n", ui->compr_type);
 270        pr_err("\tlast_page_read %lu\n", ui->last_page_read);
 271        pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
 272        pr_err("\tdata_len       %d\n", ui->data_len);
 273
 274        if (!S_ISDIR(inode->i_mode))
 275                return;
 276
 277        pr_err("List of directory entries:\n");
 278        ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
 279
 280        lowest_dent_key(c, &key, inode->i_ino);
 281        while (1) {
 282                dent = ubifs_tnc_next_ent(c, &key, &nm);
 283                if (IS_ERR(dent)) {
 284                        if (PTR_ERR(dent) != -ENOENT)
 285                                pr_err("error %ld\n", PTR_ERR(dent));
 286                        break;
 287                }
 288
 289                pr_err("\t%d: %s (%s)\n",
 290                       count++, dent->name, get_dent_type(dent->type));
 291
 292                nm.name = dent->name;
 293                nm.len = le16_to_cpu(dent->nlen);
 294                kfree(pdent);
 295                pdent = dent;
 296                key_read(c, &dent->key, &key);
 297        }
 298        kfree(pdent);
 299}
 300
 301void ubifs_dump_node(const struct ubifs_info *c, const void *node)
 302{
 303        int i, n;
 304        union ubifs_key key;
 305        const struct ubifs_ch *ch = node;
 306        char key_buf[DBG_KEY_BUF_LEN];
 307
 308        /* If the magic is incorrect, just hexdump the first bytes */
 309        if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
 310                pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
 311                print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
 312                               (void *)node, UBIFS_CH_SZ, 1);
 313                return;
 314        }
 315
 316        spin_lock(&dbg_lock);
 317        dump_ch(node);
 318
 319        switch (ch->node_type) {
 320        case UBIFS_PAD_NODE:
 321        {
 322                const struct ubifs_pad_node *pad = node;
 323
 324                pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
 325                break;
 326        }
 327        case UBIFS_SB_NODE:
 328        {
 329                const struct ubifs_sb_node *sup = node;
 330                unsigned int sup_flags = le32_to_cpu(sup->flags);
 331
 332                pr_err("\tkey_hash       %d (%s)\n",
 333                       (int)sup->key_hash, get_key_hash(sup->key_hash));
 334                pr_err("\tkey_fmt        %d (%s)\n",
 335                       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
 336                pr_err("\tflags          %#x\n", sup_flags);
 337                pr_err("\t  big_lpt      %u\n",
 338                       !!(sup_flags & UBIFS_FLG_BIGLPT));
 339                pr_err("\t  space_fixup  %u\n",
 340                       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
 341                pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
 342                pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
 343                pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
 344                pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
 345                pr_err("\tmax_bud_bytes  %llu\n",
 346                       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
 347                pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
 348                pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
 349                pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
 350                pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
 351                pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
 352                pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
 353                pr_err("\tdefault_compr  %u\n",
 354                       (int)le16_to_cpu(sup->default_compr));
 355                pr_err("\trp_size        %llu\n",
 356                       (unsigned long long)le64_to_cpu(sup->rp_size));
 357                pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
 358                pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
 359                pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
 360                pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
 361                pr_err("\tUUID           %pUB\n", sup->uuid);
 362                break;
 363        }
 364        case UBIFS_MST_NODE:
 365        {
 366                const struct ubifs_mst_node *mst = node;
 367
 368                pr_err("\thighest_inum   %llu\n",
 369                       (unsigned long long)le64_to_cpu(mst->highest_inum));
 370                pr_err("\tcommit number  %llu\n",
 371                       (unsigned long long)le64_to_cpu(mst->cmt_no));
 372                pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
 373                pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
 374                pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
 375                pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
 376                pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
 377                pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
 378                pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
 379                pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
 380                pr_err("\tindex_size     %llu\n",
 381                       (unsigned long long)le64_to_cpu(mst->index_size));
 382                pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
 383                pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
 384                pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
 385                pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
 386                pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
 387                pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
 388                pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
 389                pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
 390                pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
 391                pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
 392                pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
 393                pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
 394                pr_err("\ttotal_free     %llu\n",
 395                       (unsigned long long)le64_to_cpu(mst->total_free));
 396                pr_err("\ttotal_dirty    %llu\n",
 397                       (unsigned long long)le64_to_cpu(mst->total_dirty));
 398                pr_err("\ttotal_used     %llu\n",
 399                       (unsigned long long)le64_to_cpu(mst->total_used));
 400                pr_err("\ttotal_dead     %llu\n",
 401                       (unsigned long long)le64_to_cpu(mst->total_dead));
 402                pr_err("\ttotal_dark     %llu\n",
 403                       (unsigned long long)le64_to_cpu(mst->total_dark));
 404                break;
 405        }
 406        case UBIFS_REF_NODE:
 407        {
 408                const struct ubifs_ref_node *ref = node;
 409
 410                pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
 411                pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
 412                pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
 413                break;
 414        }
 415        case UBIFS_INO_NODE:
 416        {
 417                const struct ubifs_ino_node *ino = node;
 418
 419                key_read(c, &ino->key, &key);
 420                pr_err("\tkey            %s\n",
 421                       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 422                pr_err("\tcreat_sqnum    %llu\n",
 423                       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
 424                pr_err("\tsize           %llu\n",
 425                       (unsigned long long)le64_to_cpu(ino->size));
 426                pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
 427                pr_err("\tatime          %lld.%u\n",
 428                       (long long)le64_to_cpu(ino->atime_sec),
 429                       le32_to_cpu(ino->atime_nsec));
 430                pr_err("\tmtime          %lld.%u\n",
 431                       (long long)le64_to_cpu(ino->mtime_sec),
 432                       le32_to_cpu(ino->mtime_nsec));
 433                pr_err("\tctime          %lld.%u\n",
 434                       (long long)le64_to_cpu(ino->ctime_sec),
 435                       le32_to_cpu(ino->ctime_nsec));
 436                pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
 437                pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
 438                pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
 439                pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
 440                pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
 441                pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
 442                pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
 443                pr_err("\tcompr_type     %#x\n",
 444                       (int)le16_to_cpu(ino->compr_type));
 445                pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
 446                break;
 447        }
 448        case UBIFS_DENT_NODE:
 449        case UBIFS_XENT_NODE:
 450        {
 451                const struct ubifs_dent_node *dent = node;
 452                int nlen = le16_to_cpu(dent->nlen);
 453
 454                key_read(c, &dent->key, &key);
 455                pr_err("\tkey            %s\n",
 456                       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 457                pr_err("\tinum           %llu\n",
 458                       (unsigned long long)le64_to_cpu(dent->inum));
 459                pr_err("\ttype           %d\n", (int)dent->type);
 460                pr_err("\tnlen           %d\n", nlen);
 461                pr_err("\tname           ");
 462
 463                if (nlen > UBIFS_MAX_NLEN)
 464                        pr_err("(bad name length, not printing, bad or corrupted node)");
 465                else {
 466                        for (i = 0; i < nlen && dent->name[i]; i++)
 467                                pr_cont("%c", dent->name[i]);
 468                }
 469                pr_cont("\n");
 470
 471                break;
 472        }
 473        case UBIFS_DATA_NODE:
 474        {
 475                const struct ubifs_data_node *dn = node;
 476                int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
 477
 478                key_read(c, &dn->key, &key);
 479                pr_err("\tkey            %s\n",
 480                       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 481                pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
 482                pr_err("\tcompr_typ      %d\n",
 483                       (int)le16_to_cpu(dn->compr_type));
 484                pr_err("\tdata size      %d\n", dlen);
 485                pr_err("\tdata:\n");
 486                print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
 487                               (void *)&dn->data, dlen, 0);
 488                break;
 489        }
 490        case UBIFS_TRUN_NODE:
 491        {
 492                const struct ubifs_trun_node *trun = node;
 493
 494                pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
 495                pr_err("\told_size       %llu\n",
 496                       (unsigned long long)le64_to_cpu(trun->old_size));
 497                pr_err("\tnew_size       %llu\n",
 498                       (unsigned long long)le64_to_cpu(trun->new_size));
 499                break;
 500        }
 501        case UBIFS_IDX_NODE:
 502        {
 503                const struct ubifs_idx_node *idx = node;
 504
 505                n = le16_to_cpu(idx->child_cnt);
 506                pr_err("\tchild_cnt      %d\n", n);
 507                pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
 508                pr_err("\tBranches:\n");
 509
 510                for (i = 0; i < n && i < c->fanout - 1; i++) {
 511                        const struct ubifs_branch *br;
 512
 513                        br = ubifs_idx_branch(c, idx, i);
 514                        key_read(c, &br->key, &key);
 515                        pr_err("\t%d: LEB %d:%d len %d key %s\n",
 516                               i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
 517                               le32_to_cpu(br->len),
 518                               dbg_snprintf_key(c, &key, key_buf,
 519                                                DBG_KEY_BUF_LEN));
 520                }
 521                break;
 522        }
 523        case UBIFS_CS_NODE:
 524                break;
 525        case UBIFS_ORPH_NODE:
 526        {
 527                const struct ubifs_orph_node *orph = node;
 528
 529                pr_err("\tcommit number  %llu\n",
 530                       (unsigned long long)
 531                                le64_to_cpu(orph->cmt_no) & LLONG_MAX);
 532                pr_err("\tlast node flag %llu\n",
 533                       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
 534                n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
 535                pr_err("\t%d orphan inode numbers:\n", n);
 536                for (i = 0; i < n; i++)
 537                        pr_err("\t  ino %llu\n",
 538                               (unsigned long long)le64_to_cpu(orph->inos[i]));
 539                break;
 540        }
 541        default:
 542                pr_err("node type %d was not recognized\n",
 543                       (int)ch->node_type);
 544        }
 545        spin_unlock(&dbg_lock);
 546}
 547
 548void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
 549{
 550        spin_lock(&dbg_lock);
 551        pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
 552               req->new_ino, req->dirtied_ino);
 553        pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
 554               req->new_ino_d, req->dirtied_ino_d);
 555        pr_err("\tnew_page    %d, dirtied_page %d\n",
 556               req->new_page, req->dirtied_page);
 557        pr_err("\tnew_dent    %d, mod_dent     %d\n",
 558               req->new_dent, req->mod_dent);
 559        pr_err("\tidx_growth  %d\n", req->idx_growth);
 560        pr_err("\tdata_growth %d dd_growth     %d\n",
 561               req->data_growth, req->dd_growth);
 562        spin_unlock(&dbg_lock);
 563}
 564
 565void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
 566{
 567        spin_lock(&dbg_lock);
 568        pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
 569               current->pid, lst->empty_lebs, lst->idx_lebs);
 570        pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
 571               lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
 572        pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
 573               lst->total_used, lst->total_dark, lst->total_dead);
 574        spin_unlock(&dbg_lock);
 575}
 576
 577void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
 578{
 579        int i;
 580        struct rb_node *rb;
 581        struct ubifs_bud *bud;
 582        struct ubifs_gced_idx_leb *idx_gc;
 583        long long available, outstanding, free;
 584
 585        spin_lock(&c->space_lock);
 586        spin_lock(&dbg_lock);
 587        pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
 588               current->pid, bi->data_growth + bi->dd_growth,
 589               bi->data_growth + bi->dd_growth + bi->idx_growth);
 590        pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
 591               bi->data_growth, bi->dd_growth, bi->idx_growth);
 592        pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
 593               bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
 594        pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
 595               bi->page_budget, bi->inode_budget, bi->dent_budget);
 596        pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
 597        pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
 598               c->dark_wm, c->dead_wm, c->max_idx_node_sz);
 599
 600        if (bi != &c->bi)
 601                /*
 602                 * If we are dumping saved budgeting data, do not print
 603                 * additional information which is about the current state, not
 604                 * the old one which corresponded to the saved budgeting data.
