linux/include/linux/rcupdate.h
<<
>>
Prefs
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17 *
  18 * Copyright IBM Corporation, 2001
  19 *
  20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
  21 *
  22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  24 * Papers:
  25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
  26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
  27 *
  28 * For detailed explanation of Read-Copy Update mechanism see -
  29 *              http://lse.sourceforge.net/locking/rcupdate.html
  30 *
  31 */
  32
  33#ifndef __LINUX_RCUPDATE_H
  34#define __LINUX_RCUPDATE_H
  35
  36#include <linux/types.h>
  37#include <linux/cache.h>
  38#include <linux/spinlock.h>
  39#include <linux/threads.h>
  40#include <linux/cpumask.h>
  41#include <linux/seqlock.h>
  42#include <linux/lockdep.h>
  43#include <linux/completion.h>
  44#include <linux/debugobjects.h>
  45#include <linux/bug.h>
  46#include <linux/compiler.h>
  47
  48#ifdef CONFIG_RCU_TORTURE_TEST
  49extern int rcutorture_runnable; /* for sysctl */
  50#endif /* #ifdef CONFIG_RCU_TORTURE_TEST */
  51
  52#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
  53extern void rcutorture_record_test_transition(void);
  54extern void rcutorture_record_progress(unsigned long vernum);
  55extern void do_trace_rcu_torture_read(char *rcutorturename,
  56                                      struct rcu_head *rhp,
  57                                      unsigned long secs,
  58                                      unsigned long c_old,
  59                                      unsigned long c);
  60#else
  61static inline void rcutorture_record_test_transition(void)
  62{
  63}
  64static inline void rcutorture_record_progress(unsigned long vernum)
  65{
  66}
  67#ifdef CONFIG_RCU_TRACE
  68extern void do_trace_rcu_torture_read(char *rcutorturename,
  69                                      struct rcu_head *rhp,
  70                                      unsigned long secs,
  71                                      unsigned long c_old,
  72                                      unsigned long c);
  73#else
  74#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
  75        do { } while (0)
  76#endif
  77#endif
  78
  79#define UINT_CMP_GE(a, b)       (UINT_MAX / 2 >= (a) - (b))
  80#define UINT_CMP_LT(a, b)       (UINT_MAX / 2 < (a) - (b))
  81#define ULONG_CMP_GE(a, b)      (ULONG_MAX / 2 >= (a) - (b))
  82#define ULONG_CMP_LT(a, b)      (ULONG_MAX / 2 < (a) - (b))
  83#define ulong2long(a)           (*(long *)(&(a)))
  84
  85/* Exported common interfaces */
  86
  87#ifdef CONFIG_PREEMPT_RCU
  88
  89/**
  90 * call_rcu() - Queue an RCU callback for invocation after a grace period.
  91 * @head: structure to be used for queueing the RCU updates.
  92 * @func: actual callback function to be invoked after the grace period
  93 *
  94 * The callback function will be invoked some time after a full grace
  95 * period elapses, in other words after all pre-existing RCU read-side
  96 * critical sections have completed.  However, the callback function
  97 * might well execute concurrently with RCU read-side critical sections
  98 * that started after call_rcu() was invoked.  RCU read-side critical
  99 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
 100 * and may be nested.
 101 *
 102 * Note that all CPUs must agree that the grace period extended beyond
 103 * all pre-existing RCU read-side critical section.  On systems with more
 104 * than one CPU, this means that when "func()" is invoked, each CPU is
 105 * guaranteed to have executed a full memory barrier since the end of its
 106 * last RCU read-side critical section whose beginning preceded the call
 107 * to call_rcu().  It also means that each CPU executing an RCU read-side
 108 * critical section that continues beyond the start of "func()" must have
 109 * executed a memory barrier after the call_rcu() but before the beginning
 110 * of that RCU read-side critical section.  Note that these guarantees
 111 * include CPUs that are offline, idle, or executing in user mode, as
 112 * well as CPUs that are executing in the kernel.
 113 *
 114 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
 115 * resulting RCU callback function "func()", then both CPU A and CPU B are
 116 * guaranteed to execute a full memory barrier during the time interval
 117 * between the call to call_rcu() and the invocation of "func()" -- even
 118 * if CPU A and CPU B are the same CPU (but again only if the system has
 119 * more than one CPU).
 120 */
 121extern void call_rcu(struct rcu_head *head,
 122                              void (*func)(struct rcu_head *head));
 123
 124#else /* #ifdef CONFIG_PREEMPT_RCU */
 125
 126/* In classic RCU, call_rcu() is just call_rcu_sched(). */
 127#define call_rcu        call_rcu_sched
 128
 129#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
 130
 131/**
 132 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
 133 * @head: structure to be used for queueing the RCU updates.
 134 * @func: actual callback function to be invoked after the grace period
 135 *
 136 * The callback function will be invoked some time after a full grace
 137 * period elapses, in other words after all currently executing RCU
 138 * read-side critical sections have completed. call_rcu_bh() assumes
 139 * that the read-side critical sections end on completion of a softirq
 140 * handler. This means that read-side critical sections in process
 141 * context must not be interrupted by softirqs. This interface is to be
 142 * used when most of the read-side critical sections are in softirq context.
