linux/net/vmw_vsock/af_vsock.c
<<
>>
Prefs
   1/*
   2 * VMware vSockets Driver
   3 *
   4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License as published by the Free
   8 * Software Foundation version 2 and no later version.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 */
  15
  16/* Implementation notes:
  17 *
  18 * - There are two kinds of sockets: those created by user action (such as
  19 * calling socket(2)) and those created by incoming connection request packets.
  20 *
  21 * - There are two "global" tables, one for bound sockets (sockets that have
  22 * specified an address that they are responsible for) and one for connected
  23 * sockets (sockets that have established a connection with another socket).
  24 * These tables are "global" in that all sockets on the system are placed
  25 * within them. - Note, though, that the bound table contains an extra entry
  26 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
  27 * that list. The bound table is used solely for lookup of sockets when packets
  28 * are received and that's not necessary for SOCK_DGRAM sockets since we create
  29 * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
  30 * sockets out of the bound hash buckets will reduce the chance of collisions
  31 * when looking for SOCK_STREAM sockets and prevents us from having to check the
  32 * socket type in the hash table lookups.
  33 *
  34 * - Sockets created by user action will either be "client" sockets that
  35 * initiate a connection or "server" sockets that listen for connections; we do
  36 * not support simultaneous connects (two "client" sockets connecting).
  37 *
  38 * - "Server" sockets are referred to as listener sockets throughout this
  39 * implementation because they are in the TCP_LISTEN state.  When a
  40 * connection request is received (the second kind of socket mentioned above),
  41 * we create a new socket and refer to it as a pending socket.  These pending
  42 * sockets are placed on the pending connection list of the listener socket.
  43 * When future packets are received for the address the listener socket is
  44 * bound to, we check if the source of the packet is from one that has an
  45 * existing pending connection.  If it does, we process the packet for the
  46 * pending socket.  When that socket reaches the connected state, it is removed
  47 * from the listener socket's pending list and enqueued in the listener
  48 * socket's accept queue.  Callers of accept(2) will accept connected sockets
  49 * from the listener socket's accept queue.  If the socket cannot be accepted
  50 * for some reason then it is marked rejected.  Once the connection is
  51 * accepted, it is owned by the user process and the responsibility for cleanup
  52 * falls with that user process.
  53 *
  54 * - It is possible that these pending sockets will never reach the connected
  55 * state; in fact, we may never receive another packet after the connection
  56 * request.  Because of this, we must schedule a cleanup function to run in the
  57 * future, after some amount of time passes where a connection should have been
  58 * established.  This function ensures that the socket is off all lists so it
  59 * cannot be retrieved, then drops all references to the socket so it is cleaned
  60 * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
  61 * function will also cleanup rejected sockets, those that reach the connected
  62 * state but leave it before they have been accepted.
  63 *
  64 * - Lock ordering for pending or accept queue sockets is:
  65 *
  66 *     lock_sock(listener);
  67 *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
  68 *
  69 * Using explicit nested locking keeps lockdep happy since normally only one
  70 * lock of a given class may be taken at a time.
  71 *
  72 * - Sockets created by user action will be cleaned up when the user process
  73 * calls close(2), causing our release implementation to be called. Our release
  74 * implementation will perform some cleanup then drop the last reference so our
  75 * sk_destruct implementation is invoked.  Our sk_destruct implementation will
  76 * perform additional cleanup that's common for both types of sockets.
  77 *
  78 * - A socket's reference count is what ensures that the structure won't be
  79 * freed.  Each entry in a list (such as the "global" bound and connected tables
  80 * and the listener socket's pending list and connected queue) ensures a
  81 * reference.  When we defer work until process context and pass a socket as our
  82 * argument, we must ensure the reference count is increased to ensure the
  83 * socket isn't freed before the function is run; the deferred function will
  84 * then drop the reference.
  85 *
  86 * - sk->sk_state uses the TCP state constants because they are widely used by
  87 * other address families and exposed to userspace tools like ss(8):
  88 *
  89 *   TCP_CLOSE - unconnected
  90 *   TCP_SYN_SENT - connecting
  91 *   TCP_ESTABLISHED - connected
  92 *   TCP_CLOSING - disconnecting
  93 *   TCP_LISTEN - listening
  94 */
  95
  96#include <linux/types.h>
  97#include <linux/bitops.h>
  98#include <linux/cred.h>
  99#include <linux/init.h>
 100#include <linux/io.h>
 101#include <linux/kernel.h>
 102#include <linux/kmod.h>
 103#include <linux/list.h>
 104#include <linux/miscdevice.h>
 105#include <linux/module.h>
 106#include <linux/mutex.h>
 107#include <linux/net.h>
 108#include <linux/poll.h>
 109#include <linux/skbuff.h>
 110#include <linux/smp.h>
 111#include <linux/socket.h>
 112#include <linux/stddef.h>
 113#include <linux/unistd.h>
 114#include <linux/wait.h>
 115#include <linux/workqueue.h>
 116#include <net/sock.h>
 117#include <net/af_vsock.h>
 118
 119static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
 120static void vsock_sk_destruct(struct sock *sk);
 121static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
 122
 123/* Protocol family. */
 124static struct proto vsock_proto = {
 125        .name = "AF_VSOCK",
 126        .owner = THIS_MODULE,
 127        .obj_size = sizeof(struct vsock_sock),
 128};
 129
 130/* The default peer timeout indicates how long we will wait for a peer response
 131 * to a control message.
 132 */
 133#define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
 134
 135static const struct vsock_transport *transport;
 136static DEFINE_MUTEX(vsock_register_mutex);
 137
 138/**** EXPORTS ****/
 139
 140/* Get the ID of the local context.  This is transport dependent. */
 141
 142int vm_sockets_get_local_cid(void)
 143{
 144        return transport->get_local_cid();
 145}
 146EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid);
 147
 148/**** UTILS ****/
 149
 150/* Each bound VSocket is stored in the bind hash table and each connected
 151 * VSocket is stored in the connected hash table.
 152 *
 153 * Unbound sockets are all put on the same list attached to the end of the hash
 154 * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
 155 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
 156 * represents the list that addr hashes to).
 157 *
 158 * Specifically, we initialize the vsock_bind_table array to a size of
 159 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
 160 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
 161 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
 162 * mods with VSOCK_HASH_SIZE to ensure this.
