linux/lib/assoc_array.c
<<
>>
Prefs
   1/* Generic associative array implementation.
   2 *
   3 * See Documentation/assoc_array.txt for information.
   4 *
   5 * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
   6 * Written by David Howells (dhowells@redhat.com)
   7 *
   8 * This program is free software; you can redistribute it and/or
   9 * modify it under the terms of the GNU General Public Licence
  10 * as published by the Free Software Foundation; either version
  11 * 2 of the Licence, or (at your option) any later version.
  12 */
  13//#define DEBUG
  14#include <linux/slab.h>
  15#include <linux/err.h>
  16#include <linux/assoc_array_priv.h>
  17
  18/*
  19 * Iterate over an associative array.  The caller must hold the RCU read lock
  20 * or better.
  21 */
  22static int assoc_array_subtree_iterate(const struct assoc_array_ptr *root,
  23                                       const struct assoc_array_ptr *stop,
  24                                       int (*iterator)(const void *leaf,
  25                                                       void *iterator_data),
  26                                       void *iterator_data)
  27{
  28        const struct assoc_array_shortcut *shortcut;
  29        const struct assoc_array_node *node;
  30        const struct assoc_array_ptr *cursor, *ptr, *parent;
  31        unsigned long has_meta;
  32        int slot, ret;
  33
  34        cursor = root;
  35
  36begin_node:
  37        if (assoc_array_ptr_is_shortcut(cursor)) {
  38                /* Descend through a shortcut */
  39                shortcut = assoc_array_ptr_to_shortcut(cursor);
  40                smp_read_barrier_depends();
  41                cursor = ACCESS_ONCE(shortcut->next_node);
  42        }
  43
  44        node = assoc_array_ptr_to_node(cursor);
  45        smp_read_barrier_depends();
  46        slot = 0;
  47
  48        /* We perform two passes of each node.
  49         *
  50         * The first pass does all the leaves in this node.  This means we
  51         * don't miss any leaves if the node is split up by insertion whilst
  52         * we're iterating over the branches rooted here (we may, however, see
  53         * some leaves twice).
  54         */
  55        has_meta = 0;
  56        for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
  57                ptr = ACCESS_ONCE(node->slots[slot]);
  58                has_meta |= (unsigned long)ptr;
  59                if (ptr && assoc_array_ptr_is_leaf(ptr)) {
  60                        /* We need a barrier between the read of the pointer
  61                         * and dereferencing the pointer - but only if we are
  62                         * actually going to dereference it.
  63                         */
  64                        smp_read_barrier_depends();
  65
  66                        /* Invoke the callback */
  67                        ret = iterator(assoc_array_ptr_to_leaf(ptr),
  68                                       iterator_data);
  69                        if (ret)
  70                                return ret;
  71                }
  72        }
  73
  74        /* The second pass attends to all the metadata pointers.  If we follow
  75         * one of these we may find that we don't come back here, but rather go
  76         * back to a replacement node with the leaves in a different layout.
  77         *
  78         * We are guaranteed to make progress, however, as the slot number for
  79         * a particular portion of the key space cannot change - and we
  80         * continue at the back pointer + 1.
  81         */
  82        if (!(has_meta & ASSOC_ARRAY_PTR_META_TYPE))
  83                goto finished_node;
  84        slot = 0;
  85
  86continue_node:
  87        node = assoc_array_ptr_to_node(cursor);
  88        smp_read_barrier_depends();
  89
  90        for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
  91                ptr = ACCESS_ONCE(node->slots[slot]);
  92                if (assoc_array_ptr_is_meta(ptr)) {
  93                        cursor = ptr;
  94                        goto begin_node;
  95                }
  96        }
  97
  98finished_node:
  99        /* Move up to the parent (may need to skip back over a shortcut) */
 100        parent = ACCESS_ONCE(node->back_pointer);
 101        slot = node->parent_slot;
 102        if (parent == stop)
 103                return 0;
 104
 105        if (assoc_array_ptr_is_shortcut(parent)) {
 106                shortcut = assoc_array_ptr_to_shortcut(parent);
 107                smp_read_barrier_depends();
 108                cursor = parent;
 109                parent = ACCESS_ONCE(shortcut->back_pointer);
 110                slot = shortcut->parent_slot;
 111                if (parent == stop)
 112                        return 0;
 113        }
 114
 115        /* Ascend to next slot in parent node */
 116        cursor = parent;
 117        slot++;
 118        goto continue_node;
 119}
 120
 121/**
 122 * assoc_array_iterate - Pass all objects in the array to a callback
 123 * @array: The array to iterate over.
 124 * @iterator: The callback function.
 125 * @iterator_data: Private data for the callback function.
 126 *
 127 * Iterate over all the objects in an associative array.  Each one will be
 128 * presented to the iterator function.
 129 *
 130 * If the array is being modified concurrently with the iteration then it is
 131 * possible that some objects in the array will be passed to the iterator
 132 * callback more than once - though every object should be passed at least
 133 * once.  If this is undesirable then the caller must lock against modification
 134 * for the duration of this function.
 135 *
 136 * The function will return 0 if no objects were in the array or else it will
 137 * return the result of the last iterator function called.  Iteration stops
 138 * immediately if any call to the iteration function results in a non-zero
 139 * return.
 140 *
 141 * The caller should hold the RCU read lock or better if concurrent
 142 * modification is possible.
 143 */
 144int assoc_array_iterate(const struct assoc_array *array,
 145                        int (*iterator)(const void *object,
 146                                        void *iterator_data),
 147                        void *iterator_data)
 148{
 149        struct assoc_array_ptr *root = ACCESS_ONCE(array->root);
 150
 151        if (!root)
 152                return 0;
 153        return assoc_array_subtree_iterate(root, NULL, iterator, iterator_data);
 154}
 155
 156enum assoc_array_walk_status {
 157        assoc_array_walk_tree_empty,
 158        assoc_array_walk_found_terminal_node,
 159        assoc_array_walk_found_wrong_shortcut,
 160} status;
 161
 162struct assoc_array_walk_result {
 163        struct {
 164                struct assoc_array_node *node;  /* Node in which leaf might be found */
 165                int             level;
 166                int             slot;
 167        } terminal_node;
 168        struct {
 169                struct assoc_array_shortcut *shortcut;
 170                int             level;
 171                int             sc_level;
 172                unsigned long   sc_segments;
 173                unsigned long   dissimilarity;
 174        } wrong_shortcut;
 175};
 176
 177/*
 178 * Navigate through the internal tree looking for the closest node to the key.
 179 */
 180static enum assoc_array_walk_status
 181assoc_array_walk(const struct assoc_array *array,
 182                 const struct assoc_array_ops *ops,
 183                 const void *index_key,
 184                 struct assoc_array_walk_result *result)
 185{
 186        struct assoc_array_shortcut *shortcut;
 187        struct assoc_array_node *node;
 188        struct assoc_array_ptr *cursor, *ptr;
 189        unsigned long sc_segments, dissimilarity;
 190        unsigned long segments;
 191        int level, sc_level, next_sc_level;
 192        int slot;
 193
 194        pr_devel("-->%s()\n", __func__);
 195
 196        cursor = ACCESS_ONCE(array->root);
 197        if (!cursor)
 198                return assoc_array_walk_tree_empty;
 199
 200        level = 0;
 201
 202        /* Use segments from the key for the new leaf to navigate through the
 203         * internal tree, skipping through nodes and shortcuts that are on
 204         * route to the destination.  Eventually we'll come to a slot that is
 205         * either empty or contains a leaf at which point we've found a node in
 206         * which the leaf we're looking for might be found or into which it
 207         * should be inserted.
 208         */
 209jumped:
 210        segments = ops->get_key_chunk(index_key, level);
 211        pr_devel("segments[%d]: %lx\n", level, segments);
 212
 213        if (assoc_array_ptr_is_shortcut(cursor))
 214                goto follow_shortcut;
 215
 216consider_node:
 217        node = assoc_array_ptr_to_node(cursor);
 218        smp_read_barrier_depends();
 219
 220        slot = segments >> (level & ASSOC_ARRAY_KEY_CHUNK_MASK);
 221        slot &= ASSOC_ARRAY_FAN_MASK;
 222        ptr = ACCESS_ONCE(node->slots[slot]);
 223
 224        pr_devel("consider slot %x [ix=%d type=%lu]\n",
 225                 slot, level, (unsigned long)ptr & 3);
 226
 227        if (!assoc_array_ptr_is_meta(ptr)) {
 228                /* The node doesn't have a node/shortcut pointer in the slot
 229                 * corresponding to the index key that we have to follow.