 143 * RCU read-side critical sections are delimited by :
 144 *  - rcu_read_lock() and  rcu_read_unlock(), if in interrupt context.
 145 *  OR
 146 *  - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
 147 *  These may be nested.
 148 *
 149 * See the description of call_rcu() for more detailed information on
 150 * memory ordering guarantees.
 151 */
 152extern void call_rcu_bh(struct rcu_head *head,
 153                        void (*func)(struct rcu_head *head));
 154
 155/**
 156 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
 157 * @head: structure to be used for queueing the RCU updates.
 158 * @func: actual callback function to be invoked after the grace period
 159 *
 160 * The callback function will be invoked some time after a full grace
 161 * period elapses, in other words after all currently executing RCU
 162 * read-side critical sections have completed. call_rcu_sched() assumes
 163 * that the read-side critical sections end on enabling of preemption
 164 * or on voluntary preemption.
 165 * RCU read-side critical sections are delimited by :
 166 *  - rcu_read_lock_sched() and  rcu_read_unlock_sched(),
 167 *  OR
 168 *  anything that disables preemption.
 169 *  These may be nested.
 170 *
 171 * See the description of call_rcu() for more detailed information on
 172 * memory ordering guarantees.
 173 */
 174extern void call_rcu_sched(struct rcu_head *head,
 175                           void (*func)(struct rcu_head *rcu));
 176
 177extern void synchronize_sched(void);
 178
 179#ifdef CONFIG_PREEMPT_RCU
 180
 181extern void __rcu_read_lock(void);
 182extern void __rcu_read_unlock(void);
 183extern void rcu_read_unlock_special(struct task_struct *t);
 184void synchronize_rcu(void);
 185
 186/*
 187 * Defined as a macro as it is a very low level header included from
 188 * areas that don't even know about current.  This gives the rcu_read_lock()
 189 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
 190 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
 191 */
 192#define rcu_preempt_depth() (current->rcu_read_lock_nesting)
 193
 194#else /* #ifdef CONFIG_PREEMPT_RCU */
 195
 196static inline void __rcu_read_lock(void)
 197{
 198        preempt_disable();
 199}
 200
 201static inline void __rcu_read_unlock(void)
 202{
 203        preempt_enable();
 204}
 205
 206static inline void synchronize_rcu(void)
 207{
 208        synchronize_sched();
 209}
 210
 211static inline int rcu_preempt_depth(void)
 212{
 213        return 0;
 214}
 215
 216#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
 217
 218/* Internal to kernel */
 219extern void rcu_sched_qs(int cpu);
 220extern void rcu_bh_qs(int cpu);
 221extern void rcu_check_callbacks(int cpu, int user);
 222struct notifier_block;
 223extern void rcu_idle_enter(void);
 224extern void rcu_idle_exit(void);
 225extern void rcu_irq_enter(void);
 226extern void rcu_irq_exit(void);
 227
 228#ifdef CONFIG_RCU_STALL_COMMON
 229void rcu_sysrq_start(void);
 230void rcu_sysrq_end(void);
 231#else /* #ifdef CONFIG_RCU_STALL_COMMON */
 232static inline void rcu_sysrq_start(void)
 233{
 234}
 235static inline void rcu_sysrq_end(void)
 236{
 237}
 238#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
 239
 240#ifdef CONFIG_RCU_USER_QS
 241extern void rcu_user_enter(void);
 242extern void rcu_user_exit(void);
 243extern void rcu_user_enter_after_irq(void);
 244extern void rcu_user_exit_after_irq(void);
 245#else
 246static inline void rcu_user_enter(void) { }
 247static inline void rcu_user_exit(void) { }
 248static inline void rcu_user_enter_after_irq(void) { }
 249static inline void rcu_user_exit_after_irq(void) { }
 250static inline void rcu_user_hooks_switch(struct task_struct *prev,
 251                                         struct task_struct *next) { }
 252#endif /* CONFIG_RCU_USER_QS */
 253
 254extern void exit_rcu(void);
 255
 256#ifdef CONFIG_RCU_NOCB_CPU
 257void rcu_init_nohz(void);
 258#else /* #ifdef CONFIG_RCU_NOCB_CPU */
 259static inline void rcu_init_nohz(void)
 260{
 261}
 262#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
 263
 264/**
 265 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
 266 * @a: Code that RCU needs to pay attention to.
 267 *
 268 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
 269 * in the inner idle loop, that is, between the rcu_idle_enter() and
 270 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
 271 * critical sections.  However, things like powertop need tracepoints
 272 * in the inner idle loop.
