linux/net/wireless/reg.c
<<
>>
Prefs
   1/*
   2 * Copyright 2002-2005, Instant802 Networks, Inc.
   3 * Copyright 2005-2006, Devicescape Software, Inc.
   4 * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
   5 * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
   6 * Copyright 2013-2014  Intel Mobile Communications GmbH
   7 * Copyright      2017  Intel Deutschland GmbH
   8 *
   9 * Permission to use, copy, modify, and/or distribute this software for any
  10 * purpose with or without fee is hereby granted, provided that the above
  11 * copyright notice and this permission notice appear in all copies.
  12 *
  13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20 */
  21
  22
  23/**
  24 * DOC: Wireless regulatory infrastructure
  25 *
  26 * The usual implementation is for a driver to read a device EEPROM to
  27 * determine which regulatory domain it should be operating under, then
  28 * looking up the allowable channels in a driver-local table and finally
  29 * registering those channels in the wiphy structure.
  30 *
  31 * Another set of compliance enforcement is for drivers to use their
  32 * own compliance limits which can be stored on the EEPROM. The host
  33 * driver or firmware may ensure these are used.
  34 *
  35 * In addition to all this we provide an extra layer of regulatory
  36 * conformance. For drivers which do not have any regulatory
  37 * information CRDA provides the complete regulatory solution.
  38 * For others it provides a community effort on further restrictions
  39 * to enhance compliance.
  40 *
  41 * Note: When number of rules --> infinity we will not be able to
  42 * index on alpha2 any more, instead we'll probably have to
  43 * rely on some SHA1 checksum of the regdomain for example.
  44 *
  45 */
  46
  47#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  48
  49#include <linux/kernel.h>
  50#include <linux/export.h>
  51#include <linux/slab.h>
  52#include <linux/list.h>
  53#include <linux/ctype.h>
  54#include <linux/nl80211.h>
  55#include <linux/platform_device.h>
  56#include <linux/moduleparam.h>
  57#include <net/cfg80211.h>
  58#include "core.h"
  59#include "reg.h"
  60#include "rdev-ops.h"
  61#include "regdb.h"
  62#include "nl80211.h"
  63
  64/*
  65 * Grace period we give before making sure all current interfaces reside on
  66 * channels allowed by the current regulatory domain.
  67 */
  68#define REG_ENFORCE_GRACE_MS 60000
  69
  70/**
  71 * enum reg_request_treatment - regulatory request treatment
  72 *
  73 * @REG_REQ_OK: continue processing the regulatory request
  74 * @REG_REQ_IGNORE: ignore the regulatory request
  75 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
  76 *      be intersected with the current one.
  77 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
  78 *      regulatory settings, and no further processing is required.
  79 */
  80enum reg_request_treatment {
  81        REG_REQ_OK,
  82        REG_REQ_IGNORE,
  83        REG_REQ_INTERSECT,
  84        REG_REQ_ALREADY_SET,
  85};
  86
  87static struct regulatory_request core_request_world = {
  88        .initiator = NL80211_REGDOM_SET_BY_CORE,
  89        .alpha2[0] = '0',
  90        .alpha2[1] = '0',
  91        .intersect = false,
  92        .processed = true,
  93        .country_ie_env = ENVIRON_ANY,
  94};
  95
  96/*
  97 * Receipt of information from last regulatory request,
  98 * protected by RTNL (and can be accessed with RCU protection)
  99 */
 100static struct regulatory_request __rcu *last_request =
 101        (void __force __rcu *)&core_request_world;
 102
 103/* To trigger userspace events */
 104static struct platform_device *reg_pdev;
 105
 106/*
 107 * Central wireless core regulatory domains, we only need two,
 108 * the current one and a world regulatory domain in case we have no
 109 * information to give us an alpha2.
 110 * (protected by RTNL, can be read under RCU)
 111 */
 112const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
 113
 114/*
 115 * Number of devices that registered to the core
 116 * that support cellular base station regulatory hints
 117 * (protected by RTNL)
 118 */
 119static int reg_num_devs_support_basehint;
 120
 121/*
 122 * State variable indicating if the platform on which the devices
 123 * are attached is operating in an indoor environment. The state variable
 124 * is relevant for all registered devices.
 125 */
 126static bool reg_is_indoor;
 127static spinlock_t reg_indoor_lock;
 128
 129/* Used to track the userspace process controlling the indoor setting */
 130static u32 reg_is_indoor_portid;
 131
 132static void restore_regulatory_settings(bool reset_user);
 133
 134static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
 135{
 136        return rtnl_dereference(cfg80211_regdomain);
 137}
 138
 139const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
 140{
 141        return rtnl_dereference(wiphy->regd);
 142}
 143
 144static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
 145{
 146        switch (dfs_region) {
 147        case NL80211_DFS_UNSET:
 148                return "unset";
 149        case NL80211_DFS_FCC:
 150                return "FCC";
 151        case NL80211_DFS_ETSI:
 152                return "ETSI";
 153        case NL80211_DFS_JP:
 154                return "JP";
 155        }
 156        return "Unknown";
 157}
 158
 159enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
 160{
 161        const struct ieee80211_regdomain *regd = NULL;
 162        const struct ieee80211_regdomain *wiphy_regd = NULL;
 163
 164        regd = get_cfg80211_regdom();
 165        if (!wiphy)
 166                goto out;
 167
 168        wiphy_regd = get_wiphy_regdom(wiphy);
 169        if (!wiphy_regd)
 170                goto out;
 171
 172        if (wiphy_regd->dfs_region == regd->dfs_region)
 173                goto out;
 174
 175        pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
 176                 dev_name(&wiphy->dev),
 177                 reg_dfs_region_str(wiphy_regd->dfs_region),
 178                 reg_dfs_region_str(regd->dfs_region));
 179
 180out:
 181        return regd->dfs_region;
 182}
 183
 184static void rcu_free_regdom(const struct ieee80211_regdomain *r)
 185{
 186        if (!r)
 187                return;
 188        kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
 189}
 190
 191static struct regulatory_request *get_last_request(void)
 192{
 193        return rcu_dereference_rtnl(last_request);
 194}
 195
 196/* Used to queue up regulatory hints */
 197static LIST_HEAD(reg_requests_list);
 198static spinlock_t reg_requests_lock;
 199
 200/* Used to queue up beacon hints for review */
 201static LIST_HEAD(reg_pending_beacons);
 202static spinlock_t reg_pending_beacons_lock;
 203
 204/* Used to keep track of processed beacon hints */
 205static LIST_HEAD(reg_beacon_list);
 206
 207struct reg_beacon {
 208        struct list_head list;
 209        struct ieee80211_channel chan;
 210};
 211
 212static void reg_check_chans_work(struct work_struct *work);
 213static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
 214
 215static void reg_todo(struct work_struct *work);
 216static DECLARE_WORK(reg_work, reg_todo);
 217
 218/* We keep a static world regulatory domain in case of the absence of CRDA */
 219static const struct ieee80211_regdomain world_regdom = {
 220        .n_reg_rules = 8,
 221        .alpha2 =  "00",
 222        .reg_rules = {
 223                /* IEEE 802.11b/g, channels 1..11 */
 224                REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
 225                /* IEEE 802.11b/g, channels 12..13. */
 226                REG_RULE(2467-10, 2472+10, 20, 6, 20,
 227                        NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
 228                /* IEEE 802.11 channel 14 - Only JP enables
 229                 * this and for 802.11b only */
 230                REG_RULE(2484-10, 2484+10, 20, 6, 20,
 231                        NL80211_RRF_NO_IR |
 232                        NL80211_RRF_NO_OFDM),
 233                /* IEEE 802.11a, channel 36..48 */
 234                REG_RULE(5180-10, 5240+10, 80, 6, 20,
 235                        NL80211_RRF_NO_IR |
 236                        NL80211_RRF_AUTO_BW),
 237
 238                /* IEEE 802.11a, channel 52..64 - DFS required */
 239                REG_RULE(5260-10, 5320+10, 80, 6, 20,
 240                        NL80211_RRF_NO_IR |
 241                        NL80211_RRF_AUTO_BW |
 242                        NL80211_RRF_DFS),
 243
 244                /* IEEE 802.11a, channel 100..144 - DFS required */
 245                REG_RULE(5500-10, 5720+10, 160, 6, 20,
 246                        NL80211_RRF_NO_IR |
 247                        NL80211_RRF_DFS),
 248
 249                /* IEEE 802.11a, channel 149..165 */
 250                REG_RULE(5745-10, 5825+10, 80, 6, 20,
 251                        NL80211_RRF_NO_IR),
 252
 253                /* IEEE 802.11ad (60GHz), channels 1..3 */
 254                REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
 255        }
 256};
 257
 258/* protected by RTNL */
 259static const struct ieee80211_regdomain *cfg80211_world_regdom =
 260        &world_regdom;
 261
 262static char *ieee80211_regdom = "00";
 263static char user_alpha2[2];
 264
 265module_param(ieee80211_regdom, charp, 0444);
 266MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
 267
 268static void reg_free_request(struct regulatory_request *request)
 269{
 270        if (request == &core_request_world)
 271                return;
 272
 273        if (request != get_last_request())
 274                kfree(request);
 275}
 276
 277static void reg_free_last_request(void)
 278{
 279        struct regulatory_request *lr = get_last_request();
 280
 281        if (lr != &core_request_world && lr)
 282                kfree_rcu(lr, rcu_head);
 283}
 284
 285static void reg_update_last_request(struct regulatory_request *request)
 286{
 287        struct regulatory_request *lr;
 288
 289        lr = get_last_request();
 290        if (lr == request)
 291                return;
 292
 293        reg_free_last_request();
 294        rcu_assign_pointer(last_request, request);
 295}
 296
 297static void reset_regdomains(bool full_reset,
 298                             const struct ieee80211_regdomain *new_regdom)
 299{
 300        const struct ieee80211_regdomain *r;
 301
 302        ASSERT_RTNL();
 303
 304        r = get_cfg80211_regdom();
 305
 306        /* avoid freeing static information or freeing something twice */
 307        if (r == cfg80211_world_regdom)
 308                r = NULL;
 309        if (cfg80211_world_regdom == &world_regdom)
 310                cfg80211_world_regdom = NULL;
 311        if (r == &world_regdom)
 312                r = NULL;
 313
 314        rcu_free_regdom(r);
 315        rcu_free_regdom(cfg80211_world_regdom);
 316
 317        cfg80211_world_regdom = &world_regdom;
 318        rcu_assign_pointer(cfg80211_regdomain, new_regdom);
 319
 320        if (!full_reset)
 321                return;
 322
 323        reg_update_last_request(&core_request_world);
 324}
 325
 326/*
 327 * Dynamic world regulatory domain requested by the wireless
 328 * core upon initialization
 329 */
 330static void update_world_regdomain(const struct ieee80211_regdomain *rd)
 331{
 332        struct regulatory_request *lr;
 333
 334        lr = get_last_request();
 335
 336        WARN_ON(!lr);
 337
 338        reset_regdomains(false, rd);
 339
 340        cfg80211_world_regdom = rd;
 341}
 342
 343bool is_world_regdom(const char *alpha2)
 344{
 345        if (!alpha2)
 346                return false;
 347        return alpha2[0] == '0' && alpha2[1] == '0';
 348}
 349
 350static bool is_alpha2_set(const char *alpha2)
 351{
 352        if (!alpha2)
 353                return false;
 354        return alpha2[0] && alpha2[1];
 355}
 356
 357static bool is_unknown_alpha2(const char *alpha2)
 358{
 359        if (!alpha2)
 360                return false;
 361        /*
 362         * Special case where regulatory domain was built by driver
 363         * but a specific alpha2 cannot be determined
 364         */
 365        return alpha2[0] == '9' && alpha2[1] == '9';
 366}
 367
 368static bool is_intersected_alpha2(const char *alpha2)
 369{
 370        if (!alpha2)
 371                return false;
 372        /*
 373         * Special case where regulatory domain is the
 374         * result of an intersection between two regulatory domain
 375         * structures
 376         */
 377        return alpha2[0] == '9' && alpha2[1] == '8';
 378}
 379
 380static bool is_an_alpha2(const char *alpha2)
 381{
 382        if (!alpha2)
 383                return false;
 384        return isalpha(alpha2[0]) && isalpha(alpha2[1]);
 385}
 386
 387static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
 388{
 389        if (!alpha2_x || !alpha2_y)
 390                return false;
 391        return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
 392}
 393
 394static bool regdom_changes(const char *alpha2)
 395{
 396        const struct ieee80211_regdomain *r = get_cfg80211_regdom();
 397
 398        if (!r)
 399                return true;
 400        return !alpha2_equal(r->alpha2, alpha2);
 401}
 402
 403/*
 404 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
 405 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
 406 * has ever been issued.