 230                 */
 231                result->terminal_node.node = node;
 232                result->terminal_node.level = level;
 233                result->terminal_node.slot = slot;
 234                pr_devel("<--%s() = terminal_node\n", __func__);
 235                return assoc_array_walk_found_terminal_node;
 236        }
 237
 238        if (assoc_array_ptr_is_node(ptr)) {
 239                /* There is a pointer to a node in the slot corresponding to
 240                 * this index key segment, so we need to follow it.
 241                 */
 242                cursor = ptr;
 243                level += ASSOC_ARRAY_LEVEL_STEP;
 244                if ((level & ASSOC_ARRAY_KEY_CHUNK_MASK) != 0)
 245                        goto consider_node;
 246                goto jumped;
 247        }
 248
 249        /* There is a shortcut in the slot corresponding to the index key
 250         * segment.  We follow the shortcut if its partial index key matches
 251         * this leaf's.  Otherwise we need to split the shortcut.
 252         */
 253        cursor = ptr;
 254follow_shortcut:
 255        shortcut = assoc_array_ptr_to_shortcut(cursor);
 256        smp_read_barrier_depends();
 257        pr_devel("shortcut to %d\n", shortcut->skip_to_level);
 258        sc_level = level + ASSOC_ARRAY_LEVEL_STEP;
 259        BUG_ON(sc_level > shortcut->skip_to_level);
 260
 261        do {
 262                /* Check the leaf against the shortcut's index key a word at a
 263                 * time, trimming the final word (the shortcut stores the index
 264                 * key completely from the root to the shortcut's target).
 265                 */
 266                if ((sc_level & ASSOC_ARRAY_KEY_CHUNK_MASK) == 0)
 267                        segments = ops->get_key_chunk(index_key, sc_level);
 268
 269                sc_segments = shortcut->index_key[sc_level >> ASSOC_ARRAY_KEY_CHUNK_SHIFT];
 270                dissimilarity = segments ^ sc_segments;
 271
 272                if (round_up(sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE) > shortcut->skip_to_level) {
 273                        /* Trim segments that are beyond the shortcut */
 274                        int shift = shortcut->skip_to_level & ASSOC_ARRAY_KEY_CHUNK_MASK;
 275                        dissimilarity &= ~(ULONG_MAX << shift);
 276                        next_sc_level = shortcut->skip_to_level;
 277                } else {
 278                        next_sc_level = sc_level + ASSOC_ARRAY_KEY_CHUNK_SIZE;
 279                        next_sc_level = round_down(next_sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
 280                }
 281
 282                if (dissimilarity != 0) {
 283                        /* This shortcut points elsewhere */
 284                        result->wrong_shortcut.shortcut = shortcut;
 285                        result->wrong_shortcut.level = level;
 286                        result->wrong_shortcut.sc_level = sc_level;
 287                        result->wrong_shortcut.sc_segments = sc_segments;
 288                        result->wrong_shortcut.dissimilarity = dissimilarity;
 289                        return assoc_array_walk_found_wrong_shortcut;
 290                }
 291
 292                sc_level = next_sc_level;
 293        } while (sc_level < shortcut->skip_to_level);
 294
 295        /* The shortcut matches the leaf's index to this point. */
 296        cursor = ACCESS_ONCE(shortcut->next_node);
 297        if (((level ^ sc_level) & ~ASSOC_ARRAY_KEY_CHUNK_MASK) != 0) {
 298                level = sc_level;
 299                goto jumped;
 300        } else {
 301                level = sc_level;
 302                goto consider_node;
 303        }
 304}
 305
 306/**
 307 * assoc_array_find - Find an object by index key
 308 * @array: The associative array to search.
 309 * @ops: The operations to use.
 310 * @index_key: The key to the object.
 311 *
 312 * Find an object in an associative array by walking through the internal tree
 313 * to the node that should contain the object and then searching the leaves
 314 * there.  NULL is returned if the requested object was not found in the array.
 315 *
 316 * The caller must hold the RCU read lock or better.
 317 */
 318void *assoc_array_find(const struct assoc_array *array,
 319                       const struct assoc_array_ops *ops,
 320                       const void *index_key)
 321{
 322        struct assoc_array_walk_result result;
 323        const struct assoc_array_node *node;
 324        const struct assoc_array_ptr *ptr;
 325        const void *leaf;
 326        int slot;
 327
 328        if (assoc_array_walk(array, ops, index_key, &result) !=
 329            assoc_array_walk_found_terminal_node)
 330                return NULL;
 331
 332        node = result.terminal_node.node;
 333        smp_read_barrier_depends();
 334
 335        /* If the target key is available to us, it's has to be pointed to by
 336         * the terminal node.
 337         */
 338        for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
 339                ptr = ACCESS_ONCE(node->slots[slot]);
 340                if (ptr && assoc_array_ptr_is_leaf(ptr)) {
 341                        /* We need a barrier between the read of the pointer
 342                         * and dereferencing the pointer - but only if we are
 343                         * actually going to dereference it.
 344                         */
 345                        leaf = assoc_array_ptr_to_leaf(ptr);
 346                        smp_read_barrier_depends();
 347                        if (ops->compare_object(leaf, index_key))
 348                                return (void *)leaf;
 349                }
 350        }
 351
 352        return NULL;
 353}
 354
 355/*
 356 * Destructively iterate over an associative array.  The caller must prevent
 357 * other simultaneous accesses.
 358 */
 359static void assoc_array_destroy_subtree(struct assoc_array_ptr *root,
 360                                        const struct assoc_array_ops *ops)
 361{
 362        struct assoc_array_shortcut *shortcut;
 363        struct assoc_array_node *node;
 364        struct assoc_array_ptr *cursor, *parent = NULL;
 365        int slot = -1;
 366
 367        pr_devel("-->%s()\n", __func__);
 368
 369        cursor = root;
 370        if (!cursor) {
 371                pr_devel("empty\n");
 372                return;
 373        }
 374
 375move_to_meta:
 376        if (assoc_array_ptr_is_shortcut(cursor)) {
 377                /* Descend through a shortcut */
 378                pr_devel("[%d] shortcut\n", slot);
 379                BUG_ON(!assoc_array_ptr_is_shortcut(cursor));
 380                shortcut = assoc_array_ptr_to_shortcut(cursor);
 381                BUG_ON(shortcut->back_pointer != parent);
 382                BUG_ON(slot != -1 && shortcut->parent_slot != slot);
 383                parent = cursor;
 384                cursor = shortcut->next_node;
 385                slot = -1;
 386                BUG_ON(!assoc_array_ptr_is_node(cursor));
 387        }
 388
 389        pr_devel("[%d] node\n", slot);
 390        node = assoc_array_ptr_to_node(cursor);
 391        BUG_ON(node->back_pointer != parent);
 392        BUG_ON(slot != -1 && node->parent_slot != slot);
 393        slot = 0;
 394
 395continue_node:
 396        pr_devel("Node %p [back=%p]\n", node, node->back_pointer);
 397        for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
 398                struct assoc_array_ptr *ptr = node->slots[slot];
 399                if (!ptr)
 400                        continue;
 401                if (assoc_array_ptr_is_meta(ptr)) {
 402                        parent = cursor;
 403                        cursor = ptr;
 404                        goto move_to_meta;
 405                }
 406
 407                if (ops) {
 408                        pr_devel("[%d] free leaf\n", slot);
 409                        ops->free_object(assoc_array_ptr_to_leaf(ptr));
 410                }
 411        }
 412
 413        parent = node->back_pointer;
 414        slot = node->parent_slot;
 415        pr_devel("free node\n");
 416        kfree(node);
 417        if (!parent)
 418                return; /* Done */
 419
 420        /* Move back up to the parent (may need to free a shortcut on
 421         * the way up) */
 422        if (assoc_array_ptr_is_shortcut(parent)) {
 423                shortcut = assoc_array_ptr_to_shortcut(parent);
 424                BUG_ON(shortcut->next_node != cursor);
 425                cursor = parent;
 426                parent = shortcut->back_pointer;
 427                slot = shortcut->parent_slot;
 428                pr_devel("free shortcut\n");
 429                kfree(shortcut);
 430                if (!parent)
 431                        return;
 432
 433                BUG_ON(!assoc_array_ptr_is_node(parent));
 434        }
 435
 436        /* Ascend to next slot in parent node */
 437        pr_devel("ascend to %p[%d]\n", parent, slot);
 438        cursor = parent;
 439        node = assoc_array_ptr_to_node(cursor);
 440        slot++;
 441        goto continue_node;
 442}
 443
 444/**
 445 * assoc_array_destroy - Destroy an associative array
 446 * @array: The array to destroy.