 273 *
 274 * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
 275 * will tell RCU that it needs to pay attending, invoke its argument
 276 * (in this example, a call to the do_something_with_RCU() function),
 277 * and then tell RCU to go back to ignoring this CPU.  It is permissible
 278 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
 279 * quite limited.  If deeper nesting is required, it will be necessary
 280 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
 281 */
 282#define RCU_NONIDLE(a) \
 283        do { \
 284                rcu_irq_enter(); \
 285                do { a; } while (0); \
 286                rcu_irq_exit(); \
 287        } while (0)
 288
 289#if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP)
 290extern bool __rcu_is_watching(void);
 291#endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */
 292
 293/*
 294 * Infrastructure to implement the synchronize_() primitives in
 295 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
 296 */
 297
 298typedef void call_rcu_func_t(struct rcu_head *head,
 299                             void (*func)(struct rcu_head *head));
 300void wait_rcu_gp(call_rcu_func_t crf);
 301
 302#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
 303#include <linux/rcutree.h>
 304#elif defined(CONFIG_TINY_RCU) || defined(CONFIG_TINY_PREEMPT_RCU)
 305#include <linux/rcutiny.h>
 306#else
 307#error "Unknown RCU implementation specified to kernel configuration"
 308#endif
 309
 310/*
 311 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
 312 * initialization and destruction of rcu_head on the stack. rcu_head structures
 313 * allocated dynamically in the heap or defined statically don't need any
 314 * initialization.
 315 */
 316#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
 317extern void init_rcu_head_on_stack(struct rcu_head *head);
 318extern void destroy_rcu_head_on_stack(struct rcu_head *head);
 319#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 320static inline void init_rcu_head_on_stack(struct rcu_head *head)
 321{
 322}
 323
 324static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
 325{
 326}
 327#endif  /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 328
 329#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
 330bool rcu_lockdep_current_cpu_online(void);
 331#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
 332static inline bool rcu_lockdep_current_cpu_online(void)
 333{
 334        return 1;
 335}
 336#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
 337
 338#ifdef CONFIG_DEBUG_LOCK_ALLOC
 339
 340static inline void rcu_lock_acquire(struct lockdep_map *map)
 341{
 342        lock_acquire(map, 0, 0, 2, 1, NULL, _THIS_IP_);
 343}
 344
 345static inline void rcu_lock_release(struct lockdep_map *map)
 346{
 347        lock_release(map, 1, _THIS_IP_);
 348}
 349
 350extern struct lockdep_map rcu_lock_map;
 351extern struct lockdep_map rcu_bh_lock_map;
 352extern struct lockdep_map rcu_sched_lock_map;
 353extern int debug_lockdep_rcu_enabled(void);
 354
 355/**
 356 * rcu_read_lock_held() - might we be in RCU read-side critical section?
 357 *
 358 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
 359 * read-side critical section.  In absence of CONFIG_DEBUG_LOCK_ALLOC,
 360 * this assumes we are in an RCU read-side critical section unless it can
 361 * prove otherwise.  This is useful for debug checks in functions that
 362 * require that they be called within an RCU read-side critical section.
 363 *
 364 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
 365 * and while lockdep is disabled.
 366 *
 367 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
 368 * occur in the same context, for example, it is illegal to invoke
 369 * rcu_read_unlock() in process context if the matching rcu_read_lock()
 370 * was invoked from within an irq handler.
 371 *
 372 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
 373 * offline from an RCU perspective, so check for those as well.
 374 */
 375static inline int rcu_read_lock_held(void)
 376{
 377        if (!debug_lockdep_rcu_enabled())
 378                return 1;
 379        if (!rcu_is_watching())
 380                return 0;
 381        if (!rcu_lockdep_current_cpu_online())
 382                return 0;
 383        return lock_is_held(&rcu_lock_map);
 384}
 385
 386/*
 387 * rcu_read_lock_bh_held() is defined out of line to avoid #include-file
 388 * hell.
 389 */
 390extern int rcu_read_lock_bh_held(void);
 391
 392/**
 393 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
 394 *
 395 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
 396 * RCU-sched read-side critical section.  In absence of
 397 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
 398 * critical section unless it can prove otherwise.  Note that disabling
 399 * of preemption (including disabling irqs) counts as an RCU-sched
 400 * read-side critical section.  This is useful for debug checks in functions
 401 * that required that they be called within an RCU-sched read-side
 402 * critical section.
 403 *
 404 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
 405 * and while lockdep is disabled.
 406 *
 407 * Note that if the CPU is in the idle loop from an RCU point of
 408 * view (ie: that we are in the section between rcu_idle_enter() and
 409 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
 410 * did an rcu_read_lock().  The reason for this is that RCU ignores CPUs
 411 * that are in such a section, considering these as in extended quiescent
 412 * state, so such a CPU is effectively never in an RCU read-side critical
 413 * section regardless of what RCU primitives it invokes.  This state of
 414 * affairs is required --- we need to keep an RCU-free window in idle
 415 * where the CPU may possibly enter into low power mode. This way we can
 416 * notice an extended quiescent state to other CPUs that started a grace
 417 * period. Otherwise we would delay any grace period as long as we run in
 418 * the idle task.
 419 *
 420 * Similarly, we avoid claiming an SRCU read lock held if the current
 421 * CPU is offline.
