linux/net/sched/sch_qfq.c
<<
>>
Prefs
   1/*
   2 * net/sched/sch_qfq.c         Quick Fair Queueing Plus Scheduler.
   3 *
   4 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
   5 * Copyright (c) 2012 Paolo Valente.
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License
   9 * version 2 as published by the Free Software Foundation.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/bitops.h>
  15#include <linux/errno.h>
  16#include <linux/netdevice.h>
  17#include <linux/pkt_sched.h>
  18#include <net/sch_generic.h>
  19#include <net/pkt_sched.h>
  20#include <net/pkt_cls.h>
  21
  22
  23/*  Quick Fair Queueing Plus
  24    ========================
  25
  26    Sources:
  27
  28    [1] Paolo Valente,
  29    "Reducing the Execution Time of Fair-Queueing Schedulers."
  30    http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
  31
  32    Sources for QFQ:
  33
  34    [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
  35    Packet Scheduling with Tight Bandwidth Distribution Guarantees."
  36
  37    See also:
  38    http://retis.sssup.it/~fabio/linux/qfq/
  39 */
  40
  41/*
  42
  43  QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
  44  classes. Each aggregate is timestamped with a virtual start time S
  45  and a virtual finish time F, and scheduled according to its
  46  timestamps. S and F are computed as a function of a system virtual
  47  time function V. The classes within each aggregate are instead
  48  scheduled with DRR.
  49
  50  To speed up operations, QFQ+ divides also aggregates into a limited
  51  number of groups. Which group a class belongs to depends on the
  52  ratio between the maximum packet length for the class and the weight
  53  of the class. Groups have their own S and F. In the end, QFQ+
  54  schedules groups, then aggregates within groups, then classes within
  55  aggregates. See [1] and [2] for a full description.
  56
  57  Virtual time computations.
  58
  59  S, F and V are all computed in fixed point arithmetic with
  60  FRAC_BITS decimal bits.
  61
  62  QFQ_MAX_INDEX is the maximum index allowed for a group. We need
  63        one bit per index.
  64  QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
  65
  66  The layout of the bits is as below:
  67
  68                   [ MTU_SHIFT ][      FRAC_BITS    ]
  69                   [ MAX_INDEX    ][ MIN_SLOT_SHIFT ]
  70                                 ^.__grp->index = 0
  71                                 *.__grp->slot_shift
  72
  73  where MIN_SLOT_SHIFT is derived by difference from the others.
  74
  75  The max group index corresponds to Lmax/w_min, where
  76  Lmax=1<<MTU_SHIFT, w_min = 1 .
  77  From this, and knowing how many groups (MAX_INDEX) we want,
  78  we can derive the shift corresponding to each group.
  79
  80  Because we often need to compute
  81        F = S + len/w_i  and V = V + len/wsum
  82  instead of storing w_i store the value
  83        inv_w = (1<<FRAC_BITS)/w_i
  84  so we can do F = S + len * inv_w * wsum.
  85  We use W_TOT in the formulas so we can easily move between
  86  static and adaptive weight sum.
  87
  88  The per-scheduler-instance data contain all the data structures
  89  for the scheduler: bitmaps and bucket lists.
  90
  91 */
  92
  93/*
  94 * Maximum number of consecutive slots occupied by backlogged classes
  95 * inside a group.
  96 */
  97#define QFQ_MAX_SLOTS   32
  98
  99/*
 100 * Shifts used for aggregate<->group mapping.  We allow class weights that are
 101 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
 102 * group with the smallest index that can support the L_i / r_i configured
 103 * for the classes in the aggregate.
 104 *
 105 * grp->index is the index of the group; and grp->slot_shift
 106 * is the shift for the corresponding (scaled) sigma_i.
 107 */
 108#define QFQ_MAX_INDEX           24
 109#define QFQ_MAX_WSHIFT          10
 110
 111#define QFQ_MAX_WEIGHT          (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
 112#define QFQ_MAX_WSUM            (64*QFQ_MAX_WEIGHT)
 113
 114#define FRAC_BITS               30      /* fixed point arithmetic */
 115#define ONE_FP                  (1UL << FRAC_BITS)
 116
 117#define QFQ_MTU_SHIFT           16      /* to support TSO/GSO */
 118#define QFQ_MIN_LMAX            512     /* see qfq_slot_insert */
 119
 120#define QFQ_MAX_AGG_CLASSES     8 /* max num classes per aggregate allowed */
 121
 122/*
 123 * Possible group states.  These values are used as indexes for the bitmaps
 124 * array of struct qfq_queue.
 125 */
 126enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
 127
 128struct qfq_group;
 129
 130struct qfq_aggregate;
 131
 132struct qfq_class {
 133        struct Qdisc_class_common common;
 134
 135        unsigned int filter_cnt;
 136
 137        struct gnet_stats_basic_packed bstats;
 138        struct gnet_stats_queue qstats;
 139        struct net_rate_estimator __rcu *rate_est;
 140        struct Qdisc *qdisc;
 141        struct list_head alist;         /* Link for active-classes list. */
 142        struct qfq_aggregate *agg;      /* Parent aggregate. */
 143        int deficit;                    /* DRR deficit counter. */
 144};
 145
 146struct qfq_aggregate {
 147        struct hlist_node next; /* Link for the slot list. */
 148        u64 S, F;               /* flow timestamps (exact) */
 149
 150        /* group we belong to. In principle we would need the index,
 151         * which is log_2(lmax/weight), but we never reference it
 152         * directly, only the group.
