linux/kernel/smpboot.c
<<
>>
Prefs
   1/*
   2 * Common SMP CPU bringup/teardown functions
   3 */
   4#include <linux/cpu.h>
   5#include <linux/err.h>
   6#include <linux/smp.h>
   7#include <linux/delay.h>
   8#include <linux/init.h>
   9#include <linux/list.h>
  10#include <linux/slab.h>
  11#include <linux/sched.h>
  12#include <linux/export.h>
  13#include <linux/percpu.h>
  14#include <linux/kthread.h>
  15#include <linux/smpboot.h>
  16
  17#include "smpboot.h"
  18
  19#ifdef CONFIG_SMP
  20
  21#ifdef CONFIG_GENERIC_SMP_IDLE_THREAD
  22/*
  23 * For the hotplug case we keep the task structs around and reuse
  24 * them.
  25 */
  26static DEFINE_PER_CPU(struct task_struct *, idle_threads);
  27
  28struct task_struct *idle_thread_get(unsigned int cpu)
  29{
  30        struct task_struct *tsk = per_cpu(idle_threads, cpu);
  31
  32        if (!tsk)
  33                return ERR_PTR(-ENOMEM);
  34        init_idle(tsk, cpu);
  35        return tsk;
  36}
  37
  38void __init idle_thread_set_boot_cpu(void)
  39{
  40        per_cpu(idle_threads, smp_processor_id()) = current;
  41}
  42
  43/**
  44 * idle_init - Initialize the idle thread for a cpu
  45 * @cpu:        The cpu for which the idle thread should be initialized
  46 *
  47 * Creates the thread if it does not exist.
  48 */
  49static inline void idle_init(unsigned int cpu)
  50{
  51        struct task_struct *tsk = per_cpu(idle_threads, cpu);
  52
  53        if (!tsk) {
  54                tsk = fork_idle(cpu);
  55                if (IS_ERR(tsk))
  56                        pr_err("SMP: fork_idle() failed for CPU %u\n", cpu);
  57                else
  58                        per_cpu(idle_threads, cpu) = tsk;
  59        }
  60}
  61
  62/**
  63 * idle_threads_init - Initialize idle threads for all cpus
  64 */
  65void __init idle_threads_init(void)
  66{
  67        unsigned int cpu, boot_cpu;
  68
  69        boot_cpu = smp_processor_id();
  70
  71        for_each_possible_cpu(cpu) {
  72                if (cpu != boot_cpu)
  73                        idle_init(cpu);
  74        }
  75}
  76#endif
  77
  78#endif /* #ifdef CONFIG_SMP */
  79
  80static LIST_HEAD(hotplug_threads);
  81static DEFINE_MUTEX(smpboot_threads_lock);
  82
  83struct smpboot_thread_data {
  84        unsigned int                    cpu;
  85        unsigned int                    status;
  86        struct smp_hotplug_thread       *ht;
  87};
  88
  89enum {
  90        HP_THREAD_NONE = 0,
  91        HP_THREAD_ACTIVE,
  92        HP_THREAD_PARKED,
  93};
  94
  95/**
  96 * smpboot_thread_fn - percpu hotplug thread loop function
  97 * @data:       thread data pointer
  98 *
  99 * Checks for thread stop and park conditions. Calls the necessary
 100 * setup, cleanup, park and unpark functions for the registered
 101 * thread.
 102 *
 103 * Returns 1 when the thread should exit, 0 otherwise.