 422 */
 423#ifdef CONFIG_PREEMPT_COUNT
 424static inline int rcu_read_lock_sched_held(void)
 425{
 426        int lockdep_opinion = 0;
 427
 428        if (!debug_lockdep_rcu_enabled())
 429                return 1;
 430        if (!rcu_is_watching())
 431                return 0;
 432        if (!rcu_lockdep_current_cpu_online())
 433                return 0;
 434        if (debug_locks)
 435                lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
 436        return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
 437}
 438#else /* #ifdef CONFIG_PREEMPT_COUNT */
 439static inline int rcu_read_lock_sched_held(void)
 440{
 441        return 1;
 442}
 443#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
 444
 445#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 446
 447# define rcu_lock_acquire(a)            do { } while (0)
 448# define rcu_lock_release(a)            do { } while (0)
 449
 450static inline int rcu_read_lock_held(void)
 451{
 452        return 1;
 453}
 454
 455static inline int rcu_read_lock_bh_held(void)
 456{
 457        return 1;
 458}
 459
 460#ifdef CONFIG_PREEMPT_COUNT
 461static inline int rcu_read_lock_sched_held(void)
 462{
 463        return preempt_count() != 0 || irqs_disabled();
 464}
 465#else /* #ifdef CONFIG_PREEMPT_COUNT */
 466static inline int rcu_read_lock_sched_held(void)
 467{
 468        return 1;
 469}
 470#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
 471
 472#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 473
 474#ifdef CONFIG_PROVE_RCU
 475
 476extern int rcu_my_thread_group_empty(void);
 477
 478/**
 479 * rcu_lockdep_assert - emit lockdep splat if specified condition not met
 480 * @c: condition to check
 481 * @s: informative message
 482 */
 483#define rcu_lockdep_assert(c, s)                                        \
 484        do {                                                            \
 485                static bool __section(.data.unlikely) __warned;         \
 486                if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \
 487                        __warned = true;                                \
 488                        lockdep_rcu_suspicious(__FILE__, __LINE__, s);  \
 489                }                                                       \
 490        } while (0)
 491
 492#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
 493static inline void rcu_preempt_sleep_check(void)
 494{
 495        rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
 496                           "Illegal context switch in RCU read-side critical section");
 497}
 498#else /* #ifdef CONFIG_PROVE_RCU */
 499static inline void rcu_preempt_sleep_check(void)
 500{
 501}
 502#endif /* #else #ifdef CONFIG_PROVE_RCU */
 503
 504#define rcu_sleep_check()                                               \
 505        do {                                                            \
 506                rcu_preempt_sleep_check();                              \
 507                rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),     \
 508                                   "Illegal context switch in RCU-bh"   \
 509                                   " read-side critical section");      \
 510                rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),  \
 511                                   "Illegal context switch in RCU-sched"\
 512                                   " read-side critical section");      \
 513        } while (0)
 514
 515#else /* #ifdef CONFIG_PROVE_RCU */
 516
 517#define rcu_lockdep_assert(c, s) do { } while (0)
 518#define rcu_sleep_check() do { } while (0)
 519
 520#endif /* #else #ifdef CONFIG_PROVE_RCU */
 521
 522/*
 523 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
 524 * and rcu_assign_pointer().  Some of these could be folded into their
 525 * callers, but they are left separate in order to ease introduction of
 526 * multiple flavors of pointers to match the multiple flavors of RCU
 527 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
 528 * the future.
 529 */
 530
 531#ifdef __CHECKER__
 532#define rcu_dereference_sparse(p, space) \
 533        ((void)(((typeof(*p) space *)p) == p))
 534#else /* #ifdef __CHECKER__ */
 535#define rcu_dereference_sparse(p, space)
 536#endif /* #else #ifdef __CHECKER__ */
 537
 538#define __rcu_access_pointer(p, space) \
 539        ({ \
 540                typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
 541                rcu_dereference_sparse(p, space); \
 542                ((typeof(*p) __force __kernel *)(_________p1)); \
 543        })
 544#define __rcu_dereference_check(p, c, space) \
 545        ({ \
 546                typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
 547                rcu_lockdep_assert(c, "suspicious rcu_dereference_check()" \
 548                                      " usage"); \
 549                rcu_dereference_sparse(p, space); \
 550                smp_read_barrier_depends(); \
 551                ((typeof(*p) __force __kernel *)(_________p1)); \
 552        })
 553#define __rcu_dereference_protected(p, c, space) \
 554        ({ \
 555                rcu_lockdep_assert(c, "suspicious rcu_dereference_protected()" \
 556                                      " usage"); \
 557                rcu_dereference_sparse(p, space); \
 558                ((typeof(*p) __force __kernel *)(p)); \
 559        })
 560
 561#define __rcu_access_index(p, space) \
 562        ({ \
 563                typeof(p) _________p1 = ACCESS_ONCE(p); \
 564                rcu_dereference_sparse(p, space); \
 565                (_________p1); \
 566        })
 567#define __rcu_dereference_index_check(p, c) \
 568        ({ \
 569                typeof(p) _________p1 = ACCESS_ONCE(p); \
 570                rcu_lockdep_assert(c, \
 571                                   "suspicious rcu_dereference_index_check()" \
 572                                   " usage"); \
 573                smp_read_barrier_depends(); \
 574                (_________p1); \
 575        })
 576#define __rcu_assign_pointer(p, v, space) \
 577        do { \
 578                smp_wmb(); \
 579                (p) = (typeof(*v) __force space *)(v); \
 580        } while (0)
 581
 582/**
 583 * lockless_dereference() - safely load a pointer for later dereference
 584 * @p: The pointer to load
 585 *
 586 * Similar to rcu_dereference(), but for situations where the pointed-to
 587 * object's lifetime is managed by something other than RCU.  That
 588 * "something other" might be reference counting or simple immortality.