 447 * @ops: The operations to use.
 448 *
 449 * Discard all metadata and free all objects in an associative array.  The
 450 * array will be empty and ready to use again upon completion.  This function
 451 * cannot fail.
 452 *
 453 * The caller must prevent all other accesses whilst this takes place as no
 454 * attempt is made to adjust pointers gracefully to permit RCU readlock-holding
 455 * accesses to continue.  On the other hand, no memory allocation is required.
 456 */
 457void assoc_array_destroy(struct assoc_array *array,
 458                         const struct assoc_array_ops *ops)
 459{
 460        assoc_array_destroy_subtree(array->root, ops);
 461        array->root = NULL;
 462}
 463
 464/*
 465 * Handle insertion into an empty tree.
 466 */
 467static bool assoc_array_insert_in_empty_tree(struct assoc_array_edit *edit)
 468{
 469        struct assoc_array_node *new_n0;
 470
 471        pr_devel("-->%s()\n", __func__);
 472
 473        new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
 474        if (!new_n0)
 475                return false;
 476
 477        edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
 478        edit->leaf_p = &new_n0->slots[0];
 479        edit->adjust_count_on = new_n0;
 480        edit->set[0].ptr = &edit->array->root;
 481        edit->set[0].to = assoc_array_node_to_ptr(new_n0);
 482
 483        pr_devel("<--%s() = ok [no root]\n", __func__);
 484        return true;
 485}
 486
 487/*
 488 * Handle insertion into a terminal node.
 489 */
 490static bool assoc_array_insert_into_terminal_node(struct assoc_array_edit *edit,
 491                                                  const struct assoc_array_ops *ops,
 492                                                  const void *index_key,
 493                                                  struct assoc_array_walk_result *result)
 494{
 495        struct assoc_array_shortcut *shortcut, *new_s0;
 496        struct assoc_array_node *node, *new_n0, *new_n1, *side;
 497        struct assoc_array_ptr *ptr;
 498        unsigned long dissimilarity, base_seg, blank;
 499        size_t keylen;
 500        bool have_meta;
 501        int level, diff;
 502        int slot, next_slot, free_slot, i, j;
 503
 504        node    = result->terminal_node.node;
 505        level   = result->terminal_node.level;
 506        edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = result->terminal_node.slot;
 507
 508        pr_devel("-->%s()\n", __func__);
 509
 510        /* We arrived at a node which doesn't have an onward node or shortcut
 511         * pointer that we have to follow.  This means that (a) the leaf we
 512         * want must go here (either by insertion or replacement) or (b) we
 513         * need to split this node and insert in one of the fragments.
 514         */
 515        free_slot = -1;
 516
 517        /* Firstly, we have to check the leaves in this node to see if there's
 518         * a matching one we should replace in place.
 519         */
 520        for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
 521                ptr = node->slots[i];
 522                if (!ptr) {
 523                        free_slot = i;
 524                        continue;
 525                }
 526                if (assoc_array_ptr_is_leaf(ptr) &&
 527                    ops->compare_object(assoc_array_ptr_to_leaf(ptr),
 528                                        index_key)) {
 529                        pr_devel("replace in slot %d\n", i);
 530                        edit->leaf_p = &node->slots[i];
 531                        edit->dead_leaf = node->slots[i];
 532                        pr_devel("<--%s() = ok [replace]\n", __func__);
 533                        return true;
 534                }
 535        }
 536
 537        /* If there is a free slot in this node then we can just insert the
 538         * leaf here.
 539         */
 540        if (free_slot >= 0) {
 541                pr_devel("insert in free slot %d\n", free_slot);
 542                edit->leaf_p = &node->slots[free_slot];
 543                edit->adjust_count_on = node;
 544                pr_devel("<--%s() = ok [insert]\n", __func__);
 545                return true;
 546        }
 547
 548        /* The node has no spare slots - so we're either going to have to split
 549         * it or insert another node before it.
 550         *
 551         * Whatever, we're going to need at least two new nodes - so allocate
 552         * those now.  We may also need a new shortcut, but we deal with that
 553         * when we need it.
 554         */
 555        new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
 556        if (!new_n0)
 557                return false;
 558        edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
 559        new_n1 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
 560        if (!new_n1)
 561                return false;
 562        edit->new_meta[1] = assoc_array_node_to_ptr(new_n1);
 563
 564        /* We need to find out how similar the leaves are. */
 565        pr_devel("no spare slots\n");
 566        have_meta = false;
 567        for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
 568                ptr = node->slots[i];
 569                if (assoc_array_ptr_is_meta(ptr)) {
 570                        edit->segment_cache[i] = 0xff;
 571                        have_meta = true;
 572                        continue;
 573                }
 574                base_seg = ops->get_object_key_chunk(
 575                        assoc_array_ptr_to_leaf(ptr), level);
 576                base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
 577                edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK;
 578        }
 579
 580        if (have_meta) {
 581                pr_devel("have meta\n");
 582                goto split_node;
 583        }
 584
 585        /* The node contains only leaves */
 586        dissimilarity = 0;
 587        base_seg = edit->segment_cache[0];
 588        for (i = 1; i < ASSOC_ARRAY_FAN_OUT; i++)
 589                dissimilarity |= edit->segment_cache[i] ^ base_seg;
 590
 591        pr_devel("only leaves; dissimilarity=%lx\n", dissimilarity);
 592
 593        if ((dissimilarity & ASSOC_ARRAY_FAN_MASK) == 0) {
 594                /* The old leaves all cluster in the same slot.  We will need
 595                 * to insert a shortcut if the new node wants to cluster with them.
 596                 */
 597                if ((edit->segment_cache[ASSOC_ARRAY_FAN_OUT] ^ base_seg) == 0)
 598                        goto all_leaves_cluster_together;
 599
 600                /* Otherwise all the old leaves cluster in the same slot, but
 601                 * the new leaf wants to go into a different slot - so we
 602                 * create a new node (n0) to hold the new leaf and a pointer to
 603                 * a new node (n1) holding all the old leaves.
 604                 *
 605                 * This can be done by falling through to the node splitting
 606                 * path.
 607                 */
 608                pr_devel("present leaves cluster but not new leaf\n");
 609        }
 610
 611split_node:
 612        pr_devel("split node\n");
 613
 614        /* We need to split the current node.  The node must contain anything
 615         * from a single leaf (in the one leaf case, this leaf will cluster
 616         * with the new leaf) and the rest meta-pointers, to all leaves, some
 617         * of which may cluster.
 618         *
 619         * It won't contain the case in which all the current leaves plus the
 620         * new leaves want to cluster in the same slot.
 621         *
 622         * We need to expel at least two leaves out of a set consisting of the
 623         * leaves in the node and the new leaf.  The current meta pointers can
 624         * just be copied as they shouldn't cluster with any of the leaves.
 625         *
 626         * We need a new node (n0) to replace the current one and a new node to
 627         * take the expelled nodes (n1).
 628         */
 629        edit->set[0].to = assoc_array_node_to_ptr(new_n0);
 630        new_n0->back_pointer = node->back_pointer;
 631        new_n0->parent_slot = node->parent_slot;
 632        new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
 633        new_n1->parent_slot = -1; /* Need to calculate this */
 634
 635do_split_node:
 636        pr_devel("do_split_node\n");
 637
 638        new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
 639        new_n1->nr_leaves_on_branch = 0;
 640
 641        /* Begin by finding two matching leaves.  There have to be at least two
 642         * that match - even if there are meta pointers - because any leaf that
 643         * would match a slot with a meta pointer in it must be somewhere
 644         * behind that meta pointer and cannot be here.  Further, given N
 645         * remaining leaf slots, we now have N+1 leaves to go in them.