 163 */
 164#define MAX_PORT_RETRIES        24
 165
 166#define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
 167#define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
 168#define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
 169
 170/* XXX This can probably be implemented in a better way. */
 171#define VSOCK_CONN_HASH(src, dst)                               \
 172        (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
 173#define vsock_connected_sockets(src, dst)               \
 174        (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
 175#define vsock_connected_sockets_vsk(vsk)                                \
 176        vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
 177
 178struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
 179EXPORT_SYMBOL_GPL(vsock_bind_table);
 180struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
 181EXPORT_SYMBOL_GPL(vsock_connected_table);
 182DEFINE_SPINLOCK(vsock_table_lock);
 183EXPORT_SYMBOL_GPL(vsock_table_lock);
 184
 185/* Autobind this socket to the local address if necessary. */
 186static int vsock_auto_bind(struct vsock_sock *vsk)
 187{
 188        struct sock *sk = sk_vsock(vsk);
 189        struct sockaddr_vm local_addr;
 190
 191        if (vsock_addr_bound(&vsk->local_addr))
 192                return 0;
 193        vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 194        return __vsock_bind(sk, &local_addr);
 195}
 196
 197static int __init vsock_init_tables(void)
 198{
 199        int i;
 200
 201        for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
 202                INIT_LIST_HEAD(&vsock_bind_table[i]);
 203
 204        for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
 205                INIT_LIST_HEAD(&vsock_connected_table[i]);
 206        return 0;
 207}
 208
 209static void __vsock_insert_bound(struct list_head *list,
 210                                 struct vsock_sock *vsk)
 211{
 212        sock_hold(&vsk->sk);
 213        list_add(&vsk->bound_table, list);
 214}
 215
 216static void __vsock_insert_connected(struct list_head *list,
 217                                     struct vsock_sock *vsk)
 218{
 219        sock_hold(&vsk->sk);
 220        list_add(&vsk->connected_table, list);
 221}
 222
 223static void __vsock_remove_bound(struct vsock_sock *vsk)
 224{
 225        list_del_init(&vsk->bound_table);
 226        sock_put(&vsk->sk);
 227}
 228
 229static void __vsock_remove_connected(struct vsock_sock *vsk)
 230{
 231        list_del_init(&vsk->connected_table);
 232        sock_put(&vsk->sk);
 233}
 234
 235static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
 236{
 237        struct vsock_sock *vsk;
 238
 239        list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
 240                if (addr->svm_port == vsk->local_addr.svm_port)
 241                        return sk_vsock(vsk);
 242
 243        return NULL;
 244}
 245
 246static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
 247                                                  struct sockaddr_vm *dst)
 248{
 249        struct vsock_sock *vsk;
 250
 251        list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
 252                            connected_table) {
 253                if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
 254                    dst->svm_port == vsk->local_addr.svm_port) {
 255                        return sk_vsock(vsk);
 256                }
 257        }
 258
 259        return NULL;
 260}
 261
 262static void vsock_insert_unbound(struct vsock_sock *vsk)
 263{
 264        spin_lock_bh(&vsock_table_lock);
 265        __vsock_insert_bound(vsock_unbound_sockets, vsk);
 266        spin_unlock_bh(&vsock_table_lock);
 267}
 268
 269void vsock_insert_connected(struct vsock_sock *vsk)
 270{
 271        struct list_head *list = vsock_connected_sockets(
 272                &vsk->remote_addr, &vsk->local_addr);
 273
 274        spin_lock_bh(&vsock_table_lock);
 275        __vsock_insert_connected(list, vsk);
 276        spin_unlock_bh(&vsock_table_lock);
 277}
 278EXPORT_SYMBOL_GPL(vsock_insert_connected);
 279
 280void vsock_remove_bound(struct vsock_sock *vsk)
 281{
 282        spin_lock_bh(&vsock_table_lock);
 283        __vsock_remove_bound(vsk);
 284        spin_unlock_bh(&vsock_table_lock);
 285}
 286EXPORT_SYMBOL_GPL(vsock_remove_bound);
 287
 288void vsock_remove_connected(struct vsock_sock *vsk)
 289{
 290        spin_lock_bh(&vsock_table_lock);
 291        __vsock_remove_connected(vsk);
 292        spin_unlock_bh(&vsock_table_lock);
 293}
 294EXPORT_SYMBOL_GPL(vsock_remove_connected);
 295
 296struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
 297{
 298        struct sock *sk;
 299
 300        spin_lock_bh(&vsock_table_lock);
 301        sk = __vsock_find_bound_socket(addr);
 302        if (sk)
 303                sock_hold(sk);
 304
 305        spin_unlock_bh(&vsock_table_lock);
 306
 307        return sk;
 308}
 309EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
 310
 311struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
 312                                         struct sockaddr_vm *dst)
 313{
 314        struct sock *sk;
 315
 316        spin_lock_bh(&vsock_table_lock);
 317        sk = __vsock_find_connected_socket(src, dst);
 318        if (sk)
 319                sock_hold(sk);
 320
 321        spin_unlock_bh(&vsock_table_lock);
 322
 323        return sk;
 324}
 325EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
 326
 327static bool vsock_in_bound_table(struct vsock_sock *vsk)
 328{
 329        bool ret;
 330
 331        spin_lock_bh(&vsock_table_lock);
 332        ret = __vsock_in_bound_table(vsk);
 333        spin_unlock_bh(&vsock_table_lock);
 334
 335        return ret;
 336}
 337
 338static bool vsock_in_connected_table(struct vsock_sock *vsk)
 339{
 340        bool ret;
 341
 342        spin_lock_bh(&vsock_table_lock);
 343        ret = __vsock_in_connected_table(vsk);
 344        spin_unlock_bh(&vsock_table_lock);
 345
 346        return ret;
 347}
 348
 349void vsock_remove_sock(struct vsock_sock *vsk)
 350{
 351        if (vsock_in_bound_table(vsk))
 352                vsock_remove_bound(vsk);
 353
 354        if (vsock_in_connected_table(vsk))
 355                vsock_remove_connected(vsk);
 356}
 357EXPORT_SYMBOL_GPL(vsock_remove_sock);
 358
 359void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
 360{
 361        int i;
 362
 363        spin_lock_bh(&vsock_table_lock);
 364
 365        for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
 366                struct vsock_sock *vsk;
 367                list_for_each_entry(vsk, &vsock_connected_table[i],
 368                                    connected_table)
 369                        fn(sk_vsock(vsk));
 370        }
 371
 372        spin_unlock_bh(&vsock_table_lock);
 373}
 374EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
 375
 376void vsock_add_pending(struct sock *listener, struct sock *pending)
 377{
 378        struct vsock_sock *vlistener;
 379        struct vsock_sock *vpending;
 380
 381        vlistener = vsock_sk(listener);
 382        vpending = vsock_sk(pending);
 383
 384        sock_hold(pending);
 385        sock_hold(listener);
 386        list_add_tail(&vpending->pending_links, &vlistener->pending_links);
 387}
 388EXPORT_SYMBOL_GPL(vsock_add_pending);
 389
 390void vsock_remove_pending(struct sock *listener, struct sock *pending)
 391{
 392        struct vsock_sock *vpending = vsock_sk(pending);
 393
 394        list_del_init(&vpending->pending_links);
 395        sock_put(listener);
 396        sock_put(pending);
 397}
 398EXPORT_SYMBOL_GPL(vsock_remove_pending);
 399
 400void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
 401{
 402        struct vsock_sock *vlistener;
 403        struct vsock_sock *vconnected;
 404
 405        vlistener = vsock_sk(listener);
 406        vconnected = vsock_sk(connected);
 407
 408        sock_hold(connected);
 409        sock_hold(listener);
 410        list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
 411}
 412EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
 413
 414static struct sock *vsock_dequeue_accept(struct sock *listener)
 415{
 416        struct vsock_sock *vlistener;
 417        struct vsock_sock *vconnected;
 418
 419        vlistener = vsock_sk(listener);
 420
 421        if (list_empty(&vlistener->accept_queue))
 422                return NULL;
 423
 424        vconnected = list_entry(vlistener->accept_queue.next,
 425                                struct vsock_sock, accept_queue);
 426
 427        list_del_init(&vconnected->accept_queue);
 428        sock_put(listener);
 429        /* The caller will need a reference on the connected socket so we let
 430         * it call sock_put().
 431         */
 432
 433        return sk_vsock(vconnected);
 434}
 435
 436static bool vsock_is_accept_queue_empty(struct sock *sk)
 437{
 438        struct vsock_sock *vsk = vsock_sk(sk);
 439        return list_empty(&vsk->accept_queue);
 440}
 441
 442static bool vsock_is_pending(struct sock *sk)
 443{
 444        struct vsock_sock *vsk = vsock_sk(sk);
 445        return !list_empty(&vsk->pending_links);
 446}
 447
 448static int vsock_send_shutdown(struct sock *sk, int mode)
 449{
 450        return transport->shutdown(vsock_sk(sk), mode);
 451}
 452
 453void vsock_pending_work(struct work_struct *work)
 454{
 455        struct sock *sk;
 456        struct sock *listener;
 457        struct vsock_sock *vsk;
 458        bool cleanup;
 459
 460        vsk = container_of(work, struct vsock_sock, dwork.work);
 461        sk = sk_vsock(vsk);
 462        listener = vsk->listener;
 463        cleanup = true;
 464
 465        lock_sock(listener);
 466        lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
 467
 468        if (vsock_is_pending(sk)) {
 469                vsock_remove_pending(listener, sk);
 470
 471                listener->sk_ack_backlog--;
 472        } else if (!vsk->rejected) {
 473                /* We are not on the pending list and accept() did not reject
 474                 * us, so we must have been accepted by our user process.  We
 475                 * just need to drop our references to the sockets and be on
 476                 * our way.