 407 */
 408static bool is_user_regdom_saved(void)
 409{
 410        if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
 411                return false;
 412
 413        /* This would indicate a mistake on the design */
 414        if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
 415                 "Unexpected user alpha2: %c%c\n",
 416                 user_alpha2[0], user_alpha2[1]))
 417                return false;
 418
 419        return true;
 420}
 421
 422static const struct ieee80211_regdomain *
 423reg_copy_regd(const struct ieee80211_regdomain *src_regd)
 424{
 425        struct ieee80211_regdomain *regd;
 426        int size_of_regd;
 427        unsigned int i;
 428
 429        size_of_regd =
 430                sizeof(struct ieee80211_regdomain) +
 431                src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
 432
 433        regd = kzalloc(size_of_regd, GFP_KERNEL);
 434        if (!regd)
 435                return ERR_PTR(-ENOMEM);
 436
 437        memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
 438
 439        for (i = 0; i < src_regd->n_reg_rules; i++)
 440                memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
 441                       sizeof(struct ieee80211_reg_rule));
 442
 443        return regd;
 444}
 445
 446#ifdef CONFIG_CFG80211_INTERNAL_REGDB
 447struct reg_regdb_apply_request {
 448        struct list_head list;
 449        const struct ieee80211_regdomain *regdom;
 450};
 451
 452static LIST_HEAD(reg_regdb_apply_list);
 453static DEFINE_MUTEX(reg_regdb_apply_mutex);
 454
 455static void reg_regdb_apply(struct work_struct *work)
 456{
 457        struct reg_regdb_apply_request *request;
 458
 459        rtnl_lock();
 460
 461        mutex_lock(&reg_regdb_apply_mutex);
 462        while (!list_empty(&reg_regdb_apply_list)) {
 463                request = list_first_entry(&reg_regdb_apply_list,
 464                                           struct reg_regdb_apply_request,
 465                                           list);
 466                list_del(&request->list);
 467
 468                set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
 469                kfree(request);
 470        }
 471        mutex_unlock(&reg_regdb_apply_mutex);
 472
 473        rtnl_unlock();
 474}
 475
 476static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
 477
 478static int reg_query_builtin(const char *alpha2)
 479{
 480        const struct ieee80211_regdomain *regdom = NULL;
 481        struct reg_regdb_apply_request *request;
 482        unsigned int i;
 483
 484        for (i = 0; i < reg_regdb_size; i++) {
 485                if (alpha2_equal(alpha2, reg_regdb[i]->alpha2)) {
 486                        regdom = reg_regdb[i];
 487                        break;
 488                }
 489        }
 490
 491        if (!regdom)
 492                return -ENODATA;
 493
 494        request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
 495        if (!request)
 496                return -ENOMEM;
 497
 498        request->regdom = reg_copy_regd(regdom);
 499        if (IS_ERR_OR_NULL(request->regdom)) {
 500                kfree(request);
 501                return -ENOMEM;
 502        }
 503
 504        mutex_lock(&reg_regdb_apply_mutex);
 505        list_add_tail(&request->list, &reg_regdb_apply_list);
 506        mutex_unlock(&reg_regdb_apply_mutex);
 507
 508        schedule_work(&reg_regdb_work);
 509
 510        return 0;
 511}
 512
 513/* Feel free to add any other sanity checks here */
 514static void reg_regdb_size_check(void)
 515{
 516        /* We should ideally BUILD_BUG_ON() but then random builds would fail */
 517        WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
 518}
 519#else
 520static inline void reg_regdb_size_check(void) {}
 521static inline int reg_query_builtin(const char *alpha2)
 522{
 523        return -ENODATA;
 524}
 525#endif /* CONFIG_CFG80211_INTERNAL_REGDB */
 526
 527#ifdef CONFIG_CFG80211_CRDA_SUPPORT
 528/* Max number of consecutive attempts to communicate with CRDA  */
 529#define REG_MAX_CRDA_TIMEOUTS 10
 530
 531static u32 reg_crda_timeouts;
 532
 533static void crda_timeout_work(struct work_struct *work);
 534static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
 535
 536static void crda_timeout_work(struct work_struct *work)
 537{
 538        pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
 539        rtnl_lock();
 540        reg_crda_timeouts++;
 541        restore_regulatory_settings(true);
 542        rtnl_unlock();
 543}
 544
 545static void cancel_crda_timeout(void)
 546{
 547        cancel_delayed_work(&crda_timeout);
 548}
 549
 550static void cancel_crda_timeout_sync(void)
 551{
 552        cancel_delayed_work_sync(&crda_timeout);
 553}
 554
 555static void reset_crda_timeouts(void)
 556{
 557        reg_crda_timeouts = 0;
 558}
 559
 560/*
 561 * This lets us keep regulatory code which is updated on a regulatory
 562 * basis in userspace.
 563 */
 564static int call_crda(const char *alpha2)
 565{
 566        char country[12];
 567        char *env[] = { country, NULL };
 568        int ret;
 569
 570        snprintf(country, sizeof(country), "COUNTRY=%c%c",
 571                 alpha2[0], alpha2[1]);
 572
 573        if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
 574                pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
 575                return -EINVAL;
 576        }
 577
 578        if (!is_world_regdom((char *) alpha2))
 579                pr_debug("Calling CRDA for country: %c%c\n",
 580                         alpha2[0], alpha2[1]);
 581        else
 582                pr_debug("Calling CRDA to update world regulatory domain\n");
 583
 584        ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
 585        if (ret)
 586                return ret;
 587
 588        queue_delayed_work(system_power_efficient_wq,
 589                           &crda_timeout, msecs_to_jiffies(3142));
 590        return 0;
 591}
 592#else
 593static inline void cancel_crda_timeout(void) {}
 594static inline void cancel_crda_timeout_sync(void) {}
 595static inline void reset_crda_timeouts(void) {}
 596static inline int call_crda(const char *alpha2)
 597{
 598        return -ENODATA;
 599}
 600#endif /* CONFIG_CFG80211_CRDA_SUPPORT */
 601
 602static bool reg_query_database(struct regulatory_request *request)
 603{
 604        /* query internal regulatory database (if it exists) */
 605        if (reg_query_builtin(request->alpha2) == 0)
 606                return true;
 607
 608        if (call_crda(request->alpha2) == 0)
 609                return true;
 610
 611        return false;
 612}
 613
 614bool reg_is_valid_request(const char *alpha2)
 615{
 616        struct regulatory_request *lr = get_last_request();
 617
 618        if (!lr || lr->processed)
 619                return false;
 620
 621        return alpha2_equal(lr->alpha2, alpha2);
 622}
 623
 624static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
 625{
 626        struct regulatory_request *lr = get_last_request();
 627
 628        /*
 629         * Follow the driver's regulatory domain, if present, unless a country
 630         * IE has been processed or a user wants to help complaince further
 631         */
 632        if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
 633            lr->initiator != NL80211_REGDOM_SET_BY_USER &&
 634            wiphy->regd)
 635                return get_wiphy_regdom(wiphy);
 636
 637        return get_cfg80211_regdom();
 638}
 639
 640static unsigned int
 641reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
 642                                 const struct ieee80211_reg_rule *rule)
 643{
 644        const struct ieee80211_freq_range *freq_range = &rule->freq_range;
 645        const struct ieee80211_freq_range *freq_range_tmp;
 646        const struct ieee80211_reg_rule *tmp;
 647        u32 start_freq, end_freq, idx, no;
 648
 649        for (idx = 0; idx < rd->n_reg_rules; idx++)
 650                if (rule == &rd->reg_rules[idx])
 651                        break;
 652
 653        if (idx == rd->n_reg_rules)
 654                return 0;
 655
 656        /* get start_freq */
 657        no = idx;
 658
 659        while (no) {
 660                tmp = &rd->reg_rules[--no];
 661                freq_range_tmp = &tmp->freq_range;
 662
 663                if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
 664                        break;
 665
 666                freq_range = freq_range_tmp;
 667        }
 668
 669        start_freq = freq_range->start_freq_khz;
 670
 671        /* get end_freq */
 672        freq_range = &rule->freq_range;
 673        no = idx;
 674
 675        while (no < rd->n_reg_rules - 1) {
 676                tmp = &rd->reg_rules[++no];
 677                freq_range_tmp = &tmp->freq_range;
 678
 679                if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
 680                        break;
 681
 682                freq_range = freq_range_tmp;
 683        }
 684
 685        end_freq = freq_range->end_freq_khz;
 686
 687        return end_freq - start_freq;
 688}
 689
 690unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
 691                                   const struct ieee80211_reg_rule *rule)
 692{
 693        unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
 694
 695        if (rule->flags & NL80211_RRF_NO_160MHZ)
 696                bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
 697        if (rule->flags & NL80211_RRF_NO_80MHZ)
 698                bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
 699
 700        /*
 701         * HT40+/HT40- limits are handled per-channel. Only limit BW if both
 702         * are not allowed.
 703         */
 704        if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
 705            rule->flags & NL80211_RRF_NO_HT40PLUS)
 706                bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
 707
 708        return bw;
 709}
 710
 711/* Sanity check on a regulatory rule */
 712static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
 713{
 714        const struct ieee80211_freq_range *freq_range = &rule->freq_range;
 715        u32 freq_diff;
 716
 717        if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
 718                return false;
 719
 720        if (freq_range->start_freq_khz > freq_range->end_freq_khz)
 721                return false;
 722
 723        freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
 724
 725        if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
 726            freq_range->max_bandwidth_khz > freq_diff)
 727                return false;
 728
 729        return true;
 730}
 731
 732static bool is_valid_rd(const struct ieee80211_regdomain *rd)
 733{
 734        const struct ieee80211_reg_rule *reg_rule = NULL;
 735        unsigned int i;
 736
 737        if (!rd->n_reg_rules)
 738                return false;
 739
 740        if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
 741                return false;
 742
 743        for (i = 0; i < rd->n_reg_rules; i++) {
 744                reg_rule = &rd->reg_rules[i];
 745                if (!is_valid_reg_rule(reg_rule))
 746                        return false;
 747        }
 748
 749        return true;
 750}
 751
 752/**
 753 * freq_in_rule_band - tells us if a frequency is in a frequency band
 754 * @freq_range: frequency rule we want to query
 755 * @freq_khz: frequency we are inquiring about
 756 *
 757 * This lets us know if a specific frequency rule is or is not relevant to
 758 * a specific frequency's band. Bands are device specific and artificial
 759 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
 760 * however it is safe for now to assume that a frequency rule should not be
 761 * part of a frequency's band if the start freq or end freq are off by more
 762 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
 763 * 60 GHz band.
 764 * This resolution can be lowered and should be considered as we add
 765 * regulatory rule support for other "bands".
 766 **/
 767static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
 768                              u32 freq_khz)
 769{
 770#define ONE_GHZ_IN_KHZ  1000000
 771        /*
 772         * From 802.11ad: directional multi-gigabit (DMG):
 773         * Pertaining to operation in a frequency band containing a channel
 774         * with the Channel starting frequency above 45 GHz.
 775         */
 776        u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
 777                        10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
 778        if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
 779                return true;
 780        if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
 781                return true;
 782        return false;
 783#undef ONE_GHZ_IN_KHZ
 784}
 785
 786/*
 787 * Later on we can perhaps use the more restrictive DFS
 788 * region but we don't have information for that yet so
 789 * for now simply disallow conflicts.