 153         */
 154        struct qfq_group *grp;
 155
 156        /* these are copied from the flowset. */
 157        u32     class_weight; /* Weight of each class in this aggregate. */
 158        /* Max pkt size for the classes in this aggregate, DRR quantum. */
 159        int     lmax;
 160
 161        u32     inv_w;      /* ONE_FP/(sum of weights of classes in aggr.). */
 162        u32     budgetmax;  /* Max budget for this aggregate. */
 163        u32     initial_budget, budget;     /* Initial and current budget. */
 164
 165        int               num_classes;  /* Number of classes in this aggr. */
 166        struct list_head  active;       /* DRR queue of active classes. */
 167
 168        struct hlist_node nonfull_next; /* See nonfull_aggs in qfq_sched. */
 169};
 170
 171struct qfq_group {
 172        u64 S, F;                       /* group timestamps (approx). */
 173        unsigned int slot_shift;        /* Slot shift. */
 174        unsigned int index;             /* Group index. */
 175        unsigned int front;             /* Index of the front slot. */
 176        unsigned long full_slots;       /* non-empty slots */
 177
 178        /* Array of RR lists of active aggregates. */
 179        struct hlist_head slots[QFQ_MAX_SLOTS];
 180};
 181
 182struct qfq_sched {
 183        struct tcf_proto __rcu *filter_list;
 184        struct tcf_block        *block;
 185        struct Qdisc_class_hash clhash;
 186
 187        u64                     oldV, V;        /* Precise virtual times. */
 188        struct qfq_aggregate    *in_serv_agg;   /* Aggregate being served. */
 189        u32                     wsum;           /* weight sum */
 190        u32                     iwsum;          /* inverse weight sum */
 191
 192        unsigned long bitmaps[QFQ_MAX_STATE];       /* Group bitmaps. */
 193        struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
 194        u32 min_slot_shift;     /* Index of the group-0 bit in the bitmaps. */
 195
 196        u32 max_agg_classes;            /* Max number of classes per aggr. */
 197        struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
 198};
 199
 200/*
 201 * Possible reasons why the timestamps of an aggregate are updated
 202 * enqueue: the aggregate switches from idle to active and must scheduled
 203 *          for service
 204 * requeue: the aggregate finishes its budget, so it stops being served and
 205 *          must be rescheduled for service
 206 */
 207enum update_reason {enqueue, requeue};
 208
 209static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
 210{
 211        struct qfq_sched *q = qdisc_priv(sch);
 212        struct Qdisc_class_common *clc;
 213
 214        clc = qdisc_class_find(&q->clhash, classid);
 215        if (clc == NULL)
 216                return NULL;
 217        return container_of(clc, struct qfq_class, common);
 218}
 219
 220static void qfq_purge_queue(struct qfq_class *cl)
 221{
 222        unsigned int len = cl->qdisc->q.qlen;
 223        unsigned int backlog = cl->qdisc->qstats.backlog;
 224
 225        qdisc_reset(cl->qdisc);
 226        qdisc_tree_reduce_backlog(cl->qdisc, len, backlog);
 227}
 228
 229static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
 230        [TCA_QFQ_WEIGHT] = { .type = NLA_U32 },
 231        [TCA_QFQ_LMAX] = { .type = NLA_U32 },
 232};
 233
 234/*
 235 * Calculate a flow index, given its weight and maximum packet length.
 236 * index = log_2(maxlen/weight) but we need to apply the scaling.
 237 * This is used only once at flow creation.
 238 */
 239static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
 240{
 241        u64 slot_size = (u64)maxlen * inv_w;
 242        unsigned long size_map;
 243        int index = 0;
 244
 245        size_map = slot_size >> min_slot_shift;
 246        if (!size_map)
 247                goto out;
 248
 249        index = __fls(size_map) + 1;    /* basically a log_2 */
 250        index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
 251
 252        if (index < 0)
 253                index = 0;
 254out:
 255        pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
 256                 (unsigned long) ONE_FP/inv_w, maxlen, index);
 257
 258        return index;
 259}
 260
 261static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
 262static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
 263                             enum update_reason);
 264
 265static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
 266                         u32 lmax, u32 weight)
 267{
 268        INIT_LIST_HEAD(&agg->active);
 269        hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
 270
 271        agg->lmax = lmax;
 272        agg->class_weight = weight;
 273}
 274
 275static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
 276                                          u32 lmax, u32 weight)
 277{
 278        struct qfq_aggregate *agg;
 279
 280        hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
 281                if (agg->lmax == lmax && agg->class_weight == weight)
 282                        return agg;
 283
 284        return NULL;
 285}
 286
 287
 288/* Update aggregate as a function of the new number of classes. */
 289static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
 290                           int new_num_classes)
 291{
 292        u32 new_agg_weight;
 293
 294        if (new_num_classes == q->max_agg_classes)
 295                hlist_del_init(&agg->nonfull_next);
 296
 297        if (agg->num_classes > new_num_classes &&
 298            new_num_classes == q->max_agg_classes - 1) /* agg no more full */
 299                hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
 300
 301        /* The next assignment may let
 302         * agg->initial_budget > agg->budgetmax
 303         * hold, we will take it into account in charge_actual_service().
 304         */
 305        agg->budgetmax = new_num_classes * agg->lmax;
 306        new_agg_weight = agg->class_weight * new_num_classes;
 307        agg->inv_w = ONE_FP/new_agg_weight;
 308
 309        if (agg->grp == NULL) {
 310                int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
 311                                       q->min_slot_shift);
 312                agg->grp = &q->groups[i];
 313        }
 314
 315        q->wsum +=
 316                (int) agg->class_weight * (new_num_classes - agg->num_classes);
 317        q->iwsum = ONE_FP / q->wsum;
 318
 319        agg->num_classes = new_num_classes;
 320}
 321
 322/* Add class to aggregate. */
 323static void qfq_add_to_agg(struct qfq_sched *q,
 324                           struct qfq_aggregate *agg,
 325                           struct qfq_class *cl)
 326{
 327        cl->agg = agg;
 328
 329        qfq_update_agg(q, agg, agg->num_classes+1);
 330        if (cl->qdisc->q.qlen > 0) { /* adding an active class */
 331                list_add_tail(&cl->alist, &agg->active);
 332                if (list_first_entry(&agg->active, struct qfq_class, alist) ==
 333                    cl && q->in_serv_agg != agg) /* agg was inactive */
 334                        qfq_activate_agg(q, agg, enqueue); /* schedule agg */
 335        }
 336}
 337
 338static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
 339
 340static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
 341{
 342        hlist_del_init(&agg->nonfull_next);
 343        q->wsum -= agg->class_weight;
 344        if (q->wsum != 0)
 345                q->iwsum = ONE_FP / q->wsum;
 346
 347        if (q->in_serv_agg == agg)
 348                q->in_serv_agg = qfq_choose_next_agg(q);
 349        kfree(agg);
 350}
 351
 352/* Deschedule class from within its parent aggregate. */
 353static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
 354{