 477                 */
 478                cleanup = false;
 479                goto out;
 480        }
 481
 482        /* We need to remove ourself from the global connected sockets list so
 483         * incoming packets can't find this socket, and to reduce the reference
 484         * count.
 485         */
 486        if (vsock_in_connected_table(vsk))
 487                vsock_remove_connected(vsk);
 488
 489        sk->sk_state = TCP_CLOSE;
 490
 491out:
 492        release_sock(sk);
 493        release_sock(listener);
 494        if (cleanup)
 495                sock_put(sk);
 496
 497        sock_put(sk);
 498        sock_put(listener);
 499}
 500EXPORT_SYMBOL_GPL(vsock_pending_work);
 501
 502/**** SOCKET OPERATIONS ****/
 503
 504static int __vsock_bind_stream(struct vsock_sock *vsk,
 505                               struct sockaddr_vm *addr)
 506{
 507        static u32 port = LAST_RESERVED_PORT + 1;
 508        struct sockaddr_vm new_addr;
 509
 510        vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
 511
 512        if (addr->svm_port == VMADDR_PORT_ANY) {
 513                bool found = false;
 514                unsigned int i;
 515
 516                for (i = 0; i < MAX_PORT_RETRIES; i++) {
 517                        if (port <= LAST_RESERVED_PORT)
 518                                port = LAST_RESERVED_PORT + 1;
 519
 520                        new_addr.svm_port = port++;
 521
 522                        if (!__vsock_find_bound_socket(&new_addr)) {
 523                                found = true;
 524                                break;
 525                        }
 526                }
 527
 528                if (!found)
 529                        return -EADDRNOTAVAIL;
 530        } else {
 531                /* If port is in reserved range, ensure caller
 532                 * has necessary privileges.
 533                 */
 534                if (addr->svm_port <= LAST_RESERVED_PORT &&
 535                    !capable(CAP_NET_BIND_SERVICE)) {
 536                        return -EACCES;
 537                }
 538
 539                if (__vsock_find_bound_socket(&new_addr))
 540                        return -EADDRINUSE;
 541        }
 542
 543        vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
 544
 545        /* Remove stream sockets from the unbound list and add them to the hash
 546         * table for easy lookup by its address.  The unbound list is simply an
 547         * extra entry at the end of the hash table, a trick used by AF_UNIX.
 548         */
 549        __vsock_remove_bound(vsk);
 550        __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
 551
 552        return 0;
 553}
 554
 555static int __vsock_bind_dgram(struct vsock_sock *vsk,
 556                              struct sockaddr_vm *addr)
 557{
 558        return transport->dgram_bind(vsk, addr);
 559}
 560
 561static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
 562{
 563        struct vsock_sock *vsk = vsock_sk(sk);
 564        u32 cid;
 565        int retval;
 566
 567        /* First ensure this socket isn't already bound. */
 568        if (vsock_addr_bound(&vsk->local_addr))
 569                return -EINVAL;
 570
 571        /* Now bind to the provided address or select appropriate values if
 572         * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
 573         * like AF_INET prevents binding to a non-local IP address (in most
 574         * cases), we only allow binding to the local CID.
 575         */
 576        cid = transport->get_local_cid();
 577        if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
 578                return -EADDRNOTAVAIL;
 579
 580        switch (sk->sk_socket->type) {
 581        case SOCK_STREAM:
 582                spin_lock_bh(&vsock_table_lock);
 583                retval = __vsock_bind_stream(vsk, addr);
 584                spin_unlock_bh(&vsock_table_lock);
 585                break;
 586
 587        case SOCK_DGRAM:
 588                retval = __vsock_bind_dgram(vsk, addr);
 589                break;
 590
 591        default:
 592                retval = -EINVAL;
 593                break;
 594        }
 595
 596        return retval;
 597}
 598
 599struct sock *__vsock_create(struct net *net,
 600                            struct socket *sock,
 601                            struct sock *parent,
 602                            gfp_t priority,
 603                            unsigned short type)
 604{
 605        struct sock *sk;
 606        struct vsock_sock *psk;
 607        struct vsock_sock *vsk;
 608
 609        sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto);
 610        if (!sk)
 611                return NULL;
 612
 613        sock_init_data(sock, sk);
 614
 615        /* sk->sk_type is normally set in sock_init_data, but only if sock is
 616         * non-NULL. We make sure that our sockets always have a type by
 617         * setting it here if needed.
 618         */
 619        if (!sock)
 620                sk->sk_type = type;
 621
 622        vsk = vsock_sk(sk);
 623        vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 624        vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 625
 626        sk->sk_destruct = vsock_sk_destruct;
 627        sk->sk_backlog_rcv = vsock_queue_rcv_skb;
 628        sock_reset_flag(sk, SOCK_DONE);
 629
 630        INIT_LIST_HEAD(&vsk->bound_table);
 631        INIT_LIST_HEAD(&vsk->connected_table);
 632        vsk->listener = NULL;
 633        INIT_LIST_HEAD(&vsk->pending_links);
 634        INIT_LIST_HEAD(&vsk->accept_queue);
 635        vsk->rejected = false;
 636        vsk->sent_request = false;
 637        vsk->ignore_connecting_rst = false;
 638        vsk->peer_shutdown = 0;
 639
 640        psk = parent ? vsock_sk(parent) : NULL;
 641        if (parent) {
 642                vsk->trusted = psk->trusted;
 643                vsk->owner = get_cred(psk->owner);
 644                vsk->connect_timeout = psk->connect_timeout;
 645        } else {
 646                vsk->trusted = capable(CAP_NET_ADMIN);
 647                vsk->owner = get_current_cred();
 648                vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
 649        }
 650
 651        if (transport->init(vsk, psk) < 0) {
 652                sk_free(sk);
 653                return NULL;
 654        }
 655
 656        if (sock)
 657                vsock_insert_unbound(vsk);
 658
 659        return sk;
 660}
 661EXPORT_SYMBOL_GPL(__vsock_create);
 662
 663static void __vsock_release(struct sock *sk)
 664{
 665        if (sk) {
 666                struct sk_buff *skb;
 667                struct sock *pending;
 668                struct vsock_sock *vsk;
 669
 670                vsk = vsock_sk(sk);
 671                pending = NULL; /* Compiler warning. */
 672
 673                transport->release(vsk);
 674
 675                lock_sock(sk);
 676                sock_orphan(sk);
 677                sk->sk_shutdown = SHUTDOWN_MASK;
 678
 679                while ((skb = skb_dequeue(&sk->sk_receive_queue)))
 680                        kfree_skb(skb);
 681
 682                /* Clean up any sockets that never were accepted. */
 683                while ((pending = vsock_dequeue_accept(sk)) != NULL) {
 684                        __vsock_release(pending);
 685                        sock_put(pending);
 686                }
 687
 688                release_sock(sk);
 689                sock_put(sk);
 690        }
 691}
 692
 693static void vsock_sk_destruct(struct sock *sk)
 694{
 695        struct vsock_sock *vsk = vsock_sk(sk);
 696
 697        transport->destruct(vsk);
 698
 699        /* When clearing these addresses, there's no need to set the family and
 700         * possibly register the address family with the kernel.