 790 */
 791static enum nl80211_dfs_regions
 792reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
 793                         const enum nl80211_dfs_regions dfs_region2)
 794{
 795        if (dfs_region1 != dfs_region2)
 796                return NL80211_DFS_UNSET;
 797        return dfs_region1;
 798}
 799
 800/*
 801 * Helper for regdom_intersect(), this does the real
 802 * mathematical intersection fun
 803 */
 804static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
 805                               const struct ieee80211_regdomain *rd2,
 806                               const struct ieee80211_reg_rule *rule1,
 807                               const struct ieee80211_reg_rule *rule2,
 808                               struct ieee80211_reg_rule *intersected_rule)
 809{
 810        const struct ieee80211_freq_range *freq_range1, *freq_range2;
 811        struct ieee80211_freq_range *freq_range;
 812        const struct ieee80211_power_rule *power_rule1, *power_rule2;
 813        struct ieee80211_power_rule *power_rule;
 814        u32 freq_diff, max_bandwidth1, max_bandwidth2;
 815
 816        freq_range1 = &rule1->freq_range;
 817        freq_range2 = &rule2->freq_range;
 818        freq_range = &intersected_rule->freq_range;
 819
 820        power_rule1 = &rule1->power_rule;
 821        power_rule2 = &rule2->power_rule;
 822        power_rule = &intersected_rule->power_rule;
 823
 824        freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
 825                                         freq_range2->start_freq_khz);
 826        freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
 827                                       freq_range2->end_freq_khz);
 828
 829        max_bandwidth1 = freq_range1->max_bandwidth_khz;
 830        max_bandwidth2 = freq_range2->max_bandwidth_khz;
 831
 832        if (rule1->flags & NL80211_RRF_AUTO_BW)
 833                max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
 834        if (rule2->flags & NL80211_RRF_AUTO_BW)
 835                max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
 836
 837        freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
 838
 839        intersected_rule->flags = rule1->flags | rule2->flags;
 840
 841        /*
 842         * In case NL80211_RRF_AUTO_BW requested for both rules
 843         * set AUTO_BW in intersected rule also. Next we will
 844         * calculate BW correctly in handle_channel function.
 845         * In other case remove AUTO_BW flag while we calculate
 846         * maximum bandwidth correctly and auto calculation is
 847         * not required.
 848         */
 849        if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
 850            (rule2->flags & NL80211_RRF_AUTO_BW))
 851                intersected_rule->flags |= NL80211_RRF_AUTO_BW;
 852        else
 853                intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
 854
 855        freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
 856        if (freq_range->max_bandwidth_khz > freq_diff)
 857                freq_range->max_bandwidth_khz = freq_diff;
 858
 859        power_rule->max_eirp = min(power_rule1->max_eirp,
 860                power_rule2->max_eirp);
 861        power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
 862                power_rule2->max_antenna_gain);
 863
 864        intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
 865                                           rule2->dfs_cac_ms);
 866
 867        if (!is_valid_reg_rule(intersected_rule))
 868                return -EINVAL;
 869
 870        return 0;
 871}
 872
 873/* check whether old rule contains new rule */
 874static bool rule_contains(struct ieee80211_reg_rule *r1,
 875                          struct ieee80211_reg_rule *r2)
 876{
 877        /* for simplicity, currently consider only same flags */
 878        if (r1->flags != r2->flags)
 879                return false;
 880
 881        /* verify r1 is more restrictive */
 882        if ((r1->power_rule.max_antenna_gain >
 883             r2->power_rule.max_antenna_gain) ||
 884            r1->power_rule.max_eirp > r2->power_rule.max_eirp)
 885                return false;
 886
 887        /* make sure r2's range is contained within r1 */
 888        if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
 889            r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
 890                return false;
 891
 892        /* and finally verify that r1.max_bw >= r2.max_bw */
 893        if (r1->freq_range.max_bandwidth_khz <
 894            r2->freq_range.max_bandwidth_khz)
 895                return false;
 896
 897        return true;
 898}
 899
 900/* add or extend current rules. do nothing if rule is already contained */
 901static void add_rule(struct ieee80211_reg_rule *rule,
 902                     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
 903{
 904        struct ieee80211_reg_rule *tmp_rule;
 905        int i;
 906
 907        for (i = 0; i < *n_rules; i++) {
 908                tmp_rule = &reg_rules[i];
 909                /* rule is already contained - do nothing */
 910                if (rule_contains(tmp_rule, rule))
 911                        return;
 912
 913                /* extend rule if possible */
 914                if (rule_contains(rule, tmp_rule)) {
 915                        memcpy(tmp_rule, rule, sizeof(*rule));
 916                        return;
 917                }
 918        }
 919
 920        memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
 921        (*n_rules)++;
 922}
 923
 924/**
 925 * regdom_intersect - do the intersection between two regulatory domains
 926 * @rd1: first regulatory domain
 927 * @rd2: second regulatory domain
 928 *
 929 * Use this function to get the intersection between two regulatory domains.
 930 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 931 * as no one single alpha2 can represent this regulatory domain.
 932 *
 933 * Returns a pointer to the regulatory domain structure which will hold the
 934 * resulting intersection of rules between rd1 and rd2. We will
 935 * kzalloc() this structure for you.
 936 */
 937static struct ieee80211_regdomain *
 938regdom_intersect(const struct ieee80211_regdomain *rd1,
 939                 const struct ieee80211_regdomain *rd2)
 940{
 941        int r, size_of_regd;
 942        unsigned int x, y;
 943        unsigned int num_rules = 0;
 944        const struct ieee80211_reg_rule *rule1, *rule2;
 945        struct ieee80211_reg_rule intersected_rule;
 946        struct ieee80211_regdomain *rd;
 947
 948        if (!rd1 || !rd2)
 949                return NULL;
 950
 951        /*
 952         * First we get a count of the rules we'll need, then we actually
 953         * build them. This is to so we can malloc() and free() a
 954         * regdomain once. The reason we use reg_rules_intersect() here
 955         * is it will return -EINVAL if the rule computed makes no sense.
 956         * All rules that do check out OK are valid.
 957         */
 958
 959        for (x = 0; x < rd1->n_reg_rules; x++) {
 960                rule1 = &rd1->reg_rules[x];
 961                for (y = 0; y < rd2->n_reg_rules; y++) {
 962                        rule2 = &rd2->reg_rules[y];
 963                        if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
 964                                                 &intersected_rule))
 965                                num_rules++;
 966                }
 967        }
 968
 969        if (!num_rules)
 970                return NULL;
 971
 972        size_of_regd = sizeof(struct ieee80211_regdomain) +
 973                       num_rules * sizeof(struct ieee80211_reg_rule);
 974
 975        rd = kzalloc(size_of_regd, GFP_KERNEL);
 976        if (!rd)
 977                return NULL;
 978
 979        for (x = 0; x < rd1->n_reg_rules; x++) {
 980                rule1 = &rd1->reg_rules[x];
 981                for (y = 0; y < rd2->n_reg_rules; y++) {
 982                        rule2 = &rd2->reg_rules[y];
 983                        r = reg_rules_intersect(rd1, rd2, rule1, rule2,
 984                                                &intersected_rule);
 985                        /*
 986                         * No need to memset here the intersected rule here as
 987                         * we're not using the stack anymore
 988                         */
 989                        if (r)
 990                                continue;
 991
 992                        add_rule(&intersected_rule, rd->reg_rules,
 993                                 &rd->n_reg_rules);
 994                }
 995        }
 996
 997        rd->alpha2[0] = '9';
 998        rd->alpha2[1] = '8';
 999        rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1000                                                  rd2->dfs_region);
1001
1002        return rd;
1003}
1004
1005/*
1006 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1007 * want to just have the channel structure use these
1008 */
1009static u32 map_regdom_flags(u32 rd_flags)
1010{
1011        u32 channel_flags = 0;
1012        if (rd_flags & NL80211_RRF_NO_IR_ALL)
1013                channel_flags |= IEEE80211_CHAN_NO_IR;
1014        if (rd_flags & NL80211_RRF_DFS)
1015                channel_flags |= IEEE80211_CHAN_RADAR;
1016        if (rd_flags & NL80211_RRF_NO_OFDM)
1017                channel_flags |= IEEE80211_CHAN_NO_OFDM;
1018        if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1019                channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1020        if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1021                channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1022        if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1023                channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1024        if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1025                channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1026        if (rd_flags & NL80211_RRF_NO_80MHZ)
1027                channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1028        if (rd_flags & NL80211_RRF_NO_160MHZ)
1029                channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1030        return channel_flags;
1031}
1032
1033static const struct ieee80211_reg_rule *
1034freq_reg_info_regd(u32 center_freq,
1035                   const struct ieee80211_regdomain *regd, u32 bw)
1036{
1037        int i;
1038        bool band_rule_found = false;
1039        bool bw_fits = false;
1040
1041        if (!regd)
1042                return ERR_PTR(-EINVAL);
1043
1044        for (i = 0; i < regd->n_reg_rules; i++) {
1045                const struct ieee80211_reg_rule *rr;
1046                const struct ieee80211_freq_range *fr = NULL;
1047
1048                rr = &regd->reg_rules[i];
1049                fr = &rr->freq_range;
1050
1051                /*
1052                 * We only need to know if one frequency rule was
1053                 * was in center_freq's band, that's enough, so lets
1054                 * not overwrite it once found
1055                 */
1056                if (!band_rule_found)
1057                        band_rule_found = freq_in_rule_band(fr, center_freq);
1058
1059                bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1060
1061                if (band_rule_found && bw_fits)
1062                        return rr;
1063        }
1064
1065        if (!band_rule_found)
1066                return ERR_PTR(-ERANGE);
1067
1068        return ERR_PTR(-EINVAL);
1069}
1070
1071static const struct ieee80211_reg_rule *
1072__freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1073{
1074        const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1075        const struct ieee80211_reg_rule *reg_rule = NULL;
1076        u32 bw;
1077
1078        for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1079                reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1080                if (!IS_ERR(reg_rule))
1081                        return reg_rule;
1082        }
1083
1084        return reg_rule;
1085}
1086
1087const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1088                                               u32 center_freq)
1089{
1090        return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1091}
1092EXPORT_SYMBOL(freq_reg_info);
1093
1094const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1095{
1096        switch (initiator) {
1097        case NL80211_REGDOM_SET_BY_CORE:
1098                return "core";
1099        case NL80211_REGDOM_SET_BY_USER:
1100                return "user";
1101        case NL80211_REGDOM_SET_BY_DRIVER:
1102                return "driver";
1103        case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1104                return "country IE";
1105        default:
1106                WARN_ON(1);
1107                return "bug";
1108        }
1109}
1110EXPORT_SYMBOL(reg_initiator_name);
1111
1112static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1113                                          const struct ieee80211_reg_rule *reg_rule,
1114                                          const struct ieee80211_channel *chan)
1115{
1116        const struct ieee80211_freq_range *freq_range = NULL;
1117        u32 max_bandwidth_khz, bw_flags = 0;
1118
1119        freq_range = &reg_rule->freq_range;
1120
1121        max_bandwidth_khz = freq_range->max_bandwidth_khz;
1122        /* Check if auto calculation requested */
1123        if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1124                max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1125
1126        /* If we get a reg_rule we can assume that at least 5Mhz fit */
1127        if (!cfg80211_does_bw_fit_range(freq_range,
1128                                        MHZ_TO_KHZ(chan->center_freq),
1129                                        MHZ_TO_KHZ(10)))
1130                bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1131        if (!cfg80211_does_bw_fit_range(freq_range,
1132                                        MHZ_TO_KHZ(chan->center_freq),
1133                                        MHZ_TO_KHZ(20)))
1134                bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1135
1136        if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1137                bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1138        if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1139                bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1140        if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1141                bw_flags |= IEEE80211_CHAN_NO_HT40;
1142        if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1143                bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1144        if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1145                bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1146        return bw_flags;
1147}
1148
1149/*
1150 * Note that right now we assume the desired channel bandwidth
1151 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1152 * per channel, the primary and the extension channel).
1153 */
1154static void handle_channel(struct wiphy *wiphy,
1155                           enum nl80211_reg_initiator initiator,
1156                           struct ieee80211_channel *chan)
1157{
1158        u32 flags, bw_flags = 0;
1159        const struct ieee80211_reg_rule *reg_rule = NULL;
1160        const struct ieee80211_power_rule *power_rule = NULL;
1161        struct wiphy *request_wiphy = NULL;
1162        struct regulatory_request *lr = get_last_request();
1163        const struct ieee80211_regdomain *regd;
1164
1165        request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1166
1167        flags = chan->orig_flags;
1168
1169        reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1170        if (IS_ERR(reg_rule)) {
1171                /*
1172                 * We will disable all channels that do not match our
1173                 * received regulatory rule unless the hint is coming
1174                 * from a Country IE and the Country IE had no information
1175                 * about a band. The IEEE 802.11 spec allows for an AP
1176                 * to send only a subset of the regulatory rules allowed,
1177                 * so an AP in the US that only supports 2.4 GHz may only send
1178                 * a country IE with information for the 2.4 GHz band
1179                 * while 5 GHz is still supported.