 605                 */
 606                goto out_unlock;
 607
 608        pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
 609               c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
 610        pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
 611               atomic_long_read(&c->dirty_pg_cnt),
 612               atomic_long_read(&c->dirty_zn_cnt),
 613               atomic_long_read(&c->clean_zn_cnt));
 614        pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
 615
 616        /* If we are in R/O mode, journal heads do not exist */
 617        if (c->jheads)
 618                for (i = 0; i < c->jhead_cnt; i++)
 619                        pr_err("\tjhead %s\t LEB %d\n",
 620                               dbg_jhead(c->jheads[i].wbuf.jhead),
 621                               c->jheads[i].wbuf.lnum);
 622        for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
 623                bud = rb_entry(rb, struct ubifs_bud, rb);
 624                pr_err("\tbud LEB %d\n", bud->lnum);
 625        }
 626        list_for_each_entry(bud, &c->old_buds, list)
 627                pr_err("\told bud LEB %d\n", bud->lnum);
 628        list_for_each_entry(idx_gc, &c->idx_gc, list)
 629                pr_err("\tGC'ed idx LEB %d unmap %d\n",
 630                       idx_gc->lnum, idx_gc->unmap);
 631        pr_err("\tcommit state %d\n", c->cmt_state);
 632
 633        /* Print budgeting predictions */
 634        available = ubifs_calc_available(c, c->bi.min_idx_lebs);
 635        outstanding = c->bi.data_growth + c->bi.dd_growth;
 636        free = ubifs_get_free_space_nolock(c);
 637        pr_err("Budgeting predictions:\n");
 638        pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
 639               available, outstanding, free);
 640out_unlock:
 641        spin_unlock(&dbg_lock);
 642        spin_unlock(&c->space_lock);
 643}
 644
 645void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
 646{
 647        int i, spc, dark = 0, dead = 0;
 648        struct rb_node *rb;
 649        struct ubifs_bud *bud;
 650
 651        spc = lp->free + lp->dirty;
 652        if (spc < c->dead_wm)
 653                dead = spc;
 654        else
 655                dark = ubifs_calc_dark(c, spc);
 656
 657        if (lp->flags & LPROPS_INDEX)
 658                pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
 659                       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
 660                       lp->flags);
 661        else
 662                pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
 663                       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
 664                       dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
 665
 666        if (lp->flags & LPROPS_TAKEN) {
 667                if (lp->flags & LPROPS_INDEX)
 668                        pr_cont("index, taken");
 669                else
 670                        pr_cont("taken");
 671        } else {
 672                const char *s;
 673
 674                if (lp->flags & LPROPS_INDEX) {
 675                        switch (lp->flags & LPROPS_CAT_MASK) {
 676                        case LPROPS_DIRTY_IDX:
 677                                s = "dirty index";
 678                                break;
 679                        case LPROPS_FRDI_IDX:
 680                                s = "freeable index";
 681                                break;
 682                        default:
 683                                s = "index";
 684                        }
 685                } else {
 686                        switch (lp->flags & LPROPS_CAT_MASK) {
 687                        case LPROPS_UNCAT:
 688                                s = "not categorized";
 689                                break;
 690                        case LPROPS_DIRTY:
 691                                s = "dirty";
 692                                break;
 693                        case LPROPS_FREE:
 694                                s = "free";
 695                                break;
 696                        case LPROPS_EMPTY:
 697                                s = "empty";
 698                                break;
 699                        case LPROPS_FREEABLE:
 700                                s = "freeable";
 701                                break;
 702                        default:
 703                                s = NULL;
 704                                break;
 705                        }
 706                }
 707                pr_cont("%s", s);
 708        }
 709
 710        for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
 711                bud = rb_entry(rb, struct ubifs_bud, rb);
 712                if (bud->lnum == lp->lnum) {
 713                        int head = 0;
 714                        for (i = 0; i < c->jhead_cnt; i++) {
 715                                /*
 716                                 * Note, if we are in R/O mode or in the middle
 717                                 * of mounting/re-mounting, the write-buffers do
 718                                 * not exist.
 719                                 */
 720                                if (c->jheads &&
 721                                    lp->lnum == c->jheads[i].wbuf.lnum) {
 722                                        pr_cont(", jhead %s", dbg_jhead(i));
 723                                        head = 1;
 724                                }
 725                        }
 726                        if (!head)
 727                                pr_cont(", bud of jhead %s",
 728                                       dbg_jhead(bud->jhead));
 729                }
 730        }
 731        if (lp->lnum == c->gc_lnum)
 732                pr_cont(", GC LEB");
 733        pr_cont(")\n");
 734}
 735
 736void ubifs_dump_lprops(struct ubifs_info *c)
 737{
 738        int lnum, err;
 739        struct ubifs_lprops lp;
 740        struct ubifs_lp_stats lst;
 741
 742        pr_err("(pid %d) start dumping LEB properties\n", current->pid);
 743        ubifs_get_lp_stats(c, &lst);
 744        ubifs_dump_lstats(&lst);
 745
 746        for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
 747                err = ubifs_read_one_lp(c, lnum, &lp);
 748                if (err)
 749                        ubifs_err("cannot read lprops for LEB %d", lnum);
 750
 751                ubifs_dump_lprop(c, &lp);
 752        }
 753        pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
 754}
 755
 756void ubifs_dump_lpt_info(struct ubifs_info *c)
 757{
 758        int i;
 759
 760        spin_lock(&dbg_lock);
 761        pr_err("(pid %d) dumping LPT information\n", current->pid);
 762        pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
 763        pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
 764        pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
 765        pr_err("\tltab_sz:       %d\n", c->ltab_sz);
 766        pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
 767        pr_err("\tbig_lpt:       %d\n", c->big_lpt);
 768        pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
 769        pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
 770        pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
 771        pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
 772        pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
 773        pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
 774        pr_err("\tspace_bits:    %d\n", c->space_bits);
 775        pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
 776        pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
 777        pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
 778        pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
 779        pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
 780        pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
 781        pr_err("\tLPT head is at %d:%d\n",
 782               c->nhead_lnum, c->nhead_offs);
 783        pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
 784        if (c->big_lpt)
 785                pr_err("\tLPT lsave is at %d:%d\n",
 786                       c->lsave_lnum, c->lsave_offs);
 787        for (i = 0; i < c->lpt_lebs; i++)
 788                pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
 789                       i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
 790                       c->ltab[i].tgc, c->ltab[i].cmt);
 791        spin_unlock(&dbg_lock);
 792}
 793
 794void ubifs_dump_sleb(const struct ubifs_info *c,
 795                     const struct ubifs_scan_leb *sleb, int offs)
 796{
 797        struct ubifs_scan_node *snod;
 798
 799        pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
 800               current->pid, sleb->lnum, offs);
 801
 802        list_for_each_entry(snod, &sleb->nodes, list) {
 803                cond_resched();
 804                pr_err("Dumping node at LEB %d:%d len %d\n",
 805                       sleb->lnum, snod->offs, snod->len);
 806                ubifs_dump_node(c, snod->node);
 807        }
 808}
 809
 810void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
 811{
 812        struct ubifs_scan_leb *sleb;
 813        struct ubifs_scan_node *snod;
 814        void *buf;
 815
 816        pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
 817
 818        buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
 819        if (!buf) {
 820                ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
 821                return;
 822        }
 823
 824        sleb = ubifs_scan(c, lnum, 0, buf, 0);
 825        if (IS_ERR(sleb)) {
 826                ubifs_err("scan error %d", (int)PTR_ERR(sleb));
 827                goto out;
 828        }
 829
 830        pr_err("LEB %d has %d nodes ending at %d\n", lnum,
 831               sleb->nodes_cnt, sleb->endpt);
 832
 833        list_for_each_entry(snod, &sleb->nodes, list) {
 834                cond_resched();
 835                pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
 836                       snod->offs, snod->len);
 837                ubifs_dump_node(c, snod->node);
 838        }
 839
 840        pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
 841        ubifs_scan_destroy(sleb);
 842
 843out:
 844        vfree(buf);
 845        return;
 846}
 847
 848void ubifs_dump_znode(const struct ubifs_info *c,
 849                      const struct ubifs_znode *znode)
 850{
 851        int n;
 852        const struct ubifs_zbranch *zbr;
 853        char key_buf[DBG_KEY_BUF_LEN];
 854
 855        spin_lock(&dbg_lock);
 856        if (znode->parent)
 857                zbr = &znode->parent->zbranch[znode->iip];
 858        else
 859                zbr = &c->zroot;
 860
 861        pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
 862               znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
 863               znode->level, znode->child_cnt, znode->flags);
 864
 865        if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
 866                spin_unlock(&dbg_lock);
 867                return;
 868        }
 869
 870        pr_err("zbranches:\n");
 871        for (n = 0; n < znode->child_cnt; n++) {
 872                zbr = &znode->zbranch[n];
 873                if (znode->level > 0)
 874                        pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
 875                               n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
 876                               dbg_snprintf_key(c, &zbr->key, key_buf,
 877                                                DBG_KEY_BUF_LEN));
 878                else
 879                        pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
 880                               n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
 881                               dbg_snprintf_key(c, &zbr->key, key_buf,
 882                                                DBG_KEY_BUF_LEN));
 883        }
 884        spin_unlock(&dbg_lock);
 885}
 886
 887void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
 888{
 889        int i;
 890
 891        pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
 892               current->pid, cat, heap->cnt);
 893        for (i = 0; i < heap->cnt; i++) {
 894                struct ubifs_lprops *lprops = heap->arr[i];
 895
 896                pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
 897                       i, lprops->lnum, lprops->hpos, lprops->free,
 898                       lprops->dirty, lprops->flags);
 899        }
 900        pr_err("(pid %d) finish dumping heap\n", current->pid);
 901}
 902
 903void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
 904                      struct ubifs_nnode *parent, int iip)
 905{
 906        int i;
 907
 908        pr_err("(pid %d) dumping pnode:\n", current->pid);
 909        pr_err("\taddress %zx parent %zx cnext %zx\n",
 910               (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
 911        pr_err("\tflags %lu iip %d level %d num %d\n",
 912               pnode->flags, iip, pnode->level, pnode->num);
 913        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 914                struct ubifs_lprops *lp = &pnode->lprops[i];
 915
 916                pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
 917                       i, lp->free, lp->dirty, lp->flags, lp->lnum);
 918        }
 919}
 920
 921void ubifs_dump_tnc(struct ubifs_info *c)
 922{
 923        struct ubifs_znode *znode;
 924        int level;
 925
 926        pr_err("\n");
 927        pr_err("(pid %d) start dumping TNC tree\n", current->pid);
 928        znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
 929        level = znode->level;
 930        pr_err("== Level %d ==\n", level);
 931        while (znode) {
 932                if (level != znode->level) {
 933                        level = znode->level;
 934                        pr_err("== Level %d ==\n", level);
 935                }
 936                ubifs_dump_znode(c, znode);
 937                znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
 938        }
 939        pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
 940}
 941
 942static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
 943                      void *priv)
 944{
 945        ubifs_dump_znode(c, znode);
 946        return 0;
 947}
 948
 949/**
 950 * ubifs_dump_index - dump the on-flash index.
 951 * @c: UBIFS file-system description object
 952 *
 953 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
 954 * which dumps only in-memory znodes and does not read znodes which from flash.
 955 */
 956void ubifs_dump_index(struct ubifs_info *c)
 957{
 958        dbg_walk_index(c, NULL, dump_znode, NULL);
 959}
 960
 961/**
 962 * dbg_save_space_info - save information about flash space.
 963 * @c: UBIFS file-system description object
 964 *
 965 * This function saves information about UBIFS free space, dirty space, etc, in
 966 * order to check it later.