 646         */
 647        for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
 648                slot = edit->segment_cache[i];
 649                if (slot != 0xff)
 650                        for (j = i + 1; j < ASSOC_ARRAY_FAN_OUT + 1; j++)
 651                                if (edit->segment_cache[j] == slot)
 652                                        goto found_slot_for_multiple_occupancy;
 653        }
 654found_slot_for_multiple_occupancy:
 655        pr_devel("same slot: %x %x [%02x]\n", i, j, slot);
 656        BUG_ON(i >= ASSOC_ARRAY_FAN_OUT);
 657        BUG_ON(j >= ASSOC_ARRAY_FAN_OUT + 1);
 658        BUG_ON(slot >= ASSOC_ARRAY_FAN_OUT);
 659
 660        new_n1->parent_slot = slot;
 661
 662        /* Metadata pointers cannot change slot */
 663        for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++)
 664                if (assoc_array_ptr_is_meta(node->slots[i]))
 665                        new_n0->slots[i] = node->slots[i];
 666                else
 667                        new_n0->slots[i] = NULL;
 668        BUG_ON(new_n0->slots[slot] != NULL);
 669        new_n0->slots[slot] = assoc_array_node_to_ptr(new_n1);
 670
 671        /* Filter the leaf pointers between the new nodes */
 672        free_slot = -1;
 673        next_slot = 0;
 674        for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
 675                if (assoc_array_ptr_is_meta(node->slots[i]))
 676                        continue;
 677                if (edit->segment_cache[i] == slot) {
 678                        new_n1->slots[next_slot++] = node->slots[i];
 679                        new_n1->nr_leaves_on_branch++;
 680                } else {
 681                        do {
 682                                free_slot++;
 683                        } while (new_n0->slots[free_slot] != NULL);
 684                        new_n0->slots[free_slot] = node->slots[i];
 685                }
 686        }
 687
 688        pr_devel("filtered: f=%x n=%x\n", free_slot, next_slot);
 689
 690        if (edit->segment_cache[ASSOC_ARRAY_FAN_OUT] != slot) {
 691                do {
 692                        free_slot++;
 693                } while (new_n0->slots[free_slot] != NULL);
 694                edit->leaf_p = &new_n0->slots[free_slot];
 695                edit->adjust_count_on = new_n0;
 696        } else {
 697                edit->leaf_p = &new_n1->slots[next_slot++];
 698                edit->adjust_count_on = new_n1;
 699        }
 700
 701        BUG_ON(next_slot <= 1);
 702
 703        edit->set_backpointers_to = assoc_array_node_to_ptr(new_n0);
 704        for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
 705                if (edit->segment_cache[i] == 0xff) {
 706                        ptr = node->slots[i];
 707                        BUG_ON(assoc_array_ptr_is_leaf(ptr));
 708                        if (assoc_array_ptr_is_node(ptr)) {
 709                                side = assoc_array_ptr_to_node(ptr);
 710                                edit->set_backpointers[i] = &side->back_pointer;
 711                        } else {
 712                                shortcut = assoc_array_ptr_to_shortcut(ptr);
 713                                edit->set_backpointers[i] = &shortcut->back_pointer;
 714                        }
 715                }
 716        }
 717
 718        ptr = node->back_pointer;
 719        if (!ptr)
 720                edit->set[0].ptr = &edit->array->root;
 721        else if (assoc_array_ptr_is_node(ptr))
 722                edit->set[0].ptr = &assoc_array_ptr_to_node(ptr)->slots[node->parent_slot];
 723        else
 724                edit->set[0].ptr = &assoc_array_ptr_to_shortcut(ptr)->next_node;
 725        edit->excised_meta[0] = assoc_array_node_to_ptr(node);
 726        pr_devel("<--%s() = ok [split node]\n", __func__);
 727        return true;
 728
 729all_leaves_cluster_together:
 730        /* All the leaves, new and old, want to cluster together in this node
 731         * in the same slot, so we have to replace this node with a shortcut to
 732         * skip over the identical parts of the key and then place a pair of
 733         * nodes, one inside the other, at the end of the shortcut and
 734         * distribute the keys between them.
 735         *
 736         * Firstly we need to work out where the leaves start diverging as a
 737         * bit position into their keys so that we know how big the shortcut
 738         * needs to be.
 739         *
 740         * We only need to make a single pass of N of the N+1 leaves because if
 741         * any keys differ between themselves at bit X then at least one of
 742         * them must also differ with the base key at bit X or before.
 743         */
 744        pr_devel("all leaves cluster together\n");
 745        diff = INT_MAX;
 746        for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
 747                int x = ops->diff_objects(assoc_array_ptr_to_leaf(node->slots[i]),
 748                                          index_key);
 749                if (x < diff) {
 750                        BUG_ON(x < 0);
 751                        diff = x;
 752                }
 753        }
 754        BUG_ON(diff == INT_MAX);
 755        BUG_ON(diff < level + ASSOC_ARRAY_LEVEL_STEP);
 756
 757        keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
 758        keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
 759
 760        new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) +
 761                         keylen * sizeof(unsigned long), GFP_KERNEL);
 762        if (!new_s0)
 763                return false;
 764        edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s0);
 765
 766        edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0);
 767        new_s0->back_pointer = node->back_pointer;
 768        new_s0->parent_slot = node->parent_slot;
 769        new_s0->next_node = assoc_array_node_to_ptr(new_n0);
 770        new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0);
 771        new_n0->parent_slot = 0;
 772        new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
 773        new_n1->parent_slot = -1; /* Need to calculate this */
 774
 775        new_s0->skip_to_level = level = diff & ~ASSOC_ARRAY_LEVEL_STEP_MASK;
 776        pr_devel("skip_to_level = %d [diff %d]\n", level, diff);
 777        BUG_ON(level <= 0);
 778
 779        for (i = 0; i < keylen; i++)
 780                new_s0->index_key[i] =
 781                        ops->get_key_chunk(index_key, i * ASSOC_ARRAY_KEY_CHUNK_SIZE);
 782
 783        blank = ULONG_MAX << (level & ASSOC_ARRAY_KEY_CHUNK_MASK);
 784        pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, level, blank);
 785        new_s0->index_key[keylen - 1] &= ~blank;
 786
 787        /* This now reduces to a node splitting exercise for which we'll need
 788         * to regenerate the disparity table.
 789         */
 790        for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
 791                ptr = node->slots[i];
 792                base_seg = ops->get_object_key_chunk(assoc_array_ptr_to_leaf(ptr),
 793                                                     level);
 794                base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
 795                edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK;
 796        }
 797
 798        base_seg = ops->get_key_chunk(index_key, level);
 799        base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
 800        edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = base_seg & ASSOC_ARRAY_FAN_MASK;
 801        goto do_split_node;
 802}
 803
 804/*
 805 * Handle insertion into the middle of a shortcut.
 806 */
 807static bool assoc_array_insert_mid_shortcut(struct assoc_array_edit *edit,
 808                                            const struct assoc_array_ops *ops,
 809                                            struct assoc_array_walk_result *result)
 810{
 811        struct assoc_array_shortcut *shortcut, *new_s0, *new_s1;
 812        struct assoc_array_node *node, *new_n0, *side;
 813        unsigned long sc_segments, dissimilarity, blank;
 814        size_t keylen;
 815        int level, sc_level, diff;
 816        int sc_slot;
 817
 818        shortcut        = result->wrong_shortcut.shortcut;
 819        level           = result->wrong_shortcut.level;
 820        sc_level        = result->wrong_shortcut.sc_level;
 821        sc_segments     = result->wrong_shortcut.sc_segments;
 822        dissimilarity   = result->wrong_shortcut.dissimilarity;
 823
 824        pr_devel("-->%s(ix=%d dis=%lx scix=%d)\n",
 825                 __func__, level, dissimilarity, sc_level);
 826
 827        /* We need to split a shortcut and insert a node between the two
 828         * pieces.  Zero-length pieces will be dispensed with entirely.
 829         *
 830         * First of all, we need to find out in which level the first
 831         * difference was.
 832         */
 833        diff = __ffs(dissimilarity);
 834        diff &= ~ASSOC_ARRAY_LEVEL_STEP_MASK;
 835        diff += sc_level & ~ASSOC_ARRAY_KEY_CHUNK_MASK;
 836        pr_devel("diff=%d\n", diff);
 837
 838        if (!shortcut->back_pointer) {
 839                edit->set[0].ptr = &edit->array->root;
 840        } else if (assoc_array_ptr_is_node(shortcut->back_pointer)) {
 841                node = assoc_array_ptr_to_node(shortcut->back_pointer);
 842                edit->set[0].ptr = &node->slots[shortcut->parent_slot];
 843        } else {
 844                BUG();
 845        }
 846
 847        edit->excised_meta[0] = assoc_array_shortcut_to_ptr(shortcut);
 848
 849        /* Create a new node now since we're going to need it anyway */
 850        new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
 851        if (!new_n0)
 852                return false;
 853        edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
 854        edit->adjust_count_on = new_n0;
 855
 856        /* Insert a new shortcut before the new node if this segment isn't of
 857         * zero length - otherwise we just connect the new node directly to the
 858         * parent.