1180                 */
1181                if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1182                    PTR_ERR(reg_rule) == -ERANGE)
1183                        return;
1184
1185                if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1186                    request_wiphy && request_wiphy == wiphy &&
1187                    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1188                        pr_debug("Disabling freq %d MHz for good\n",
1189                                 chan->center_freq);
1190                        chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1191                        chan->flags = chan->orig_flags;
1192                } else {
1193                        pr_debug("Disabling freq %d MHz\n",
1194                                 chan->center_freq);
1195                        chan->flags |= IEEE80211_CHAN_DISABLED;
1196                }
1197                return;
1198        }
1199
1200        regd = reg_get_regdomain(wiphy);
1201
1202        power_rule = &reg_rule->power_rule;
1203        bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1204
1205        if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1206            request_wiphy && request_wiphy == wiphy &&
1207            request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1208                /*
1209                 * This guarantees the driver's requested regulatory domain
1210                 * will always be used as a base for further regulatory
1211                 * settings
1212                 */
1213                chan->flags = chan->orig_flags =
1214                        map_regdom_flags(reg_rule->flags) | bw_flags;
1215                chan->max_antenna_gain = chan->orig_mag =
1216                        (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1217                chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1218                        (int) MBM_TO_DBM(power_rule->max_eirp);
1219
1220                if (chan->flags & IEEE80211_CHAN_RADAR) {
1221                        chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1222                        if (reg_rule->dfs_cac_ms)
1223                                chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1224                }
1225
1226                return;
1227        }
1228
1229        chan->dfs_state = NL80211_DFS_USABLE;
1230        chan->dfs_state_entered = jiffies;
1231
1232        chan->beacon_found = false;
1233        chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1234        chan->max_antenna_gain =
1235                min_t(int, chan->orig_mag,
1236                      MBI_TO_DBI(power_rule->max_antenna_gain));
1237        chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1238
1239        if (chan->flags & IEEE80211_CHAN_RADAR) {
1240                if (reg_rule->dfs_cac_ms)
1241                        chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1242                else
1243                        chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1244        }
1245
1246        if (chan->orig_mpwr) {
1247                /*
1248                 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1249                 * will always follow the passed country IE power settings.
1250                 */
1251                if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1252                    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1253                        chan->max_power = chan->max_reg_power;
1254                else
1255                        chan->max_power = min(chan->orig_mpwr,
1256                                              chan->max_reg_power);
1257        } else
1258                chan->max_power = chan->max_reg_power;
1259}
1260
1261static void handle_band(struct wiphy *wiphy,
1262                        enum nl80211_reg_initiator initiator,
1263                        struct ieee80211_supported_band *sband)
1264{
1265        unsigned int i;
1266
1267        if (!sband)
1268                return;
1269
1270        for (i = 0; i < sband->n_channels; i++)
1271                handle_channel(wiphy, initiator, &sband->channels[i]);
1272}
1273
1274static bool reg_request_cell_base(struct regulatory_request *request)
1275{
1276        if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1277                return false;
1278        return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1279}
1280
1281bool reg_last_request_cell_base(void)
1282{
1283        return reg_request_cell_base(get_last_request());
1284}
1285
1286#ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1287/* Core specific check */
1288static enum reg_request_treatment
1289reg_ignore_cell_hint(struct regulatory_request *pending_request)
1290{
1291        struct regulatory_request *lr = get_last_request();
1292
1293        if (!reg_num_devs_support_basehint)
1294                return REG_REQ_IGNORE;
1295
1296        if (reg_request_cell_base(lr) &&
1297            !regdom_changes(pending_request->alpha2))
1298                return REG_REQ_ALREADY_SET;
1299
1300        return REG_REQ_OK;
1301}
1302
1303/* Device specific check */
1304static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1305{
1306        return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1307}
1308#else
1309static enum reg_request_treatment
1310reg_ignore_cell_hint(struct regulatory_request *pending_request)
1311{
1312        return REG_REQ_IGNORE;
1313}
1314
1315static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1316{
1317        return true;
1318}
1319#endif
1320
1321static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1322{
1323        if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1324            !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1325                return true;
1326        return false;
1327}
1328
1329static bool ignore_reg_update(struct wiphy *wiphy,
1330                              enum nl80211_reg_initiator initiator)
1331{
1332        struct regulatory_request *lr = get_last_request();
1333
1334        if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1335                return true;
1336
1337        if (!lr) {
1338                pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1339                         reg_initiator_name(initiator));
1340                return true;
1341        }
1342
1343        if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1344            wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1345                pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1346                         reg_initiator_name(initiator));
1347                return true;
1348        }
1349
1350        /*
1351         * wiphy->regd will be set once the device has its own
1352         * desired regulatory domain set
1353         */
1354        if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1355            initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1356            !is_world_regdom(lr->alpha2)) {
1357                pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1358                         reg_initiator_name(initiator));
1359                return true;
1360        }
1361
1362        if (reg_request_cell_base(lr))
1363                return reg_dev_ignore_cell_hint(wiphy);
1364
1365        return false;
1366}
1367
1368static bool reg_is_world_roaming(struct wiphy *wiphy)
1369{
1370        const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1371        const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1372        struct regulatory_request *lr = get_last_request();
1373
1374        if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1375                return true;
1376
1377        if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1378            wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1379                return true;
1380
1381        return false;
1382}
1383
1384static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1385                              struct reg_beacon *reg_beacon)
1386{
1387        struct ieee80211_supported_band *sband;
1388        struct ieee80211_channel *chan;
1389        bool channel_changed = false;
1390        struct ieee80211_channel chan_before;
1391
1392        sband = wiphy->bands[reg_beacon->chan.band];
1393        chan = &sband->channels[chan_idx];
1394
1395        if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1396                return;
1397
1398        if (chan->beacon_found)
1399                return;
1400
1401        chan->beacon_found = true;
1402
1403        if (!reg_is_world_roaming(wiphy))
1404                return;
1405
1406        if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1407                return;
1408
1409        chan_before.center_freq = chan->center_freq;
1410        chan_before.flags = chan->flags;
1411
1412        if (chan->flags & IEEE80211_CHAN_NO_IR) {
1413                chan->flags &= ~IEEE80211_CHAN_NO_IR;
1414                channel_changed = true;
1415        }
1416
1417        if (channel_changed)
1418                nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1419}
1420
1421/*
1422 * Called when a scan on a wiphy finds a beacon on
1423 * new channel
1424 */
1425static void wiphy_update_new_beacon(struct wiphy *wiphy,
1426                                    struct reg_beacon *reg_beacon)
1427{
1428        unsigned int i;
1429        struct ieee80211_supported_band *sband;
1430
1431        if (!wiphy->bands[reg_beacon->chan.band])
1432                return;
1433
1434        sband = wiphy->bands[reg_beacon->chan.band];
1435
1436        for (i = 0; i < sband->n_channels; i++)
1437                handle_reg_beacon(wiphy, i, reg_beacon);
1438}
1439
1440/*
1441 * Called upon reg changes or a new wiphy is added
1442 */
1443static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1444{
1445        unsigned int i;
1446        struct ieee80211_supported_band *sband;
1447        struct reg_beacon *reg_beacon;
1448
1449        list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1450                if (!wiphy->bands[reg_beacon->chan.band])
1451                        continue;
1452                sband = wiphy->bands[reg_beacon->chan.band];
1453                for (i = 0; i < sband->n_channels; i++)
1454                        handle_reg_beacon(wiphy, i, reg_beacon);
1455        }
1456}
1457
1458/* Reap the advantages of previously found beacons */
1459static void reg_process_beacons(struct wiphy *wiphy)
1460{
1461        /*
1462         * Means we are just firing up cfg80211, so no beacons would
1463         * have been processed yet.
1464         */
1465        if (!last_request)
1466                return;
1467        wiphy_update_beacon_reg(wiphy);
1468}
1469
1470static bool is_ht40_allowed(struct ieee80211_channel *chan)
1471{
1472        if (!chan)
1473                return false;
1474        if (chan->flags & IEEE80211_CHAN_DISABLED)
1475                return false;
1476        /* This would happen when regulatory rules disallow HT40 completely */
1477        if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1478                return false;
1479        return true;
1480}
1481
1482static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1483                                         struct ieee80211_channel *channel)
1484{
1485        struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1486        struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1487        const struct ieee80211_regdomain *regd;
1488        unsigned int i;
1489        u32 flags;
1490
1491        if (!is_ht40_allowed(channel)) {
1492                channel->flags |= IEEE80211_CHAN_NO_HT40;
1493                return;
1494        }
1495
1496        /*
1497         * We need to ensure the extension channels exist to
1498         * be able to use HT40- or HT40+, this finds them (or not)
1499         */
1500        for (i = 0; i < sband->n_channels; i++) {
1501                struct ieee80211_channel *c = &sband->channels[i];
1502
1503                if (c->center_freq == (channel->center_freq - 20))
1504                        channel_before = c;
1505                if (c->center_freq == (channel->center_freq + 20))
1506                        channel_after = c;
1507        }
1508
1509        flags = 0;
1510        regd = get_wiphy_regdom(wiphy);
1511        if (regd) {
1512                const struct ieee80211_reg_rule *reg_rule =
1513                        freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
1514                                           regd, MHZ_TO_KHZ(20));
1515
1516                if (!IS_ERR(reg_rule))
1517                        flags = reg_rule->flags;
1518        }
1519
1520        /*
1521         * Please note that this assumes target bandwidth is 20 MHz,
1522         * if that ever changes we also need to change the below logic
1523         * to include that as well.
1524         */
1525        if (!is_ht40_allowed(channel_before) ||
1526            flags & NL80211_RRF_NO_HT40MINUS)
1527                channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1528        else
1529                channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1530
1531        if (!is_ht40_allowed(channel_after) ||
1532            flags & NL80211_RRF_NO_HT40PLUS)
1533                channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1534        else
1535                channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1536}
1537
1538static void reg_process_ht_flags_band(struct wiphy *wiphy,
1539                                      struct ieee80211_supported_band *sband)
1540{
1541        unsigned int i;
1542
1543        if (!sband)
1544                return;
1545
1546        for (i = 0; i < sband->n_channels; i++)
1547                reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1548}
1549
1550static void reg_process_ht_flags(struct wiphy *wiphy)
1551{
1552        enum nl80211_band band;
1553
1554        if (!wiphy)
1555                return;
1556
1557        for (band = 0; band < NUM_NL80211_BANDS; band++)
1558                reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1559}
1560
1561static void reg_call_notifier(struct wiphy *wiphy,
1562                              struct regulatory_request *request)
1563{
1564        if (wiphy->reg_notifier)
1565                wiphy->reg_notifier(wiphy, request);
1566}
1567
1568static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1569{
1570        struct cfg80211_chan_def chandef;
1571        struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1572        enum nl80211_iftype iftype;
1573
1574        wdev_lock(wdev);
1575        iftype = wdev->iftype;
1576
1577        /* make sure the interface is active */
1578        if (!wdev->netdev || !netif_running(wdev->netdev))
1579                goto wdev_inactive_unlock;
1580
1581        switch (iftype) {
1582        case NL80211_IFTYPE_AP:
1583        case NL80211_IFTYPE_P2P_GO:
1584                if (!wdev->beacon_interval)
1585                        goto wdev_inactive_unlock;
1586                chandef = wdev->chandef;
1587                break;
1588        case NL80211_IFTYPE_ADHOC:
1589                if (!wdev->ssid_len)
1590                        goto wdev_inactive_unlock;
1591                chandef = wdev->chandef;
1592                break;
1593        case NL80211_IFTYPE_STATION:
1594        case NL80211_IFTYPE_P2P_CLIENT:
1595                if (!wdev->current_bss ||
1596                    !wdev->current_bss->pub.channel)
1597                        goto wdev_inactive_unlock;
1598
1599                if (!rdev->ops->get_channel ||
1600                    rdev_get_channel(rdev, wdev, &chandef))
1601                        cfg80211_chandef_create(&chandef,
1602                                                wdev->current_bss->pub.channel,
1603                                                NL80211_CHAN_NO_HT);
1604                break;
1605        case NL80211_IFTYPE_MONITOR:
1606        case NL80211_IFTYPE_AP_VLAN:
1607        case NL80211_IFTYPE_P2P_DEVICE:
1608                /* no enforcement required */
1609                break;
1610        default:
1611                /* others not implemented for now */
1612                WARN_ON(1);
1613                break;
1614        }
1615
1616        wdev_unlock(wdev);
1617
1618        switch (iftype) {
1619        case NL80211_IFTYPE_AP:
1620        case NL80211_IFTYPE_P2P_GO:
1621        case NL80211_IFTYPE_ADHOC:
1622                return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
1623        case NL80211_IFTYPE_STATION:
1624        case NL80211_IFTYPE_P2P_CLIENT:
1625                return cfg80211_chandef_usable(wiphy, &chandef,
1626                                               IEEE80211_CHAN_DISABLED);
1627        default:
1628                break;
1629        }
1630
1631        return true;
1632
1633wdev_inactive_unlock:
1634        wdev_unlock(wdev);
1635        return true;
1636}
1637
1638static void reg_leave_invalid_chans(struct wiphy *wiphy)
1639{
1640        struct wireless_dev *wdev;
1641        struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1642
1643        ASSERT_RTNL();
1644
1645        list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1646                if (!reg_wdev_chan_valid(wiphy, wdev))
1647                        cfg80211_leave(rdev, wdev);
1648}
1649
1650static void reg_check_chans_work(struct work_struct *work)
1651{
1652        struct cfg80211_registered_device *rdev;
1653
1654        pr_debug("Verifying active interfaces after reg change\n");
1655        rtnl_lock();
1656
1657        list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1658                if (!(rdev->wiphy.regulatory_flags &
1659                      REGULATORY_IGNORE_STALE_KICKOFF))
1660                        reg_leave_invalid_chans(&rdev->wiphy);
1661
1662        rtnl_unlock();
1663}
1664
1665static void reg_check_channels(void)
1666{
1667        /*
1668         * Give usermode a chance to do something nicer (move to another
1669         * channel, orderly disconnection), before forcing a disconnection.