 355        struct qfq_aggregate *agg = cl->agg;
 356
 357
 358        list_del(&cl->alist); /* remove from RR queue of the aggregate */
 359        if (list_empty(&agg->active)) /* agg is now inactive */
 360                qfq_deactivate_agg(q, agg);
 361}
 362
 363/* Remove class from its parent aggregate. */
 364static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
 365{
 366        struct qfq_aggregate *agg = cl->agg;
 367
 368        cl->agg = NULL;
 369        if (agg->num_classes == 1) { /* agg being emptied, destroy it */
 370                qfq_destroy_agg(q, agg);
 371                return;
 372        }
 373        qfq_update_agg(q, agg, agg->num_classes-1);
 374}
 375
 376/* Deschedule class and remove it from its parent aggregate. */
 377static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
 378{
 379        if (cl->qdisc->q.qlen > 0) /* class is active */
 380                qfq_deactivate_class(q, cl);
 381
 382        qfq_rm_from_agg(q, cl);
 383}
 384
 385/* Move class to a new aggregate, matching the new class weight and/or lmax */
 386static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
 387                           u32 lmax)
 388{
 389        struct qfq_sched *q = qdisc_priv(sch);
 390        struct qfq_aggregate *new_agg = qfq_find_agg(q, lmax, weight);
 391
 392        if (new_agg == NULL) { /* create new aggregate */
 393                new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
 394                if (new_agg == NULL)
 395                        return -ENOBUFS;
 396                qfq_init_agg(q, new_agg, lmax, weight);
 397        }
 398        qfq_deact_rm_from_agg(q, cl);
 399        qfq_add_to_agg(q, new_agg, cl);
 400
 401        return 0;
 402}
 403
 404static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
 405                            struct nlattr **tca, unsigned long *arg)
 406{
 407        struct qfq_sched *q = qdisc_priv(sch);
 408        struct qfq_class *cl = (struct qfq_class *)*arg;
 409        bool existing = false;
 410        struct nlattr *tb[TCA_QFQ_MAX + 1];
 411        struct qfq_aggregate *new_agg = NULL;
 412        u32 weight, lmax, inv_w;
 413        int err;
 414        int delta_w;
 415
 416        if (tca[TCA_OPTIONS] == NULL) {
 417                pr_notice("qfq: no options\n");
 418                return -EINVAL;
 419        }
 420
 421        err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy);
 422        if (err < 0)
 423                return err;
 424
 425        if (tb[TCA_QFQ_WEIGHT]) {
 426                weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
 427                if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) {
 428                        pr_notice("qfq: invalid weight %u\n", weight);
 429                        return -EINVAL;
 430                }
 431        } else
 432                weight = 1;
 433
 434        if (tb[TCA_QFQ_LMAX]) {
 435                lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
 436                if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) {
 437                        pr_notice("qfq: invalid max length %u\n", lmax);
 438                        return -EINVAL;
 439                }
 440        } else
 441                lmax = psched_mtu(qdisc_dev(sch));
 442
 443        inv_w = ONE_FP / weight;
 444        weight = ONE_FP / inv_w;
 445
 446        if (cl != NULL &&
 447            lmax == cl->agg->lmax &&
 448            weight == cl->agg->class_weight)
 449                return 0; /* nothing to change */
 450
 451        delta_w = weight - (cl ? cl->agg->class_weight : 0);
 452
 453        if (q->wsum + delta_w > QFQ_MAX_WSUM) {
 454                pr_notice("qfq: total weight out of range (%d + %u)\n",
 455                          delta_w, q->wsum);
 456                return -EINVAL;
 457        }
 458
 459        if (cl != NULL) { /* modify existing class */
 460                if (tca[TCA_RATE]) {
 461                        err = gen_replace_estimator(&cl->bstats, NULL,
 462                                                    &cl->rate_est,
 463                                                    NULL,
 464                                                    qdisc_root_sleeping_running(sch),
 465                                                    tca[TCA_RATE]);
 466                        if (err)
 467                                return err;
 468                }
 469                existing = true;
 470                goto set_change_agg;
 471        }
 472
 473        /* create and init new class */
 474        cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
 475        if (cl == NULL)
 476                return -ENOBUFS;
 477
 478        cl->common.classid = classid;
 479        cl->deficit = lmax;
 480
 481        cl->qdisc = qdisc_create_dflt(sch->dev_queue,
 482                                      &pfifo_qdisc_ops, classid);
 483        if (cl->qdisc == NULL)
 484                cl->qdisc = &noop_qdisc;
 485
 486        if (tca[TCA_RATE]) {
 487                err = gen_new_estimator(&cl->bstats, NULL,
 488                                        &cl->rate_est,
 489                                        NULL,
 490                                        qdisc_root_sleeping_running(sch),
 491                                        tca[TCA_RATE]);
 492                if (err)
 493                        goto destroy_class;
 494        }
 495
 496        if (cl->qdisc != &noop_qdisc)
 497                qdisc_hash_add(cl->qdisc, true);
 498        sch_tree_lock(sch);
 499        qdisc_class_hash_insert(&q->clhash, &cl->common);
 500        sch_tree_unlock(sch);
 501
 502        qdisc_class_hash_grow(sch, &q->clhash);
 503
 504set_change_agg:
 505        sch_tree_lock(sch);
 506        new_agg = qfq_find_agg(q, lmax, weight);
 507        if (new_agg == NULL) { /* create new aggregate */
 508                sch_tree_unlock(sch);
 509                new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
 510                if (new_agg == NULL) {
 511                        err = -ENOBUFS;
 512                        gen_kill_estimator(&cl->rate_est);
 513                        goto destroy_class;
 514                }
 515                sch_tree_lock(sch);
 516                qfq_init_agg(q, new_agg, lmax, weight);
 517        }
 518        if (existing)
 519                qfq_deact_rm_from_agg(q, cl);
 520        qfq_add_to_agg(q, new_agg, cl);
 521        sch_tree_unlock(sch);
 522
 523        *arg = (unsigned long)cl;
 524        return 0;
 525
 526destroy_class:
 527        qdisc_destroy(cl->qdisc);
 528        kfree(cl);
 529        return err;
 530}
 531
 532static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
 533{
 534        struct qfq_sched *q = qdisc_priv(sch);
 535
 536        qfq_rm_from_agg(q, cl);
 537        gen_kill_estimator(&cl->rate_est);
 538        qdisc_destroy(cl->qdisc);
 539        kfree(cl);
 540}
 541
 542static int qfq_delete_class(struct Qdisc *sch, unsigned long arg)
 543{
 544        struct qfq_sched *q = qdisc_priv(sch);
 545        struct qfq_class *cl = (struct qfq_class *)arg;
 546
 547        if (cl->filter_cnt > 0)
 548                return -EBUSY;
 549
 550        sch_tree_lock(sch);
 551
 552        qfq_purge_queue(cl);
 553        qdisc_class_hash_remove(&q->clhash, &cl->common);
 554
 555        sch_tree_unlock(sch);
 556
 557        qfq_destroy_class(sch, cl);
 558        return 0;
 559}
 560
 561static unsigned long qfq_search_class(struct Qdisc *sch, u32 classid)
 562{
 563        return (unsigned long)qfq_find_class(sch, classid);
 564}
 565
 566static struct tcf_block *qfq_tcf_block(struct Qdisc *sch, unsigned long cl)
 567{
 568        struct qfq_sched *q = qdisc_priv(sch);
 569
 570        if (cl)
 571                return NULL;
 572