 701         */
 702        vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 703        vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 704
 705        put_cred(vsk->owner);
 706}
 707
 708static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 709{
 710        int err;
 711
 712        err = sock_queue_rcv_skb(sk, skb);
 713        if (err)
 714                kfree_skb(skb);
 715
 716        return err;
 717}
 718
 719s64 vsock_stream_has_data(struct vsock_sock *vsk)
 720{
 721        return transport->stream_has_data(vsk);
 722}
 723EXPORT_SYMBOL_GPL(vsock_stream_has_data);
 724
 725s64 vsock_stream_has_space(struct vsock_sock *vsk)
 726{
 727        return transport->stream_has_space(vsk);
 728}
 729EXPORT_SYMBOL_GPL(vsock_stream_has_space);
 730
 731static int vsock_release(struct socket *sock)
 732{
 733        __vsock_release(sock->sk);
 734        sock->sk = NULL;
 735        sock->state = SS_FREE;
 736
 737        return 0;
 738}
 739
 740static int
 741vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
 742{
 743        int err;
 744        struct sock *sk;
 745        struct sockaddr_vm *vm_addr;
 746
 747        sk = sock->sk;
 748
 749        if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
 750                return -EINVAL;
 751
 752        lock_sock(sk);
 753        err = __vsock_bind(sk, vm_addr);
 754        release_sock(sk);
 755
 756        return err;
 757}
 758
 759static int vsock_getname(struct socket *sock,
 760                         struct sockaddr *addr, int *addr_len, int peer)
 761{
 762        int err;
 763        struct sock *sk;
 764        struct vsock_sock *vsk;
 765        struct sockaddr_vm *vm_addr;
 766
 767        sk = sock->sk;
 768        vsk = vsock_sk(sk);
 769        err = 0;
 770
 771        lock_sock(sk);
 772
 773        if (peer) {
 774                if (sock->state != SS_CONNECTED) {
 775                        err = -ENOTCONN;
 776                        goto out;
 777                }
 778                vm_addr = &vsk->remote_addr;
 779        } else {
 780                vm_addr = &vsk->local_addr;
 781        }
 782
 783        if (!vm_addr) {
 784                err = -EINVAL;
 785                goto out;
 786        }
 787
 788        /* sys_getsockname() and sys_getpeername() pass us a
 789         * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
 790         * that macro is defined in socket.c instead of .h, so we hardcode its
 791         * value here.
 792         */
 793        BUILD_BUG_ON(sizeof(*vm_addr) > 128);
 794        memcpy(addr, vm_addr, sizeof(*vm_addr));
 795        *addr_len = sizeof(*vm_addr);
 796
 797out:
 798        release_sock(sk);
 799        return err;
 800}
 801
 802static int vsock_shutdown(struct socket *sock, int mode)
 803{
 804        int err;
 805        struct sock *sk;
 806
 807        /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
 808         * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
 809         * here like the other address families do.  Note also that the
 810         * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
 811         * which is what we want.
 812         */
 813        mode++;
 814
 815        if ((mode & ~SHUTDOWN_MASK) || !mode)
 816                return -EINVAL;
 817
 818        /* If this is a STREAM socket and it is not connected then bail out
 819         * immediately.  If it is a DGRAM socket then we must first kick the
 820         * socket so that it wakes up from any sleeping calls, for example
 821         * recv(), and then afterwards return the error.
 822         */
 823
 824        sk = sock->sk;
 825        if (sock->state == SS_UNCONNECTED) {
 826                err = -ENOTCONN;
 827                if (sk->sk_type == SOCK_STREAM)
 828                        return err;
 829        } else {
 830                sock->state = SS_DISCONNECTING;
 831                err = 0;
 832        }
 833
 834        /* Receive and send shutdowns are treated alike. */
 835        mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
 836        if (mode) {
 837                lock_sock(sk);
 838                sk->sk_shutdown |= mode;
 839                sk->sk_state_change(sk);
 840                release_sock(sk);
 841
 842                if (sk->sk_type == SOCK_STREAM) {
 843                        sock_reset_flag(sk, SOCK_DONE);
 844                        vsock_send_shutdown(sk, mode);
 845                }
 846        }
 847
 848        return err;
 849}
 850
 851static unsigned int vsock_poll(struct file *file, struct socket *sock,
 852                               poll_table *wait)
 853{
 854        struct sock *sk;
 855        unsigned int mask;
 856        struct vsock_sock *vsk;
 857
 858        sk = sock->sk;
 859        vsk = vsock_sk(sk);
 860
 861        poll_wait(file, sk_sleep(sk), wait);
 862        mask = 0;
 863
 864        if (sk->sk_err)
 865                /* Signify that there has been an error on this socket. */
 866                mask |= POLLERR;
 867
 868        /* INET sockets treat local write shutdown and peer write shutdown as a
 869         * case of POLLHUP set.
 870         */
 871        if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
 872            ((sk->sk_shutdown & SEND_SHUTDOWN) &&
 873             (vsk->peer_shutdown & SEND_SHUTDOWN))) {
 874                mask |= POLLHUP;
 875        }
 876
 877        if (sk->sk_shutdown & RCV_SHUTDOWN ||
 878            vsk->peer_shutdown & SEND_SHUTDOWN) {
 879                mask |= POLLRDHUP;
 880        }
 881
 882        if (sock->type == SOCK_DGRAM) {
 883                /* For datagram sockets we can read if there is something in
 884                 * the queue and write as long as the socket isn't shutdown for
 885                 * sending.
 886                 */
 887                if (!skb_queue_empty(&sk->sk_receive_queue) ||
 888                    (sk->sk_shutdown & RCV_SHUTDOWN)) {
 889                        mask |= POLLIN | POLLRDNORM;
 890                }
 891
 892                if (!(sk->sk_shutdown & SEND_SHUTDOWN))
 893                        mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
 894
 895        } else if (sock->type == SOCK_STREAM) {
 896                lock_sock(sk);
 897
 898                /* Listening sockets that have connections in their accept
 899                 * queue can be read.
 900                 */
 901                if (sk->sk_state == TCP_LISTEN
 902                    && !vsock_is_accept_queue_empty(sk))
 903                        mask |= POLLIN | POLLRDNORM;
 904
 905                /* If there is something in the queue then we can read. */
 906                if (transport->stream_is_active(vsk) &&
 907                    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
 908                        bool data_ready_now = false;
 909                        int ret = transport->notify_poll_in(
 910                                        vsk, 1, &data_ready_now);
 911                        if (ret < 0) {
 912                                mask |= POLLERR;
 913                        } else {
 914                                if (data_ready_now)
 915                                        mask |= POLLIN | POLLRDNORM;
 916
 917                        }
 918                }
 919
 920                /* Sockets whose connections have been closed, reset, or
 921                 * terminated should also be considered read, and we check the
 922                 * shutdown flag for that.
 923                 */
 924                if (sk->sk_shutdown & RCV_SHUTDOWN ||
 925                    vsk->peer_shutdown & SEND_SHUTDOWN) {
 926                        mask |= POLLIN | POLLRDNORM;
 927                }
 928
 929                /* Connected sockets that can produce data can be written. */
 930                if (sk->sk_state == TCP_ESTABLISHED) {
 931                        if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
 932                                bool space_avail_now = false;
 933                                int ret = transport->notify_poll_out(
 934                                                vsk, 1, &space_avail_now);
 935                                if (ret < 0) {
 936                                        mask |= POLLERR;
 937                                } else {
 938                                        if (space_avail_now)
 939                                                /* Remove POLLWRBAND since INET
 940                                                 * sockets are not setting it.
 941                                                 */
 942                                                mask |= POLLOUT | POLLWRNORM;
 943
 944                                }
 945                        }
 946                }
 947
 948                /* Simulate INET socket poll behaviors, which sets
 949                 * POLLOUT|POLLWRNORM when peer is closed and nothing to read,
 950                 * but local send is not shutdown.
 951                 */
 952                if (sk->sk_state == TCP_CLOSE) {
 953                        if (!(sk->sk_shutdown & SEND_SHUTDOWN))
 954                                mask |= POLLOUT | POLLWRNORM;
 955
 956                }
 957
 958                release_sock(sk);
 959        }
 960
 961        return mask;
 962}
 963
 964static int vsock_dgram_sendmsg(struct kiocb *kiocb, struct socket *sock,
 965                               struct msghdr *msg, size_t len)
 966{
 967        int err;
 968        struct sock *sk;
 969        struct vsock_sock *vsk;
 970        struct sockaddr_vm *remote_addr;
 971
 972        if (msg->msg_flags & MSG_OOB)
 973                return -EOPNOTSUPP;
 974
 975        /* For now, MSG_DONTWAIT is always assumed... */
 976        err = 0;
 977        sk = sock->sk;
 978        vsk = vsock_sk(sk);
 979
 980        lock_sock(sk);
 981
 982        err = vsock_auto_bind(vsk);
 983        if (err)
 984                goto out;
 985
 986
 987        /* If the provided message contains an address, use that.  Otherwise
 988         * fall back on the socket's remote handle (if it has been connected).