 859         */
 860        level += ASSOC_ARRAY_LEVEL_STEP;
 861        if (diff > level) {
 862                pr_devel("pre-shortcut %d...%d\n", level, diff);
 863                keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
 864                keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
 865
 866                new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) +
 867                                 keylen * sizeof(unsigned long), GFP_KERNEL);
 868                if (!new_s0)
 869                        return false;
 870                edit->new_meta[1] = assoc_array_shortcut_to_ptr(new_s0);
 871                edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0);
 872                new_s0->back_pointer = shortcut->back_pointer;
 873                new_s0->parent_slot = shortcut->parent_slot;
 874                new_s0->next_node = assoc_array_node_to_ptr(new_n0);
 875                new_s0->skip_to_level = diff;
 876
 877                new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0);
 878                new_n0->parent_slot = 0;
 879
 880                memcpy(new_s0->index_key, shortcut->index_key,
 881                       keylen * sizeof(unsigned long));
 882
 883                blank = ULONG_MAX << (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
 884                pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, diff, blank);
 885                new_s0->index_key[keylen - 1] &= ~blank;
 886        } else {
 887                pr_devel("no pre-shortcut\n");
 888                edit->set[0].to = assoc_array_node_to_ptr(new_n0);
 889                new_n0->back_pointer = shortcut->back_pointer;
 890                new_n0->parent_slot = shortcut->parent_slot;
 891        }
 892
 893        side = assoc_array_ptr_to_node(shortcut->next_node);
 894        new_n0->nr_leaves_on_branch = side->nr_leaves_on_branch;
 895
 896        /* We need to know which slot in the new node is going to take a
 897         * metadata pointer.
 898         */
 899        sc_slot = sc_segments >> (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
 900        sc_slot &= ASSOC_ARRAY_FAN_MASK;
 901
 902        pr_devel("new slot %lx >> %d -> %d\n",
 903                 sc_segments, diff & ASSOC_ARRAY_KEY_CHUNK_MASK, sc_slot);
 904
 905        /* Determine whether we need to follow the new node with a replacement
 906         * for the current shortcut.  We could in theory reuse the current
 907         * shortcut if its parent slot number doesn't change - but that's a
 908         * 1-in-16 chance so not worth expending the code upon.
 909         */
 910        level = diff + ASSOC_ARRAY_LEVEL_STEP;
 911        if (level < shortcut->skip_to_level) {
 912                pr_devel("post-shortcut %d...%d\n", level, shortcut->skip_to_level);
 913                keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
 914                keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
 915
 916                new_s1 = kzalloc(sizeof(struct assoc_array_shortcut) +
 917                                 keylen * sizeof(unsigned long), GFP_KERNEL);
 918                if (!new_s1)
 919                        return false;
 920                edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s1);
 921
 922                new_s1->back_pointer = assoc_array_node_to_ptr(new_n0);
 923                new_s1->parent_slot = sc_slot;
 924                new_s1->next_node = shortcut->next_node;
 925                new_s1->skip_to_level = shortcut->skip_to_level;
 926
 927                new_n0->slots[sc_slot] = assoc_array_shortcut_to_ptr(new_s1);
 928
 929                memcpy(new_s1->index_key, shortcut->index_key,
 930                       keylen * sizeof(unsigned long));
 931
 932                edit->set[1].ptr = &side->back_pointer;
 933                edit->set[1].to = assoc_array_shortcut_to_ptr(new_s1);
 934        } else {
 935                pr_devel("no post-shortcut\n");
 936
 937                /* We don't have to replace the pointed-to node as long as we
 938                 * use memory barriers to make sure the parent slot number is
 939                 * changed before the back pointer (the parent slot number is
 940                 * irrelevant to the old parent shortcut).
 941                 */
 942                new_n0->slots[sc_slot] = shortcut->next_node;
 943                edit->set_parent_slot[0].p = &side->parent_slot;
 944                edit->set_parent_slot[0].to = sc_slot;
 945                edit->set[1].ptr = &side->back_pointer;
 946                edit->set[1].to = assoc_array_node_to_ptr(new_n0);
 947        }
 948
 949        /* Install the new leaf in a spare slot in the new node. */
 950        if (sc_slot == 0)
 951                edit->leaf_p = &new_n0->slots[1];
 952        else
 953                edit->leaf_p = &new_n0->slots[0];
 954
 955        pr_devel("<--%s() = ok [split shortcut]\n", __func__);
 956        return edit;
 957}
 958
 959/**
 960 * assoc_array_insert - Script insertion of an object into an associative array
 961 * @array: The array to insert into.
 962 * @ops: The operations to use.
 963 * @index_key: The key to insert at.
 964 * @object: The object to insert.
 965 *
 966 * Precalculate and preallocate a script for the insertion or replacement of an
 967 * object in an associative array.  This results in an edit script that can
 968 * either be applied or cancelled.
 969 *
 970 * The function returns a pointer to an edit script or -ENOMEM.
 971 *
 972 * The caller should lock against other modifications and must continue to hold
 973 * the lock until assoc_array_apply_edit() has been called.
 974 *
 975 * Accesses to the tree may take place concurrently with this function,
 976 * provided they hold the RCU read lock.
 977 */
 978struct assoc_array_edit *assoc_array_insert(struct assoc_array *array,
 979                                            const struct assoc_array_ops *ops,
 980                                            const void *index_key,
 981                                            void *object)
 982{
 983        struct assoc_array_walk_result result;
 984        struct assoc_array_edit *edit;
 985
 986        pr_devel("-->%s()\n", __func__);
 987
 988        /* The leaf pointer we're given must not have the bottom bit set as we
 989         * use those for type-marking the pointer.  NULL pointers are also not
 990         * allowed as they indicate an empty slot but we have to allow them
 991         * here as they can be updated later.
 992         */
 993        BUG_ON(assoc_array_ptr_is_meta(object));
 994
 995        edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
 996        if (!edit)
 997                return ERR_PTR(-ENOMEM);
 998        edit->array = array;
 999        edit->ops = ops;
1000        edit->leaf = assoc_array_leaf_to_ptr(object);
1001        edit->adjust_count_by = 1;
1002
1003        switch (assoc_array_walk(array, ops, index_key, &result)) {
1004        case assoc_array_walk_tree_empty:
1005                /* Allocate a root node if there isn't one yet */
1006                if (!assoc_array_insert_in_empty_tree(edit))
1007                        goto enomem;
1008                return edit;
1009
1010        case assoc_array_walk_found_terminal_node:
1011                /* We found a node that doesn't have a node/shortcut pointer in
1012                 * the slot corresponding to the index key that we have to
1013                 * follow.
1014                 */
1015                if (!assoc_array_insert_into_terminal_node(edit, ops, index_key,
1016                                                           &result))
1017                        goto enomem;
1018                return edit;
1019
1020        case assoc_array_walk_found_wrong_shortcut:
1021                /* We found a shortcut that didn't match our key in a slot we
1022                 * needed to follow.
1023                 */
1024                if (!assoc_array_insert_mid_shortcut(edit, ops, &result))
1025                        goto enomem;
1026                return edit;
1027        }
1028
1029enomem:
1030        /* Clean up after an out of memory error */
1031        pr_devel("enomem\n");
1032        assoc_array_cancel_edit(edit);
1033        return ERR_PTR(-ENOMEM);
1034}
1035
1036/**
1037 * assoc_array_insert_set_object - Set the new object pointer in an edit script
1038 * @edit: The edit script to modify.
1039 * @object: The object pointer to set.
1040 *
1041 * Change the object to be inserted in an edit script.  The object pointed to
1042 * by the old object is not freed.  This must be done prior to applying the
1043 * script.
1044 */
1045void assoc_array_insert_set_object(struct assoc_array_edit *edit, void *object)
1046{
1047        BUG_ON(!object);
1048        edit->leaf = assoc_array_leaf_to_ptr(object);
1049}
1050
1051struct assoc_array_delete_collapse_context {
1052        struct assoc_array_node *node;
1053        const void              *skip_leaf;
1054        int                     slot;
1055};
1056
1057/*
1058 * Subtree collapse to node iterator.
1059 */
1060static int assoc_array_delete_collapse_iterator(const void *leaf,
1061                                                void *iterator_data)
1062{
1063        struct assoc_array_delete_collapse_context *collapse = iterator_data;
1064
1065        if (leaf == collapse->skip_leaf)
1066                return 0;
1067
1068        BUG_ON(collapse->slot >= ASSOC_ARRAY_FAN_OUT);
1069
1070        collapse->node->slots[collapse->slot++] = assoc_array_leaf_to_ptr(leaf);
1071        return 0;
1072}
1073
1074/**
1075 * assoc_array_delete - Script deletion of an object from an associative array
1076 * @array: The array to search.