 573        return q->block;
 574}
 575
 576static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
 577                                  u32 classid)
 578{
 579        struct qfq_class *cl = qfq_find_class(sch, classid);
 580
 581        if (cl != NULL)
 582                cl->filter_cnt++;
 583
 584        return (unsigned long)cl;
 585}
 586
 587static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
 588{
 589        struct qfq_class *cl = (struct qfq_class *)arg;
 590
 591        cl->filter_cnt--;
 592}
 593
 594static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
 595                           struct Qdisc *new, struct Qdisc **old)
 596{
 597        struct qfq_class *cl = (struct qfq_class *)arg;
 598
 599        if (new == NULL) {
 600                new = qdisc_create_dflt(sch->dev_queue,
 601                                        &pfifo_qdisc_ops, cl->common.classid);
 602                if (new == NULL)
 603                        new = &noop_qdisc;
 604        }
 605
 606        *old = qdisc_replace(sch, new, &cl->qdisc);
 607        return 0;
 608}
 609
 610static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
 611{
 612        struct qfq_class *cl = (struct qfq_class *)arg;
 613
 614        return cl->qdisc;
 615}
 616
 617static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
 618                          struct sk_buff *skb, struct tcmsg *tcm)
 619{
 620        struct qfq_class *cl = (struct qfq_class *)arg;
 621        struct nlattr *nest;
 622
 623        tcm->tcm_parent = TC_H_ROOT;
 624        tcm->tcm_handle = cl->common.classid;
 625        tcm->tcm_info   = cl->qdisc->handle;
 626
 627        nest = nla_nest_start(skb, TCA_OPTIONS);
 628        if (nest == NULL)
 629                goto nla_put_failure;
 630        if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
 631            nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
 632                goto nla_put_failure;
 633        return nla_nest_end(skb, nest);
 634
 635nla_put_failure:
 636        nla_nest_cancel(skb, nest);
 637        return -EMSGSIZE;
 638}
 639
 640static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
 641                                struct gnet_dump *d)
 642{
 643        struct qfq_class *cl = (struct qfq_class *)arg;
 644        struct tc_qfq_stats xstats;
 645
 646        memset(&xstats, 0, sizeof(xstats));
 647
 648        xstats.weight = cl->agg->class_weight;
 649        xstats.lmax = cl->agg->lmax;
 650
 651        if (gnet_stats_copy_basic(qdisc_root_sleeping_running(sch),
 652                                  d, NULL, &cl->bstats) < 0 ||
 653            gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 ||
 654            gnet_stats_copy_queue(d, NULL,
 655                                  &cl->qdisc->qstats, cl->qdisc->q.qlen) < 0)
 656                return -1;
 657
 658        return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
 659}
 660
 661static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
 662{
 663        struct qfq_sched *q = qdisc_priv(sch);
 664        struct qfq_class *cl;
 665        unsigned int i;
 666
 667        if (arg->stop)
 668                return;
 669
 670        for (i = 0; i < q->clhash.hashsize; i++) {
 671                hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
 672                        if (arg->count < arg->skip) {
 673                                arg->count++;
 674                                continue;
 675                        }
 676                        if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
 677                                arg->stop = 1;
 678                                return;
 679                        }
 680                        arg->count++;
 681                }
 682        }
 683}
 684
 685static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
 686                                      int *qerr)
 687{
 688        struct qfq_sched *q = qdisc_priv(sch);
 689        struct qfq_class *cl;
 690        struct tcf_result res;
 691        struct tcf_proto *fl;
 692        int result;
 693
 694        if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
 695                pr_debug("qfq_classify: found %d\n", skb->priority);
 696                cl = qfq_find_class(sch, skb->priority);
 697                if (cl != NULL)
 698                        return cl;
 699        }
 700
 701        *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
 702        fl = rcu_dereference_bh(q->filter_list);
 703        result = tcf_classify(skb, fl, &res, false);
 704        if (result >= 0) {
 705#ifdef CONFIG_NET_CLS_ACT
 706                switch (result) {
 707                case TC_ACT_QUEUED:
 708                case TC_ACT_STOLEN:
 709                case TC_ACT_TRAP:
 710                        *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
 711                case TC_ACT_SHOT:
 712                        return NULL;
 713                }
 714#endif
 715                cl = (struct qfq_class *)res.class;
 716                if (cl == NULL)
 717                        cl = qfq_find_class(sch, res.classid);
 718                return cl;
 719        }
 720
 721        return NULL;
 722}
 723
 724/* Generic comparison function, handling wraparound. */
 725static inline int qfq_gt(u64 a, u64 b)
 726{
 727        return (s64)(a - b) > 0;
 728}
 729
 730/* Round a precise timestamp to its slotted value. */
 731static inline u64 qfq_round_down(u64 ts, unsigned int shift)
 732{
 733        return ts & ~((1ULL << shift) - 1);
 734}
 735
 736/* return the pointer to the group with lowest index in the bitmap */
 737static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
 738                                        unsigned long bitmap)
 739{
 740        int index = __ffs(bitmap);
 741        return &q->groups[index];
 742}
 743/* Calculate a mask to mimic what would be ffs_from(). */
 744static inline unsigned long mask_from(unsigned long bitmap, int from)
 745{
 746        return bitmap & ~((1UL << from) - 1);
 747}
 748
 749/*
 750 * The state computation relies on ER=0, IR=1, EB=2, IB=3
 751 * First compute eligibility comparing grp->S, q->V,
 752 * then check if someone is blocking us and possibly add EB
 753 */
 754static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
 755{
 756        /* if S > V we are not eligible */
 757        unsigned int state = qfq_gt(grp->S, q->V);
 758        unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
 759        struct qfq_group *next;
 760
 761        if (mask) {
 762                next = qfq_ffs(q, mask);
 763                if (qfq_gt(grp->F, next->F))
 764                        state |= EB;
 765        }
 766
 767        return state;
 768}
 769
 770
 771/*
 772 * In principle
 773 *      q->bitmaps[dst] |= q->bitmaps[src] & mask;
 774 *      q->bitmaps[src] &= ~mask;
 775 * but we should make sure that src != dst
 776 */
 777static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
 778                                   int src, int dst)
 779{
 780        q->bitmaps[dst] |= q->bitmaps[src] & mask;
 781        q->bitmaps[src] &= ~mask;
 782}
 783
 784static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
 785{
 786        unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
 787        struct qfq_group *next;
 788
 789        if (mask) {
 790                next = qfq_ffs(q, mask);
 791                if (!qfq_gt(next->F, old_F))
 792                        return;
 793        }
 794
 795        mask = (1UL << index) - 1;
 796        qfq_move_groups(q, mask, EB, ER);
 797        qfq_move_groups(q, mask, IB, IR);
 798}
 799
 800/*
 801 * perhaps
 802 *
 803        old_V ^= q->V;
 804        old_V >>= q->min_slot_shift;
 805        if (old_V) {
 806                ...