 989         */
 990        if (msg->msg_name &&
 991            vsock_addr_cast(msg->msg_name, msg->msg_namelen,
 992                            &remote_addr) == 0) {
 993                /* Ensure this address is of the right type and is a valid
 994                 * destination.
 995                 */
 996
 997                if (remote_addr->svm_cid == VMADDR_CID_ANY)
 998                        remote_addr->svm_cid = transport->get_local_cid();
 999
1000                if (!vsock_addr_bound(remote_addr)) {
1001                        err = -EINVAL;
1002                        goto out;
1003                }
1004        } else if (sock->state == SS_CONNECTED) {
1005                remote_addr = &vsk->remote_addr;
1006
1007                if (remote_addr->svm_cid == VMADDR_CID_ANY)
1008                        remote_addr->svm_cid = transport->get_local_cid();
1009
1010                /* XXX Should connect() or this function ensure remote_addr is
1011                 * bound?
1012                 */
1013                if (!vsock_addr_bound(&vsk->remote_addr)) {
1014                        err = -EINVAL;
1015                        goto out;
1016                }
1017        } else {
1018                err = -EINVAL;
1019                goto out;
1020        }
1021
1022        if (!transport->dgram_allow(remote_addr->svm_cid,
1023                                    remote_addr->svm_port)) {
1024                err = -EINVAL;
1025                goto out;
1026        }
1027
1028        err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1029
1030out:
1031        release_sock(sk);
1032        return err;
1033}
1034
1035static int vsock_dgram_connect(struct socket *sock,
1036                               struct sockaddr *addr, int addr_len, int flags)
1037{
1038        int err;
1039        struct sock *sk;
1040        struct vsock_sock *vsk;
1041        struct sockaddr_vm *remote_addr;
1042
1043        sk = sock->sk;
1044        vsk = vsock_sk(sk);
1045
1046        err = vsock_addr_cast(addr, addr_len, &remote_addr);
1047        if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1048                lock_sock(sk);
1049                vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1050                                VMADDR_PORT_ANY);
1051                sock->state = SS_UNCONNECTED;
1052                release_sock(sk);
1053                return 0;
1054        } else if (err != 0)
1055                return -EINVAL;
1056
1057        lock_sock(sk);
1058
1059        err = vsock_auto_bind(vsk);
1060        if (err)
1061                goto out;
1062
1063        if (!transport->dgram_allow(remote_addr->svm_cid,
1064                                    remote_addr->svm_port)) {
1065                err = -EINVAL;
1066                goto out;
1067        }
1068
1069        memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1070        sock->state = SS_CONNECTED;
1071
1072out:
1073        release_sock(sk);
1074        return err;
1075}
1076
1077static int vsock_dgram_recvmsg(struct kiocb *kiocb, struct socket *sock,
1078                               struct msghdr *msg, size_t len, int flags)
1079{
1080        return transport->dgram_dequeue(kiocb, vsock_sk(sock->sk), msg, len,
1081                                        flags);
1082}
1083
1084static const struct proto_ops vsock_dgram_ops = {
1085        .family = PF_VSOCK,
1086        .owner = THIS_MODULE,
1087        .release = vsock_release,
1088        .bind = vsock_bind,
1089        .connect = vsock_dgram_connect,
1090        .socketpair = sock_no_socketpair,
1091        .accept = sock_no_accept,
1092        .getname = vsock_getname,
1093        .poll = vsock_poll,
1094        .ioctl = sock_no_ioctl,
1095        .listen = sock_no_listen,
1096        .shutdown = vsock_shutdown,
1097        .setsockopt = sock_no_setsockopt,
1098        .getsockopt = sock_no_getsockopt,
1099        .sendmsg = vsock_dgram_sendmsg,
1100        .recvmsg = vsock_dgram_recvmsg,
1101        .mmap = sock_no_mmap,
1102        .sendpage = sock_no_sendpage,
1103};
1104
1105static void vsock_connect_timeout(struct work_struct *work)
1106{
1107        struct sock *sk;
1108        struct vsock_sock *vsk;
1109
1110        vsk = container_of(work, struct vsock_sock, dwork.work);
1111        sk = sk_vsock(vsk);
1112
1113        lock_sock(sk);
1114        if (sk->sk_state == TCP_SYN_SENT &&
1115            (sk->sk_shutdown != SHUTDOWN_MASK)) {
1116                sk->sk_state = TCP_CLOSE;
1117                sk->sk_err = ETIMEDOUT;
1118                sk->sk_error_report(sk);
1119        }
1120        release_sock(sk);
1121
1122        sock_put(sk);
1123}
1124
1125static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1126                                int addr_len, int flags)
1127{
1128        int err;
1129        struct sock *sk;
1130        struct vsock_sock *vsk;
1131        struct sockaddr_vm *remote_addr;
1132        long timeout;
1133        DEFINE_WAIT(wait);
1134
1135        err = 0;
1136        sk = sock->sk;
1137        vsk = vsock_sk(sk);
1138
1139        lock_sock(sk);
1140
1141        /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1142        switch (sock->state) {
1143        case SS_CONNECTED:
1144                err = -EISCONN;
1145                goto out;
1146        case SS_DISCONNECTING:
1147                err = -EINVAL;
1148                goto out;
1149        case SS_CONNECTING:
1150                /* This continues on so we can move sock into the SS_CONNECTED
1151                 * state once the connection has completed (at which point err
1152                 * will be set to zero also).  Otherwise, we will either wait
1153                 * for the connection or return -EALREADY should this be a
1154                 * non-blocking call.
1155                 */
1156                err = -EALREADY;
1157                break;
1158        default:
1159                if ((sk->sk_state == TCP_LISTEN) ||
1160                    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1161                        err = -EINVAL;
1162                        goto out;
1163                }
1164
1165                /* The hypervisor and well-known contexts do not have socket
1166                 * endpoints.
1167                 */
1168                if (!transport->stream_allow(remote_addr->svm_cid,
1169                                             remote_addr->svm_port)) {
1170                        err = -ENETUNREACH;
1171                        goto out;
1172                }
1173
1174                /* Set the remote address that we are connecting to. */
1175                memcpy(&vsk->remote_addr, remote_addr,
1176                       sizeof(vsk->remote_addr));
1177
1178                err = vsock_auto_bind(vsk);
1179                if (err)
1180                        goto out;
1181
1182                sk->sk_state = TCP_SYN_SENT;
1183
1184                err = transport->connect(vsk);
1185                if (err < 0)
1186                        goto out;
1187
1188                /* Mark sock as connecting and set the error code to in
1189                 * progress in case this is a non-blocking connect.
1190                 */
1191                sock->state = SS_CONNECTING;
1192                err = -EINPROGRESS;
1193        }
1194
1195        /* The receive path will handle all communication until we are able to
1196         * enter the connected state.  Here we wait for the connection to be
1197         * completed or a notification of an error.
1198         */
1199        timeout = vsk->connect_timeout;
1200        prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1201
1202        while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1203                if (flags & O_NONBLOCK) {
1204                        /* If we're not going to block, we schedule a timeout
1205                         * function to generate a timeout on the connection
1206                         * attempt, in case the peer doesn't respond in a
1207                         * timely manner. We hold on to the socket until the
1208                         * timeout fires.