1670         */
1671        mod_delayed_work(system_power_efficient_wq,
1672                         &reg_check_chans,
1673                         msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1674}
1675
1676static void wiphy_update_regulatory(struct wiphy *wiphy,
1677                                    enum nl80211_reg_initiator initiator)
1678{
1679        enum nl80211_band band;
1680        struct regulatory_request *lr = get_last_request();
1681
1682        if (ignore_reg_update(wiphy, initiator)) {
1683                /*
1684                 * Regulatory updates set by CORE are ignored for custom
1685                 * regulatory cards. Let us notify the changes to the driver,
1686                 * as some drivers used this to restore its orig_* reg domain.
1687                 */
1688                if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1689                    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1690                        reg_call_notifier(wiphy, lr);
1691                return;
1692        }
1693
1694        lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1695
1696        for (band = 0; band < NUM_NL80211_BANDS; band++)
1697                handle_band(wiphy, initiator, wiphy->bands[band]);
1698
1699        reg_process_beacons(wiphy);
1700        reg_process_ht_flags(wiphy);
1701        reg_call_notifier(wiphy, lr);
1702}
1703
1704static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1705{
1706        struct cfg80211_registered_device *rdev;
1707        struct wiphy *wiphy;
1708
1709        ASSERT_RTNL();
1710
1711        list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1712                wiphy = &rdev->wiphy;
1713                wiphy_update_regulatory(wiphy, initiator);
1714        }
1715
1716        reg_check_channels();
1717}
1718
1719static void handle_channel_custom(struct wiphy *wiphy,
1720                                  struct ieee80211_channel *chan,
1721                                  const struct ieee80211_regdomain *regd)
1722{
1723        u32 bw_flags = 0;
1724        const struct ieee80211_reg_rule *reg_rule = NULL;
1725        const struct ieee80211_power_rule *power_rule = NULL;
1726        u32 bw;
1727
1728        for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
1729                reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
1730                                              regd, bw);
1731                if (!IS_ERR(reg_rule))
1732                        break;
1733        }
1734
1735        if (IS_ERR(reg_rule)) {
1736                pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1737                         chan->center_freq);
1738                if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
1739                        chan->flags |= IEEE80211_CHAN_DISABLED;
1740                } else {
1741                        chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1742                        chan->flags = chan->orig_flags;
1743                }
1744                return;
1745        }
1746
1747        power_rule = &reg_rule->power_rule;
1748        bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1749
1750        chan->dfs_state_entered = jiffies;
1751        chan->dfs_state = NL80211_DFS_USABLE;
1752
1753        chan->beacon_found = false;
1754
1755        if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1756                chan->flags = chan->orig_flags | bw_flags |
1757                              map_regdom_flags(reg_rule->flags);
1758        else
1759                chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1760
1761        chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1762        chan->max_reg_power = chan->max_power =
1763                (int) MBM_TO_DBM(power_rule->max_eirp);
1764
1765        if (chan->flags & IEEE80211_CHAN_RADAR) {
1766                if (reg_rule->dfs_cac_ms)
1767                        chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1768                else
1769                        chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1770        }
1771
1772        chan->max_power = chan->max_reg_power;
1773}
1774
1775static void handle_band_custom(struct wiphy *wiphy,
1776                               struct ieee80211_supported_band *sband,
1777                               const struct ieee80211_regdomain *regd)
1778{
1779        unsigned int i;
1780
1781        if (!sband)
1782                return;
1783
1784        for (i = 0; i < sband->n_channels; i++)
1785                handle_channel_custom(wiphy, &sband->channels[i], regd);
1786}
1787
1788/* Used by drivers prior to wiphy registration */
1789void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1790                                   const struct ieee80211_regdomain *regd)
1791{
1792        enum nl80211_band band;
1793        unsigned int bands_set = 0;
1794
1795        WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1796             "wiphy should have REGULATORY_CUSTOM_REG\n");
1797        wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1798
1799        for (band = 0; band < NUM_NL80211_BANDS; band++) {
1800                if (!wiphy->bands[band])
1801                        continue;
1802                handle_band_custom(wiphy, wiphy->bands[band], regd);
1803                bands_set++;
1804        }
1805
1806        /*
1807         * no point in calling this if it won't have any effect
1808         * on your device's supported bands.
1809         */
1810        WARN_ON(!bands_set);
1811}
1812EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1813
1814static void reg_set_request_processed(void)
1815{
1816        bool need_more_processing = false;
1817        struct regulatory_request *lr = get_last_request();
1818
1819        lr->processed = true;
1820
1821        spin_lock(&reg_requests_lock);
1822        if (!list_empty(&reg_requests_list))
1823                need_more_processing = true;
1824        spin_unlock(&reg_requests_lock);
1825
1826        cancel_crda_timeout();
1827
1828        if (need_more_processing)
1829                schedule_work(&reg_work);
1830}
1831
1832/**
1833 * reg_process_hint_core - process core regulatory requests
1834 * @pending_request: a pending core regulatory request
1835 *
1836 * The wireless subsystem can use this function to process
1837 * a regulatory request issued by the regulatory core.
1838 */
1839static enum reg_request_treatment
1840reg_process_hint_core(struct regulatory_request *core_request)
1841{
1842        if (reg_query_database(core_request)) {
1843                core_request->intersect = false;
1844                core_request->processed = false;
1845                reg_update_last_request(core_request);
1846                return REG_REQ_OK;
1847        }
1848
1849        return REG_REQ_IGNORE;
1850}
1851
1852static enum reg_request_treatment
1853__reg_process_hint_user(struct regulatory_request *user_request)
1854{
1855        struct regulatory_request *lr = get_last_request();
1856
1857        if (reg_request_cell_base(user_request))
1858                return reg_ignore_cell_hint(user_request);
1859
1860        if (reg_request_cell_base(lr))
1861                return REG_REQ_IGNORE;
1862
1863        if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1864                return REG_REQ_INTERSECT;
1865        /*
1866         * If the user knows better the user should set the regdom
1867         * to their country before the IE is picked up
1868         */
1869        if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1870            lr->intersect)
1871                return REG_REQ_IGNORE;
1872        /*
1873         * Process user requests only after previous user/driver/core
1874         * requests have been processed
1875         */
1876        if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1877             lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1878             lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1879            regdom_changes(lr->alpha2))
1880                return REG_REQ_IGNORE;
1881
1882        if (!regdom_changes(user_request->alpha2))
1883                return REG_REQ_ALREADY_SET;
1884
1885        return REG_REQ_OK;
1886}
1887
1888/**
1889 * reg_process_hint_user - process user regulatory requests
1890 * @user_request: a pending user regulatory request
1891 *
1892 * The wireless subsystem can use this function to process
1893 * a regulatory request initiated by userspace.
1894 */
1895static enum reg_request_treatment
1896reg_process_hint_user(struct regulatory_request *user_request)
1897{
1898        enum reg_request_treatment treatment;
1899
1900        treatment = __reg_process_hint_user(user_request);
1901        if (treatment == REG_REQ_IGNORE ||
1902            treatment == REG_REQ_ALREADY_SET)
1903                return REG_REQ_IGNORE;
1904
1905        user_request->intersect = treatment == REG_REQ_INTERSECT;
1906        user_request->processed = false;
1907
1908        if (reg_query_database(user_request)) {
1909                reg_update_last_request(user_request);
1910                user_alpha2[0] = user_request->alpha2[0];
1911                user_alpha2[1] = user_request->alpha2[1];
1912                return REG_REQ_OK;
1913        }
1914
1915        return REG_REQ_IGNORE;
1916}
1917
1918static enum reg_request_treatment
1919__reg_process_hint_driver(struct regulatory_request *driver_request)
1920{
1921        struct regulatory_request *lr = get_last_request();
1922
1923        if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1924                if (regdom_changes(driver_request->alpha2))
1925                        return REG_REQ_OK;
1926                return REG_REQ_ALREADY_SET;
1927        }
1928
1929        /*
1930         * This would happen if you unplug and plug your card
1931         * back in or if you add a new device for which the previously
1932         * loaded card also agrees on the regulatory domain.
1933         */
1934        if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1935            !regdom_changes(driver_request->alpha2))
1936                return REG_REQ_ALREADY_SET;
1937
1938        return REG_REQ_INTERSECT;
1939}
1940
1941/**
1942 * reg_process_hint_driver - process driver regulatory requests
1943 * @driver_request: a pending driver regulatory request
1944 *
1945 * The wireless subsystem can use this function to process
1946 * a regulatory request issued by an 802.11 driver.
1947 *
1948 * Returns one of the different reg request treatment values.
1949 */
1950static enum reg_request_treatment
1951reg_process_hint_driver(struct wiphy *wiphy,
1952                        struct regulatory_request *driver_request)
1953{
1954        const struct ieee80211_regdomain *regd, *tmp;
1955        enum reg_request_treatment treatment;
1956
1957        treatment = __reg_process_hint_driver(driver_request);
1958
1959        switch (treatment) {
1960        case REG_REQ_OK:
1961                break;
1962        case REG_REQ_IGNORE:
1963                return REG_REQ_IGNORE;
1964        case REG_REQ_INTERSECT:
1965        case REG_REQ_ALREADY_SET:
1966                regd = reg_copy_regd(get_cfg80211_regdom());
1967                if (IS_ERR(regd))
1968                        return REG_REQ_IGNORE;
1969
1970                tmp = get_wiphy_regdom(wiphy);
1971                rcu_assign_pointer(wiphy->regd, regd);
1972                rcu_free_regdom(tmp);
1973        }
1974
1975
1976        driver_request->intersect = treatment == REG_REQ_INTERSECT;
1977        driver_request->processed = false;
1978
1979        /*
1980         * Since CRDA will not be called in this case as we already
1981         * have applied the requested regulatory domain before we just
1982         * inform userspace we have processed the request
1983         */
1984        if (treatment == REG_REQ_ALREADY_SET) {
1985                nl80211_send_reg_change_event(driver_request);
1986                reg_update_last_request(driver_request);
1987                reg_set_request_processed();
1988                return REG_REQ_ALREADY_SET;
1989        }
1990
1991        if (reg_query_database(driver_request)) {
1992                reg_update_last_request(driver_request);
1993                return REG_REQ_OK;
1994        }
1995
1996        return REG_REQ_IGNORE;
1997}
1998
1999static enum reg_request_treatment
2000__reg_process_hint_country_ie(struct wiphy *wiphy,
2001                              struct regulatory_request *country_ie_request)
2002{
2003        struct wiphy *last_wiphy = NULL;
2004        struct regulatory_request *lr = get_last_request();
2005
2006        if (reg_request_cell_base(lr)) {
2007                /* Trust a Cell base station over the AP's country IE */
2008                if (regdom_changes(country_ie_request->alpha2))
2009                        return REG_REQ_IGNORE;
2010                return REG_REQ_ALREADY_SET;
2011        } else {
2012                if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2013                        return REG_REQ_IGNORE;
2014        }
2015
2016        if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2017                return -EINVAL;
2018
2019        if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2020                return REG_REQ_OK;
2021
2022        last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2023
2024        if (last_wiphy != wiphy) {
2025                /*
2026                 * Two cards with two APs claiming different
2027                 * Country IE alpha2s. We could
2028                 * intersect them, but that seems unlikely
2029                 * to be correct. Reject second one for now.