 807        }
 808 *
 809 */
 810static void qfq_make_eligible(struct qfq_sched *q)
 811{
 812        unsigned long vslot = q->V >> q->min_slot_shift;
 813        unsigned long old_vslot = q->oldV >> q->min_slot_shift;
 814
 815        if (vslot != old_vslot) {
 816                unsigned long mask;
 817                int last_flip_pos = fls(vslot ^ old_vslot);
 818
 819                if (last_flip_pos > 31) /* higher than the number of groups */
 820                        mask = ~0UL;    /* make all groups eligible */
 821                else
 822                        mask = (1UL << last_flip_pos) - 1;
 823
 824                qfq_move_groups(q, mask, IR, ER);
 825                qfq_move_groups(q, mask, IB, EB);
 826        }
 827}
 828
 829/*
 830 * The index of the slot in which the input aggregate agg is to be
 831 * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2'
 832 * and not a '-1' because the start time of the group may be moved
 833 * backward by one slot after the aggregate has been inserted, and
 834 * this would cause non-empty slots to be right-shifted by one
 835 * position.
 836 *
 837 * QFQ+ fully satisfies this bound to the slot index if the parameters
 838 * of the classes are not changed dynamically, and if QFQ+ never
 839 * happens to postpone the service of agg unjustly, i.e., it never
 840 * happens that the aggregate becomes backlogged and eligible, or just
 841 * eligible, while an aggregate with a higher approximated finish time
 842 * is being served. In particular, in this case QFQ+ guarantees that
 843 * the timestamps of agg are low enough that the slot index is never
 844 * higher than 2. Unfortunately, QFQ+ cannot provide the same
 845 * guarantee if it happens to unjustly postpone the service of agg, or
 846 * if the parameters of some class are changed.
 847 *
 848 * As for the first event, i.e., an out-of-order service, the
 849 * upper bound to the slot index guaranteed by QFQ+ grows to
 850 * 2 +
 851 * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
 852 * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1.
 853 *
 854 * The following function deals with this problem by backward-shifting
 855 * the timestamps of agg, if needed, so as to guarantee that the slot
 856 * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may
 857 * cause the service of other aggregates to be postponed, yet the
 858 * worst-case guarantees of these aggregates are not violated.  In
 859 * fact, in case of no out-of-order service, the timestamps of agg
 860 * would have been even lower than they are after the backward shift,
 861 * because QFQ+ would have guaranteed a maximum value equal to 2 for
 862 * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose
 863 * service is postponed because of the backward-shift would have
 864 * however waited for the service of agg before being served.
 865 *
 866 * The other event that may cause the slot index to be higher than 2
 867 * for agg is a recent change of the parameters of some class. If the
 868 * weight of a class is increased or the lmax (max_pkt_size) of the
 869 * class is decreased, then a new aggregate with smaller slot size
 870 * than the original parent aggregate of the class may happen to be
 871 * activated. The activation of this aggregate should be properly
 872 * delayed to when the service of the class has finished in the ideal
 873 * system tracked by QFQ+. If the activation of the aggregate is not
 874 * delayed to this reference time instant, then this aggregate may be
 875 * unjustly served before other aggregates waiting for service. This
 876 * may cause the above bound to the slot index to be violated for some
 877 * of these unlucky aggregates.
 878 *
 879 * Instead of delaying the activation of the new aggregate, which is
 880 * quite complex, the above-discussed capping of the slot index is
 881 * used to handle also the consequences of a change of the parameters
 882 * of a class.
 883 */
 884static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
 885                            u64 roundedS)
 886{
 887        u64 slot = (roundedS - grp->S) >> grp->slot_shift;
 888        unsigned int i; /* slot index in the bucket list */
 889
 890        if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
 891                u64 deltaS = roundedS - grp->S -
 892                        ((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
 893                agg->S -= deltaS;
 894                agg->F -= deltaS;
 895                slot = QFQ_MAX_SLOTS - 2;
 896        }
 897
 898        i = (grp->front + slot) % QFQ_MAX_SLOTS;
 899
 900        hlist_add_head(&agg->next, &grp->slots[i]);
 901        __set_bit(slot, &grp->full_slots);
 902}
 903
 904/* Maybe introduce hlist_first_entry?? */
 905static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
 906{
 907        return hlist_entry(grp->slots[grp->front].first,
 908                           struct qfq_aggregate, next);
 909}
 910
 911/*
 912 * remove the entry from the slot
 913 */
 914static void qfq_front_slot_remove(struct qfq_group *grp)
 915{
 916        struct qfq_aggregate *agg = qfq_slot_head(grp);
 917
 918        BUG_ON(!agg);
 919        hlist_del(&agg->next);
 920        if (hlist_empty(&grp->slots[grp->front]))
 921                __clear_bit(0, &grp->full_slots);
 922}
 923
 924/*
 925 * Returns the first aggregate in the first non-empty bucket of the
 926 * group. As a side effect, adjusts the bucket list so the first
 927 * non-empty bucket is at position 0 in full_slots.
 928 */
 929static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
 930{
 931        unsigned int i;
 932
 933        pr_debug("qfq slot_scan: grp %u full %#lx\n",
 934                 grp->index, grp->full_slots);
 935
 936        if (grp->full_slots == 0)
 937                return NULL;
 938
 939        i = __ffs(grp->full_slots);  /* zero based */
 940        if (i > 0) {
 941                grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
 942                grp->full_slots >>= i;
 943        }
 944
 945        return qfq_slot_head(grp);
 946}
 947
 948/*
 949 * adjust the bucket list. When the start time of a group decreases,
 950 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
 951 * move the objects. The mask of occupied slots must be shifted
 952 * because we use ffs() to find the first non-empty slot.
 953 * This covers decreases in the group's start time, but what about
 954 * increases of the start time ?