 967 */
 968void dbg_save_space_info(struct ubifs_info *c)
 969{
 970        struct ubifs_debug_info *d = c->dbg;
 971        int freeable_cnt;
 972
 973        spin_lock(&c->space_lock);
 974        memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
 975        memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
 976        d->saved_idx_gc_cnt = c->idx_gc_cnt;
 977
 978        /*
 979         * We use a dirty hack here and zero out @c->freeable_cnt, because it
 980         * affects the free space calculations, and UBIFS might not know about
 981         * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
 982         * only when we read their lprops, and we do this only lazily, upon the
 983         * need. So at any given point of time @c->freeable_cnt might be not
 984         * exactly accurate.
 985         *
 986         * Just one example about the issue we hit when we did not zero
 987         * @c->freeable_cnt.
 988         * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
 989         *    amount of free space in @d->saved_free
 990         * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
 991         *    information from flash, where we cache LEBs from various
 992         *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
 993         *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
 994         *    -> 'ubifs_get_pnode()' -> 'update_cats()'
 995         *    -> 'ubifs_add_to_cat()').
 996         * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
 997         *    becomes %1.
 998         * 4. We calculate the amount of free space when the re-mount is
 999         *    finished in 'dbg_check_space_info()' and it does not match
1000         *    @d->saved_free.
1001         */
1002        freeable_cnt = c->freeable_cnt;
1003        c->freeable_cnt = 0;
1004        d->saved_free = ubifs_get_free_space_nolock(c);
1005        c->freeable_cnt = freeable_cnt;
1006        spin_unlock(&c->space_lock);
1007}
1008
1009/**
1010 * dbg_check_space_info - check flash space information.
1011 * @c: UBIFS file-system description object
1012 *
1013 * This function compares current flash space information with the information
1014 * which was saved when the 'dbg_save_space_info()' function was called.
1015 * Returns zero if the information has not changed, and %-EINVAL it it has
1016 * changed.
1017 */
1018int dbg_check_space_info(struct ubifs_info *c)
1019{
1020        struct ubifs_debug_info *d = c->dbg;
1021        struct ubifs_lp_stats lst;
1022        long long free;
1023        int freeable_cnt;
1024
1025        spin_lock(&c->space_lock);
1026        freeable_cnt = c->freeable_cnt;
1027        c->freeable_cnt = 0;
1028        free = ubifs_get_free_space_nolock(c);
1029        c->freeable_cnt = freeable_cnt;
1030        spin_unlock(&c->space_lock);
1031
1032        if (free != d->saved_free) {
1033                ubifs_err("free space changed from %lld to %lld",
1034                          d->saved_free, free);
1035                goto out;
1036        }
1037
1038        return 0;
1039
1040out:
1041        ubifs_msg("saved lprops statistics dump");
1042        ubifs_dump_lstats(&d->saved_lst);
1043        ubifs_msg("saved budgeting info dump");
1044        ubifs_dump_budg(c, &d->saved_bi);
1045        ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1046        ubifs_msg("current lprops statistics dump");
1047        ubifs_get_lp_stats(c, &lst);
1048        ubifs_dump_lstats(&lst);
1049        ubifs_msg("current budgeting info dump");
1050        ubifs_dump_budg(c, &c->bi);
1051        dump_stack();
1052        return -EINVAL;
1053}
1054
1055/**
1056 * dbg_check_synced_i_size - check synchronized inode size.
1057 * @c: UBIFS file-system description object
1058 * @inode: inode to check
1059 *
1060 * If inode is clean, synchronized inode size has to be equivalent to current
1061 * inode size. This function has to be called only for locked inodes (@i_mutex
1062 * has to be locked). Returns %0 if synchronized inode size if correct, and
1063 * %-EINVAL if not.
1064 */
1065int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1066{
1067        int err = 0;
1068        struct ubifs_inode *ui = ubifs_inode(inode);
1069
1070        if (!dbg_is_chk_gen(c))
1071                return 0;
1072        if (!S_ISREG(inode->i_mode))
1073                return 0;
1074
1075        mutex_lock(&ui->ui_mutex);
1076        spin_lock(&ui->ui_lock);
1077        if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1078                ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode is clean",
1079                          ui->ui_size, ui->synced_i_size);
1080                ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1081                          inode->i_mode, i_size_read(inode));
1082                dump_stack();
1083                err = -EINVAL;
1084        }
1085        spin_unlock(&ui->ui_lock);
1086        mutex_unlock(&ui->ui_mutex);
1087        return err;
1088}
1089
1090/*
1091 * dbg_check_dir - check directory inode size and link count.
1092 * @c: UBIFS file-system description object
1093 * @dir: the directory to calculate size for
1094 * @size: the result is returned here
1095 *
1096 * This function makes sure that directory size and link count are correct.
1097 * Returns zero in case of success and a negative error code in case of
1098 * failure.
1099 *
1100 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1101 * calling this function.
1102 */
1103int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1104{
1105        unsigned int nlink = 2;
1106        union ubifs_key key;
1107        struct ubifs_dent_node *dent, *pdent = NULL;
1108        struct qstr nm = { .name = NULL };
1109        loff_t size = UBIFS_INO_NODE_SZ;
1110
1111        if (!dbg_is_chk_gen(c))
1112                return 0;
1113
1114        if (!S_ISDIR(dir->i_mode))
1115                return 0;
1116
1117        lowest_dent_key(c, &key, dir->i_ino);
1118        while (1) {
1119                int err;
1120
1121                dent = ubifs_tnc_next_ent(c, &key, &nm);
1122                if (IS_ERR(dent)) {
1123                        err = PTR_ERR(dent);
1124                        if (err == -ENOENT)
1125                                break;
1126                        return err;
1127                }
1128
1129                nm.name = dent->name;
1130                nm.len = le16_to_cpu(dent->nlen);
1131                size += CALC_DENT_SIZE(nm.len);
1132                if (dent->type == UBIFS_ITYPE_DIR)
1133                        nlink += 1;
1134                kfree(pdent);
1135                pdent = dent;
1136                key_read(c, &dent->key, &key);
1137        }
1138        kfree(pdent);
1139
1140        if (i_size_read(dir) != size) {
1141                ubifs_err("directory inode %lu has size %llu, but calculated size is %llu",
1142                          dir->i_ino, (unsigned long long)i_size_read(dir),
1143                          (unsigned long long)size);
1144                ubifs_dump_inode(c, dir);
1145                dump_stack();
1146                return -EINVAL;
1147        }
1148        if (dir->i_nlink != nlink) {
1149                ubifs_err("directory inode %lu has nlink %u, but calculated nlink is %u",
1150                          dir->i_ino, dir->i_nlink, nlink);
1151                ubifs_dump_inode(c, dir);
1152                dump_stack();
1153                return -EINVAL;
1154        }
1155
1156        return 0;
1157}
1158
1159/**
1160 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1161 * @c: UBIFS file-system description object
1162 * @zbr1: first zbranch
1163 * @zbr2: following zbranch
1164 *
1165 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1166 * names of the direntries/xentries which are referred by the keys. This
1167 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1168 * sure the name of direntry/xentry referred by @zbr1 is less than
1169 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1170 * and a negative error code in case of failure.
1171 */
1172static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1173                               struct ubifs_zbranch *zbr2)
1174{
1175        int err, nlen1, nlen2, cmp;
1176        struct ubifs_dent_node *dent1, *dent2;
1177        union ubifs_key key;
1178        char key_buf[DBG_KEY_BUF_LEN];
1179
1180        ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1181        dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1182        if (!dent1)
1183                return -ENOMEM;
1184        dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1185        if (!dent2) {
1186                err = -ENOMEM;
1187                goto out_free;
1188        }
1189
1190        err = ubifs_tnc_read_node(c, zbr1, dent1);
1191        if (err)
1192                goto out_free;
1193        err = ubifs_validate_entry(c, dent1);
1194        if (err)
1195                goto out_free;
1196
1197        err = ubifs_tnc_read_node(c, zbr2, dent2);
1198        if (err)
1199                goto out_free;
1200        err = ubifs_validate_entry(c, dent2);
1201        if (err)
1202                goto out_free;
1203
1204        /* Make sure node keys are the same as in zbranch */
1205        err = 1;
1206        key_read(c, &dent1->key, &key);
1207        if (keys_cmp(c, &zbr1->key, &key)) {
1208                ubifs_err("1st entry at %d:%d has key %s", zbr1->lnum,
1209                          zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1210                                                       DBG_KEY_BUF_LEN));
1211                ubifs_err("but it should have key %s according to tnc",
1212                          dbg_snprintf_key(c, &zbr1->key, key_buf,
1213                                           DBG_KEY_BUF_LEN));
1214                ubifs_dump_node(c, dent1);
1215                goto out_free;
1216        }
1217
1218        key_read(c, &dent2->key, &key);
1219        if (keys_cmp(c, &zbr2->key, &key)) {
1220                ubifs_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1221                          zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1222                                                       DBG_KEY_BUF_LEN));
1223                ubifs_err("but it should have key %s according to tnc",
1224                          dbg_snprintf_key(c, &zbr2->key, key_buf,
1225                                           DBG_KEY_BUF_LEN));
1226                ubifs_dump_node(c, dent2);
1227                goto out_free;
1228        }
1229
1230        nlen1 = le16_to_cpu(dent1->nlen);
1231        nlen2 = le16_to_cpu(dent2->nlen);
1232
1233        cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1234        if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1235                err = 0;
1236                goto out_free;
1237        }
1238        if (cmp == 0 && nlen1 == nlen2)
1239                ubifs_err("2 xent/dent nodes with the same name");
1240        else
1241                ubifs_err("bad order of colliding key %s",
1242                          dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1243
1244        ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1245        ubifs_dump_node(c, dent1);
1246        ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1247        ubifs_dump_node(c, dent2);
1248
1249out_free:
1250        kfree(dent2);
1251        kfree(dent1);
1252        return err;
1253}
1254
1255/**
1256 * dbg_check_znode - check if znode is all right.
1257 * @c: UBIFS file-system description object
1258 * @zbr: zbranch which points to this znode
1259 *
1260 * This function makes sure that znode referred to by @zbr is all right.
1261 * Returns zero if it is, and %-EINVAL if it is not.
1262 */
1263static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1264{
1265        struct ubifs_znode *znode = zbr->znode;
1266        struct ubifs_znode *zp = znode->parent;
1267        int n, err, cmp;
1268
1269        if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1270                err = 1;
1271                goto out;
1272        }
1273        if (znode->level < 0) {
1274                err = 2;
1275                goto out;
1276        }
1277        if (znode->iip < 0 || znode->iip >= c->fanout) {
1278                err = 3;
1279                goto out;
1280        }
1281
1282        if (zbr->len == 0)
1283                /* Only dirty zbranch may have no on-flash nodes */
1284                if (!ubifs_zn_dirty(znode)) {
1285                        err = 4;
1286                        goto out;
1287                }
1288
1289        if (ubifs_zn_dirty(znode)) {
1290                /*
1291                 * If znode is dirty, its parent has to be dirty as well. The
1292                 * order of the operation is important, so we have to have
1293                 * memory barriers.
1294                 */
1295                smp_mb();
1296                if (zp && !ubifs_zn_dirty(zp)) {
1297                        /*
1298                         * The dirty flag is atomic and is cleared outside the
1299                         * TNC mutex, so znode's dirty flag may now have
1300                         * been cleared. The child is always cleared before the
1301                         * parent, so we just need to check again.