1209                         */
1210                        sock_hold(sk);
1211                        INIT_DELAYED_WORK(&vsk->dwork,
1212                                          vsock_connect_timeout);
1213                        schedule_delayed_work(&vsk->dwork, timeout);
1214
1215                        /* Skip ahead to preserve error code set above. */
1216                        goto out_wait;
1217                }
1218
1219                release_sock(sk);
1220                timeout = schedule_timeout(timeout);
1221                lock_sock(sk);
1222
1223                if (signal_pending(current)) {
1224                        err = sock_intr_errno(timeout);
1225                        sk->sk_state = TCP_CLOSE;
1226                        sock->state = SS_UNCONNECTED;
1227                        goto out_wait;
1228                } else if (timeout == 0) {
1229                        err = -ETIMEDOUT;
1230                        sk->sk_state = TCP_CLOSE;
1231                        sock->state = SS_UNCONNECTED;
1232                        goto out_wait;
1233                }
1234
1235                prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1236        }
1237
1238        if (sk->sk_err) {
1239                err = -sk->sk_err;
1240                sk->sk_state = TCP_CLOSE;
1241                sock->state = SS_UNCONNECTED;
1242        } else {
1243                err = 0;
1244        }
1245
1246out_wait:
1247        finish_wait(sk_sleep(sk), &wait);
1248out:
1249        release_sock(sk);
1250        return err;
1251}
1252
1253static int vsock_accept(struct socket *sock, struct socket *newsock, int flags)
1254{
1255        struct sock *listener;
1256        int err;
1257        struct sock *connected;
1258        struct vsock_sock *vconnected;
1259        long timeout;
1260        DEFINE_WAIT(wait);
1261
1262        err = 0;
1263        listener = sock->sk;
1264
1265        lock_sock(listener);
1266
1267        if (sock->type != SOCK_STREAM) {
1268                err = -EOPNOTSUPP;
1269                goto out;
1270        }
1271
1272        if (listener->sk_state != TCP_LISTEN) {
1273                err = -EINVAL;
1274                goto out;
1275        }
1276
1277        /* Wait for children sockets to appear; these are the new sockets
1278         * created upon connection establishment.
1279         */
1280        timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1281        prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1282
1283        while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1284               listener->sk_err == 0) {
1285                release_sock(listener);
1286                timeout = schedule_timeout(timeout);
1287                finish_wait(sk_sleep(listener), &wait);
1288                lock_sock(listener);
1289
1290                if (signal_pending(current)) {
1291                        err = sock_intr_errno(timeout);
1292                        goto out;
1293                } else if (timeout == 0) {
1294                        err = -EAGAIN;
1295                        goto out;
1296                }
1297
1298                prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1299        }
1300        finish_wait(sk_sleep(listener), &wait);
1301
1302        if (listener->sk_err)
1303                err = -listener->sk_err;
1304
1305        if (connected) {
1306                listener->sk_ack_backlog--;
1307
1308                lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1309                vconnected = vsock_sk(connected);
1310
1311                /* If the listener socket has received an error, then we should
1312                 * reject this socket and return.  Note that we simply mark the
1313                 * socket rejected, drop our reference, and let the cleanup
1314                 * function handle the cleanup; the fact that we found it in
1315                 * the listener's accept queue guarantees that the cleanup
1316                 * function hasn't run yet.
1317                 */
1318                if (err) {
1319                        vconnected->rejected = true;
1320                } else {
1321                        newsock->state = SS_CONNECTED;
1322                        sock_graft(connected, newsock);
1323                }
1324
1325                release_sock(connected);
1326                sock_put(connected);
1327        }
1328
1329out:
1330        release_sock(listener);
1331        return err;
1332}
1333
1334static int vsock_listen(struct socket *sock, int backlog)
1335{
1336        int err;
1337        struct sock *sk;
1338        struct vsock_sock *vsk;
1339
1340        sk = sock->sk;
1341
1342        lock_sock(sk);
1343
1344        if (sock->type != SOCK_STREAM) {
1345                err = -EOPNOTSUPP;
1346                goto out;
1347        }
1348
1349        if (sock->state != SS_UNCONNECTED) {
1350                err = -EINVAL;
1351                goto out;
1352        }
1353
1354        vsk = vsock_sk(sk);
1355
1356        if (!vsock_addr_bound(&vsk->local_addr)) {
1357                err = -EINVAL;
1358                goto out;
1359        }
1360
1361        sk->sk_max_ack_backlog = backlog;
1362        sk->sk_state = TCP_LISTEN;
1363
1364        err = 0;
1365
1366out:
1367        release_sock(sk);
1368        return err;
1369}
1370
1371static int vsock_stream_setsockopt(struct socket *sock,
1372                                   int level,
1373                                   int optname,
1374                                   char __user *optval,
1375                                   unsigned int optlen)
1376{
1377        int err;
1378        struct sock *sk;
1379        struct vsock_sock *vsk;
1380        u64 val;
1381
1382        if (level != AF_VSOCK)
1383                return -ENOPROTOOPT;
1384
1385#define COPY_IN(_v)                                       \
1386        do {                                              \
1387                if (optlen < sizeof(_v)) {                \
1388                        err = -EINVAL;                    \
1389                        goto exit;                        \
1390                }                                         \
1391                if (copy_from_user(&_v, optval, sizeof(_v)) != 0) {     \
1392                        err = -EFAULT;                                  \
1393                        goto exit;                                      \
1394                }                                                       \
1395        } while (0)
1396
1397        err = 0;
1398        sk = sock->sk;
1399        vsk = vsock_sk(sk);
1400
1401        lock_sock(sk);
1402
1403        switch (optname) {
1404        case SO_VM_SOCKETS_BUFFER_SIZE:
1405                COPY_IN(val);
1406                transport->set_buffer_size(vsk, val);
1407                break;
1408
1409        case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1410                COPY_IN(val);
1411                transport->set_max_buffer_size(vsk, val);
1412                break;
1413
1414        case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1415                COPY_IN(val);
1416                transport->set_min_buffer_size(vsk, val);
1417                break;
1418
1419        case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1420                struct timeval tv;
1421                COPY_IN(tv);
1422                if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1423                    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1424                        vsk->connect_timeout = tv.tv_sec * HZ +
1425                            DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1426                        if (vsk->connect_timeout == 0)
1427                                vsk->connect_timeout =
1428                                    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1429
1430                } else {
1431                        err = -ERANGE;
1432                }
1433                break;
1434        }
1435
1436        default:
1437                err = -ENOPROTOOPT;
1438                break;
1439        }
1440
1441#undef COPY_IN
1442
1443exit:
1444        release_sock(sk);
1445        return err;
1446}
1447
1448static int vsock_stream_getsockopt(struct socket *sock,
1449                                   int level, int optname,
1450                                   char __user *optval,
1451                                   int __user *optlen)
1452{
1453        int err;
1454        int len;
1455        struct sock *sk;
1456        struct vsock_sock *vsk;
1457        u64 val;
1458
1459        if (level != AF_VSOCK)
1460                return -ENOPROTOOPT;
1461
1462        err = get_user(len, optlen);
1463        if (err != 0)
1464                return err;
1465
1466#define COPY_OUT(_v)                            \
1467        do {                                    \
1468                if (len < sizeof(_v))           \
1469                        return -EINVAL;         \
1470                                                \
1471                len = sizeof(_v);               \
1472                if (copy_to_user(optval, &_v, len) != 0)        \
1473                        return -EFAULT;                         \
1474                                                                \
1475        } while (0)
1476
1477        err = 0;
1478        sk = sock->sk;
1479        vsk = vsock_sk(sk);
1480
1481        switch (optname) {
1482        case SO_VM_SOCKETS_BUFFER_SIZE:
1483                val = transport->get_buffer_size(vsk);
1484                COPY_OUT(val);
1485                break;
1486
1487        case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1488                val = transport->get_max_buffer_size(vsk);
1489                COPY_OUT(val);
1490                break;
1491
1492        case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1493                val = transport->get_min_buffer_size(vsk);
1494                COPY_OUT(val);
1495                break;
1496
1497        case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1498                struct timeval tv;
1499                tv.tv_sec = vsk->connect_timeout / HZ;
1500                tv.tv_usec =
1501                    (vsk->connect_timeout -
1502                     tv.tv_sec * HZ) * (1000000 / HZ);
1503                COPY_OUT(tv);
1504                break;
1505        }
1506        default:
1507                return -ENOPROTOOPT;
1508        }
1509
1510        err = put_user(len, optlen);