 955 * Here too we should make sure that i is less than 32
 956 */
 957static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
 958{
 959        unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
 960
 961        grp->full_slots <<= i;
 962        grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
 963}
 964
 965static void qfq_update_eligible(struct qfq_sched *q)
 966{
 967        struct qfq_group *grp;
 968        unsigned long ineligible;
 969
 970        ineligible = q->bitmaps[IR] | q->bitmaps[IB];
 971        if (ineligible) {
 972                if (!q->bitmaps[ER]) {
 973                        grp = qfq_ffs(q, ineligible);
 974                        if (qfq_gt(grp->S, q->V))
 975                                q->V = grp->S;
 976                }
 977                qfq_make_eligible(q);
 978        }
 979}
 980
 981/* Dequeue head packet of the head class in the DRR queue of the aggregate. */
 982static void agg_dequeue(struct qfq_aggregate *agg,
 983                        struct qfq_class *cl, unsigned int len)
 984{
 985        qdisc_dequeue_peeked(cl->qdisc);
 986
 987        cl->deficit -= (int) len;
 988
 989        if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
 990                list_del(&cl->alist);
 991        else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
 992                cl->deficit += agg->lmax;
 993                list_move_tail(&cl->alist, &agg->active);
 994        }
 995}
 996
 997static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
 998                                           struct qfq_class **cl,
 999                                           unsigned int *len)
1000{
1001        struct sk_buff *skb;
1002
1003        *cl = list_first_entry(&agg->active, struct qfq_class, alist);
1004        skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
1005        if (skb == NULL)
1006                WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
1007        else
1008                *len = qdisc_pkt_len(skb);
1009
1010        return skb;
1011}
1012
1013/* Update F according to the actual service received by the aggregate. */
1014static inline void charge_actual_service(struct qfq_aggregate *agg)
1015{
1016        /* Compute the service received by the aggregate, taking into
1017         * account that, after decreasing the number of classes in
1018         * agg, it may happen that
1019         * agg->initial_budget - agg->budget > agg->bugdetmax
1020         */
1021        u32 service_received = min(agg->budgetmax,
1022                                   agg->initial_budget - agg->budget);
1023
1024        agg->F = agg->S + (u64)service_received * agg->inv_w;
1025}
1026
1027/* Assign a reasonable start time for a new aggregate in group i.
1028 * Admissible values for \hat(F) are multiples of \sigma_i
1029 * no greater than V+\sigma_i . Larger values mean that
1030 * we had a wraparound so we consider the timestamp to be stale.
1031 *
1032 * If F is not stale and F >= V then we set S = F.
1033 * Otherwise we should assign S = V, but this may violate
1034 * the ordering in EB (see [2]). So, if we have groups in ER,
1035 * set S to the F_j of the first group j which would be blocking us.
1036 * We are guaranteed not to move S backward because
1037 * otherwise our group i would still be blocked.
1038 */
1039static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
1040{
1041        unsigned long mask;
1042        u64 limit, roundedF;
1043        int slot_shift = agg->grp->slot_shift;
1044
1045        roundedF = qfq_round_down(agg->F, slot_shift);
1046        limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
1047
1048        if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
1049                /* timestamp was stale */
1050                mask = mask_from(q->bitmaps[ER], agg->grp->index);
1051                if (mask) {
1052                        struct qfq_group *next = qfq_ffs(q, mask);
1053                        if (qfq_gt(roundedF, next->F)) {
1054                                if (qfq_gt(limit, next->F))
1055                                        agg->S = next->F;
1056                                else /* preserve timestamp correctness */
1057                                        agg->S = limit;
1058                                return;
1059                        }
1060                }
1061                agg->S = q->V;
1062        } else  /* timestamp is not stale */
1063                agg->S = agg->F;
1064}
1065
1066/* Update the timestamps of agg before scheduling/rescheduling it for
1067 * service.  In particular, assign to agg->F its maximum possible
1068 * value, i.e., the virtual finish time with which the aggregate
1069 * should be labeled if it used all its budget once in service.
1070 */
1071static inline void
1072qfq_update_agg_ts(struct qfq_sched *q,
1073                    struct qfq_aggregate *agg, enum update_reason reason)
1074{
1075        if (reason != requeue)
1076                qfq_update_start(q, agg);
1077        else /* just charge agg for the service received */
1078                agg->S = agg->F;
1079
1080        agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
1081}
1082
1083static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
1084
1085static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
1086{
1087        struct qfq_sched *q = qdisc_priv(sch);
1088        struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
1089        struct qfq_class *cl;
1090        struct sk_buff *skb = NULL;
1091        /* next-packet len, 0 means no more active classes in in-service agg */
1092        unsigned int len = 0;
1093
1094        if (in_serv_agg == NULL)
1095                return NULL;
1096
1097        if (!list_empty(&in_serv_agg->active))
1098                skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1099
1100        /*
1101         * If there are no active classes in the in-service aggregate,
1102         * or if the aggregate has not enough budget to serve its next
1103         * class, then choose the next aggregate to serve.
1104         */
1105        if (len == 0 || in_serv_agg->budget < len) {
1106                charge_actual_service(in_serv_agg);
1107
1108                /* recharge the budget of the aggregate */
1109                in_serv_agg->initial_budget = in_serv_agg->budget =
1110                        in_serv_agg->budgetmax;
1111
1112                if (!list_empty(&in_serv_agg->active)) {
1113                        /*
1114                         * Still active: reschedule for
1115                         * service. Possible optimization: if no other
1116                         * aggregate is active, then there is no point
1117                         * in rescheduling this aggregate, and we can
1118                         * just keep it as the in-service one. This
1119                         * should be however a corner case, and to
1120                         * handle it, we would need to maintain an
1121                         * extra num_active_aggs field.
1122                        */
1123                        qfq_update_agg_ts(q, in_serv_agg, requeue);
1124                        qfq_schedule_agg(q, in_serv_agg);
1125                } else if (sch->q.qlen == 0) { /* no aggregate to serve */
1126                        q->in_serv_agg = NULL;
1127                        return NULL;
1128                }
1129
1130                /*
1131                 * If we get here, there are other aggregates queued:
1132                 * choose the new aggregate to serve.
1133                 */
1134                in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
1135                skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1136        }
1137        if (!skb)
1138                return NULL;
1139
1140        qdisc_qstats_backlog_dec(sch, skb);
1141        sch->q.qlen--;
1142        qdisc_bstats_update(sch, skb);
1143
1144        agg_dequeue(in_serv_agg, cl, len);
1145        /* If lmax is lowered, through qfq_change_class, for a class
1146         * owning pending packets with larger size than the new value
1147         * of lmax, then the following condition may hold.