 589 */
 590#define lockless_dereference(p) \
 591({ \
 592        typeof(p) _________p1 = ACCESS_ONCE(p); \
 593        smp_read_barrier_depends(); /* Dependency order vs. p above. */ \
 594        (_________p1); \
 595})
 596
 597/**
 598 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
 599 * @p: The pointer to read
 600 *
 601 * Return the value of the specified RCU-protected pointer, but omit the
 602 * smp_read_barrier_depends() and keep the ACCESS_ONCE().  This is useful
 603 * when the value of this pointer is accessed, but the pointer is not
 604 * dereferenced, for example, when testing an RCU-protected pointer against
 605 * NULL.  Although rcu_access_pointer() may also be used in cases where
 606 * update-side locks prevent the value of the pointer from changing, you
 607 * should instead use rcu_dereference_protected() for this use case.
 608 *
 609 * It is also permissible to use rcu_access_pointer() when read-side
 610 * access to the pointer was removed at least one grace period ago, as
 611 * is the case in the context of the RCU callback that is freeing up
 612 * the data, or after a synchronize_rcu() returns.  This can be useful
 613 * when tearing down multi-linked structures after a grace period
 614 * has elapsed.
 615 */
 616#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
 617
 618/**
 619 * rcu_dereference_check() - rcu_dereference with debug checking
 620 * @p: The pointer to read, prior to dereferencing
 621 * @c: The conditions under which the dereference will take place
 622 *
 623 * Do an rcu_dereference(), but check that the conditions under which the
 624 * dereference will take place are correct.  Typically the conditions
 625 * indicate the various locking conditions that should be held at that
 626 * point.  The check should return true if the conditions are satisfied.
 627 * An implicit check for being in an RCU read-side critical section
 628 * (rcu_read_lock()) is included.
 629 *
 630 * For example:
 631 *
 632 *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
 633 *
 634 * could be used to indicate to lockdep that foo->bar may only be dereferenced
 635 * if either rcu_read_lock() is held, or that the lock required to replace
 636 * the bar struct at foo->bar is held.
 637 *
 638 * Note that the list of conditions may also include indications of when a lock
 639 * need not be held, for example during initialisation or destruction of the
 640 * target struct:
 641 *
 642 *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
 643 *                                            atomic_read(&foo->usage) == 0);
 644 *
 645 * Inserts memory barriers on architectures that require them
 646 * (currently only the Alpha), prevents the compiler from refetching
 647 * (and from merging fetches), and, more importantly, documents exactly
 648 * which pointers are protected by RCU and checks that the pointer is
 649 * annotated as __rcu.
 650 */
 651#define rcu_dereference_check(p, c) \
 652        __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
 653
 654/**
 655 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
 656 * @p: The pointer to read, prior to dereferencing
 657 * @c: The conditions under which the dereference will take place
 658 *
 659 * This is the RCU-bh counterpart to rcu_dereference_check().
 660 */
 661#define rcu_dereference_bh_check(p, c) \
 662        __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
 663
 664/**
 665 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
 666 * @p: The pointer to read, prior to dereferencing
 667 * @c: The conditions under which the dereference will take place
 668 *
 669 * This is the RCU-sched counterpart to rcu_dereference_check().
 670 */
 671#define rcu_dereference_sched_check(p, c) \
 672        __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
 673                                __rcu)
 674
 675#define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
 676
 677/*
 678 * The tracing infrastructure traces RCU (we want that), but unfortunately
 679 * some of the RCU checks causes tracing to lock up the system.
 680 *
 681 * The tracing version of rcu_dereference_raw() must not call
 682 * rcu_read_lock_held().
 683 */
 684#define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
 685
 686/**
 687 * rcu_access_index() - fetch RCU index with no dereferencing
 688 * @p: The index to read
 689 *
 690 * Return the value of the specified RCU-protected index, but omit the
 691 * smp_read_barrier_depends() and keep the ACCESS_ONCE().  This is useful
 692 * when the value of this index is accessed, but the index is not
 693 * dereferenced, for example, when testing an RCU-protected index against
 694 * -1.  Although rcu_access_index() may also be used in cases where
 695 * update-side locks prevent the value of the index from changing, you
 696 * should instead use rcu_dereference_index_protected() for this use case.