1511        if (err != 0)
1512                return -EFAULT;
1513
1514#undef COPY_OUT
1515
1516        return 0;
1517}
1518
1519static int vsock_stream_sendmsg(struct kiocb *kiocb, struct socket *sock,
1520                                struct msghdr *msg, size_t len)
1521{
1522        struct sock *sk;
1523        struct vsock_sock *vsk;
1524        ssize_t total_written;
1525        long timeout;
1526        int err;
1527        struct vsock_transport_send_notify_data send_data;
1528
1529        DEFINE_WAIT(wait);
1530
1531        sk = sock->sk;
1532        vsk = vsock_sk(sk);
1533        total_written = 0;
1534        err = 0;
1535
1536        if (msg->msg_flags & MSG_OOB)
1537                return -EOPNOTSUPP;
1538
1539        lock_sock(sk);
1540
1541        /* Callers should not provide a destination with stream sockets. */
1542        if (msg->msg_namelen) {
1543                err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1544                goto out;
1545        }
1546
1547        /* Send data only if both sides are not shutdown in the direction. */
1548        if (sk->sk_shutdown & SEND_SHUTDOWN ||
1549            vsk->peer_shutdown & RCV_SHUTDOWN) {
1550                err = -EPIPE;
1551                goto out;
1552        }
1553
1554        if (sk->sk_state != TCP_ESTABLISHED ||
1555            !vsock_addr_bound(&vsk->local_addr)) {
1556                err = -ENOTCONN;
1557                goto out;
1558        }
1559
1560        if (!vsock_addr_bound(&vsk->remote_addr)) {
1561                err = -EDESTADDRREQ;
1562                goto out;
1563        }
1564
1565        /* Wait for room in the produce queue to enqueue our user's data. */
1566        timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1567
1568        err = transport->notify_send_init(vsk, &send_data);
1569        if (err < 0)
1570                goto out;
1571
1572
1573        while (total_written < len) {
1574                ssize_t written;
1575
1576                prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1577                while (vsock_stream_has_space(vsk) == 0 &&
1578                       sk->sk_err == 0 &&
1579                       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1580                       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1581
1582                        /* Don't wait for non-blocking sockets. */
1583                        if (timeout == 0) {
1584                                err = -EAGAIN;
1585                                finish_wait(sk_sleep(sk), &wait);
1586                                goto out_err;
1587                        }
1588
1589                        err = transport->notify_send_pre_block(vsk, &send_data);
1590                        if (err < 0) {
1591                                finish_wait(sk_sleep(sk), &wait);
1592                                goto out_err;
1593                        }
1594
1595                        release_sock(sk);
1596                        timeout = schedule_timeout(timeout);
1597                        lock_sock(sk);
1598                        if (signal_pending(current)) {
1599                                err = sock_intr_errno(timeout);
1600                                finish_wait(sk_sleep(sk), &wait);
1601                                goto out_err;
1602                        } else if (timeout == 0) {
1603                                err = -EAGAIN;
1604                                finish_wait(sk_sleep(sk), &wait);
1605                                goto out_err;
1606                        }
1607
1608                        prepare_to_wait(sk_sleep(sk), &wait,
1609                                        TASK_INTERRUPTIBLE);
1610                }
1611                finish_wait(sk_sleep(sk), &wait);
1612
1613                /* These checks occur both as part of and after the loop
1614                 * conditional since we need to check before and after
1615                 * sleeping.
1616                 */
1617                if (sk->sk_err) {
1618                        err = -sk->sk_err;
1619                        goto out_err;
1620                } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1621                           (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1622                        err = -EPIPE;
1623                        goto out_err;
1624                }
1625
1626                err = transport->notify_send_pre_enqueue(vsk, &send_data);
1627                if (err < 0)
1628                        goto out_err;
1629
1630                /* Note that enqueue will only write as many bytes as are free
1631                 * in the produce queue, so we don't need to ensure len is
1632                 * smaller than the queue size.  It is the caller's
1633                 * responsibility to check how many bytes we were able to send.
1634                 */
1635
1636                written = transport->stream_enqueue(
1637                                vsk, msg,
1638                                len - total_written);
1639                if (written < 0) {
1640                        err = -ENOMEM;
1641                        goto out_err;
1642                }
1643
1644                total_written += written;
1645
1646                err = transport->notify_send_post_enqueue(
1647                                vsk, written, &send_data);
1648                if (err < 0)
1649                        goto out_err;
1650
1651        }
1652
1653out_err:
1654        if (total_written > 0)
1655                err = total_written;
1656out:
1657        release_sock(sk);
1658        return err;
1659}
1660
1661
1662static int
1663vsock_stream_recvmsg(struct kiocb *kiocb,
1664                     struct socket *sock,
1665                     struct msghdr *msg, size_t len, int flags)
1666{
1667        struct sock *sk;
1668        struct vsock_sock *vsk;
1669        int err;
1670        size_t target;
1671        ssize_t copied;
1672        long timeout;
1673        struct vsock_transport_recv_notify_data recv_data;
1674
1675        DEFINE_WAIT(wait);
1676
1677        sk = sock->sk;
1678        vsk = vsock_sk(sk);
1679        err = 0;
1680
1681        lock_sock(sk);
1682
1683        if (sk->sk_state != TCP_ESTABLISHED) {
1684                /* Recvmsg is supposed to return 0 if a peer performs an
1685                 * orderly shutdown. Differentiate between that case and when a
1686                 * peer has not connected or a local shutdown occured with the
1687                 * SOCK_DONE flag.
1688                 */
1689                if (sock_flag(sk, SOCK_DONE))
1690                        err = 0;
1691                else
1692                        err = -ENOTCONN;
1693
1694                goto out;
1695        }
1696
1697        if (flags & MSG_OOB) {
1698                err = -EOPNOTSUPP;
1699                goto out;
1700        }
1701
1702        /* We don't check peer_shutdown flag here since peer may actually shut
1703         * down, but there can be data in the queue that a local socket can
1704         * receive.
1705         */
1706        if (sk->sk_shutdown & RCV_SHUTDOWN) {
1707                err = 0;
1708                goto out;
1709        }
1710
1711        /* It is valid on Linux to pass in a zero-length receive buffer.  This
1712         * is not an error.  We may as well bail out now.
1713         */
1714        if (!len) {
1715                err = 0;
1716                goto out;
1717        }
1718
1719        /* We must not copy less than target bytes into the user's buffer
1720         * before returning successfully, so we wait for the consume queue to
1721         * have that much data to consume before dequeueing.  Note that this
1722         * makes it impossible to handle cases where target is greater than the
1723         * queue size.
1724         */
1725        target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1726        if (target >= transport->stream_rcvhiwat(vsk)) {
1727                err = -ENOMEM;
1728                goto out;
1729        }
1730        timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1731        copied = 0;
1732
1733        err = transport->notify_recv_init(vsk, target, &recv_data);
1734        if (err < 0)
1735                goto out;
1736
1737
1738        while (1) {
1739                s64 ready;
1740
1741                prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1742                ready = vsock_stream_has_data(vsk);
1743
1744                if (ready == 0) {
1745                        if (sk->sk_err != 0 ||
1746                            (sk->sk_shutdown & RCV_SHUTDOWN) ||
1747                            (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1748                                finish_wait(sk_sleep(sk), &wait);
1749                                break;
1750                        }
1751                        /* Don't wait for non-blocking sockets. */
1752                        if (timeout == 0) {
1753                                err = -EAGAIN;
1754                                finish_wait(sk_sleep(sk), &wait);
1755                                break;
1756                        }
1757
1758                        err = transport->notify_recv_pre_block(
1759                                        vsk, target, &recv_data);
1760                        if (err < 0) {
1761                                finish_wait(sk_sleep(sk), &wait);
1762                                break;
1763                        }
1764                        release_sock(sk);
1765                        timeout = schedule_timeout(timeout);
1766                        lock_sock(sk);
1767
1768                        if (signal_pending(current)) {
1769                                err = sock_intr_errno(timeout);
1770                                finish_wait(sk_sleep(sk), &wait);
1771                                break;
1772                        } else if (timeout == 0) {
1773                                err = -EAGAIN;
1774                                finish_wait(sk_sleep(sk), &wait);
1775                                break;
1776                        }
1777                } else {
1778                        ssize_t read;
1779
1780                        finish_wait(sk_sleep(sk), &wait);
1781
1782                        if (ready < 0) {
1783                                /* Invalid queue pair content. XXX This should
1784                                * be changed to a connection reset in a later
1785                                * change.