1148         */
1149        if (unlikely(in_serv_agg->budget < len))
1150                in_serv_agg->budget = 0;
1151        else
1152                in_serv_agg->budget -= len;
1153
1154        q->V += (u64)len * q->iwsum;
1155        pr_debug("qfq dequeue: len %u F %lld now %lld\n",
1156                 len, (unsigned long long) in_serv_agg->F,
1157                 (unsigned long long) q->V);
1158
1159        return skb;
1160}
1161
1162static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
1163{
1164        struct qfq_group *grp;
1165        struct qfq_aggregate *agg, *new_front_agg;
1166        u64 old_F;
1167
1168        qfq_update_eligible(q);
1169        q->oldV = q->V;
1170
1171        if (!q->bitmaps[ER])
1172                return NULL;
1173
1174        grp = qfq_ffs(q, q->bitmaps[ER]);
1175        old_F = grp->F;
1176
1177        agg = qfq_slot_head(grp);
1178
1179        /* agg starts to be served, remove it from schedule */
1180        qfq_front_slot_remove(grp);
1181
1182        new_front_agg = qfq_slot_scan(grp);
1183
1184        if (new_front_agg == NULL) /* group is now inactive, remove from ER */
1185                __clear_bit(grp->index, &q->bitmaps[ER]);
1186        else {
1187                u64 roundedS = qfq_round_down(new_front_agg->S,
1188                                              grp->slot_shift);
1189                unsigned int s;
1190
1191                if (grp->S == roundedS)
1192                        return agg;
1193                grp->S = roundedS;
1194                grp->F = roundedS + (2ULL << grp->slot_shift);
1195                __clear_bit(grp->index, &q->bitmaps[ER]);
1196                s = qfq_calc_state(q, grp);
1197                __set_bit(grp->index, &q->bitmaps[s]);
1198        }
1199
1200        qfq_unblock_groups(q, grp->index, old_F);
1201
1202        return agg;
1203}
1204
1205static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
1206                       struct sk_buff **to_free)
1207{
1208        struct qfq_sched *q = qdisc_priv(sch);
1209        struct qfq_class *cl;
1210        struct qfq_aggregate *agg;
1211        int err = 0;
1212
1213        cl = qfq_classify(skb, sch, &err);
1214        if (cl == NULL) {
1215                if (err & __NET_XMIT_BYPASS)
1216                        qdisc_qstats_drop(sch);
1217                __qdisc_drop(skb, to_free);
1218                return err;
1219        }
1220        pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
1221
1222        if (unlikely(cl->agg->lmax < qdisc_pkt_len(skb))) {
1223                pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
1224                         cl->agg->lmax, qdisc_pkt_len(skb), cl->common.classid);
1225                err = qfq_change_agg(sch, cl, cl->agg->class_weight,
1226                                     qdisc_pkt_len(skb));
1227                if (err) {
1228                        cl->qstats.drops++;
1229                        return qdisc_drop(skb, sch, to_free);
1230                }
1231        }
1232
1233        err = qdisc_enqueue(skb, cl->qdisc, to_free);
1234        if (unlikely(err != NET_XMIT_SUCCESS)) {
1235                pr_debug("qfq_enqueue: enqueue failed %d\n", err);
1236                if (net_xmit_drop_count(err)) {
1237                        cl->qstats.drops++;
1238                        qdisc_qstats_drop(sch);
1239                }
1240                return err;
1241        }
1242
1243        bstats_update(&cl->bstats, skb);
1244        qdisc_qstats_backlog_inc(sch, skb);
1245        ++sch->q.qlen;
1246
1247        agg = cl->agg;
1248        /* if the queue was not empty, then done here */
1249        if (cl->qdisc->q.qlen != 1) {
1250                if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
1251                    list_first_entry(&agg->active, struct qfq_class, alist)
1252                    == cl && cl->deficit < qdisc_pkt_len(skb))
1253                        list_move_tail(&cl->alist, &agg->active);
1254
1255                return err;
1256        }
1257
1258        /* schedule class for service within the aggregate */
1259        cl->deficit = agg->lmax;
1260        list_add_tail(&cl->alist, &agg->active);
1261
1262        if (list_first_entry(&agg->active, struct qfq_class, alist) != cl ||
1263            q->in_serv_agg == agg)
1264                return err; /* non-empty or in service, nothing else to do */
1265
1266        qfq_activate_agg(q, agg, enqueue);
1267
1268        return err;
1269}
1270
1271/*
1272 * Schedule aggregate according to its timestamps.
1273 */
1274static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1275{
1276        struct qfq_group *grp = agg->grp;
1277        u64 roundedS;
1278        int s;
1279
1280        roundedS = qfq_round_down(agg->S, grp->slot_shift);
1281
1282        /*
1283         * Insert agg in the correct bucket.
1284         * If agg->S >= grp->S we don't need to adjust the
1285         * bucket list and simply go to the insertion phase.
1286         * Otherwise grp->S is decreasing, we must make room
1287         * in the bucket list, and also recompute the group state.
1288         * Finally, if there were no flows in this group and nobody
1289         * was in ER make sure to adjust V.
1290         */
1291        if (grp->full_slots) {
1292                if (!qfq_gt(grp->S, agg->S))
1293                        goto skip_update;
1294
1295                /* create a slot for this agg->S */
1296                qfq_slot_rotate(grp, roundedS);
1297                /* group was surely ineligible, remove */
1298                __clear_bit(grp->index, &q->bitmaps[IR]);
1299                __clear_bit(grp->index, &q->bitmaps[IB]);
1300        } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) &&
1301                   q->in_serv_agg == NULL)
1302                q->V = roundedS;
1303
1304        grp->S = roundedS;
1305        grp->F = roundedS + (2ULL << grp->slot_shift);
1306        s = qfq_calc_state(q, grp);
1307        __set_bit(grp->index, &q->bitmaps[s]);
1308
1309        pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1310                 s, q->bitmaps[s],
1311                 (unsigned long long) agg->S,
1312                 (unsigned long long) agg->F,
1313                 (unsigned long long) q->V);
1314
1315skip_update:
1316        qfq_slot_insert(grp, agg, roundedS);
1317}
1318
1319
1320/* Update agg ts and schedule agg for service */
1321static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
1322                             enum update_reason reason)
1323{
1324        agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */
1325
1326        qfq_update_agg_ts(q, agg, reason);
1327        if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */
1328                q->in_serv_agg = agg; /* start serving this aggregate */
1329                 /* update V: to be in service, agg must be eligible */
1330                q->oldV = q->V = agg->S;
1331        } else if (agg != q->in_serv_agg)
1332                qfq_schedule_agg(q, agg);
1333}
1334
1335static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
1336                            struct qfq_aggregate *agg)
1337{
1338        unsigned int i, offset;
1339        u64 roundedS;
1340
1341        roundedS = qfq_round_down(agg->S, grp->slot_shift);
1342        offset = (roundedS - grp->S) >> grp->slot_shift;
1343
1344        i = (grp->front + offset) % QFQ_MAX_SLOTS;
1345
1346        hlist_del(&agg->next);
1347        if (hlist_empty(&grp->slots[i]))
1348                __clear_bit(offset, &grp->full_slots);
1349}
1350
1351/*
1352 * Called to forcibly deschedule an aggregate.  If the aggregate is
1353 * not in the front bucket, or if the latter has other aggregates in
1354 * the front bucket, we can simply remove the aggregate with no other
1355 * side effects.