 697 */
 698#define rcu_access_index(p) __rcu_access_index((p), __rcu)
 699
 700/**
 701 * rcu_dereference_index_check() - rcu_dereference for indices with debug checking
 702 * @p: The pointer to read, prior to dereferencing
 703 * @c: The conditions under which the dereference will take place
 704 *
 705 * Similar to rcu_dereference_check(), but omits the sparse checking.
 706 * This allows rcu_dereference_index_check() to be used on integers,
 707 * which can then be used as array indices.  Attempting to use
 708 * rcu_dereference_check() on an integer will give compiler warnings
 709 * because the sparse address-space mechanism relies on dereferencing
 710 * the RCU-protected pointer.  Dereferencing integers is not something
 711 * that even gcc will put up with.
 712 *
 713 * Note that this function does not implicitly check for RCU read-side
 714 * critical sections.  If this function gains lots of uses, it might
 715 * make sense to provide versions for each flavor of RCU, but it does
 716 * not make sense as of early 2010.
 717 */
 718#define rcu_dereference_index_check(p, c) \
 719        __rcu_dereference_index_check((p), (c))
 720
 721/**
 722 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
 723 * @p: The pointer to read, prior to dereferencing
 724 * @c: The conditions under which the dereference will take place
 725 *
 726 * Return the value of the specified RCU-protected pointer, but omit
 727 * both the smp_read_barrier_depends() and the ACCESS_ONCE().  This
 728 * is useful in cases where update-side locks prevent the value of the
 729 * pointer from changing.  Please note that this primitive does -not-
 730 * prevent the compiler from repeating this reference or combining it
 731 * with other references, so it should not be used without protection
 732 * of appropriate locks.
 733 *
 734 * This function is only for update-side use.  Using this function
 735 * when protected only by rcu_read_lock() will result in infrequent
 736 * but very ugly failures.
 737 */
 738#define rcu_dereference_protected(p, c) \
 739        __rcu_dereference_protected((p), (c), __rcu)
 740
 741
 742/**
 743 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
 744 * @p: The pointer to read, prior to dereferencing
 745 *
 746 * This is a simple wrapper around rcu_dereference_check().
 747 */
 748#define rcu_dereference(p) rcu_dereference_check(p, 0)
 749
 750/**
 751 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
 752 * @p: The pointer to read, prior to dereferencing
 753 *
 754 * Makes rcu_dereference_check() do the dirty work.
 755 */
 756#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
 757
 758/**
 759 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
 760 * @p: The pointer to read, prior to dereferencing
 761 *
 762 * Makes rcu_dereference_check() do the dirty work.
 763 */
 764#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
 765
 766/**
 767 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
 768 * @p: The pointer to hand off
 769 *
 770 * This is simply an identity function, but it documents where a pointer
 771 * is handed off from RCU to some other synchronization mechanism, for
 772 * example, reference counting or locking.  In C11, it would map to
 773 * kill_dependency().  It could be used as follows:
 774 *
 775 *      rcu_read_lock();
 776 *      p = rcu_dereference(gp);
 777 *      long_lived = is_long_lived(p);
 778 *      if (long_lived) {
 779 *              if (!atomic_inc_not_zero(p->refcnt))
 780 *                      long_lived = false;
 781 *              else
 782 *                      p = rcu_pointer_handoff(p);
 783 *      }
 784 *      rcu_read_unlock();
 785 */
 786#define rcu_pointer_handoff(p) (p)
 787
 788/**
 789 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
 790 *
 791 * When synchronize_rcu() is invoked on one CPU while other CPUs
 792 * are within RCU read-side critical sections, then the
 793 * synchronize_rcu() is guaranteed to block until after all the other
 794 * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
 795 * on one CPU while other CPUs are within RCU read-side critical
 796 * sections, invocation of the corresponding RCU callback is deferred
 797 * until after the all the other CPUs exit their critical sections.
 798 *
 799 * Note, however, that RCU callbacks are permitted to run concurrently
 800 * with new RCU read-side critical sections.  One way that this can happen
 801 * is via the following sequence of events: (1) CPU 0 enters an RCU
 802 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
 803 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
 804 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
 805 * callback is invoked.  This is legal, because the RCU read-side critical
 806 * section that was running concurrently with the call_rcu() (and which
 807 * therefore might be referencing something that the corresponding RCU
 808 * callback would free up) has completed before the corresponding
 809 * RCU callback is invoked.
 810 *
 811 * RCU read-side critical sections may be nested.  Any deferred actions
 812 * will be deferred until the outermost RCU read-side critical section
 813 * completes.
 814 *
 815 * You can avoid reading and understanding the next paragraph by
 816 * following this rule: don't put anything in an rcu_read_lock() RCU
 817 * read-side critical section that would block in a !PREEMPT kernel.
 818 * But if you want the full story, read on!