1302                         */
1303                        smp_mb();
1304                        if (ubifs_zn_dirty(znode)) {
1305                                err = 5;
1306                                goto out;
1307                        }
1308                }
1309        }
1310
1311        if (zp) {
1312                const union ubifs_key *min, *max;
1313
1314                if (znode->level != zp->level - 1) {
1315                        err = 6;
1316                        goto out;
1317                }
1318
1319                /* Make sure the 'parent' pointer in our znode is correct */
1320                err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1321                if (!err) {
1322                        /* This zbranch does not exist in the parent */
1323                        err = 7;
1324                        goto out;
1325                }
1326
1327                if (znode->iip >= zp->child_cnt) {
1328                        err = 8;
1329                        goto out;
1330                }
1331
1332                if (znode->iip != n) {
1333                        /* This may happen only in case of collisions */
1334                        if (keys_cmp(c, &zp->zbranch[n].key,
1335                                     &zp->zbranch[znode->iip].key)) {
1336                                err = 9;
1337                                goto out;
1338                        }
1339                        n = znode->iip;
1340                }
1341
1342                /*
1343                 * Make sure that the first key in our znode is greater than or
1344                 * equal to the key in the pointing zbranch.
1345                 */
1346                min = &zbr->key;
1347                cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1348                if (cmp == 1) {
1349                        err = 10;
1350                        goto out;
1351                }
1352
1353                if (n + 1 < zp->child_cnt) {
1354                        max = &zp->zbranch[n + 1].key;
1355
1356                        /*
1357                         * Make sure the last key in our znode is less or
1358                         * equivalent than the key in the zbranch which goes
1359                         * after our pointing zbranch.
1360                         */
1361                        cmp = keys_cmp(c, max,
1362                                &znode->zbranch[znode->child_cnt - 1].key);
1363                        if (cmp == -1) {
1364                                err = 11;
1365                                goto out;
1366                        }
1367                }
1368        } else {
1369                /* This may only be root znode */
1370                if (zbr != &c->zroot) {
1371                        err = 12;
1372                        goto out;
1373                }
1374        }
1375
1376        /*
1377         * Make sure that next key is greater or equivalent then the previous
1378         * one.
1379         */
1380        for (n = 1; n < znode->child_cnt; n++) {
1381                cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1382                               &znode->zbranch[n].key);
1383                if (cmp > 0) {
1384                        err = 13;
1385                        goto out;
1386                }
1387                if (cmp == 0) {
1388                        /* This can only be keys with colliding hash */
1389                        if (!is_hash_key(c, &znode->zbranch[n].key)) {
1390                                err = 14;
1391                                goto out;
1392                        }
1393
1394                        if (znode->level != 0 || c->replaying)
1395                                continue;
1396
1397                        /*
1398                         * Colliding keys should follow binary order of
1399                         * corresponding xentry/dentry names.
1400                         */
1401                        err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1402                                                  &znode->zbranch[n]);
1403                        if (err < 0)
1404                                return err;
1405                        if (err) {
1406                                err = 15;
1407                                goto out;
1408                        }
1409                }
1410        }
1411
1412        for (n = 0; n < znode->child_cnt; n++) {
1413                if (!znode->zbranch[n].znode &&
1414                    (znode->zbranch[n].lnum == 0 ||
1415                     znode->zbranch[n].len == 0)) {
1416                        err = 16;
1417                        goto out;
1418                }
1419
1420                if (znode->zbranch[n].lnum != 0 &&
1421                    znode->zbranch[n].len == 0) {
1422                        err = 17;
1423                        goto out;
1424                }
1425
1426                if (znode->zbranch[n].lnum == 0 &&
1427                    znode->zbranch[n].len != 0) {
1428                        err = 18;
1429                        goto out;
1430                }
1431
1432                if (znode->zbranch[n].lnum == 0 &&
1433                    znode->zbranch[n].offs != 0) {
1434                        err = 19;
1435                        goto out;
1436                }
1437
1438                if (znode->level != 0 && znode->zbranch[n].znode)
1439                        if (znode->zbranch[n].znode->parent != znode) {
1440                                err = 20;
1441                                goto out;
1442                        }
1443        }
1444
1445        return 0;
1446
1447out:
1448        ubifs_err("failed, error %d", err);
1449        ubifs_msg("dump of the znode");
1450        ubifs_dump_znode(c, znode);
1451        if (zp) {
1452                ubifs_msg("dump of the parent znode");
1453                ubifs_dump_znode(c, zp);
1454        }
1455        dump_stack();
1456        return -EINVAL;
1457}
1458
1459/**
1460 * dbg_check_tnc - check TNC tree.
1461 * @c: UBIFS file-system description object
1462 * @extra: do extra checks that are possible at start commit
1463 *
1464 * This function traverses whole TNC tree and checks every znode. Returns zero
1465 * if everything is all right and %-EINVAL if something is wrong with TNC.
1466 */
1467int dbg_check_tnc(struct ubifs_info *c, int extra)
1468{
1469        struct ubifs_znode *znode;
1470        long clean_cnt = 0, dirty_cnt = 0;
1471        int err, last;
1472
1473        if (!dbg_is_chk_index(c))
1474                return 0;
1475
1476        ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1477        if (!c->zroot.znode)
1478                return 0;
1479
1480        znode = ubifs_tnc_postorder_first(c->zroot.znode);
1481        while (1) {
1482                struct ubifs_znode *prev;
1483                struct ubifs_zbranch *zbr;
1484
1485                if (!znode->parent)
1486                        zbr = &c->zroot;
1487                else
1488                        zbr = &znode->parent->zbranch[znode->iip];
1489
1490                err = dbg_check_znode(c, zbr);
1491                if (err)
1492                        return err;
1493
1494                if (extra) {
1495                        if (ubifs_zn_dirty(znode))
1496                                dirty_cnt += 1;
1497                        else
1498                                clean_cnt += 1;
1499                }
1500
1501                prev = znode;
1502                znode = ubifs_tnc_postorder_next(znode);
1503                if (!znode)
1504                        break;
1505
1506                /*
1507                 * If the last key of this znode is equivalent to the first key
1508                 * of the next znode (collision), then check order of the keys.
1509                 */
1510                last = prev->child_cnt - 1;
1511                if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1512                    !keys_cmp(c, &prev->zbranch[last].key,
1513                              &znode->zbranch[0].key)) {
1514                        err = dbg_check_key_order(c, &prev->zbranch[last],
1515                                                  &znode->zbranch[0]);
1516                        if (err < 0)
1517                                return err;
1518                        if (err) {
1519                                ubifs_msg("first znode");
1520                                ubifs_dump_znode(c, prev);
1521                                ubifs_msg("second znode");
1522                                ubifs_dump_znode(c, znode);
1523                                return -EINVAL;
1524                        }
1525                }
1526        }
1527
1528        if (extra) {
1529                if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1530                        ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1531                                  atomic_long_read(&c->clean_zn_cnt),
1532                                  clean_cnt);
1533                        return -EINVAL;
1534                }
1535                if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1536                        ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1537                                  atomic_long_read(&c->dirty_zn_cnt),
1538                                  dirty_cnt);
1539                        return -EINVAL;
1540                }
1541        }
1542
1543        return 0;
1544}
1545
1546/**
1547 * dbg_walk_index - walk the on-flash index.
1548 * @c: UBIFS file-system description object
1549 * @leaf_cb: called for each leaf node
1550 * @znode_cb: called for each indexing node
1551 * @priv: private data which is passed to callbacks
1552 *
1553 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1554 * node and @znode_cb for each indexing node. Returns zero in case of success
1555 * and a negative error code in case of failure.
1556 *
1557 * It would be better if this function removed every znode it pulled to into
1558 * the TNC, so that the behavior more closely matched the non-debugging
1559 * behavior.
1560 */
1561int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1562                   dbg_znode_callback znode_cb, void *priv)
1563{
1564        int err;
1565        struct ubifs_zbranch *zbr;
1566        struct ubifs_znode *znode, *child;
1567
1568        mutex_lock(&c->tnc_mutex);
1569        /* If the root indexing node is not in TNC - pull it */
1570        if (!c->zroot.znode) {
1571                c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1572                if (IS_ERR(c->zroot.znode)) {
1573                        err = PTR_ERR(c->zroot.znode);
1574                        c->zroot.znode = NULL;
1575                        goto out_unlock;
1576                }
1577        }
1578
1579        /*
1580         * We are going to traverse the indexing tree in the postorder manner.
1581         * Go down and find the leftmost indexing node where we are going to
1582         * start from.
1583         */
1584        znode = c->zroot.znode;
1585        while (znode->level > 0) {
1586                zbr = &znode->zbranch[0];
1587                child = zbr->znode;
1588                if (!child) {
1589                        child = ubifs_load_znode(c, zbr, znode, 0);
1590                        if (IS_ERR(child)) {
1591                                err = PTR_ERR(child);
1592                                goto out_unlock;
1593                        }
1594                        zbr->znode = child;
1595                }
1596
1597                znode = child;
1598        }
1599
1600        /* Iterate over all indexing nodes */
1601        while (1) {
1602                int idx;
1603
1604                cond_resched();
1605
1606                if (znode_cb) {
1607                        err = znode_cb(c, znode, priv);
1608                        if (err) {
1609                                ubifs_err("znode checking function returned error %d",
1610                                          err);
1611                                ubifs_dump_znode(c, znode);
1612                                goto out_dump;
1613                        }
1614                }
1615                if (leaf_cb && znode->level == 0) {
1616                        for (idx = 0; idx < znode->child_cnt; idx++) {
1617                                zbr = &znode->zbranch[idx];
1618                                err = leaf_cb(c, zbr, priv);
1619                                if (err) {
1620                                        ubifs_err("leaf checking function returned error %d, for leaf at LEB %d:%d",
1621                                                  err, zbr->lnum, zbr->offs);
1622                                        goto out_dump;
1623                                }
1624                        }
1625                }
1626
1627                if (!znode->parent)
1628                        break;
1629
1630                idx = znode->iip + 1;
1631                znode = znode->parent;
1632                if (idx < znode->child_cnt) {
1633                        /* Switch to the next index in the parent */
1634                        zbr = &znode->zbranch[idx];
1635                        child = zbr->znode;
1636                        if (!child) {
1637                                child = ubifs_load_znode(c, zbr, znode, idx);
1638                                if (IS_ERR(child)) {
1639                                        err = PTR_ERR(child);
1640                                        goto out_unlock;
1641                                }
1642                                zbr->znode = child;
1643                        }
1644                        znode = child;
1645                } else
1646                        /*
1647                         * This is the last child, switch to the parent and
1648                         * continue.
1649                         */
1650                        continue;
1651
1652                /* Go to the lowest leftmost znode in the new sub-tree */
1653                while (znode->level > 0) {
1654                        zbr = &znode->zbranch[0];
1655                        child = zbr->znode;
1656                        if (!child) {
1657                                child = ubifs_load_znode(c, zbr, znode, 0);
1658                                if (IS_ERR(child)) {
1659                                        err = PTR_ERR(child);
1660                                        goto out_unlock;
1661                                }
1662                                zbr->znode = child;
1663                        }
1664                        znode = child;
1665                }
1666        }
1667
1668        mutex_unlock(&c->tnc_mutex);
1669        return 0;
1670
1671out_dump:
1672        if (znode->parent)
1673                zbr = &znode->parent->zbranch[znode->iip];
1674        else
1675                zbr = &c->zroot;
1676        ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1677        ubifs_dump_znode(c, znode);
1678out_unlock:
1679        mutex_unlock(&c->tnc_mutex);
1680        return err;
1681}
1682
1683/**
1684 * add_size - add znode size to partially calculated index size.
1685 * @c: UBIFS file-system description object
1686 * @znode: znode to add size for
1687 * @priv: partially calculated index size
1688 *
1689 * This is a helper function for 'dbg_check_idx_size()' which is called for
1690 * every indexing node and adds its size to the 'long long' variable pointed to
1691 * by @priv.