1077 * @ops: The operations to use.
1078 * @index_key: The key to the object.
1079 *
1080 * Precalculate and preallocate a script for the deletion of an object from an
1081 * associative array.  This results in an edit script that can either be
1082 * applied or cancelled.
1083 *
1084 * The function returns a pointer to an edit script if the object was found,
1085 * NULL if the object was not found or -ENOMEM.
1086 *
1087 * The caller should lock against other modifications and must continue to hold
1088 * the lock until assoc_array_apply_edit() has been called.
1089 *
1090 * Accesses to the tree may take place concurrently with this function,
1091 * provided they hold the RCU read lock.
1092 */
1093struct assoc_array_edit *assoc_array_delete(struct assoc_array *array,
1094                                            const struct assoc_array_ops *ops,
1095                                            const void *index_key)
1096{
1097        struct assoc_array_delete_collapse_context collapse;
1098        struct assoc_array_walk_result result;
1099        struct assoc_array_node *node, *new_n0;
1100        struct assoc_array_edit *edit;
1101        struct assoc_array_ptr *ptr;
1102        bool has_meta;
1103        int slot, i;
1104
1105        pr_devel("-->%s()\n", __func__);
1106
1107        edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1108        if (!edit)
1109                return ERR_PTR(-ENOMEM);
1110        edit->array = array;
1111        edit->ops = ops;
1112        edit->adjust_count_by = -1;
1113
1114        switch (assoc_array_walk(array, ops, index_key, &result)) {
1115        case assoc_array_walk_found_terminal_node:
1116                /* We found a node that should contain the leaf we've been
1117                 * asked to remove - *if* it's in the tree.
1118                 */
1119                pr_devel("terminal_node\n");
1120                node = result.terminal_node.node;
1121
1122                for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1123                        ptr = node->slots[slot];
1124                        if (ptr &&
1125                            assoc_array_ptr_is_leaf(ptr) &&
1126                            ops->compare_object(assoc_array_ptr_to_leaf(ptr),
1127                                                index_key))
1128                                goto found_leaf;
1129                }
1130        case assoc_array_walk_tree_empty:
1131        case assoc_array_walk_found_wrong_shortcut:
1132        default:
1133                assoc_array_cancel_edit(edit);
1134                pr_devel("not found\n");
1135                return NULL;
1136        }
1137
1138found_leaf:
1139        BUG_ON(array->nr_leaves_on_tree <= 0);
1140
1141        /* In the simplest form of deletion we just clear the slot and release
1142         * the leaf after a suitable interval.
1143         */
1144        edit->dead_leaf = node->slots[slot];
1145        edit->set[0].ptr = &node->slots[slot];
1146        edit->set[0].to = NULL;
1147        edit->adjust_count_on = node;
1148
1149        /* If that concludes erasure of the last leaf, then delete the entire
1150         * internal array.
1151         */
1152        if (array->nr_leaves_on_tree == 1) {
1153                edit->set[1].ptr = &array->root;
1154                edit->set[1].to = NULL;
1155                edit->adjust_count_on = NULL;
1156                edit->excised_subtree = array->root;
1157                pr_devel("all gone\n");
1158                return edit;
1159        }
1160
1161        /* However, we'd also like to clear up some metadata blocks if we
1162         * possibly can.
1163         *
1164         * We go for a simple algorithm of: if this node has FAN_OUT or fewer
1165         * leaves in it, then attempt to collapse it - and attempt to
1166         * recursively collapse up the tree.
1167         *
1168         * We could also try and collapse in partially filled subtrees to take
1169         * up space in this node.
1170         */
1171        if (node->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) {
1172                struct assoc_array_node *parent, *grandparent;
1173                struct assoc_array_ptr *ptr;
1174
1175                /* First of all, we need to know if this node has metadata so
1176                 * that we don't try collapsing if all the leaves are already
1177                 * here.
1178                 */
1179                has_meta = false;
1180                for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
1181                        ptr = node->slots[i];
1182                        if (assoc_array_ptr_is_meta(ptr)) {
1183                                has_meta = true;
1184                                break;
1185                        }
1186                }
1187
1188                pr_devel("leaves: %ld [m=%d]\n",
1189                         node->nr_leaves_on_branch - 1, has_meta);
1190
1191                /* Look further up the tree to see if we can collapse this node
1192                 * into a more proximal node too.
1193                 */
1194                parent = node;
1195        collapse_up:
1196                pr_devel("collapse subtree: %ld\n", parent->nr_leaves_on_branch);
1197
1198                ptr = parent->back_pointer;
1199                if (!ptr)
1200                        goto do_collapse;
1201                if (assoc_array_ptr_is_shortcut(ptr)) {
1202                        struct assoc_array_shortcut *s = assoc_array_ptr_to_shortcut(ptr);
1203                        ptr = s->back_pointer;
1204                        if (!ptr)
1205                                goto do_collapse;
1206                }
1207
1208                grandparent = assoc_array_ptr_to_node(ptr);
1209                if (grandparent->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) {
1210                        parent = grandparent;
1211                        goto collapse_up;
1212                }
1213
1214        do_collapse:
1215                /* There's no point collapsing if the original node has no meta
1216                 * pointers to discard and if we didn't merge into one of that
1217                 * node's ancestry.
1218                 */
1219                if (has_meta || parent != node) {
1220                        node = parent;
1221
1222                        /* Create a new node to collapse into */
1223                        new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
1224                        if (!new_n0)
1225                                goto enomem;
1226                        edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
1227
1228                        new_n0->back_pointer = node->back_pointer;
1229                        new_n0->parent_slot = node->parent_slot;
1230                        new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
1231                        edit->adjust_count_on = new_n0;
1232
1233                        collapse.node = new_n0;
1234                        collapse.skip_leaf = assoc_array_ptr_to_leaf(edit->dead_leaf);
1235                        collapse.slot = 0;
1236                        assoc_array_subtree_iterate(assoc_array_node_to_ptr(node),
1237                                                    node->back_pointer,
1238                                                    assoc_array_delete_collapse_iterator,
1239                                                    &collapse);
1240                        pr_devel("collapsed %d,%lu\n", collapse.slot, new_n0->nr_leaves_on_branch);
1241                        BUG_ON(collapse.slot != new_n0->nr_leaves_on_branch - 1);
1242
1243                        if (!node->back_pointer) {
1244                                edit->set[1].ptr = &array->root;
1245                        } else if (assoc_array_ptr_is_leaf(node->back_pointer)) {
1246                                BUG();
1247                        } else if (assoc_array_ptr_is_node(node->back_pointer)) {
1248                                struct assoc_array_node *p =
1249                                        assoc_array_ptr_to_node(node->back_pointer);
1250                                edit->set[1].ptr = &p->slots[node->parent_slot];
1251                        } else if (assoc_array_ptr_is_shortcut(node->back_pointer)) {
1252                                struct assoc_array_shortcut *s =
1253                                        assoc_array_ptr_to_shortcut(node->back_pointer);
1254                                edit->set[1].ptr = &s->next_node;
1255                        }
1256                        edit->set[1].to = assoc_array_node_to_ptr(new_n0);
1257                        edit->excised_subtree = assoc_array_node_to_ptr(node);
1258                }
1259        }
1260
1261        return edit;
1262
1263enomem:
1264        /* Clean up after an out of memory error */
1265        pr_devel("enomem\n");
1266        assoc_array_cancel_edit(edit);
1267        return ERR_PTR(-ENOMEM);
1268}
1269
1270/**
1271 * assoc_array_clear - Script deletion of all objects from an associative array
1272 * @array: The array to clear.
1273 * @ops: The operations to use.
1274 *
1275 * Precalculate and preallocate a script for the deletion of all the objects
1276 * from an associative array.  This results in an edit script that can either
1277 * be applied or cancelled.
1278 *
1279 * The function returns a pointer to an edit script if there are objects to be
1280 * deleted, NULL if there are no objects in the array or -ENOMEM.
1281 *
1282 * The caller should lock against other modifications and must continue to hold
1283 * the lock until assoc_array_apply_edit() has been called.
1284 *
1285 * Accesses to the tree may take place concurrently with this function,
1286 * provided they hold the RCU read lock.