 819 *
 820 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), it
 821 * is illegal to block while in an RCU read-side critical section.  In
 822 * preemptible RCU implementations (TREE_PREEMPT_RCU and TINY_PREEMPT_RCU)
 823 * in CONFIG_PREEMPT kernel builds, RCU read-side critical sections may
 824 * be preempted, but explicit blocking is illegal.  Finally, in preemptible
 825 * RCU implementations in real-time (with -rt patchset) kernel builds,
 826 * RCU read-side critical sections may be preempted and they may also
 827 * block, but only when acquiring spinlocks that are subject to priority
 828 * inheritance.
 829 */
 830static inline void rcu_read_lock(void)
 831{
 832        __rcu_read_lock();
 833        __acquire(RCU);
 834        rcu_lock_acquire(&rcu_lock_map);
 835        rcu_lockdep_assert(rcu_is_watching(),
 836                           "rcu_read_lock() used illegally while idle");
 837}
 838
 839/*
 840 * So where is rcu_write_lock()?  It does not exist, as there is no
 841 * way for writers to lock out RCU readers.  This is a feature, not
 842 * a bug -- this property is what provides RCU's performance benefits.
 843 * Of course, writers must coordinate with each other.  The normal
 844 * spinlock primitives work well for this, but any other technique may be
 845 * used as well.  RCU does not care how the writers keep out of each
 846 * others' way, as long as they do so.
 847 */
 848
 849/**
 850 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
 851 *
 852 * See rcu_read_lock() for more information.
 853 */
 854static inline void rcu_read_unlock(void)
 855{
 856        rcu_lockdep_assert(rcu_is_watching(),
 857                           "rcu_read_unlock() used illegally while idle");
 858        rcu_lock_release(&rcu_lock_map);
 859        __release(RCU);
 860        __rcu_read_unlock();
 861}
 862
 863/**
 864 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
 865 *
 866 * This is equivalent of rcu_read_lock(), but to be used when updates
 867 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
 868 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
 869 * softirq handler to be a quiescent state, a process in RCU read-side
 870 * critical section must be protected by disabling softirqs. Read-side
 871 * critical sections in interrupt context can use just rcu_read_lock(),
 872 * though this should at least be commented to avoid confusing people
 873 * reading the code.
 874 *
 875 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
 876 * must occur in the same context, for example, it is illegal to invoke
 877 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
 878 * was invoked from some other task.
 879 */
 880static inline void rcu_read_lock_bh(void)
 881{
 882        local_bh_disable();
 883        __acquire(RCU_BH);
 884        rcu_lock_acquire(&rcu_bh_lock_map);
 885        rcu_lockdep_assert(rcu_is_watching(),
 886                           "rcu_read_lock_bh() used illegally while idle");
 887}
 888
 889/*
 890 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
 891 *
 892 * See rcu_read_lock_bh() for more information.
 893 */
 894static inline void rcu_read_unlock_bh(void)
 895{
 896        rcu_lockdep_assert(rcu_is_watching(),
 897                           "rcu_read_unlock_bh() used illegally while idle");
 898        rcu_lock_release(&rcu_bh_lock_map);
 899        __release(RCU_BH);
 900        local_bh_enable();
 901}
 902
 903/**
 904 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
 905 *
 906 * This is equivalent of rcu_read_lock(), but to be used when updates
 907 * are being done using call_rcu_sched() or synchronize_rcu_sched().
 908 * Read-side critical sections can also be introduced by anything that
 909 * disables preemption, including local_irq_disable() and friends.
 910 *
 911 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
 912 * must occur in the same context, for example, it is illegal to invoke
 913 * rcu_read_unlock_sched() from process context if the matching
 914 * rcu_read_lock_sched() was invoked from an NMI handler.
 915 */
 916static inline void rcu_read_lock_sched(void)
 917{
 918        preempt_disable();
 919        __acquire(RCU_SCHED);
 920        rcu_lock_acquire(&rcu_sched_lock_map);
 921        rcu_lockdep_assert(rcu_is_watching(),
 922                           "rcu_read_lock_sched() used illegally while idle");
 923}
 924
 925/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
 926static inline notrace void rcu_read_lock_sched_notrace(void)
 927{
 928        preempt_disable_notrace();
 929        __acquire(RCU_SCHED);
 930}
 931
 932/*
 933 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
 934 *
 935 * See rcu_read_lock_sched for more information.
 936 */
 937static inline void rcu_read_unlock_sched(void)
 938{
 939        rcu_lockdep_assert(rcu_is_watching(),
 940                           "rcu_read_unlock_sched() used illegally while idle");
 941        rcu_lock_release(&rcu_sched_lock_map);
 942        __release(RCU_SCHED);
 943        preempt_enable();
 944}
 945
 946/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
 947static inline notrace void rcu_read_unlock_sched_notrace(void)
 948{
 949        __release(RCU_SCHED);
 950        preempt_enable_notrace();
 951}
 952
 953/**
 954 * rcu_assign_pointer() - assign to RCU-protected pointer
 955 * @p: pointer to assign to
 956 * @v: value to assign (publish)
 957 *
 958 * Assigns the specified value to the specified RCU-protected
 959 * pointer, ensuring that any concurrent RCU readers will see
 960 * any prior initialization.