1692 */
1693static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1694{
1695        long long *idx_size = priv;
1696        int add;
1697
1698        add = ubifs_idx_node_sz(c, znode->child_cnt);
1699        add = ALIGN(add, 8);
1700        *idx_size += add;
1701        return 0;
1702}
1703
1704/**
1705 * dbg_check_idx_size - check index size.
1706 * @c: UBIFS file-system description object
1707 * @idx_size: size to check
1708 *
1709 * This function walks the UBIFS index, calculates its size and checks that the
1710 * size is equivalent to @idx_size. Returns zero in case of success and a
1711 * negative error code in case of failure.
1712 */
1713int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1714{
1715        int err;
1716        long long calc = 0;
1717
1718        if (!dbg_is_chk_index(c))
1719                return 0;
1720
1721        err = dbg_walk_index(c, NULL, add_size, &calc);
1722        if (err) {
1723                ubifs_err("error %d while walking the index", err);
1724                return err;
1725        }
1726
1727        if (calc != idx_size) {
1728                ubifs_err("index size check failed: calculated size is %lld, should be %lld",
1729                          calc, idx_size);
1730                dump_stack();
1731                return -EINVAL;
1732        }
1733
1734        return 0;
1735}
1736
1737/**
1738 * struct fsck_inode - information about an inode used when checking the file-system.
1739 * @rb: link in the RB-tree of inodes
1740 * @inum: inode number
1741 * @mode: inode type, permissions, etc
1742 * @nlink: inode link count
1743 * @xattr_cnt: count of extended attributes
1744 * @references: how many directory/xattr entries refer this inode (calculated
1745 *              while walking the index)
1746 * @calc_cnt: for directory inode count of child directories
1747 * @size: inode size (read from on-flash inode)
1748 * @xattr_sz: summary size of all extended attributes (read from on-flash
1749 *            inode)
1750 * @calc_sz: for directories calculated directory size
1751 * @calc_xcnt: count of extended attributes
1752 * @calc_xsz: calculated summary size of all extended attributes
1753 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1754 *             inode (read from on-flash inode)
1755 * @calc_xnms: calculated sum of lengths of all extended attribute names
1756 */
1757struct fsck_inode {
1758        struct rb_node rb;
1759        ino_t inum;
1760        umode_t mode;
1761        unsigned int nlink;
1762        unsigned int xattr_cnt;
1763        int references;
1764        int calc_cnt;
1765        long long size;
1766        unsigned int xattr_sz;
1767        long long calc_sz;
1768        long long calc_xcnt;
1769        long long calc_xsz;
1770        unsigned int xattr_nms;
1771        long long calc_xnms;
1772};
1773
1774/**
1775 * struct fsck_data - private FS checking information.
1776 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1777 */
1778struct fsck_data {
1779        struct rb_root inodes;
1780};
1781
1782/**
1783 * add_inode - add inode information to RB-tree of inodes.
1784 * @c: UBIFS file-system description object
1785 * @fsckd: FS checking information
1786 * @ino: raw UBIFS inode to add
1787 *
1788 * This is a helper function for 'check_leaf()' which adds information about
1789 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1790 * case of success and a negative error code in case of failure.
1791 */
1792static struct fsck_inode *add_inode(struct ubifs_info *c,
1793                                    struct fsck_data *fsckd,
1794                                    struct ubifs_ino_node *ino)
1795{
1796        struct rb_node **p, *parent = NULL;
1797        struct fsck_inode *fscki;
1798        ino_t inum = key_inum_flash(c, &ino->key);
1799        struct inode *inode;
1800        struct ubifs_inode *ui;
1801
1802        p = &fsckd->inodes.rb_node;
1803        while (*p) {
1804                parent = *p;
1805                fscki = rb_entry(parent, struct fsck_inode, rb);
1806                if (inum < fscki->inum)
1807                        p = &(*p)->rb_left;
1808                else if (inum > fscki->inum)
1809                        p = &(*p)->rb_right;
1810                else
1811                        return fscki;
1812        }
1813
1814        if (inum > c->highest_inum) {
1815                ubifs_err("too high inode number, max. is %lu",
1816                          (unsigned long)c->highest_inum);
1817                return ERR_PTR(-EINVAL);
1818        }
1819
1820        fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1821        if (!fscki)
1822                return ERR_PTR(-ENOMEM);
1823
1824        inode = ilookup(c->vfs_sb, inum);
1825
1826        fscki->inum = inum;
1827        /*
1828         * If the inode is present in the VFS inode cache, use it instead of
1829         * the on-flash inode which might be out-of-date. E.g., the size might
1830         * be out-of-date. If we do not do this, the following may happen, for
1831         * example:
1832         *   1. A power cut happens
1833         *   2. We mount the file-system R/O, the replay process fixes up the
1834         *      inode size in the VFS cache, but on on-flash.
1835         *   3. 'check_leaf()' fails because it hits a data node beyond inode
1836         *      size.
1837         */
1838        if (!inode) {
1839                fscki->nlink = le32_to_cpu(ino->nlink);
1840                fscki->size = le64_to_cpu(ino->size);
1841                fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1842                fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1843                fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1844                fscki->mode = le32_to_cpu(ino->mode);
1845        } else {
1846                ui = ubifs_inode(inode);
1847                fscki->nlink = inode->i_nlink;
1848                fscki->size = inode->i_size;
1849                fscki->xattr_cnt = ui->xattr_cnt;
1850                fscki->xattr_sz = ui->xattr_size;
1851                fscki->xattr_nms = ui->xattr_names;
1852                fscki->mode = inode->i_mode;
1853                iput(inode);
1854        }
1855
1856        if (S_ISDIR(fscki->mode)) {
1857                fscki->calc_sz = UBIFS_INO_NODE_SZ;
1858                fscki->calc_cnt = 2;
1859        }
1860
1861        rb_link_node(&fscki->rb, parent, p);
1862        rb_insert_color(&fscki->rb, &fsckd->inodes);
1863
1864        return fscki;
1865}
1866
1867/**
1868 * search_inode - search inode in the RB-tree of inodes.
1869 * @fsckd: FS checking information
1870 * @inum: inode number to search
1871 *
1872 * This is a helper function for 'check_leaf()' which searches inode @inum in
1873 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1874 * the inode was not found.
1875 */
1876static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1877{
1878        struct rb_node *p;
1879        struct fsck_inode *fscki;
1880
1881        p = fsckd->inodes.rb_node;
1882        while (p) {
1883                fscki = rb_entry(p, struct fsck_inode, rb);
1884                if (inum < fscki->inum)
1885                        p = p->rb_left;
1886                else if (inum > fscki->inum)
1887                        p = p->rb_right;
1888                else
1889                        return fscki;
1890        }
1891        return NULL;
1892}
1893
1894/**
1895 * read_add_inode - read inode node and add it to RB-tree of inodes.
1896 * @c: UBIFS file-system description object
1897 * @fsckd: FS checking information
1898 * @inum: inode number to read
1899 *
1900 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1901 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1902 * information pointer in case of success and a negative error code in case of
1903 * failure.
1904 */
1905static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1906                                         struct fsck_data *fsckd, ino_t inum)
1907{
1908        int n, err;
1909        union ubifs_key key;
1910        struct ubifs_znode *znode;
1911        struct ubifs_zbranch *zbr;
1912        struct ubifs_ino_node *ino;
1913        struct fsck_inode *fscki;
1914
1915        fscki = search_inode(fsckd, inum);
1916        if (fscki)
1917                return fscki;
1918
1919        ino_key_init(c, &key, inum);
1920        err = ubifs_lookup_level0(c, &key, &znode, &n);
1921        if (!err) {
1922                ubifs_err("inode %lu not found in index", (unsigned long)inum);
1923                return ERR_PTR(-ENOENT);
1924        } else if (err < 0) {
1925                ubifs_err("error %d while looking up inode %lu",
1926                          err, (unsigned long)inum);
1927                return ERR_PTR(err);
1928        }
1929
1930        zbr = &znode->zbranch[n];
1931        if (zbr->len < UBIFS_INO_NODE_SZ) {
1932                ubifs_err("bad node %lu node length %d",
1933                          (unsigned long)inum, zbr->len);
1934                return ERR_PTR(-EINVAL);
1935        }
1936
1937        ino = kmalloc(zbr->len, GFP_NOFS);
1938        if (!ino)
1939                return ERR_PTR(-ENOMEM);
1940
1941        err = ubifs_tnc_read_node(c, zbr, ino);
1942        if (err) {
1943                ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1944                          zbr->lnum, zbr->offs, err);
1945                kfree(ino);
1946                return ERR_PTR(err);
1947        }
1948
1949        fscki = add_inode(c, fsckd, ino);
1950        kfree(ino);
1951        if (IS_ERR(fscki)) {
1952                ubifs_err("error %ld while adding inode %lu node",
1953                          PTR_ERR(fscki), (unsigned long)inum);
1954                return fscki;
1955        }
1956
1957        return fscki;
1958}
1959
1960/**
1961 * check_leaf - check leaf node.
1962 * @c: UBIFS file-system description object
1963 * @zbr: zbranch of the leaf node to check
1964 * @priv: FS checking information
1965 *
1966 * This is a helper function for 'dbg_check_filesystem()' which is called for
1967 * every single leaf node while walking the indexing tree. It checks that the
1968 * leaf node referred from the indexing tree exists, has correct CRC, and does
1969 * some other basic validation. This function is also responsible for building
1970 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1971 * calculates reference count, size, etc for each inode in order to later
1972 * compare them to the information stored inside the inodes and detect possible
1973 * inconsistencies. Returns zero in case of success and a negative error code
1974 * in case of failure.
1975 */
1976static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1977                      void *priv)
1978{
1979        ino_t inum;
1980        void *node;
1981        struct ubifs_ch *ch;
1982        int err, type = key_type(c, &zbr->key);
1983        struct fsck_inode *fscki;
1984
1985        if (zbr->len < UBIFS_CH_SZ) {
1986                ubifs_err("bad leaf length %d (LEB %d:%d)",
1987                          zbr->len, zbr->lnum, zbr->offs);
1988                return -EINVAL;
1989        }
1990
1991        node = kmalloc(zbr->len, GFP_NOFS);
1992        if (!node)
1993                return -ENOMEM;
1994
1995        err = ubifs_tnc_read_node(c, zbr, node);
1996        if (err) {
1997                ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
1998                          zbr->lnum, zbr->offs, err);
1999                goto out_free;
2000        }
2001
2002        /* If this is an inode node, add it to RB-tree of inodes */
2003        if (type == UBIFS_INO_KEY) {
2004                fscki = add_inode(c, priv, node);
2005                if (IS_ERR(fscki)) {
2006                        err = PTR_ERR(fscki);
2007                        ubifs_err("error %d while adding inode node", err);
2008                        goto out_dump;
2009                }
2010                goto out;
2011        }
2012
2013        if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2014            type != UBIFS_DATA_KEY) {
2015                ubifs_err("unexpected node type %d at LEB %d:%d",
2016                          type, zbr->lnum, zbr->offs);
2017                err = -EINVAL;
2018                goto out_free;
2019        }
2020
2021        ch = node;
2022        if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2023                ubifs_err("too high sequence number, max. is %llu",
2024                          c->max_sqnum);
2025                err = -EINVAL;
2026                goto out_dump;
2027        }
2028
2029        if (type == UBIFS_DATA_KEY) {
2030                long long blk_offs;
2031                struct ubifs_data_node *dn = node;
2032
2033                /*
2034                 * Search the inode node this data node belongs to and insert
2035                 * it to the RB-tree of inodes.