2030                 */
2031                if (regdom_changes(country_ie_request->alpha2))
2032                        return REG_REQ_IGNORE;
2033                return REG_REQ_ALREADY_SET;
2034        }
2035
2036        if (regdom_changes(country_ie_request->alpha2))
2037                return REG_REQ_OK;
2038        return REG_REQ_ALREADY_SET;
2039}
2040
2041/**
2042 * reg_process_hint_country_ie - process regulatory requests from country IEs
2043 * @country_ie_request: a regulatory request from a country IE
2044 *
2045 * The wireless subsystem can use this function to process
2046 * a regulatory request issued by a country Information Element.
2047 *
2048 * Returns one of the different reg request treatment values.
2049 */
2050static enum reg_request_treatment
2051reg_process_hint_country_ie(struct wiphy *wiphy,
2052                            struct regulatory_request *country_ie_request)
2053{
2054        enum reg_request_treatment treatment;
2055
2056        treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2057
2058        switch (treatment) {
2059        case REG_REQ_OK:
2060                break;
2061        case REG_REQ_IGNORE:
2062                return REG_REQ_IGNORE;
2063        case REG_REQ_ALREADY_SET:
2064                reg_free_request(country_ie_request);
2065                return REG_REQ_ALREADY_SET;
2066        case REG_REQ_INTERSECT:
2067                /*
2068                 * This doesn't happen yet, not sure we
2069                 * ever want to support it for this case.
2070                 */
2071                WARN_ONCE(1, "Unexpected intersection for country IEs");
2072                return REG_REQ_IGNORE;
2073        }
2074
2075        country_ie_request->intersect = false;
2076        country_ie_request->processed = false;
2077
2078        if (reg_query_database(country_ie_request)) {
2079                reg_update_last_request(country_ie_request);
2080                return REG_REQ_OK;
2081        }
2082
2083        return REG_REQ_IGNORE;
2084}
2085
2086bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2087{
2088        const struct ieee80211_regdomain *wiphy1_regd = NULL;
2089        const struct ieee80211_regdomain *wiphy2_regd = NULL;
2090        const struct ieee80211_regdomain *cfg80211_regd = NULL;
2091        bool dfs_domain_same;
2092
2093        rcu_read_lock();
2094
2095        cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2096        wiphy1_regd = rcu_dereference(wiphy1->regd);
2097        if (!wiphy1_regd)
2098                wiphy1_regd = cfg80211_regd;
2099
2100        wiphy2_regd = rcu_dereference(wiphy2->regd);
2101        if (!wiphy2_regd)
2102                wiphy2_regd = cfg80211_regd;
2103
2104        dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2105
2106        rcu_read_unlock();
2107
2108        return dfs_domain_same;
2109}
2110
2111static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2112                                    struct ieee80211_channel *src_chan)
2113{
2114        if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2115            !(src_chan->flags & IEEE80211_CHAN_RADAR))
2116                return;
2117
2118        if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2119            src_chan->flags & IEEE80211_CHAN_DISABLED)
2120                return;
2121
2122        if (src_chan->center_freq == dst_chan->center_freq &&
2123            dst_chan->dfs_state == NL80211_DFS_USABLE) {
2124                dst_chan->dfs_state = src_chan->dfs_state;
2125                dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2126        }
2127}
2128
2129static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2130                                       struct wiphy *src_wiphy)
2131{
2132        struct ieee80211_supported_band *src_sband, *dst_sband;
2133        struct ieee80211_channel *src_chan, *dst_chan;
2134        int i, j, band;
2135
2136        if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2137                return;
2138
2139        for (band = 0; band < NUM_NL80211_BANDS; band++) {
2140                dst_sband = dst_wiphy->bands[band];
2141                src_sband = src_wiphy->bands[band];
2142                if (!dst_sband || !src_sband)
2143                        continue;
2144
2145                for (i = 0; i < dst_sband->n_channels; i++) {
2146                        dst_chan = &dst_sband->channels[i];
2147                        for (j = 0; j < src_sband->n_channels; j++) {
2148                                src_chan = &src_sband->channels[j];
2149                                reg_copy_dfs_chan_state(dst_chan, src_chan);
2150                        }
2151                }
2152        }
2153}
2154
2155static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2156{
2157        struct cfg80211_registered_device *rdev;
2158
2159        ASSERT_RTNL();
2160
2161        list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2162                if (wiphy == &rdev->wiphy)
2163                        continue;
2164                wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2165        }
2166}
2167
2168/* This processes *all* regulatory hints */
2169static void reg_process_hint(struct regulatory_request *reg_request)
2170{
2171        struct wiphy *wiphy = NULL;
2172        enum reg_request_treatment treatment;
2173
2174        if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2175                wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2176
2177        switch (reg_request->initiator) {
2178        case NL80211_REGDOM_SET_BY_CORE:
2179                treatment = reg_process_hint_core(reg_request);
2180                break;
2181        case NL80211_REGDOM_SET_BY_USER:
2182                treatment = reg_process_hint_user(reg_request);
2183                break;
2184        case NL80211_REGDOM_SET_BY_DRIVER:
2185                if (!wiphy)
2186                        goto out_free;
2187                treatment = reg_process_hint_driver(wiphy, reg_request);
2188                break;
2189        case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2190                if (!wiphy)
2191                        goto out_free;
2192                treatment = reg_process_hint_country_ie(wiphy, reg_request);
2193                break;
2194        default:
2195                WARN(1, "invalid initiator %d\n", reg_request->initiator);
2196                goto out_free;
2197        }
2198
2199        if (treatment == REG_REQ_IGNORE)
2200                goto out_free;
2201
2202        WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2203             "unexpected treatment value %d\n", treatment);
2204
2205        /* This is required so that the orig_* parameters are saved.
2206         * NOTE: treatment must be set for any case that reaches here!
2207         */
2208        if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2209            wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2210                wiphy_update_regulatory(wiphy, reg_request->initiator);
2211                wiphy_all_share_dfs_chan_state(wiphy);
2212                reg_check_channels();
2213        }
2214
2215        return;
2216
2217out_free:
2218        reg_free_request(reg_request);
2219}
2220
2221static bool reg_only_self_managed_wiphys(void)
2222{
2223        struct cfg80211_registered_device *rdev;
2224        struct wiphy *wiphy;
2225        bool self_managed_found = false;
2226
2227        ASSERT_RTNL();
2228
2229        list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2230                wiphy = &rdev->wiphy;
2231                if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2232                        self_managed_found = true;
2233                else
2234                        return false;
2235        }
2236
2237        /* make sure at least one self-managed wiphy exists */
2238        return self_managed_found;
2239}
2240
2241/*
2242 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2243 * Regulatory hints come on a first come first serve basis and we
2244 * must process each one atomically.
2245 */
2246static void reg_process_pending_hints(void)
2247{
2248        struct regulatory_request *reg_request, *lr;
2249
2250        lr = get_last_request();
2251
2252        /* When last_request->processed becomes true this will be rescheduled */
2253        if (lr && !lr->processed) {
2254                reg_process_hint(lr);
2255                return;
2256        }
2257
2258        spin_lock(&reg_requests_lock);
2259
2260        if (list_empty(&reg_requests_list)) {
2261                spin_unlock(&reg_requests_lock);
2262                return;
2263        }
2264
2265        reg_request = list_first_entry(&reg_requests_list,
2266                                       struct regulatory_request,
2267                                       list);
2268        list_del_init(&reg_request->list);
2269
2270        spin_unlock(&reg_requests_lock);
2271
2272        if (reg_only_self_managed_wiphys()) {
2273                reg_free_request(reg_request);
2274                return;
2275        }
2276
2277        reg_process_hint(reg_request);
2278
2279        lr = get_last_request();
2280
2281        spin_lock(&reg_requests_lock);
2282        if (!list_empty(&reg_requests_list) && lr && lr->processed)
2283                schedule_work(&reg_work);
2284        spin_unlock(&reg_requests_lock);
2285}
2286
2287/* Processes beacon hints -- this has nothing to do with country IEs */
2288static void reg_process_pending_beacon_hints(void)
2289{
2290        struct cfg80211_registered_device *rdev;
2291        struct reg_beacon *pending_beacon, *tmp;
2292
2293        /* This goes through the _pending_ beacon list */
2294        spin_lock_bh(&reg_pending_beacons_lock);
2295
2296        list_for_each_entry_safe(pending_beacon, tmp,
2297                                 &reg_pending_beacons, list) {
2298                list_del_init(&pending_beacon->list);
2299
2300                /* Applies the beacon hint to current wiphys */
2301                list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2302                        wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2303
2304                /* Remembers the beacon hint for new wiphys or reg changes */
2305                list_add_tail(&pending_beacon->list, &reg_beacon_list);
2306        }
2307
2308        spin_unlock_bh(&reg_pending_beacons_lock);
2309}
2310
2311static void reg_process_self_managed_hints(void)
2312{
2313        struct cfg80211_registered_device *rdev;
2314        struct wiphy *wiphy;
2315        const struct ieee80211_regdomain *tmp;
2316        const struct ieee80211_regdomain *regd;
2317        enum nl80211_band band;
2318        struct regulatory_request request = {};
2319
2320        list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2321                wiphy = &rdev->wiphy;
2322
2323                spin_lock(&reg_requests_lock);
2324                regd = rdev->requested_regd;
2325                rdev->requested_regd = NULL;
2326                spin_unlock(&reg_requests_lock);
2327
2328                if (regd == NULL)
2329                        continue;
2330
2331                tmp = get_wiphy_regdom(wiphy);
2332                rcu_assign_pointer(wiphy->regd, regd);
2333                rcu_free_regdom(tmp);
2334
2335                for (band = 0; band < NUM_NL80211_BANDS; band++)
2336                        handle_band_custom(wiphy, wiphy->bands[band], regd);
2337
2338                reg_process_ht_flags(wiphy);
2339
2340                request.wiphy_idx = get_wiphy_idx(wiphy);
2341                request.alpha2[0] = regd->alpha2[0];
2342                request.alpha2[1] = regd->alpha2[1];
2343                request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2344
2345                nl80211_send_wiphy_reg_change_event(&request);
2346        }
2347
2348        reg_check_channels();
2349}
2350
2351static void reg_todo(struct work_struct *work)
2352{
2353        rtnl_lock();
2354        reg_process_pending_hints();
2355        reg_process_pending_beacon_hints();
2356        reg_process_self_managed_hints();
2357        rtnl_unlock();
2358}
2359
2360static void queue_regulatory_request(struct regulatory_request *request)
2361{
2362        request->alpha2[0] = toupper(request->alpha2[0]);
2363        request->alpha2[1] = toupper(request->alpha2[1]);
2364
2365        spin_lock(&reg_requests_lock);
2366        list_add_tail(&request->list, &reg_requests_list);
2367        spin_unlock(&reg_requests_lock);
2368
2369        schedule_work(&reg_work);
2370}
2371
2372/*
2373 * Core regulatory hint -- happens during cfg80211_init()
2374 * and when we restore regulatory settings.
2375 */
2376static int regulatory_hint_core(const char *alpha2)
2377{
2378        struct regulatory_request *request;
2379
2380        request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2381        if (!request)
2382                return -ENOMEM;
2383
2384        request->alpha2[0] = alpha2[0];
2385        request->alpha2[1] = alpha2[1];
2386        request->initiator = NL80211_REGDOM_SET_BY_CORE;
2387
2388        queue_regulatory_request(request);
2389
2390        return 0;
2391}
2392
2393/* User hints */
2394int regulatory_hint_user(const char *alpha2,
2395                         enum nl80211_user_reg_hint_type user_reg_hint_type)
2396{
2397        struct regulatory_request *request;
2398
2399        if (WARN_ON(!alpha2))
2400                return -EINVAL;
2401
2402        request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2403        if (!request)
2404                return -ENOMEM;
2405
2406        request->wiphy_idx = WIPHY_IDX_INVALID;
2407        request->alpha2[0] = alpha2[0];
2408        request->alpha2[1] = alpha2[1];
2409        request->initiator = NL80211_REGDOM_SET_BY_USER;
2410        request->user_reg_hint_type = user_reg_hint_type;
2411
2412        /* Allow calling CRDA again */
2413        reset_crda_timeouts();
2414
2415        queue_regulatory_request(request);
2416
2417        return 0;
2418}
2419
2420int regulatory_hint_indoor(bool is_indoor, u32 portid)
2421{
2422        spin_lock(&reg_indoor_lock);
2423
2424        /* It is possible that more than one user space process is trying to
2425         * configure the indoor setting. To handle such cases, clear the indoor
2426         * setting in case that some process does not think that the device
2427         * is operating in an indoor environment. In addition, if a user space
2428         * process indicates that it is controlling the indoor setting, save its
2429         * portid, i.e., make it the owner.