 961 *
 962 * Inserts memory barriers on architectures that require them
 963 * (which is most of them), and also prevents the compiler from
 964 * reordering the code that initializes the structure after the pointer
 965 * assignment.  More importantly, this call documents which pointers
 966 * will be dereferenced by RCU read-side code.
 967 *
 968 * In some special cases, you may use RCU_INIT_POINTER() instead
 969 * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
 970 * to the fact that it does not constrain either the CPU or the compiler.
 971 * That said, using RCU_INIT_POINTER() when you should have used
 972 * rcu_assign_pointer() is a very bad thing that results in
 973 * impossible-to-diagnose memory corruption.  So please be careful.
 974 * See the RCU_INIT_POINTER() comment header for details.
 975 */
 976#define rcu_assign_pointer(p, v) \
 977        __rcu_assign_pointer((p), (v), __rcu)
 978
 979/**
 980 * RCU_INIT_POINTER() - initialize an RCU protected pointer
 981 *
 982 * Initialize an RCU-protected pointer in special cases where readers
 983 * do not need ordering constraints on the CPU or the compiler.  These
 984 * special cases are:
 985 *
 986 * 1.   This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
 987 * 2.   The caller has taken whatever steps are required to prevent
 988 *      RCU readers from concurrently accessing this pointer -or-
 989 * 3.   The referenced data structure has already been exposed to
 990 *      readers either at compile time or via rcu_assign_pointer() -and-
 991 *      a.      You have not made -any- reader-visible changes to
 992 *              this structure since then -or-
 993 *      b.      It is OK for readers accessing this structure from its
 994 *              new location to see the old state of the structure.  (For
 995 *              example, the changes were to statistical counters or to
 996 *              other state where exact synchronization is not required.)
 997 *
 998 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
 999 * result in impossible-to-diagnose memory corruption.  As in the structures
1000 * will look OK in crash dumps, but any concurrent RCU readers might
1001 * see pre-initialized values of the referenced data structure.  So
1002 * please be very careful how you use RCU_INIT_POINTER()!!!
1003 *
1004 * If you are creating an RCU-protected linked structure that is accessed
1005 * by a single external-to-structure RCU-protected pointer, then you may
1006 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
1007 * pointers, but you must use rcu_assign_pointer() to initialize the
1008 * external-to-structure pointer -after- you have completely initialized
1009 * the reader-accessible portions of the linked structure.
1010 */
1011#define RCU_INIT_POINTER(p, v) \
1012        do { \
1013                p = (typeof(*v) __force __rcu *)(v); \
1014        } while (0)
1015
1016/**
1017 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
1018 *
1019 * GCC-style initialization for an RCU-protected pointer in a structure field.
1020 */
1021#define RCU_POINTER_INITIALIZER(p, v) \
1022                .p = (typeof(*v) __force __rcu *)(v)
1023
1024/*
1025 * Does the specified offset indicate that the corresponding rcu_head
1026 * structure can be handled by kfree_rcu()?
1027 */
1028#define __is_kfree_rcu_offset(offset) ((offset) < 4096)
1029
1030/*
1031 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
1032 */
1033#define __kfree_rcu(head, offset) \
1034        do { \
1035                BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
1036                kfree_call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \
1037        } while (0)
1038
1039/**
1040 * kfree_rcu() - kfree an object after a grace period.
1041 * @ptr:        pointer to kfree
1042 * @rcu_head:   the name of the struct rcu_head within the type of @ptr.
1043 *
1044 * Many rcu callbacks functions just call kfree() on the base structure.
1045 * These functions are trivial, but their size adds up, and furthermore
1046 * when they are used in a kernel module, that module must invoke the
1047 * high-latency rcu_barrier() function at module-unload time.
1048 *
1049 * The kfree_rcu() function handles this issue.  Rather than encoding a
1050 * function address in the embedded rcu_head structure, kfree_rcu() instead
1051 * encodes the offset of the rcu_head structure within the base structure.
1052 * Because the functions are not allowed in the low-order 4096 bytes of
1053 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
1054 * If the offset is larger than 4095 bytes, a compile-time error will
1055 * be generated in __kfree_rcu().  If this error is triggered, you can
1056 * either fall back to use of call_rcu() or rearrange the structure to
1057 * position the rcu_head structure into the first 4096 bytes.
1058 *
1059 * Note that the allowable offset might decrease in the future, for example,
1060 * to allow something like kmem_cache_free_rcu().
1061 *
1062 * The BUILD_BUG_ON check must not involve any function calls, hence the
1063 * checks are done in macros here.
1064 */
1065#define kfree_rcu(ptr, rcu_head)                                        \
1066        __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
1067
1068#ifdef CONFIG_RCU_NOCB_CPU
1069extern bool rcu_is_nocb_cpu(int cpu);
1070#else
1071static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
1072#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
1073
1074
1075#endif /* __LINUX_RCUPDATE_H */
1076