2036                 */
2037                inum = key_inum_flash(c, &dn->key);
2038                fscki = read_add_inode(c, priv, inum);
2039                if (IS_ERR(fscki)) {
2040                        err = PTR_ERR(fscki);
2041                        ubifs_err("error %d while processing data node and trying to find inode node %lu",
2042                                  err, (unsigned long)inum);
2043                        goto out_dump;
2044                }
2045
2046                /* Make sure the data node is within inode size */
2047                blk_offs = key_block_flash(c, &dn->key);
2048                blk_offs <<= UBIFS_BLOCK_SHIFT;
2049                blk_offs += le32_to_cpu(dn->size);
2050                if (blk_offs > fscki->size) {
2051                        ubifs_err("data node at LEB %d:%d is not within inode size %lld",
2052                                  zbr->lnum, zbr->offs, fscki->size);
2053                        err = -EINVAL;
2054                        goto out_dump;
2055                }
2056        } else {
2057                int nlen;
2058                struct ubifs_dent_node *dent = node;
2059                struct fsck_inode *fscki1;
2060
2061                err = ubifs_validate_entry(c, dent);
2062                if (err)
2063                        goto out_dump;
2064
2065                /*
2066                 * Search the inode node this entry refers to and the parent
2067                 * inode node and insert them to the RB-tree of inodes.
2068                 */
2069                inum = le64_to_cpu(dent->inum);
2070                fscki = read_add_inode(c, priv, inum);
2071                if (IS_ERR(fscki)) {
2072                        err = PTR_ERR(fscki);
2073                        ubifs_err("error %d while processing entry node and trying to find inode node %lu",
2074                                  err, (unsigned long)inum);
2075                        goto out_dump;
2076                }
2077
2078                /* Count how many direntries or xentries refers this inode */
2079                fscki->references += 1;
2080
2081                inum = key_inum_flash(c, &dent->key);
2082                fscki1 = read_add_inode(c, priv, inum);
2083                if (IS_ERR(fscki1)) {
2084                        err = PTR_ERR(fscki1);
2085                        ubifs_err("error %d while processing entry node and trying to find parent inode node %lu",
2086                                  err, (unsigned long)inum);
2087                        goto out_dump;
2088                }
2089
2090                nlen = le16_to_cpu(dent->nlen);
2091                if (type == UBIFS_XENT_KEY) {
2092                        fscki1->calc_xcnt += 1;
2093                        fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2094                        fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2095                        fscki1->calc_xnms += nlen;
2096                } else {
2097                        fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2098                        if (dent->type == UBIFS_ITYPE_DIR)
2099                                fscki1->calc_cnt += 1;
2100                }
2101        }
2102
2103out:
2104        kfree(node);
2105        return 0;
2106
2107out_dump:
2108        ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2109        ubifs_dump_node(c, node);
2110out_free:
2111        kfree(node);
2112        return err;
2113}
2114
2115/**
2116 * free_inodes - free RB-tree of inodes.
2117 * @fsckd: FS checking information
2118 */
2119static void free_inodes(struct fsck_data *fsckd)
2120{
2121        struct rb_node *this = fsckd->inodes.rb_node;
2122        struct fsck_inode *fscki;
2123
2124        while (this) {
2125                if (this->rb_left)
2126                        this = this->rb_left;
2127                else if (this->rb_right)
2128                        this = this->rb_right;
2129                else {
2130                        fscki = rb_entry(this, struct fsck_inode, rb);
2131                        this = rb_parent(this);
2132                        if (this) {
2133                                if (this->rb_left == &fscki->rb)
2134                                        this->rb_left = NULL;
2135                                else
2136                                        this->rb_right = NULL;
2137                        }
2138                        kfree(fscki);
2139                }
2140        }
2141}
2142
2143/**
2144 * check_inodes - checks all inodes.
2145 * @c: UBIFS file-system description object
2146 * @fsckd: FS checking information
2147 *
2148 * This is a helper function for 'dbg_check_filesystem()' which walks the
2149 * RB-tree of inodes after the index scan has been finished, and checks that
2150 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2151 * %-EINVAL if not, and a negative error code in case of failure.
2152 */
2153static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2154{
2155        int n, err;
2156        union ubifs_key key;
2157        struct ubifs_znode *znode;
2158        struct ubifs_zbranch *zbr;
2159        struct ubifs_ino_node *ino;
2160        struct fsck_inode *fscki;
2161        struct rb_node *this = rb_first(&fsckd->inodes);
2162
2163        while (this) {
2164                fscki = rb_entry(this, struct fsck_inode, rb);
2165                this = rb_next(this);
2166
2167                if (S_ISDIR(fscki->mode)) {
2168                        /*
2169                         * Directories have to have exactly one reference (they
2170                         * cannot have hardlinks), although root inode is an
2171                         * exception.
2172                         */
2173                        if (fscki->inum != UBIFS_ROOT_INO &&
2174                            fscki->references != 1) {
2175                                ubifs_err("directory inode %lu has %d direntries which refer it, but should be 1",
2176                                          (unsigned long)fscki->inum,
2177                                          fscki->references);
2178                                goto out_dump;
2179                        }
2180                        if (fscki->inum == UBIFS_ROOT_INO &&
2181                            fscki->references != 0) {
2182                                ubifs_err("root inode %lu has non-zero (%d) direntries which refer it",
2183                                          (unsigned long)fscki->inum,
2184                                          fscki->references);
2185                                goto out_dump;
2186                        }
2187                        if (fscki->calc_sz != fscki->size) {
2188                                ubifs_err("directory inode %lu size is %lld, but calculated size is %lld",
2189                                          (unsigned long)fscki->inum,
2190                                          fscki->size, fscki->calc_sz);
2191                                goto out_dump;
2192                        }
2193                        if (fscki->calc_cnt != fscki->nlink) {
2194                                ubifs_err("directory inode %lu nlink is %d, but calculated nlink is %d",
2195                                          (unsigned long)fscki->inum,
2196                                          fscki->nlink, fscki->calc_cnt);
2197                                goto out_dump;
2198                        }
2199                } else {
2200                        if (fscki->references != fscki->nlink) {
2201                                ubifs_err("inode %lu nlink is %d, but calculated nlink is %d",
2202                                          (unsigned long)fscki->inum,
2203                                          fscki->nlink, fscki->references);
2204                                goto out_dump;
2205                        }
2206                }
2207                if (fscki->xattr_sz != fscki->calc_xsz) {
2208                        ubifs_err("inode %lu has xattr size %u, but calculated size is %lld",
2209                                  (unsigned long)fscki->inum, fscki->xattr_sz,
2210                                  fscki->calc_xsz);
2211                        goto out_dump;
2212                }
2213                if (fscki->xattr_cnt != fscki->calc_xcnt) {
2214                        ubifs_err("inode %lu has %u xattrs, but calculated count is %lld",
2215                                  (unsigned long)fscki->inum,
2216                                  fscki->xattr_cnt, fscki->calc_xcnt);
2217                        goto out_dump;
2218                }
2219                if (fscki->xattr_nms != fscki->calc_xnms) {
2220                        ubifs_err("inode %lu has xattr names' size %u, but calculated names' size is %lld",
2221                                  (unsigned long)fscki->inum, fscki->xattr_nms,
2222                                  fscki->calc_xnms);
2223                        goto out_dump;
2224                }
2225        }
2226
2227        return 0;
2228
2229out_dump:
2230        /* Read the bad inode and dump it */
2231        ino_key_init(c, &key, fscki->inum);
2232        err = ubifs_lookup_level0(c, &key, &znode, &n);
2233        if (!err) {
2234                ubifs_err("inode %lu not found in index",
2235                          (unsigned long)fscki->inum);
2236                return -ENOENT;
2237        } else if (err < 0) {
2238                ubifs_err("error %d while looking up inode %lu",
2239                          err, (unsigned long)fscki->inum);
2240                return err;
2241        }
2242
2243        zbr = &znode->zbranch[n];
2244        ino = kmalloc(zbr->len, GFP_NOFS);
2245        if (!ino)
2246                return -ENOMEM;
2247
2248        err = ubifs_tnc_read_node(c, zbr, ino);
2249        if (err) {
2250                ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2251                          zbr->lnum, zbr->offs, err);
2252                kfree(ino);
2253                return err;
2254        }
2255
2256        ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2257                  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2258        ubifs_dump_node(c, ino);
2259        kfree(ino);
2260        return -EINVAL;
2261}
2262
2263/**
2264 * dbg_check_filesystem - check the file-system.
2265 * @c: UBIFS file-system description object
2266 *
2267 * This function checks the file system, namely:
2268 * o makes sure that all leaf nodes exist and their CRCs are correct;
2269 * o makes sure inode nlink, size, xattr size/count are correct (for all
2270 *   inodes).
2271 *
2272 * The function reads whole indexing tree and all nodes, so it is pretty
2273 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2274 * not, and a negative error code in case of failure.
2275 */
2276int dbg_check_filesystem(struct ubifs_info *c)
2277{
2278        int err;
2279        struct fsck_data fsckd;
2280
2281        if (!dbg_is_chk_fs(c))
2282                return 0;
2283
2284        fsckd.inodes = RB_ROOT;
2285        err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2286        if (err)
2287                goto out_free;
2288
2289        err = check_inodes(c, &fsckd);
2290        if (err)
2291                goto out_free;
2292
2293        free_inodes(&fsckd);
2294        return 0;
2295
2296out_free:
2297        ubifs_err("file-system check failed with error %d", err);
2298        dump_stack();
2299        free_inodes(&fsckd);
2300        return err;
2301}
2302
2303/**
2304 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2305 * @c: UBIFS file-system description object
2306 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2307 *
2308 * This function returns zero if the list of data nodes is sorted correctly,
2309 * and %-EINVAL if not.
2310 */
2311int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2312{
2313        struct list_head *cur;
2314        struct ubifs_scan_node *sa, *sb;
2315
2316        if (!dbg_is_chk_gen(c))
2317                return 0;
2318
2319        for (cur = head->next; cur->next != head; cur = cur->next) {
2320                ino_t inuma, inumb;
2321                uint32_t blka, blkb;
2322
2323                cond_resched();
2324                sa = container_of(cur, struct ubifs_scan_node, list);
2325                sb = container_of(cur->next, struct ubifs_scan_node, list);
2326
2327                if (sa->type != UBIFS_DATA_NODE) {
2328                        ubifs_err("bad node type %d", sa->type);
2329                        ubifs_dump_node(c, sa->node);
2330                        return -EINVAL;
2331                }
2332                if (sb->type != UBIFS_DATA_NODE) {
2333                        ubifs_err("bad node type %d", sb->type);
2334                        ubifs_dump_node(c, sb->node);
2335                        return -EINVAL;
2336                }
2337
2338                inuma = key_inum(c, &sa->key);
2339                inumb = key_inum(c, &sb->key);
2340
2341                if (inuma < inumb)
2342                        continue;
2343                if (inuma > inumb) {
2344                        ubifs_err("larger inum %lu goes before inum %lu",
2345                                  (unsigned long)inuma, (unsigned long)inumb);
2346                        goto error_dump;
2347                }
2348
2349                blka = key_block(c, &sa->key);
2350                blkb = key_block(c, &sb->key);
2351
2352                if (blka > blkb) {
2353                        ubifs_err("larger block %u goes before %u", blka, blkb);
2354                        goto error_dump;
2355                }
2356                if (blka == blkb) {
2357                        ubifs_err("two data nodes for the same block");
2358                        goto error_dump;
2359                }
2360        }
2361
2362        return 0;
2363
2364error_dump:
2365        ubifs_dump_node(c, sa->node);
2366        ubifs_dump_node(c, sb->node);
2367        return -EINVAL;
2368}
2369
2370/**
2371 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2372 * @c: UBIFS file-system description object
2373 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2374 *
2375 * This function returns zero if the list of non-data nodes is sorted correctly,
2376 * and %-EINVAL if not.