 104 */
 105static int smpboot_thread_fn(void *data)
 106{
 107        struct smpboot_thread_data *td = data;
 108        struct smp_hotplug_thread *ht = td->ht;
 109
 110        while (1) {
 111                set_current_state(TASK_INTERRUPTIBLE);
 112                preempt_disable();
 113                if (kthread_should_stop()) {
 114                        __set_current_state(TASK_RUNNING);
 115                        preempt_enable();
 116                        if (ht->cleanup)
 117                                ht->cleanup(td->cpu, cpu_online(td->cpu));
 118                        kfree(td);
 119                        return 0;
 120                }
 121
 122                if (kthread_should_park()) {
 123                        __set_current_state(TASK_RUNNING);
 124                        preempt_enable();
 125                        if (ht->park && td->status == HP_THREAD_ACTIVE) {
 126                                BUG_ON(td->cpu != smp_processor_id());
 127                                ht->park(td->cpu);
 128                                td->status = HP_THREAD_PARKED;
 129                        }
 130                        kthread_parkme();
 131                        /* We might have been woken for stop */
 132                        continue;
 133                }
 134
 135                BUG_ON(td->cpu != smp_processor_id());
 136
 137                /* Check for state change setup */
 138                switch (td->status) {
 139                case HP_THREAD_NONE:
 140                        __set_current_state(TASK_RUNNING);
 141                        preempt_enable();
 142                        if (ht->setup)
 143                                ht->setup(td->cpu);
 144                        td->status = HP_THREAD_ACTIVE;
 145                        continue;
 146
 147                case HP_THREAD_PARKED:
 148                        __set_current_state(TASK_RUNNING);
 149                        preempt_enable();
 150                        if (ht->unpark)
 151                                ht->unpark(td->cpu);
 152                        td->status = HP_THREAD_ACTIVE;
 153                        continue;
 154                }
 155
 156                if (!ht->thread_should_run(td->cpu)) {
 157                        preempt_enable_no_resched();
 158                        schedule();
 159                } else {
 160                        __set_current_state(TASK_RUNNING);
 161                        preempt_enable();
 162                        ht->thread_fn(td->cpu);
 163                }
 164        }
 165}
 166
 167static int
 168__smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
 169{
 170        struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
 171        struct smpboot_thread_data *td;
 172
 173        if (tsk)
 174                return 0;
 175
 176        td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu));
 177        if (!td)
 178                return -ENOMEM;
 179        td->cpu = cpu;
 180        td->ht = ht;
 181
 182        tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu,
 183                                    ht->thread_comm);
 184        if (IS_ERR(tsk)) {
 185                kfree(td);
 186                return PTR_ERR(tsk);
 187        }
 188        get_task_struct(tsk);
 189        *per_cpu_ptr(ht->store, cpu) = tsk;
 190        if (ht->create) {
 191                /*
 192                 * Make sure that the task has actually scheduled out
 193                 * into park position, before calling the create
 194                 * callback. At least the migration thread callback
 195                 * requires that the task is off the runqueue.
 196                 */
 197                if (!wait_task_inactive(tsk, TASK_PARKED))
 198                        WARN_ON(1);
 199                else
 200                        ht->create(cpu);
 201        }
 202        return 0;
 203}
 204
 205int smpboot_create_threads(unsigned int cpu)
 206{
 207        struct smp_hotplug_thread *cur;
 208        int ret = 0;
 209
 210        mutex_lock(&smpboot_threads_lock);
 211        list_for_each_entry(cur, &hotplug_threads, list) {
 212                ret = __smpboot_create_thread(cur, cpu);
 213                if (ret)
 214                        break;
 215        }
 216        mutex_unlock(&smpboot_threads_lock);
 217        return ret;
 218}
 219
 220static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
 221{
 222        struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
 223
 224        if (ht->pre_unpark)
 225                ht->pre_unpark(cpu);
 226        kthread_unpark(tsk);
 227}
 228
 229void smpboot_unpark_threads(unsigned int cpu)
 230{
 231        struct smp_hotplug_thread *cur;
 232
 233        mutex_lock(&smpboot_threads_lock);
 234        list_for_each_entry(cur, &hotplug_threads, list)
 235                if (cpumask_test_cpu(cpu, cur->cpumask))
 236                        smpboot_unpark_thread(cur, cpu);
 237        mutex_unlock(&smpboot_threads_lock);
 238}
 239
 240static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
 241{
 242        struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
 243
 244        if (tsk && !ht->selfparking)
 245                kthread_park(tsk);
 246}
 247
 248void smpboot_park_threads(unsigned int cpu)
 249{
 250        struct smp_hotplug_thread *cur;
 251
 252        mutex_lock(&smpboot_threads_lock);
 253        list_for_each_entry_reverse(cur, &hotplug_threads, list)
 254                smpboot_park_thread(cur, cpu);
 255        mutex_unlock(&smpboot_threads_lock);
 256}
 257
 258static void smpboot_destroy_threads(struct smp_hotplug_thread *ht)
 259{
 260        unsigned int cpu;
 261
 262        /* Unpark any threads that were voluntarily parked. */
 263        for_each_cpu_not(cpu, ht->cpumask) {
 264                if (cpu_online(cpu)) {
 265                        struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
 266                        if (tsk)
 267                                kthread_unpark(tsk);
 268                }
 269        }
 270
 271        /* We need to destroy also the parked threads of offline cpus */
 272        for_each_possible_cpu(cpu) {
 273                struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
 274
 275                if (tsk) {
 276                        kthread_stop(tsk);
 277                        put_task_struct(tsk);
 278                        *per_cpu_ptr(ht->store, cpu) = NULL;
 279                }
 280        }
 281}
 282
 283/**
 284 * smpboot_register_percpu_thread - Register a per_cpu thread related to hotplug
 285 * @plug_thread:        Hotplug thread descriptor
 286 *
 287 * Creates and starts the threads on all online cpus.