2430         */
2431        reg_is_indoor = is_indoor;
2432        if (reg_is_indoor) {
2433                if (!reg_is_indoor_portid)
2434                        reg_is_indoor_portid = portid;
2435        } else {
2436                reg_is_indoor_portid = 0;
2437        }
2438
2439        spin_unlock(&reg_indoor_lock);
2440
2441        if (!is_indoor)
2442                reg_check_channels();
2443
2444        return 0;
2445}
2446
2447void regulatory_netlink_notify(u32 portid)
2448{
2449        spin_lock(&reg_indoor_lock);
2450
2451        if (reg_is_indoor_portid != portid) {
2452                spin_unlock(&reg_indoor_lock);
2453                return;
2454        }
2455
2456        reg_is_indoor = false;
2457        reg_is_indoor_portid = 0;
2458
2459        spin_unlock(&reg_indoor_lock);
2460
2461        reg_check_channels();
2462}
2463
2464/* Driver hints */
2465int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2466{
2467        struct regulatory_request *request;
2468
2469        if (WARN_ON(!alpha2 || !wiphy))
2470                return -EINVAL;
2471
2472        wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2473
2474        request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2475        if (!request)
2476                return -ENOMEM;
2477
2478        request->wiphy_idx = get_wiphy_idx(wiphy);
2479
2480        request->alpha2[0] = alpha2[0];
2481        request->alpha2[1] = alpha2[1];
2482        request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2483
2484        /* Allow calling CRDA again */
2485        reset_crda_timeouts();
2486
2487        queue_regulatory_request(request);
2488
2489        return 0;
2490}
2491EXPORT_SYMBOL(regulatory_hint);
2492
2493void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
2494                                const u8 *country_ie, u8 country_ie_len)
2495{
2496        char alpha2[2];
2497        enum environment_cap env = ENVIRON_ANY;
2498        struct regulatory_request *request = NULL, *lr;
2499
2500        /* IE len must be evenly divisible by 2 */
2501        if (country_ie_len & 0x01)
2502                return;
2503
2504        if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2505                return;
2506
2507        request = kzalloc(sizeof(*request), GFP_KERNEL);
2508        if (!request)
2509                return;
2510
2511        alpha2[0] = country_ie[0];
2512        alpha2[1] = country_ie[1];
2513
2514        if (country_ie[2] == 'I')
2515                env = ENVIRON_INDOOR;
2516        else if (country_ie[2] == 'O')
2517                env = ENVIRON_OUTDOOR;
2518
2519        rcu_read_lock();
2520        lr = get_last_request();
2521
2522        if (unlikely(!lr))
2523                goto out;
2524
2525        /*
2526         * We will run this only upon a successful connection on cfg80211.
2527         * We leave conflict resolution to the workqueue, where can hold
2528         * the RTNL.
2529         */
2530        if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2531            lr->wiphy_idx != WIPHY_IDX_INVALID)
2532                goto out;
2533
2534        request->wiphy_idx = get_wiphy_idx(wiphy);
2535        request->alpha2[0] = alpha2[0];
2536        request->alpha2[1] = alpha2[1];
2537        request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2538        request->country_ie_env = env;
2539
2540        /* Allow calling CRDA again */
2541        reset_crda_timeouts();
2542
2543        queue_regulatory_request(request);
2544        request = NULL;
2545out:
2546        kfree(request);
2547        rcu_read_unlock();
2548}
2549
2550static void restore_alpha2(char *alpha2, bool reset_user)
2551{
2552        /* indicates there is no alpha2 to consider for restoration */
2553        alpha2[0] = '9';
2554        alpha2[1] = '7';
2555
2556        /* The user setting has precedence over the module parameter */
2557        if (is_user_regdom_saved()) {
2558                /* Unless we're asked to ignore it and reset it */
2559                if (reset_user) {
2560                        pr_debug("Restoring regulatory settings including user preference\n");
2561                        user_alpha2[0] = '9';
2562                        user_alpha2[1] = '7';
2563
2564                        /*
2565                         * If we're ignoring user settings, we still need to
2566                         * check the module parameter to ensure we put things
2567                         * back as they were for a full restore.
2568                         */
2569                        if (!is_world_regdom(ieee80211_regdom)) {
2570                                pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2571                                         ieee80211_regdom[0], ieee80211_regdom[1]);
2572                                alpha2[0] = ieee80211_regdom[0];
2573                                alpha2[1] = ieee80211_regdom[1];
2574                        }
2575                } else {
2576                        pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
2577                                 user_alpha2[0], user_alpha2[1]);
2578                        alpha2[0] = user_alpha2[0];
2579                        alpha2[1] = user_alpha2[1];
2580                }
2581        } else if (!is_world_regdom(ieee80211_regdom)) {
2582                pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2583                         ieee80211_regdom[0], ieee80211_regdom[1]);
2584                alpha2[0] = ieee80211_regdom[0];
2585                alpha2[1] = ieee80211_regdom[1];
2586        } else
2587                pr_debug("Restoring regulatory settings\n");
2588}
2589
2590static void restore_custom_reg_settings(struct wiphy *wiphy)
2591{
2592        struct ieee80211_supported_band *sband;
2593        enum nl80211_band band;
2594        struct ieee80211_channel *chan;
2595        int i;
2596
2597        for (band = 0; band < NUM_NL80211_BANDS; band++) {
2598                sband = wiphy->bands[band];
2599                if (!sband)
2600                        continue;
2601                for (i = 0; i < sband->n_channels; i++) {
2602                        chan = &sband->channels[i];
2603                        chan->flags = chan->orig_flags;
2604                        chan->max_antenna_gain = chan->orig_mag;
2605                        chan->max_power = chan->orig_mpwr;
2606                        chan->beacon_found = false;
2607                }
2608        }
2609}
2610
2611/*
2612 * Restoring regulatory settings involves ingoring any
2613 * possibly stale country IE information and user regulatory
2614 * settings if so desired, this includes any beacon hints
2615 * learned as we could have traveled outside to another country
2616 * after disconnection. To restore regulatory settings we do
2617 * exactly what we did at bootup:
2618 *
2619 *   - send a core regulatory hint
2620 *   - send a user regulatory hint if applicable
2621 *
2622 * Device drivers that send a regulatory hint for a specific country
2623 * keep their own regulatory domain on wiphy->regd so that does does
2624 * not need to be remembered.
2625 */
2626static void restore_regulatory_settings(bool reset_user)
2627{
2628        char alpha2[2];
2629        char world_alpha2[2];
2630        struct reg_beacon *reg_beacon, *btmp;
2631        LIST_HEAD(tmp_reg_req_list);
2632        struct cfg80211_registered_device *rdev;
2633
2634        ASSERT_RTNL();
2635
2636        /*
2637         * Clear the indoor setting in case that it is not controlled by user
2638         * space, as otherwise there is no guarantee that the device is still
2639         * operating in an indoor environment.
2640         */
2641        spin_lock(&reg_indoor_lock);
2642        if (reg_is_indoor && !reg_is_indoor_portid) {
2643                reg_is_indoor = false;
2644                reg_check_channels();
2645        }
2646        spin_unlock(&reg_indoor_lock);
2647
2648        reset_regdomains(true, &world_regdom);
2649        restore_alpha2(alpha2, reset_user);
2650
2651        /*
2652         * If there's any pending requests we simply
2653         * stash them to a temporary pending queue and
2654         * add then after we've restored regulatory
2655         * settings.
2656         */
2657        spin_lock(&reg_requests_lock);
2658        list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
2659        spin_unlock(&reg_requests_lock);
2660
2661        /* Clear beacon hints */
2662        spin_lock_bh(&reg_pending_beacons_lock);
2663        list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2664                list_del(&reg_beacon->list);
2665                kfree(reg_beacon);
2666        }
2667        spin_unlock_bh(&reg_pending_beacons_lock);
2668
2669        list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2670                list_del(&reg_beacon->list);
2671                kfree(reg_beacon);
2672        }
2673
2674        /* First restore to the basic regulatory settings */
2675        world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2676        world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2677
2678        list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2679                if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2680                        continue;
2681                if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2682                        restore_custom_reg_settings(&rdev->wiphy);
2683        }
2684
2685        regulatory_hint_core(world_alpha2);
2686
2687        /*
2688         * This restores the ieee80211_regdom module parameter
2689         * preference or the last user requested regulatory
2690         * settings, user regulatory settings takes precedence.
2691         */
2692        if (is_an_alpha2(alpha2))
2693                regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
2694
2695        spin_lock(&reg_requests_lock);
2696        list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2697        spin_unlock(&reg_requests_lock);
2698
2699        pr_debug("Kicking the queue\n");
2700
2701        schedule_work(&reg_work);
2702}
2703
2704void regulatory_hint_disconnect(void)
2705{
2706        pr_debug("All devices are disconnected, going to restore regulatory settings\n");
2707        restore_regulatory_settings(false);
2708}
2709
2710static bool freq_is_chan_12_13_14(u16 freq)
2711{
2712        if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
2713            freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
2714            freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
2715                return true;
2716        return false;
2717}
2718
2719static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2720{
2721        struct reg_beacon *pending_beacon;
2722
2723        list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2724                if (beacon_chan->center_freq ==
2725                    pending_beacon->chan.center_freq)
2726                        return true;
2727        return false;
2728}
2729
2730int regulatory_hint_found_beacon(struct wiphy *wiphy,
2731                                 struct ieee80211_channel *beacon_chan,
2732                                 gfp_t gfp)
2733{
2734        struct reg_beacon *reg_beacon;
2735        bool processing;
2736
2737        if (beacon_chan->beacon_found ||
2738            beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2739            (beacon_chan->band == NL80211_BAND_2GHZ &&
2740             !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2741                return 0;
2742
2743        spin_lock_bh(&reg_pending_beacons_lock);
2744        processing = pending_reg_beacon(beacon_chan);
2745        spin_unlock_bh(&reg_pending_beacons_lock);
2746
2747        if (processing)
2748                return 0;
2749
2750        reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2751        if (!reg_beacon)
2752                return -ENOMEM;
2753
2754        pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2755                 beacon_chan->center_freq,
2756                 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2757                 wiphy_name(wiphy));
2758
2759        memcpy(&reg_beacon->chan, beacon_chan,
2760               sizeof(struct ieee80211_channel));
2761
2762        /*
2763         * Since we can be called from BH or and non-BH context
2764         * we must use spin_lock_bh()
2765         */
2766        spin_lock_bh(&reg_pending_beacons_lock);
2767        list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2768        spin_unlock_bh(&reg_pending_beacons_lock);
2769
2770        schedule_work(&reg_work);
2771
2772        return 0;
2773}
2774
2775static void print_rd_rules(const struct ieee80211_regdomain *rd)
2776{
2777        unsigned int i;
2778        const struct ieee80211_reg_rule *reg_rule = NULL;
2779        const struct ieee80211_freq_range *freq_range = NULL;
2780        const struct ieee80211_power_rule *power_rule = NULL;
2781        char bw[32], cac_time[32];
2782
2783        pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2784
2785        for (i = 0; i < rd->n_reg_rules; i++) {
2786                reg_rule = &rd->reg_rules[i];
2787                freq_range = &reg_rule->freq_range;
2788                power_rule = &reg_rule->power_rule;
2789
2790                if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2791                        snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2792                                 freq_range->max_bandwidth_khz,
2793                                 reg_get_max_bandwidth(rd, reg_rule));
2794                else
2795                        snprintf(bw, sizeof(bw), "%d KHz",
2796                                 freq_range->max_bandwidth_khz);
2797
2798                if (reg_rule->flags & NL80211_RRF_DFS)
2799                        scnprintf(cac_time, sizeof(cac_time), "%u s",
2800                                  reg_rule->dfs_cac_ms/1000);
2801                else
2802                        scnprintf(cac_time, sizeof(cac_time), "N/A");
2803
2804
2805                /*
2806                 * There may not be documentation for max antenna gain
2807                 * in certain regions
2808                 */
2809                if (power_rule->max_antenna_gain)
2810                        pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2811                                freq_range->start_freq_khz,
2812                                freq_range->end_freq_khz,
2813                                bw,
2814                                power_rule->max_antenna_gain,
2815                                power_rule->max_eirp,
2816                                cac_time);
2817                else
2818                        pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2819                                freq_range->start_freq_khz,