1287 */
1288struct assoc_array_edit *assoc_array_clear(struct assoc_array *array,
1289                                           const struct assoc_array_ops *ops)
1290{
1291        struct assoc_array_edit *edit;
1292
1293        pr_devel("-->%s()\n", __func__);
1294
1295        if (!array->root)
1296                return NULL;
1297
1298        edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1299        if (!edit)
1300                return ERR_PTR(-ENOMEM);
1301        edit->array = array;
1302        edit->ops = ops;
1303        edit->set[1].ptr = &array->root;
1304        edit->set[1].to = NULL;
1305        edit->excised_subtree = array->root;
1306        edit->ops_for_excised_subtree = ops;
1307        pr_devel("all gone\n");
1308        return edit;
1309}
1310
1311/*
1312 * Handle the deferred destruction after an applied edit.
1313 */
1314static void assoc_array_rcu_cleanup(struct rcu_head *head)
1315{
1316        struct assoc_array_edit *edit =
1317                container_of(head, struct assoc_array_edit, rcu);
1318        int i;
1319
1320        pr_devel("-->%s()\n", __func__);
1321
1322        if (edit->dead_leaf)
1323                edit->ops->free_object(assoc_array_ptr_to_leaf(edit->dead_leaf));
1324        for (i = 0; i < ARRAY_SIZE(edit->excised_meta); i++)
1325                if (edit->excised_meta[i])
1326                        kfree(assoc_array_ptr_to_node(edit->excised_meta[i]));
1327
1328        if (edit->excised_subtree) {
1329                BUG_ON(assoc_array_ptr_is_leaf(edit->excised_subtree));
1330                if (assoc_array_ptr_is_node(edit->excised_subtree)) {
1331                        struct assoc_array_node *n =
1332                                assoc_array_ptr_to_node(edit->excised_subtree);
1333                        n->back_pointer = NULL;
1334                } else {
1335                        struct assoc_array_shortcut *s =
1336                                assoc_array_ptr_to_shortcut(edit->excised_subtree);
1337                        s->back_pointer = NULL;
1338                }
1339                assoc_array_destroy_subtree(edit->excised_subtree,
1340                                            edit->ops_for_excised_subtree);
1341        }
1342
1343        kfree(edit);
1344}
1345
1346/**
1347 * assoc_array_apply_edit - Apply an edit script to an associative array
1348 * @edit: The script to apply.
1349 *
1350 * Apply an edit script to an associative array to effect an insertion,
1351 * deletion or clearance.  As the edit script includes preallocated memory,
1352 * this is guaranteed not to fail.
1353 *
1354 * The edit script, dead objects and dead metadata will be scheduled for
1355 * destruction after an RCU grace period to permit those doing read-only
1356 * accesses on the array to continue to do so under the RCU read lock whilst
1357 * the edit is taking place.
1358 */
1359void assoc_array_apply_edit(struct assoc_array_edit *edit)
1360{
1361        struct assoc_array_shortcut *shortcut;
1362        struct assoc_array_node *node;
1363        struct assoc_array_ptr *ptr;
1364        int i;
1365
1366        pr_devel("-->%s()\n", __func__);
1367
1368        smp_wmb();
1369        if (edit->leaf_p)
1370                *edit->leaf_p = edit->leaf;
1371
1372        smp_wmb();
1373        for (i = 0; i < ARRAY_SIZE(edit->set_parent_slot); i++)
1374                if (edit->set_parent_slot[i].p)
1375                        *edit->set_parent_slot[i].p = edit->set_parent_slot[i].to;
1376
1377        smp_wmb();
1378        for (i = 0; i < ARRAY_SIZE(edit->set_backpointers); i++)
1379                if (edit->set_backpointers[i])
1380                        *edit->set_backpointers[i] = edit->set_backpointers_to;
1381
1382        smp_wmb();
1383        for (i = 0; i < ARRAY_SIZE(edit->set); i++)
1384                if (edit->set[i].ptr)
1385                        *edit->set[i].ptr = edit->set[i].to;
1386
1387        if (edit->array->root == NULL) {
1388                edit->array->nr_leaves_on_tree = 0;
1389        } else if (edit->adjust_count_on) {
1390                node = edit->adjust_count_on;
1391                for (;;) {
1392                        node->nr_leaves_on_branch += edit->adjust_count_by;
1393
1394                        ptr = node->back_pointer;
1395                        if (!ptr)
1396                                break;
1397                        if (assoc_array_ptr_is_shortcut(ptr)) {
1398                                shortcut = assoc_array_ptr_to_shortcut(ptr);
1399                                ptr = shortcut->back_pointer;
1400                                if (!ptr)
1401                                        break;
1402                        }
1403                        BUG_ON(!assoc_array_ptr_is_node(ptr));
1404                        node = assoc_array_ptr_to_node(ptr);
1405                }
1406
1407                edit->array->nr_leaves_on_tree += edit->adjust_count_by;
1408        }
1409
1410        call_rcu(&edit->rcu, assoc_array_rcu_cleanup);
1411}
1412
1413/**
1414 * assoc_array_cancel_edit - Discard an edit script.
1415 * @edit: The script to discard.
1416 *
1417 * Free an edit script and all the preallocated data it holds without making
1418 * any changes to the associative array it was intended for.
1419 *
1420 * NOTE!  In the case of an insertion script, this does _not_ release the leaf
1421 * that was to be inserted.  That is left to the caller.
1422 */
1423void assoc_array_cancel_edit(struct assoc_array_edit *edit)
1424{
1425        struct assoc_array_ptr *ptr;
1426        int i;
1427
1428        pr_devel("-->%s()\n", __func__);
1429
1430        /* Clean up after an out of memory error */
1431        for (i = 0; i < ARRAY_SIZE(edit->new_meta); i++) {
1432                ptr = edit->new_meta[i];
1433                if (ptr) {
1434                        if (assoc_array_ptr_is_node(ptr))
1435                                kfree(assoc_array_ptr_to_node(ptr));
1436                        else
1437                                kfree(assoc_array_ptr_to_shortcut(ptr));
1438                }
1439        }
1440        kfree(edit);
1441}
1442
1443/**
1444 * assoc_array_gc - Garbage collect an associative array.
1445 * @array: The array to clean.
1446 * @ops: The operations to use.
1447 * @iterator: A callback function to pass judgement on each object.
1448 * @iterator_data: Private data for the callback function.
1449 *
1450 * Collect garbage from an associative array and pack down the internal tree to
1451 * save memory.
1452 *
1453 * The iterator function is asked to pass judgement upon each object in the
1454 * array.  If it returns false, the object is discard and if it returns true,
1455 * the object is kept.  If it returns true, it must increment the object's
1456 * usage count (or whatever it needs to do to retain it) before returning.
1457 *
1458 * This function returns 0 if successful or -ENOMEM if out of memory.  In the
1459 * latter case, the array is not changed.
1460 *
1461 * The caller should lock against other modifications and must continue to hold
1462 * the lock until assoc_array_apply_edit() has been called.
1463 *
1464 * Accesses to the tree may take place concurrently with this function,
1465 * provided they hold the RCU read lock.
1466 */
1467int assoc_array_gc(struct assoc_array *array,
1468                   const struct assoc_array_ops *ops,
1469                   bool (*iterator)(void *object, void *iterator_data),
1470                   void *iterator_data)
1471{
1472        struct assoc_array_shortcut *shortcut, *new_s;
1473        struct assoc_array_node *node, *new_n;
1474        struct assoc_array_edit *edit;
1475        struct assoc_array_ptr *cursor, *ptr;
1476        struct assoc_array_ptr *new_root, *new_parent, **new_ptr_pp;
1477        unsigned long nr_leaves_on_tree;
1478        int keylen, slot, nr_free, next_slot, i;
1479
1480        pr_devel("-->%s()\n", __func__);
1481
1482        if (!array->root)
1483                return 0;
1484
1485        edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1486        if (!edit)
1487                return -ENOMEM;
1488        edit->array = array;
1489        edit->ops = ops;
1490        edit->ops_for_excised_subtree = ops;
1491        edit->set[0].ptr = &array->root;
1492        edit->excised_subtree = array->root;
1493
1494        new_root = new_parent = NULL;
1495        new_ptr_pp = &new_root;
1496        cursor = array->root;
1497
1498descend:
1499        /* If this point is a shortcut, then we need to duplicate it and
1500         * advance the target cursor.