2377 */
2378int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2379{
2380        struct list_head *cur;
2381        struct ubifs_scan_node *sa, *sb;
2382
2383        if (!dbg_is_chk_gen(c))
2384                return 0;
2385
2386        for (cur = head->next; cur->next != head; cur = cur->next) {
2387                ino_t inuma, inumb;
2388                uint32_t hasha, hashb;
2389
2390                cond_resched();
2391                sa = container_of(cur, struct ubifs_scan_node, list);
2392                sb = container_of(cur->next, struct ubifs_scan_node, list);
2393
2394                if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2395                    sa->type != UBIFS_XENT_NODE) {
2396                        ubifs_err("bad node type %d", sa->type);
2397                        ubifs_dump_node(c, sa->node);
2398                        return -EINVAL;
2399                }
2400                if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2401                    sa->type != UBIFS_XENT_NODE) {
2402                        ubifs_err("bad node type %d", sb->type);
2403                        ubifs_dump_node(c, sb->node);
2404                        return -EINVAL;
2405                }
2406
2407                if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2408                        ubifs_err("non-inode node goes before inode node");
2409                        goto error_dump;
2410                }
2411
2412                if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2413                        continue;
2414
2415                if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2416                        /* Inode nodes are sorted in descending size order */
2417                        if (sa->len < sb->len) {
2418                                ubifs_err("smaller inode node goes first");
2419                                goto error_dump;
2420                        }
2421                        continue;
2422                }
2423
2424                /*
2425                 * This is either a dentry or xentry, which should be sorted in
2426                 * ascending (parent ino, hash) order.
2427                 */
2428                inuma = key_inum(c, &sa->key);
2429                inumb = key_inum(c, &sb->key);
2430
2431                if (inuma < inumb)
2432                        continue;
2433                if (inuma > inumb) {
2434                        ubifs_err("larger inum %lu goes before inum %lu",
2435                                  (unsigned long)inuma, (unsigned long)inumb);
2436                        goto error_dump;
2437                }
2438
2439                hasha = key_block(c, &sa->key);
2440                hashb = key_block(c, &sb->key);
2441
2442                if (hasha > hashb) {
2443                        ubifs_err("larger hash %u goes before %u",
2444                                  hasha, hashb);
2445                        goto error_dump;
2446                }
2447        }
2448
2449        return 0;
2450
2451error_dump:
2452        ubifs_msg("dumping first node");
2453        ubifs_dump_node(c, sa->node);
2454        ubifs_msg("dumping second node");
2455        ubifs_dump_node(c, sb->node);
2456        return -EINVAL;
2457        return 0;
2458}
2459
2460static inline int chance(unsigned int n, unsigned int out_of)
2461{
2462        return !!((prandom_u32() % out_of) + 1 <= n);
2463
2464}
2465
2466static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2467{
2468        struct ubifs_debug_info *d = c->dbg;
2469
2470        ubifs_assert(dbg_is_tst_rcvry(c));
2471
2472        if (!d->pc_cnt) {
2473                /* First call - decide delay to the power cut */
2474                if (chance(1, 2)) {
2475                        unsigned long delay;
2476
2477                        if (chance(1, 2)) {
2478                                d->pc_delay = 1;
2479                                /* Fail withing 1 minute */
2480                                delay = prandom_u32() % 60000;
2481                                d->pc_timeout = jiffies;
2482                                d->pc_timeout += msecs_to_jiffies(delay);
2483                                ubifs_warn("failing after %lums", delay);
2484                        } else {
2485                                d->pc_delay = 2;
2486                                delay = prandom_u32() % 10000;
2487                                /* Fail within 10000 operations */
2488                                d->pc_cnt_max = delay;
2489                                ubifs_warn("failing after %lu calls", delay);
2490                        }
2491                }
2492
2493                d->pc_cnt += 1;
2494        }
2495
2496        /* Determine if failure delay has expired */
2497        if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2498                        return 0;
2499        if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2500                        return 0;
2501
2502        if (lnum == UBIFS_SB_LNUM) {
2503                if (write && chance(1, 2))
2504                        return 0;
2505                if (chance(19, 20))
2506                        return 0;
2507                ubifs_warn("failing in super block LEB %d", lnum);
2508        } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2509                if (chance(19, 20))
2510                        return 0;
2511                ubifs_warn("failing in master LEB %d", lnum);
2512        } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2513                if (write && chance(99, 100))
2514                        return 0;
2515                if (chance(399, 400))
2516                        return 0;
2517                ubifs_warn("failing in log LEB %d", lnum);
2518        } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2519                if (write && chance(7, 8))
2520                        return 0;
2521                if (chance(19, 20))
2522                        return 0;
2523                ubifs_warn("failing in LPT LEB %d", lnum);
2524        } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2525                if (write && chance(1, 2))
2526                        return 0;
2527                if (chance(9, 10))
2528                        return 0;
2529                ubifs_warn("failing in orphan LEB %d", lnum);
2530        } else if (lnum == c->ihead_lnum) {
2531                if (chance(99, 100))
2532                        return 0;
2533                ubifs_warn("failing in index head LEB %d", lnum);
2534        } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2535                if (chance(9, 10))
2536                        return 0;
2537                ubifs_warn("failing in GC head LEB %d", lnum);
2538        } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2539                   !ubifs_search_bud(c, lnum)) {
2540                if (chance(19, 20))
2541                        return 0;
2542                ubifs_warn("failing in non-bud LEB %d", lnum);
2543        } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2544                   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2545                if (chance(999, 1000))
2546                        return 0;
2547                ubifs_warn("failing in bud LEB %d commit running", lnum);
2548        } else {
2549                if (chance(9999, 10000))
2550                        return 0;
2551                ubifs_warn("failing in bud LEB %d commit not running", lnum);
2552        }
2553
2554        d->pc_happened = 1;
2555        ubifs_warn("========== Power cut emulated ==========");
2556        dump_stack();
2557        return 1;
2558}
2559
2560static int corrupt_data(const struct ubifs_info *c, const void *buf,
2561                        unsigned int len)
2562{
2563        unsigned int from, to, ffs = chance(1, 2);
2564        unsigned char *p = (void *)buf;
2565
2566        from = prandom_u32() % (len + 1);
2567        /* Corruption may only span one max. write unit */
2568        to = min(len, ALIGN(from, c->max_write_size));
2569
2570        ubifs_warn("filled bytes %u-%u with %s", from, to - 1,
2571                   ffs ? "0xFFs" : "random data");
2572
2573        if (ffs)
2574                memset(p + from, 0xFF, to - from);
2575        else
2576                prandom_bytes(p + from, to - from);
2577
2578        return to;
2579}
2580
2581int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2582                  int offs, int len)
2583{
2584        int err, failing;
2585
2586        if (c->dbg->pc_happened)
2587                return -EROFS;
2588
2589        failing = power_cut_emulated(c, lnum, 1);
2590        if (failing)
2591                len = corrupt_data(c, buf, len);
2592        ubifs_warn("actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2593                   len, lnum, offs);
2594        err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2595        if (err)
2596                return err;
2597        if (failing)
2598                return -EROFS;
2599        return 0;
2600}
2601
2602int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2603                   int len)
2604{
2605        int err;
2606
2607        if (c->dbg->pc_happened)
2608                return -EROFS;
2609        if (power_cut_emulated(c, lnum, 1))
2610                return -EROFS;
2611        err = ubi_leb_change(c->ubi, lnum, buf, len);
2612        if (err)
2613                return err;
2614        if (power_cut_emulated(c, lnum, 1))
2615                return -EROFS;
2616        return 0;
2617}
2618
2619int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2620{
2621        int err;
2622
2623        if (c->dbg->pc_happened)
2624                return -EROFS;
2625        if (power_cut_emulated(c, lnum, 0))
2626                return -EROFS;
2627        err = ubi_leb_unmap(c->ubi, lnum);
2628        if (err)
2629                return err;
2630        if (power_cut_emulated(c, lnum, 0))
2631                return -EROFS;
2632        return 0;
2633}
2634
2635int dbg_leb_map(struct ubifs_info *c, int lnum)
2636{
2637        int err;
2638
2639        if (c->dbg->pc_happened)
2640                return -EROFS;
2641        if (power_cut_emulated(c, lnum, 0))
2642                return -EROFS;
2643        err = ubi_leb_map(c->ubi, lnum);
2644        if (err)
2645                return err;
2646        if (power_cut_emulated(c, lnum, 0))
2647                return -EROFS;
2648        return 0;
2649}
2650
2651/*
2652 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2653 * contain the stuff specific to particular file-system mounts.
2654 */
2655static struct dentry *dfs_rootdir;
2656
2657static int dfs_file_open(struct inode *inode, struct file *file)
2658{
2659        file->private_data = inode->i_private;
2660        return nonseekable_open(inode, file);
2661}
2662
2663/**
2664 * provide_user_output - provide output to the user reading a debugfs file.
2665 * @val: boolean value for the answer
2666 * @u: the buffer to store the answer at
2667 * @count: size of the buffer
2668 * @ppos: position in the @u output buffer
2669 *
2670 * This is a simple helper function which stores @val boolean value in the user
2671 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2672 * bytes written to @u in case of success and a negative error code in case of
2673 * failure.
2674 */
2675static int provide_user_output(int val, char __user *u, size_t count,
2676                               loff_t *ppos)
2677{
2678        char buf[3];
2679
2680        if (val)
2681                buf[0] = '1';
2682        else
2683                buf[0] = '0';
2684        buf[1] = '\n';
2685        buf[2] = 0x00;
2686
2687        return simple_read_from_buffer(u, count, ppos, buf, 2);
2688}
2689
2690static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2691                             loff_t *ppos)
2692{
2693        struct dentry *dent = file->f_path.dentry;
2694        struct ubifs_info *c = file->private_data;
2695        struct ubifs_debug_info *d = c->dbg;
2696        int val;
2697
2698        if (dent == d->dfs_chk_gen)
2699                val = d->chk_gen;
2700        else if (dent == d->dfs_chk_index)
2701                val = d->chk_index;
2702        else if (dent == d->dfs_chk_orph)
2703                val = d->chk_orph;
2704        else if (dent == d->dfs_chk_lprops)
2705                val = d->chk_lprops;
2706        else if (dent == d->dfs_chk_fs)
2707                val = d->chk_fs;
2708        else if (dent == d->dfs_tst_rcvry)
2709                val = d->tst_rcvry;
2710        else if (dent == d->dfs_ro_error)
2711                val = c->ro_error;
2712        else
2713                return -EINVAL;
2714
2715        return provide_user_output(val, u, count, ppos);
2716}
2717
2718/**
2719 * interpret_user_input - interpret user debugfs file input.
2720 * @u: user-provided buffer with the input
2721 * @count: buffer size
2722 *
2723 * This is a helper function which interpret user input to a boolean UBIFS
2724 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2725 * in case of failure.
2726 */
2727static int interpret_user_input(const char __user *u, size_t count)
2728{
2729        size_t buf_size;
2730        char buf[8];
2731
2732        buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2733        if (copy_from_user(buf, u, buf_size))
2734                return -EFAULT;
2735
2736        if (buf[0] == '1')
2737                return 1;
2738        else if (buf[0] == '0')
2739                return 0;
2740
2741        return -EINVAL;
2742}
2743
2744static ssize_t dfs_file_write(struct file *file, const char __user *u,
2745                              size_t count, loff_t *ppos)
2746{
2747        struct ubifs_info *c = file->private_data;
2748        struct ubifs_debug_info *d = c->dbg;
2749        struct dentry *dent = file->f_path.dentry;
2750        int val;
2751
2752        /*
2753         * TODO: this is racy - the file-system might have already been
2754         * unmounted and we'd oops in this case. The plan is to fix it with
2755         * help of 'iterate_supers_type()' which we should have in v3.0: when
2756         * a debugfs opened, we rember FS's UUID in file->private_data. Then
2757         * whenever we access the FS via a debugfs file, we iterate all UBIFS
2758         * superblocks and fine the one with the same UUID, and take the
2759         * locking right.