1786                                */
1787
1788                                err = -ENOMEM;
1789                                goto out;
1790                        }
1791
1792                        err = transport->notify_recv_pre_dequeue(
1793                                        vsk, target, &recv_data);
1794                        if (err < 0)
1795                                break;
1796
1797                        read = transport->stream_dequeue(
1798                                        vsk, msg,
1799                                        len - copied, flags);
1800                        if (read < 0) {
1801                                err = -ENOMEM;
1802                                break;
1803                        }
1804
1805                        copied += read;
1806
1807                        err = transport->notify_recv_post_dequeue(
1808                                        vsk, target, read,
1809                                        !(flags & MSG_PEEK), &recv_data);
1810                        if (err < 0)
1811                                goto out;
1812
1813                        if (read >= target || flags & MSG_PEEK)
1814                                break;
1815
1816                        target -= read;
1817                }
1818        }
1819
1820        if (sk->sk_err)
1821                err = -sk->sk_err;
1822        else if (sk->sk_shutdown & RCV_SHUTDOWN)
1823                err = 0;
1824
1825        if (copied > 0)
1826                err = copied;
1827
1828out:
1829        release_sock(sk);
1830        return err;
1831}
1832
1833static const struct proto_ops vsock_stream_ops = {
1834        .family = PF_VSOCK,
1835        .owner = THIS_MODULE,
1836        .release = vsock_release,
1837        .bind = vsock_bind,
1838        .connect = vsock_stream_connect,
1839        .socketpair = sock_no_socketpair,
1840        .accept = vsock_accept,
1841        .getname = vsock_getname,
1842        .poll = vsock_poll,
1843        .ioctl = sock_no_ioctl,
1844        .listen = vsock_listen,
1845        .shutdown = vsock_shutdown,
1846        .setsockopt = vsock_stream_setsockopt,
1847        .getsockopt = vsock_stream_getsockopt,
1848        .sendmsg = vsock_stream_sendmsg,
1849        .recvmsg = vsock_stream_recvmsg,
1850        .mmap = sock_no_mmap,
1851        .sendpage = sock_no_sendpage,
1852};
1853
1854static int vsock_create(struct net *net, struct socket *sock,
1855                        int protocol, int kern)
1856{
1857        if (!sock)
1858                return -EINVAL;
1859
1860        if (protocol && protocol != PF_VSOCK)
1861                return -EPROTONOSUPPORT;
1862
1863        switch (sock->type) {
1864        case SOCK_DGRAM:
1865                sock->ops = &vsock_dgram_ops;
1866                break;
1867        case SOCK_STREAM:
1868                sock->ops = &vsock_stream_ops;
1869                break;
1870        default:
1871                return -ESOCKTNOSUPPORT;
1872        }
1873
1874        sock->state = SS_UNCONNECTED;
1875
1876        return __vsock_create(net, sock, NULL, GFP_KERNEL, 0) ? 0 : -ENOMEM;
1877}
1878
1879static const struct net_proto_family vsock_family_ops = {
1880        .family = AF_VSOCK,
1881        .create = vsock_create,
1882        .owner = THIS_MODULE,
1883};
1884
1885static long vsock_dev_do_ioctl(struct file *filp,
1886                               unsigned int cmd, void __user *ptr)
1887{
1888        u32 __user *p = ptr;
1889        int retval = 0;
1890
1891        switch (cmd) {
1892        case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1893                if (put_user(transport->get_local_cid(), p) != 0)
1894                        retval = -EFAULT;
1895                break;
1896
1897        default:
1898                pr_err("Unknown ioctl %d\n", cmd);
1899                retval = -EINVAL;
1900        }
1901
1902        return retval;
1903}
1904
1905static long vsock_dev_ioctl(struct file *filp,
1906                            unsigned int cmd, unsigned long arg)
1907{
1908        return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1909}
1910
1911#ifdef CONFIG_COMPAT
1912static long vsock_dev_compat_ioctl(struct file *filp,
1913                                   unsigned int cmd, unsigned long arg)
1914{
1915        return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1916}
1917#endif
1918
1919static const struct file_operations vsock_device_ops = {
1920        .owner          = THIS_MODULE,
1921        .unlocked_ioctl = vsock_dev_ioctl,
1922#ifdef CONFIG_COMPAT
1923        .compat_ioctl   = vsock_dev_compat_ioctl,
1924#endif
1925        .open           = nonseekable_open,
1926};
1927
1928static struct miscdevice vsock_device = {
1929        .name           = "vsock",
1930        .fops           = &vsock_device_ops,
1931};
1932
1933int __vsock_core_init(const struct vsock_transport *t, struct module *owner)
1934{
1935        int err = mutex_lock_interruptible(&vsock_register_mutex);
1936
1937        if (err)
1938                return err;
1939
1940        if (transport) {
1941                err = -EBUSY;
1942                goto err_busy;
1943        }
1944
1945        /* Transport must be the owner of the protocol so that it can't
1946         * unload while there are open sockets.
1947         */
1948        vsock_proto.owner = owner;
1949        transport = t;
1950
1951        vsock_device.minor = MISC_DYNAMIC_MINOR;
1952        err = misc_register(&vsock_device);
1953        if (err) {
1954                pr_err("Failed to register misc device\n");
1955                goto err_reset_transport;
1956        }
1957
1958        err = proto_register(&vsock_proto, 1);  /* we want our slab */
1959        if (err) {
1960                pr_err("Cannot register vsock protocol\n");
1961                goto err_deregister_misc;
1962        }
1963
1964        err = sock_register(&vsock_family_ops);
1965        if (err) {
1966                pr_err("could not register af_vsock (%d) address family: %d\n",
1967                       AF_VSOCK, err);
1968                goto err_unregister_proto;
1969        }
1970
1971        mutex_unlock(&vsock_register_mutex);
1972        return 0;
1973
1974err_unregister_proto:
1975        proto_unregister(&vsock_proto);
1976err_deregister_misc:
1977        misc_deregister(&vsock_device);
1978err_reset_transport:
1979        transport = NULL;
1980err_busy:
1981        mutex_unlock(&vsock_register_mutex);
1982        return err;
1983}
1984EXPORT_SYMBOL_GPL(__vsock_core_init);
1985
1986void vsock_core_exit(void)
1987{
1988        mutex_lock(&vsock_register_mutex);
1989
1990        misc_deregister(&vsock_device);
1991        sock_unregister(AF_VSOCK);
1992        proto_unregister(&vsock_proto);
1993
1994        /* We do not want the assignment below re-ordered. */
1995        mb();
1996        transport = NULL;
1997
1998        mutex_unlock(&vsock_register_mutex);
1999}
2000EXPORT_SYMBOL_GPL(vsock_core_exit);
2001
2002const struct vsock_transport *vsock_core_get_transport(void)
2003{
2004        /* vsock_register_mutex not taken since only the transport uses this
2005         * function and only while registered.
2006         */
2007        return transport;
2008}
2009EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2010
2011module_init(vsock_init_tables);
2012
2013MODULE_AUTHOR("VMware, Inc.");
2014MODULE_DESCRIPTION("VMware Virtual Socket Family");
2015MODULE_VERSION("1.0.2.0-k");
2016MODULE_LICENSE("GPL v2");
2017