 288 */
 289int smpboot_register_percpu_thread(struct smp_hotplug_thread *plug_thread)
 290{
 291        unsigned int cpu;
 292        int ret = 0;
 293
 294        if (!alloc_cpumask_var(&plug_thread->cpumask, GFP_KERNEL))
 295                return -ENOMEM;
 296        cpumask_copy(plug_thread->cpumask, cpu_possible_mask);
 297
 298        get_online_cpus();
 299        mutex_lock(&smpboot_threads_lock);
 300        for_each_online_cpu(cpu) {
 301                ret = __smpboot_create_thread(plug_thread, cpu);
 302                if (ret) {
 303                        smpboot_destroy_threads(plug_thread);
 304                        goto out;
 305                }
 306                smpboot_unpark_thread(plug_thread, cpu);
 307        }
 308        list_add(&plug_thread->list, &hotplug_threads);
 309out:
 310        mutex_unlock(&smpboot_threads_lock);
 311        put_online_cpus();
 312        return ret;
 313}
 314EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread);
 315
 316/**
 317 * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug
 318 * @plug_thread:        Hotplug thread descriptor
 319 *
 320 * Stops all threads on all possible cpus.
 321 */
 322void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread)
 323{
 324        get_online_cpus();
 325        mutex_lock(&smpboot_threads_lock);
 326        list_del(&plug_thread->list);
 327        smpboot_destroy_threads(plug_thread);
 328        mutex_unlock(&smpboot_threads_lock);
 329        put_online_cpus();
 330        free_cpumask_var(plug_thread->cpumask);
 331}
 332EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread);
 333
 334/**
 335 * smpboot_update_cpumask_percpu_thread - Adjust which per_cpu hotplug threads stay parked
 336 * @plug_thread:        Hotplug thread descriptor
 337 * @new:                Revised mask to use
 338 *
 339 * The cpumask field in the smp_hotplug_thread must not be updated directly
 340 * by the client, but only by calling this function.
 341 * This function can only be called on a registered smp_hotplug_thread.
 342 */
 343int smpboot_update_cpumask_percpu_thread(struct smp_hotplug_thread *plug_thread,
 344                                         const struct cpumask *new)
 345{
 346        struct cpumask *old = plug_thread->cpumask;
 347        cpumask_var_t tmp;
 348        unsigned int cpu;
 349
 350        if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
 351                return -ENOMEM;
 352
 353        get_online_cpus();
 354        mutex_lock(&smpboot_threads_lock);
 355
 356        /* Park threads that were exclusively enabled on the old mask. */
 357        cpumask_andnot(tmp, old, new);
 358        for_each_cpu_and(cpu, tmp, cpu_online_mask)
 359                smpboot_park_thread(plug_thread, cpu);
 360
 361        /* Unpark threads that are exclusively enabled on the new mask. */
 362        cpumask_andnot(tmp, new, old);
 363        for_each_cpu_and(cpu, tmp, cpu_online_mask)
 364                smpboot_unpark_thread(plug_thread, cpu);
 365
 366        cpumask_copy(old, new);
 367
 368        mutex_unlock(&smpboot_threads_lock);
 369        put_online_cpus();
 370
 371        free_cpumask_var(tmp);
 372
 373        return 0;
 374}
 375EXPORT_SYMBOL_GPL(smpboot_update_cpumask_percpu_thread);
 376
 377static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD);
 378
 379/*
 380 * Called to poll specified CPU's state, for example, when waiting for
 381 * a CPU to come online.
 382 */
 383int cpu_report_state(int cpu)
 384{
 385        return atomic_read(&per_cpu(cpu_hotplug_state, cpu));
 386}
 387
 388/*
 389 * If CPU has died properly, set its state to CPU_UP_PREPARE and
 390 * return success.  Otherwise, return -EBUSY if the CPU died after
 391 * cpu_wait_death() timed out.  And yet otherwise again, return -EAGAIN
 392 * if cpu_wait_death() timed out and the CPU still hasn't gotten around
 393 * to dying.  In the latter two cases, the CPU might not be set up
 394 * properly, but it is up to the arch-specific code to decide.