2760         *
2761         * The other way to go suggested by Al Viro is to create a separate
2762         * 'ubifs-debug' file-system instead.
2763         */
2764        if (file->f_path.dentry == d->dfs_dump_lprops) {
2765                ubifs_dump_lprops(c);
2766                return count;
2767        }
2768        if (file->f_path.dentry == d->dfs_dump_budg) {
2769                ubifs_dump_budg(c, &c->bi);
2770                return count;
2771        }
2772        if (file->f_path.dentry == d->dfs_dump_tnc) {
2773                mutex_lock(&c->tnc_mutex);
2774                ubifs_dump_tnc(c);
2775                mutex_unlock(&c->tnc_mutex);
2776                return count;
2777        }
2778
2779        val = interpret_user_input(u, count);
2780        if (val < 0)
2781                return val;
2782
2783        if (dent == d->dfs_chk_gen)
2784                d->chk_gen = val;
2785        else if (dent == d->dfs_chk_index)
2786                d->chk_index = val;
2787        else if (dent == d->dfs_chk_orph)
2788                d->chk_orph = val;
2789        else if (dent == d->dfs_chk_lprops)
2790                d->chk_lprops = val;
2791        else if (dent == d->dfs_chk_fs)
2792                d->chk_fs = val;
2793        else if (dent == d->dfs_tst_rcvry)
2794                d->tst_rcvry = val;
2795        else if (dent == d->dfs_ro_error)
2796                c->ro_error = !!val;
2797        else
2798                return -EINVAL;
2799
2800        return count;
2801}
2802
2803static const struct file_operations dfs_fops = {
2804        .open = dfs_file_open,
2805        .read = dfs_file_read,
2806        .write = dfs_file_write,
2807        .owner = THIS_MODULE,
2808        .llseek = no_llseek,
2809};
2810
2811/**
2812 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2813 * @c: UBIFS file-system description object
2814 *
2815 * This function creates all debugfs files for this instance of UBIFS. Returns
2816 * zero in case of success and a negative error code in case of failure.
2817 *
2818 * Note, the only reason we have not merged this function with the
2819 * 'ubifs_debugging_init()' function is because it is better to initialize
2820 * debugfs interfaces at the very end of the mount process, and remove them at
2821 * the very beginning of the mount process.
2822 */
2823int dbg_debugfs_init_fs(struct ubifs_info *c)
2824{
2825        int err, n;
2826        const char *fname;
2827        struct dentry *dent;
2828        struct ubifs_debug_info *d = c->dbg;
2829
2830        if (!IS_ENABLED(CONFIG_DEBUG_FS))
2831                return 0;
2832
2833        n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2834                     c->vi.ubi_num, c->vi.vol_id);
2835        if (n == UBIFS_DFS_DIR_LEN) {
2836                /* The array size is too small */
2837                fname = UBIFS_DFS_DIR_NAME;
2838                dent = ERR_PTR(-EINVAL);
2839                goto out;
2840        }
2841
2842        fname = d->dfs_dir_name;
2843        dent = debugfs_create_dir(fname, dfs_rootdir);
2844        if (IS_ERR_OR_NULL(dent))
2845                goto out;
2846        d->dfs_dir = dent;
2847
2848        fname = "dump_lprops";
2849        dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2850        if (IS_ERR_OR_NULL(dent))
2851                goto out_remove;
2852        d->dfs_dump_lprops = dent;
2853
2854        fname = "dump_budg";
2855        dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2856        if (IS_ERR_OR_NULL(dent))
2857                goto out_remove;
2858        d->dfs_dump_budg = dent;
2859
2860        fname = "dump_tnc";
2861        dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2862        if (IS_ERR_OR_NULL(dent))
2863                goto out_remove;
2864        d->dfs_dump_tnc = dent;
2865
2866        fname = "chk_general";
2867        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2868                                   &dfs_fops);
2869        if (IS_ERR_OR_NULL(dent))
2870                goto out_remove;
2871        d->dfs_chk_gen = dent;
2872
2873        fname = "chk_index";
2874        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2875                                   &dfs_fops);
2876        if (IS_ERR_OR_NULL(dent))
2877                goto out_remove;
2878        d->dfs_chk_index = dent;
2879
2880        fname = "chk_orphans";
2881        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2882                                   &dfs_fops);
2883        if (IS_ERR_OR_NULL(dent))
2884                goto out_remove;
2885        d->dfs_chk_orph = dent;
2886
2887        fname = "chk_lprops";
2888        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2889                                   &dfs_fops);
2890        if (IS_ERR_OR_NULL(dent))
2891                goto out_remove;
2892        d->dfs_chk_lprops = dent;
2893
2894        fname = "chk_fs";
2895        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2896                                   &dfs_fops);
2897        if (IS_ERR_OR_NULL(dent))
2898                goto out_remove;
2899        d->dfs_chk_fs = dent;
2900
2901        fname = "tst_recovery";
2902        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2903                                   &dfs_fops);
2904        if (IS_ERR_OR_NULL(dent))
2905                goto out_remove;
2906        d->dfs_tst_rcvry = dent;
2907
2908        fname = "ro_error";
2909        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2910                                   &dfs_fops);
2911        if (IS_ERR_OR_NULL(dent))
2912                goto out_remove;
2913        d->dfs_ro_error = dent;
2914
2915        return 0;
2916
2917out_remove:
2918        debugfs_remove_recursive(d->dfs_dir);
2919out:
2920        err = dent ? PTR_ERR(dent) : -ENODEV;
2921        ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
2922                  fname, err);
2923        return err;
2924}
2925
2926/**
2927 * dbg_debugfs_exit_fs - remove all debugfs files.
2928 * @c: UBIFS file-system description object
2929 */
2930void dbg_debugfs_exit_fs(struct ubifs_info *c)
2931{
2932        if (IS_ENABLED(CONFIG_DEBUG_FS))
2933                debugfs_remove_recursive(c->dbg->dfs_dir);
2934}
2935
2936struct ubifs_global_debug_info ubifs_dbg;
2937
2938static struct dentry *dfs_chk_gen;
2939static struct dentry *dfs_chk_index;
2940static struct dentry *dfs_chk_orph;
2941static struct dentry *dfs_chk_lprops;
2942static struct dentry *dfs_chk_fs;
2943static struct dentry *dfs_tst_rcvry;
2944
2945static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2946                                    size_t count, loff_t *ppos)
2947{
2948        struct dentry *dent = file->f_path.dentry;
2949        int val;
2950
2951        if (dent == dfs_chk_gen)
2952                val = ubifs_dbg.chk_gen;
2953        else if (dent == dfs_chk_index)
2954                val = ubifs_dbg.chk_index;
2955        else if (dent == dfs_chk_orph)
2956                val = ubifs_dbg.chk_orph;
2957        else if (dent == dfs_chk_lprops)
2958                val = ubifs_dbg.chk_lprops;
2959        else if (dent == dfs_chk_fs)
2960                val = ubifs_dbg.chk_fs;
2961        else if (dent == dfs_tst_rcvry)
2962                val = ubifs_dbg.tst_rcvry;
2963        else
2964                return -EINVAL;
2965
2966        return provide_user_output(val, u, count, ppos);
2967}
2968
2969static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2970                                     size_t count, loff_t *ppos)
2971{
2972        struct dentry *dent = file->f_path.dentry;
2973        int val;
2974
2975        val = interpret_user_input(u, count);
2976        if (val < 0)
2977                return val;
2978
2979        if (dent == dfs_chk_gen)
2980                ubifs_dbg.chk_gen = val;
2981        else if (dent == dfs_chk_index)
2982                ubifs_dbg.chk_index = val;
2983        else if (dent == dfs_chk_orph)
2984                ubifs_dbg.chk_orph = val;
2985        else if (dent == dfs_chk_lprops)
2986                ubifs_dbg.chk_lprops = val;
2987        else if (dent == dfs_chk_fs)
2988                ubifs_dbg.chk_fs = val;
2989        else if (dent == dfs_tst_rcvry)
2990                ubifs_dbg.tst_rcvry = val;
2991        else
2992                return -EINVAL;
2993
2994        return count;
2995}
2996
2997static const struct file_operations dfs_global_fops = {
2998        .read = dfs_global_file_read,
2999        .write = dfs_global_file_write,
3000        .owner = THIS_MODULE,
3001        .llseek = no_llseek,
3002};
3003
3004/**
3005 * dbg_debugfs_init - initialize debugfs file-system.
3006 *
3007 * UBIFS uses debugfs file-system to expose various debugging knobs to
3008 * user-space. This function creates "ubifs" directory in the debugfs
3009 * file-system. Returns zero in case of success and a negative error code in
3010 * case of failure.
3011 */
3012int dbg_debugfs_init(void)
3013{
3014        int err;
3015        const char *fname;
3016        struct dentry *dent;
3017
3018        if (!IS_ENABLED(CONFIG_DEBUG_FS))
3019                return 0;
3020
3021        fname = "ubifs";
3022        dent = debugfs_create_dir(fname, NULL);
3023        if (IS_ERR_OR_NULL(dent))
3024                goto out;
3025        dfs_rootdir = dent;
3026
3027        fname = "chk_general";
3028        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3029                                   &dfs_global_fops);
3030        if (IS_ERR_OR_NULL(dent))
3031                goto out_remove;
3032        dfs_chk_gen = dent;
3033
3034        fname = "chk_index";
3035        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3036                                   &dfs_global_fops);
3037        if (IS_ERR_OR_NULL(dent))
3038                goto out_remove;
3039        dfs_chk_index = dent;
3040
3041        fname = "chk_orphans";
3042        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3043                                   &dfs_global_fops);
3044        if (IS_ERR_OR_NULL(dent))
3045                goto out_remove;
3046        dfs_chk_orph = dent;
3047
3048        fname = "chk_lprops";
3049        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3050                                   &dfs_global_fops);
3051        if (IS_ERR_OR_NULL(dent))
3052                goto out_remove;
3053        dfs_chk_lprops = dent;
3054
3055        fname = "chk_fs";
3056        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3057                                   &dfs_global_fops);
3058        if (IS_ERR_OR_NULL(dent))
3059                goto out_remove;
3060        dfs_chk_fs = dent;
3061
3062        fname = "tst_recovery";
3063        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3064                                   &dfs_global_fops);
3065        if (IS_ERR_OR_NULL(dent))
3066                goto out_remove;
3067        dfs_tst_rcvry = dent;
3068
3069        return 0;
3070
3071out_remove:
3072        debugfs_remove_recursive(dfs_rootdir);
3073out:
3074        err = dent ? PTR_ERR(dent) : -ENODEV;
3075        ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3076                  fname, err);
3077        return err;
3078}
3079
3080/**
3081 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3082 */
3083void dbg_debugfs_exit(void)
3084{
3085        if (IS_ENABLED(CONFIG_DEBUG_FS))
3086                debugfs_remove_recursive(dfs_rootdir);
3087}
3088
3089/**
3090 * ubifs_debugging_init - initialize UBIFS debugging.
3091 * @c: UBIFS file-system description object
3092 *
3093 * This function initializes debugging-related data for the file system.
3094 * Returns zero in case of success and a negative error code in case of
3095 * failure.
3096 */
3097int ubifs_debugging_init(struct ubifs_info *c)
3098{
3099        c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3100        if (!c->dbg)
3101                return -ENOMEM;
3102
3103        return 0;
3104}
3105
3106/**
3107 * ubifs_debugging_exit - free debugging data.
3108 * @c: UBIFS file-system description object
3109 */
3110void ubifs_debugging_exit(struct ubifs_info *c)
3111{
3112        kfree(c->dbg);
3113}
3114