1356 * Otherwise we must propagate the event up.
1357 */
1358static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1359{
1360        struct qfq_group *grp = agg->grp;
1361        unsigned long mask;
1362        u64 roundedS;
1363        int s;
1364
1365        if (agg == q->in_serv_agg) {
1366                charge_actual_service(agg);
1367                q->in_serv_agg = qfq_choose_next_agg(q);
1368                return;
1369        }
1370
1371        agg->F = agg->S;
1372        qfq_slot_remove(q, grp, agg);
1373
1374        if (!grp->full_slots) {
1375                __clear_bit(grp->index, &q->bitmaps[IR]);
1376                __clear_bit(grp->index, &q->bitmaps[EB]);
1377                __clear_bit(grp->index, &q->bitmaps[IB]);
1378
1379                if (test_bit(grp->index, &q->bitmaps[ER]) &&
1380                    !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1381                        mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1382                        if (mask)
1383                                mask = ~((1UL << __fls(mask)) - 1);
1384                        else
1385                                mask = ~0UL;
1386                        qfq_move_groups(q, mask, EB, ER);
1387                        qfq_move_groups(q, mask, IB, IR);
1388                }
1389                __clear_bit(grp->index, &q->bitmaps[ER]);
1390        } else if (hlist_empty(&grp->slots[grp->front])) {
1391                agg = qfq_slot_scan(grp);
1392                roundedS = qfq_round_down(agg->S, grp->slot_shift);
1393                if (grp->S != roundedS) {
1394                        __clear_bit(grp->index, &q->bitmaps[ER]);
1395                        __clear_bit(grp->index, &q->bitmaps[IR]);
1396                        __clear_bit(grp->index, &q->bitmaps[EB]);
1397                        __clear_bit(grp->index, &q->bitmaps[IB]);
1398                        grp->S = roundedS;
1399                        grp->F = roundedS + (2ULL << grp->slot_shift);
1400                        s = qfq_calc_state(q, grp);
1401                        __set_bit(grp->index, &q->bitmaps[s]);
1402                }
1403        }
1404}
1405
1406static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1407{
1408        struct qfq_sched *q = qdisc_priv(sch);
1409        struct qfq_class *cl = (struct qfq_class *)arg;
1410
1411        qfq_deactivate_class(q, cl);
1412}
1413
1414static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt)
1415{
1416        struct qfq_sched *q = qdisc_priv(sch);
1417        struct qfq_group *grp;
1418        int i, j, err;
1419        u32 max_cl_shift, maxbudg_shift, max_classes;
1420
1421        err = tcf_block_get(&q->block, &q->filter_list);
1422        if (err)
1423                return err;
1424
1425        err = qdisc_class_hash_init(&q->clhash);
1426        if (err < 0)
1427                return err;
1428
1429        if (qdisc_dev(sch)->tx_queue_len + 1 > QFQ_MAX_AGG_CLASSES)
1430                max_classes = QFQ_MAX_AGG_CLASSES;
1431        else
1432                max_classes = qdisc_dev(sch)->tx_queue_len + 1;
1433        /* max_cl_shift = floor(log_2(max_classes)) */
1434        max_cl_shift = __fls(max_classes);
1435        q->max_agg_classes = 1<<max_cl_shift;
1436
1437        /* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1438        maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
1439        q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
1440
1441        for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1442                grp = &q->groups[i];
1443                grp->index = i;
1444                grp->slot_shift = q->min_slot_shift + i;
1445                for (j = 0; j < QFQ_MAX_SLOTS; j++)
1446                        INIT_HLIST_HEAD(&grp->slots[j]);
1447        }
1448
1449        INIT_HLIST_HEAD(&q->nonfull_aggs);
1450
1451        return 0;
1452}
1453
1454static void qfq_reset_qdisc(struct Qdisc *sch)
1455{
1456        struct qfq_sched *q = qdisc_priv(sch);
1457        struct qfq_class *cl;
1458        unsigned int i;
1459
1460        for (i = 0; i < q->clhash.hashsize; i++) {
1461                hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
1462                        if (cl->qdisc->q.qlen > 0)
1463                                qfq_deactivate_class(q, cl);
1464
1465                        qdisc_reset(cl->qdisc);
1466                }
1467        }
1468        sch->qstats.backlog = 0;
1469        sch->q.qlen = 0;
1470}
1471
1472static void qfq_destroy_qdisc(struct Qdisc *sch)
1473{
1474        struct qfq_sched *q = qdisc_priv(sch);
1475        struct qfq_class *cl;
1476        struct hlist_node *next;
1477        unsigned int i;
1478
1479        tcf_block_put(q->block);
1480
1481        for (i = 0; i < q->clhash.hashsize; i++) {
1482                hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
1483                                          common.hnode) {
1484                        qfq_destroy_class(sch, cl);
1485                }
1486        }
1487        qdisc_class_hash_destroy(&q->clhash);
1488}
1489
1490static const struct Qdisc_class_ops qfq_class_ops = {
1491        .change         = qfq_change_class,
1492        .delete         = qfq_delete_class,
1493        .find           = qfq_search_class,
1494        .tcf_block      = qfq_tcf_block,
1495        .bind_tcf       = qfq_bind_tcf,
1496        .unbind_tcf     = qfq_unbind_tcf,
1497        .graft          = qfq_graft_class,
1498        .leaf           = qfq_class_leaf,
1499        .qlen_notify    = qfq_qlen_notify,
1500        .dump           = qfq_dump_class,
1501        .dump_stats     = qfq_dump_class_stats,
1502        .walk           = qfq_walk,
1503};
1504
1505static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1506        .cl_ops         = &qfq_class_ops,
1507        .id             = "qfq",
1508        .priv_size      = sizeof(struct qfq_sched),
1509        .enqueue        = qfq_enqueue,
1510        .dequeue        = qfq_dequeue,
1511        .peek           = qdisc_peek_dequeued,
1512        .init           = qfq_init_qdisc,
1513        .reset          = qfq_reset_qdisc,
1514        .destroy        = qfq_destroy_qdisc,
1515        .owner          = THIS_MODULE,
1516};
1517
1518static int __init qfq_init(void)
1519{
1520        return register_qdisc(&qfq_qdisc_ops);
1521}
1522
1523static void __exit qfq_exit(void)
1524{
1525        unregister_qdisc(&qfq_qdisc_ops);
1526}
1527
1528module_init(qfq_init);
1529module_exit(qfq_exit);
1530MODULE_LICENSE("GPL");
1531