1501         */
1502        if (assoc_array_ptr_is_shortcut(cursor)) {
1503                shortcut = assoc_array_ptr_to_shortcut(cursor);
1504                keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
1505                keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
1506                new_s = kmalloc(sizeof(struct assoc_array_shortcut) +
1507                                keylen * sizeof(unsigned long), GFP_KERNEL);
1508                if (!new_s)
1509                        goto enomem;
1510                pr_devel("dup shortcut %p -> %p\n", shortcut, new_s);
1511                memcpy(new_s, shortcut, (sizeof(struct assoc_array_shortcut) +
1512                                         keylen * sizeof(unsigned long)));
1513                new_s->back_pointer = new_parent;
1514                new_s->parent_slot = shortcut->parent_slot;
1515                *new_ptr_pp = new_parent = assoc_array_shortcut_to_ptr(new_s);
1516                new_ptr_pp = &new_s->next_node;
1517                cursor = shortcut->next_node;
1518        }
1519
1520        /* Duplicate the node at this position */
1521        node = assoc_array_ptr_to_node(cursor);
1522        new_n = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
1523        if (!new_n)
1524                goto enomem;
1525        pr_devel("dup node %p -> %p\n", node, new_n);
1526        new_n->back_pointer = new_parent;
1527        new_n->parent_slot = node->parent_slot;
1528        *new_ptr_pp = new_parent = assoc_array_node_to_ptr(new_n);
1529        new_ptr_pp = NULL;
1530        slot = 0;
1531
1532continue_node:
1533        /* Filter across any leaves and gc any subtrees */
1534        for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1535                ptr = node->slots[slot];
1536                if (!ptr)
1537                        continue;
1538
1539                if (assoc_array_ptr_is_leaf(ptr)) {
1540                        if (iterator(assoc_array_ptr_to_leaf(ptr),
1541                                     iterator_data))
1542                                /* The iterator will have done any reference
1543                                 * counting on the object for us.
1544                                 */
1545                                new_n->slots[slot] = ptr;
1546                        continue;
1547                }
1548
1549                new_ptr_pp = &new_n->slots[slot];
1550                cursor = ptr;
1551                goto descend;
1552        }
1553
1554        pr_devel("-- compress node %p --\n", new_n);
1555
1556        /* Count up the number of empty slots in this node and work out the
1557         * subtree leaf count.
1558         */
1559        new_n->nr_leaves_on_branch = 0;
1560        nr_free = 0;
1561        for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1562                ptr = new_n->slots[slot];
1563                if (!ptr)
1564                        nr_free++;
1565                else if (assoc_array_ptr_is_leaf(ptr))
1566                        new_n->nr_leaves_on_branch++;
1567        }
1568        pr_devel("free=%d, leaves=%lu\n", nr_free, new_n->nr_leaves_on_branch);
1569
1570        /* See what we can fold in */
1571        next_slot = 0;
1572        for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1573                struct assoc_array_shortcut *s;
1574                struct assoc_array_node *child;
1575
1576                ptr = new_n->slots[slot];
1577                if (!ptr || assoc_array_ptr_is_leaf(ptr))
1578                        continue;
1579
1580                s = NULL;
1581                if (assoc_array_ptr_is_shortcut(ptr)) {
1582                        s = assoc_array_ptr_to_shortcut(ptr);
1583                        ptr = s->next_node;
1584                }
1585
1586                child = assoc_array_ptr_to_node(ptr);
1587                new_n->nr_leaves_on_branch += child->nr_leaves_on_branch;
1588
1589                if (child->nr_leaves_on_branch <= nr_free + 1) {
1590                        /* Fold the child node into this one */
1591                        pr_devel("[%d] fold node %lu/%d [nx %d]\n",
1592                                 slot, child->nr_leaves_on_branch, nr_free + 1,
1593                                 next_slot);
1594
1595                        /* We would already have reaped an intervening shortcut
1596                         * on the way back up the tree.
1597                         */
1598                        BUG_ON(s);
1599
1600                        new_n->slots[slot] = NULL;
1601                        nr_free++;
1602                        if (slot < next_slot)
1603                                next_slot = slot;
1604                        for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
1605                                struct assoc_array_ptr *p = child->slots[i];
1606                                if (!p)
1607                                        continue;
1608                                BUG_ON(assoc_array_ptr_is_meta(p));
1609                                while (new_n->slots[next_slot])
1610                                        next_slot++;
1611                                BUG_ON(next_slot >= ASSOC_ARRAY_FAN_OUT);
1612                                new_n->slots[next_slot++] = p;
1613                                nr_free--;
1614                        }
1615                        kfree(child);
1616                } else {
1617                        pr_devel("[%d] retain node %lu/%d [nx %d]\n",
1618                                 slot, child->nr_leaves_on_branch, nr_free + 1,
1619                                 next_slot);
1620                }
1621        }
1622
1623        pr_devel("after: %lu\n", new_n->nr_leaves_on_branch);
1624
1625        nr_leaves_on_tree = new_n->nr_leaves_on_branch;
1626
1627        /* Excise this node if it is singly occupied by a shortcut */
1628        if (nr_free == ASSOC_ARRAY_FAN_OUT - 1) {
1629                for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++)
1630                        if ((ptr = new_n->slots[slot]))
1631                                break;
1632
1633                if (assoc_array_ptr_is_meta(ptr) &&
1634                    assoc_array_ptr_is_shortcut(ptr)) {
1635                        pr_devel("excise node %p with 1 shortcut\n", new_n);
1636                        new_s = assoc_array_ptr_to_shortcut(ptr);
1637                        new_parent = new_n->back_pointer;
1638                        slot = new_n->parent_slot;
1639                        kfree(new_n);
1640                        if (!new_parent) {
1641                                new_s->back_pointer = NULL;
1642                                new_s->parent_slot = 0;
1643                                new_root = ptr;
1644                                goto gc_complete;
1645                        }
1646
1647                        if (assoc_array_ptr_is_shortcut(new_parent)) {
1648                                /* We can discard any preceding shortcut also */
1649                                struct assoc_array_shortcut *s =
1650                                        assoc_array_ptr_to_shortcut(new_parent);
1651
1652                                pr_devel("excise preceding shortcut\n");
1653
1654                                new_parent = new_s->back_pointer = s->back_pointer;
1655                                slot = new_s->parent_slot = s->parent_slot;
1656                                kfree(s);
1657                                if (!new_parent) {
1658                                        new_s->back_pointer = NULL;
1659                                        new_s->parent_slot = 0;
1660                                        new_root = ptr;
1661                                        goto gc_complete;
1662                                }
1663                        }
1664
1665                        new_s->back_pointer = new_parent;
1666                        new_s->parent_slot = slot;
1667                        new_n = assoc_array_ptr_to_node(new_parent);
1668                        new_n->slots[slot] = ptr;
1669                        goto ascend_old_tree;
1670                }
1671        }
1672
1673        /* Excise any shortcuts we might encounter that point to nodes that
1674         * only contain leaves.
1675         */
1676        ptr = new_n->back_pointer;
1677        if (!ptr)
1678                goto gc_complete;
1679
1680        if (assoc_array_ptr_is_shortcut(ptr)) {
1681                new_s = assoc_array_ptr_to_shortcut(ptr);
1682                new_parent = new_s->back_pointer;
1683                slot = new_s->parent_slot;
1684
1685                if (new_n->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT) {
1686                        struct assoc_array_node *n;
1687
1688                        pr_devel("excise shortcut\n");
1689                        new_n->back_pointer = new_parent;
1690                        new_n->parent_slot = slot;
1691                        kfree(new_s);
1692                        if (!new_parent) {
1693                                new_root = assoc_array_node_to_ptr(new_n);
1694                                goto gc_complete;
1695                        }
1696
1697                        n = assoc_array_ptr_to_node(new_parent);
1698                        n->slots[slot] = assoc_array_node_to_ptr(new_n);
1699                }
1700        } else {
1701                new_parent = ptr;
1702        }
1703        new_n = assoc_array_ptr_to_node(new_parent);
1704
1705ascend_old_tree:
1706        ptr = node->back_pointer;
1707        if (assoc_array_ptr_is_shortcut(ptr)) {
1708                shortcut = assoc_array_ptr_to_shortcut(ptr);
1709                slot = shortcut->parent_slot;
1710                cursor = shortcut->back_pointer;
1711                if (!cursor)
1712                        goto gc_complete;
1713        } else {
1714                slot = node->parent_slot;
1715                cursor = ptr;
1716        }
1717        BUG_ON(!cursor);
1718        node = assoc_array_ptr_to_node(cursor);
1719        slot++;
1720        goto continue_node;
1721
1722gc_complete:
1723        edit->set[0].to = new_root;
1724        assoc_array_apply_edit(edit);
1725        array->nr_leaves_on_tree = nr_leaves_on_tree;
1726        return 0;
1727
1728enomem:
1729        pr_devel("enomem\n");
1730        assoc_array_destroy_subtree(new_root, edit->ops);
1731        kfree(edit);
1732        return -ENOMEM;
1733}
1734