 395 * Finally, -EIO indicates an unanticipated problem.
 396 *
 397 * Note that it is permissible to omit this call entirely, as is
 398 * done in architectures that do no CPU-hotplug error checking.
 399 */
 400int cpu_check_up_prepare(int cpu)
 401{
 402        if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
 403                atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
 404                return 0;
 405        }
 406
 407        switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) {
 408
 409        case CPU_POST_DEAD:
 410
 411                /* The CPU died properly, so just start it up again. */
 412                atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
 413                return 0;
 414
 415        case CPU_DEAD_FROZEN:
 416
 417                /*
 418                 * Timeout during CPU death, so let caller know.
 419                 * The outgoing CPU completed its processing, but after
 420                 * cpu_wait_death() timed out and reported the error. The
 421                 * caller is free to proceed, in which case the state
 422                 * will be reset properly by cpu_set_state_online().
 423                 * Proceeding despite this -EBUSY return makes sense
 424                 * for systems where the outgoing CPUs take themselves
 425                 * offline, with no post-death manipulation required from
 426                 * a surviving CPU.
 427                 */
 428                return -EBUSY;
 429
 430        case CPU_BROKEN:
 431
 432                /*
 433                 * The most likely reason we got here is that there was
 434                 * a timeout during CPU death, and the outgoing CPU never
 435                 * did complete its processing.  This could happen on
 436                 * a virtualized system if the outgoing VCPU gets preempted
 437                 * for more than five seconds, and the user attempts to
 438                 * immediately online that same CPU.  Trying again later
 439                 * might return -EBUSY above, hence -EAGAIN.
 440                 */
 441                return -EAGAIN;
 442
 443        default:
 444
 445                /* Should not happen.  Famous last words. */
 446                return -EIO;
 447        }
 448}
 449
 450/*
 451 * Mark the specified CPU online.
 452 *
 453 * Note that it is permissible to omit this call entirely, as is
 454 * done in architectures that do no CPU-hotplug error checking.
 455 */
 456void cpu_set_state_online(int cpu)
 457{
 458        (void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE);
 459}
 460
 461#ifdef CONFIG_HOTPLUG_CPU
 462
 463/*
 464 * Wait for the specified CPU to exit the idle loop and die.
 465 */
 466bool cpu_wait_death(unsigned int cpu, int seconds)
 467{
 468        int jf_left = seconds * HZ;
 469        int oldstate;
 470        bool ret = true;
 471        int sleep_jf = 1;
 472
 473        might_sleep();
 474
 475        /* The outgoing CPU will normally get done quite quickly. */
 476        if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD)
 477                goto update_state;
 478        udelay(5);
 479
 480        /* But if the outgoing CPU dawdles, wait increasingly long times. */
 481        while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) {
 482                schedule_timeout_uninterruptible(sleep_jf);
 483                jf_left -= sleep_jf;
 484                if (jf_left <= 0)
 485                        break;
 486                sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10);
 487        }
 488update_state:
 489        oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
 490        if (oldstate == CPU_DEAD) {
 491                /* Outgoing CPU died normally, update state. */
 492                smp_mb(); /* atomic_read() before update. */
 493                atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD);
 494        } else {
 495                /* Outgoing CPU still hasn't died, set state accordingly. */
 496                if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
 497                                   oldstate, CPU_BROKEN) != oldstate)
 498                        goto update_state;
 499                ret = false;
 500        }
 501        return ret;
 502}
 503
 504/*
 505 * Called by the outgoing CPU to report its successful death.  Return
 506 * false if this report follows the surviving CPU's timing out.
 507 *
 508 * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU
 509 * timed out.  This approach allows architectures to omit calls to
 510 * cpu_check_up_prepare() and cpu_set_state_online() without defeating
 511 * the next cpu_wait_death()'s polling loop.
 512 */
 513bool cpu_report_death(void)
 514{
 515        int oldstate;
 516        int newstate;
 517        int cpu = smp_processor_id();
 518
 519        do {
 520                oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
 521                if (oldstate != CPU_BROKEN)
 522                        newstate = CPU_DEAD;
 523                else
 524                        newstate = CPU_DEAD_FROZEN;
 525        } while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
 526                                oldstate, newstate) != oldstate);
 527        return newstate == CPU_DEAD;
 528}
 529
 530#endif /* #ifdef CONFIG_HOTPLUG_CPU */
 531