2820                                freq_range->end_freq_khz,
2821                                bw,
2822                                power_rule->max_eirp,
2823                                cac_time);
2824        }
2825}
2826
2827bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2828{
2829        switch (dfs_region) {
2830        case NL80211_DFS_UNSET:
2831        case NL80211_DFS_FCC:
2832        case NL80211_DFS_ETSI:
2833        case NL80211_DFS_JP:
2834                return true;
2835        default:
2836                pr_debug("Ignoring uknown DFS master region: %d\n", dfs_region);
2837                return false;
2838        }
2839}
2840
2841static void print_regdomain(const struct ieee80211_regdomain *rd)
2842{
2843        struct regulatory_request *lr = get_last_request();
2844
2845        if (is_intersected_alpha2(rd->alpha2)) {
2846                if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2847                        struct cfg80211_registered_device *rdev;
2848                        rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2849                        if (rdev) {
2850                                pr_debug("Current regulatory domain updated by AP to: %c%c\n",
2851                                        rdev->country_ie_alpha2[0],
2852                                        rdev->country_ie_alpha2[1]);
2853                        } else
2854                                pr_debug("Current regulatory domain intersected:\n");
2855                } else
2856                        pr_debug("Current regulatory domain intersected:\n");
2857        } else if (is_world_regdom(rd->alpha2)) {
2858                pr_debug("World regulatory domain updated:\n");
2859        } else {
2860                if (is_unknown_alpha2(rd->alpha2))
2861                        pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
2862                else {
2863                        if (reg_request_cell_base(lr))
2864                                pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
2865                                        rd->alpha2[0], rd->alpha2[1]);
2866                        else
2867                                pr_debug("Regulatory domain changed to country: %c%c\n",
2868                                        rd->alpha2[0], rd->alpha2[1]);
2869                }
2870        }
2871
2872        pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2873        print_rd_rules(rd);
2874}
2875
2876static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2877{
2878        pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2879        print_rd_rules(rd);
2880}
2881
2882static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2883{
2884        if (!is_world_regdom(rd->alpha2))
2885                return -EINVAL;
2886        update_world_regdomain(rd);
2887        return 0;
2888}
2889
2890static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2891                           struct regulatory_request *user_request)
2892{
2893        const struct ieee80211_regdomain *intersected_rd = NULL;
2894
2895        if (!regdom_changes(rd->alpha2))
2896                return -EALREADY;
2897
2898        if (!is_valid_rd(rd)) {
2899                pr_err("Invalid regulatory domain detected: %c%c\n",
2900                       rd->alpha2[0], rd->alpha2[1]);
2901                print_regdomain_info(rd);
2902                return -EINVAL;
2903        }
2904
2905        if (!user_request->intersect) {
2906                reset_regdomains(false, rd);
2907                return 0;
2908        }
2909
2910        intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2911        if (!intersected_rd)
2912                return -EINVAL;
2913
2914        kfree(rd);
2915        rd = NULL;
2916        reset_regdomains(false, intersected_rd);
2917
2918        return 0;
2919}
2920
2921static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2922                             struct regulatory_request *driver_request)
2923{
2924        const struct ieee80211_regdomain *regd;
2925        const struct ieee80211_regdomain *intersected_rd = NULL;
2926        const struct ieee80211_regdomain *tmp;
2927        struct wiphy *request_wiphy;
2928
2929        if (is_world_regdom(rd->alpha2))
2930                return -EINVAL;
2931
2932        if (!regdom_changes(rd->alpha2))
2933                return -EALREADY;
2934
2935        if (!is_valid_rd(rd)) {
2936                pr_err("Invalid regulatory domain detected: %c%c\n",
2937                       rd->alpha2[0], rd->alpha2[1]);
2938                print_regdomain_info(rd);
2939                return -EINVAL;
2940        }
2941
2942        request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2943        if (!request_wiphy)
2944                return -ENODEV;
2945
2946        if (!driver_request->intersect) {
2947                if (request_wiphy->regd)
2948                        return -EALREADY;
2949
2950                regd = reg_copy_regd(rd);
2951                if (IS_ERR(regd))
2952                        return PTR_ERR(regd);
2953
2954                rcu_assign_pointer(request_wiphy->regd, regd);
2955                reset_regdomains(false, rd);
2956                return 0;
2957        }
2958
2959        intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2960        if (!intersected_rd)
2961                return -EINVAL;
2962
2963        /*
2964         * We can trash what CRDA provided now.
2965         * However if a driver requested this specific regulatory
2966         * domain we keep it for its private use
2967         */
2968        tmp = get_wiphy_regdom(request_wiphy);
2969        rcu_assign_pointer(request_wiphy->regd, rd);
2970        rcu_free_regdom(tmp);
2971
2972        rd = NULL;
2973
2974        reset_regdomains(false, intersected_rd);
2975
2976        return 0;
2977}
2978
2979static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2980                                 struct regulatory_request *country_ie_request)
2981{
2982        struct wiphy *request_wiphy;
2983
2984        if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2985            !is_unknown_alpha2(rd->alpha2))
2986                return -EINVAL;
2987
2988        /*
2989         * Lets only bother proceeding on the same alpha2 if the current
2990         * rd is non static (it means CRDA was present and was used last)
2991         * and the pending request came in from a country IE
2992         */
2993
2994        if (!is_valid_rd(rd)) {
2995                pr_err("Invalid regulatory domain detected: %c%c\n",
2996                       rd->alpha2[0], rd->alpha2[1]);
2997                print_regdomain_info(rd);
2998                return -EINVAL;
2999        }
3000
3001        request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3002        if (!request_wiphy)
3003                return -ENODEV;
3004
3005        if (country_ie_request->intersect)
3006                return -EINVAL;
3007
3008        reset_regdomains(false, rd);
3009        return 0;
3010}
3011
3012/*
3013 * Use this call to set the current regulatory domain. Conflicts with
3014 * multiple drivers can be ironed out later. Caller must've already
3015 * kmalloc'd the rd structure.
3016 */
3017int set_regdom(const struct ieee80211_regdomain *rd,
3018               enum ieee80211_regd_source regd_src)
3019{
3020        struct regulatory_request *lr;
3021        bool user_reset = false;
3022        int r;
3023
3024        if (!reg_is_valid_request(rd->alpha2)) {
3025                kfree(rd);
3026                return -EINVAL;
3027        }
3028
3029        if (regd_src == REGD_SOURCE_CRDA)
3030                reset_crda_timeouts();
3031
3032        lr = get_last_request();
3033
3034        /* Note that this doesn't update the wiphys, this is done below */
3035        switch (lr->initiator) {
3036        case NL80211_REGDOM_SET_BY_CORE:
3037                r = reg_set_rd_core(rd);
3038                break;
3039        case NL80211_REGDOM_SET_BY_USER:
3040                r = reg_set_rd_user(rd, lr);
3041                user_reset = true;
3042                break;
3043        case NL80211_REGDOM_SET_BY_DRIVER:
3044                r = reg_set_rd_driver(rd, lr);
3045                break;
3046        case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3047                r = reg_set_rd_country_ie(rd, lr);
3048                break;
3049        default:
3050                WARN(1, "invalid initiator %d\n", lr->initiator);
3051                kfree(rd);
3052                return -EINVAL;
3053        }
3054
3055        if (r) {
3056                switch (r) {
3057                case -EALREADY:
3058                        reg_set_request_processed();
3059                        break;
3060                default:
3061                        /* Back to world regulatory in case of errors */
3062                        restore_regulatory_settings(user_reset);
3063                }
3064
3065                kfree(rd);
3066                return r;
3067        }
3068
3069        /* This would make this whole thing pointless */
3070        if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3071                return -EINVAL;
3072
3073        /* update all wiphys now with the new established regulatory domain */
3074        update_all_wiphy_regulatory(lr->initiator);
3075
3076        print_regdomain(get_cfg80211_regdom());
3077
3078        nl80211_send_reg_change_event(lr);
3079
3080        reg_set_request_processed();
3081
3082        return 0;
3083}
3084
3085static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3086                                       struct ieee80211_regdomain *rd)
3087{
3088        const struct ieee80211_regdomain *regd;
3089        const struct ieee80211_regdomain *prev_regd;
3090        struct cfg80211_registered_device *rdev;
3091
3092        if (WARN_ON(!wiphy || !rd))
3093                return -EINVAL;
3094
3095        if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3096                 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3097                return -EPERM;
3098
3099        if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3100                print_regdomain_info(rd);
3101                return -EINVAL;
3102        }
3103
3104        regd = reg_copy_regd(rd);
3105        if (IS_ERR(regd))
3106                return PTR_ERR(regd);
3107
3108        rdev = wiphy_to_rdev(wiphy);
3109
3110        spin_lock(&reg_requests_lock);
3111        prev_regd = rdev->requested_regd;
3112        rdev->requested_regd = regd;
3113        spin_unlock(&reg_requests_lock);
3114
3115        kfree(prev_regd);
3116        return 0;
3117}
3118
3119int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3120                              struct ieee80211_regdomain *rd)
3121{
3122        int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3123
3124        if (ret)
3125                return ret;
3126
3127        schedule_work(&reg_work);
3128        return 0;
3129}
3130EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3131
3132int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3133                                        struct ieee80211_regdomain *rd)
3134{
3135        int ret;
3136
3137        ASSERT_RTNL();
3138
3139        ret = __regulatory_set_wiphy_regd(wiphy, rd);
3140        if (ret)
3141                return ret;
3142
3143        /* process the request immediately */
3144        reg_process_self_managed_hints();
3145        return 0;
3146}
3147EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3148
3149void wiphy_regulatory_register(struct wiphy *wiphy)
3150{
3151        struct regulatory_request *lr;
3152
3153        /* self-managed devices ignore external hints */
3154        if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3155                wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3156                                           REGULATORY_COUNTRY_IE_IGNORE;
3157
3158        if (!reg_dev_ignore_cell_hint(wiphy))
3159                reg_num_devs_support_basehint++;
3160
3161        lr = get_last_request();
3162        wiphy_update_regulatory(wiphy, lr->initiator);
3163        wiphy_all_share_dfs_chan_state(wiphy);
3164}
3165
3166void wiphy_regulatory_deregister(struct wiphy *wiphy)
3167{
3168        struct wiphy *request_wiphy = NULL;
3169        struct regulatory_request *lr;
3170
3171        lr = get_last_request();
3172
3173        if (!reg_dev_ignore_cell_hint(wiphy))
3174                reg_num_devs_support_basehint--;
3175
3176        rcu_free_regdom(get_wiphy_regdom(wiphy));
3177        RCU_INIT_POINTER(wiphy->regd, NULL);
3178
3179        if (lr)
3180                request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3181
3182        if (!request_wiphy || request_wiphy != wiphy)
3183                return;
3184
3185        lr->wiphy_idx = WIPHY_IDX_INVALID;
3186        lr->country_ie_env = ENVIRON_ANY;
3187}
3188
3189/*
3190 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3191 * UNII band definitions
3192 */
3193int cfg80211_get_unii(int freq)
3194{
3195        /* UNII-1 */
3196        if (freq >= 5150 && freq <= 5250)
3197                return 0;
3198
3199        /* UNII-2A */
3200        if (freq > 5250 && freq <= 5350)
3201                return 1;
3202
3203        /* UNII-2B */
3204        if (freq > 5350 && freq <= 5470)
3205                return 2;
3206
3207        /* UNII-2C */
3208        if (freq > 5470 && freq <= 5725)
3209                return 3;
3210
3211        /* UNII-3 */
3212        if (freq > 5725 && freq <= 5825)
3213                return 4;
3214
3215        return -EINVAL;
3216}
3217
3218bool regulatory_indoor_allowed(void)
3219{
3220        return reg_is_indoor;
3221}
3222
3223bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3224{
3225        const struct ieee80211_regdomain *regd = NULL;
3226        const struct ieee80211_regdomain *wiphy_regd = NULL;
3227        bool pre_cac_allowed = false;
3228
3229        rcu_read_lock();
3230
3231        regd = rcu_dereference(cfg80211_regdomain);
3232        wiphy_regd = rcu_dereference(wiphy->regd);
3233        if (!wiphy_regd) {
3234                if (regd->dfs_region == NL80211_DFS_ETSI)
3235                        pre_cac_allowed = true;
3236
3237                rcu_read_unlock();
3238
3239                return pre_cac_allowed;
3240        }
3241
3242        if (regd->dfs_region == wiphy_regd->dfs_region &&
3243            wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3244                pre_cac_allowed = true;
3245
3246        rcu_read_unlock();
3247
3248        return pre_cac_allowed;
3249}
3250
3251void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3252                                    struct cfg80211_chan_def *chandef,
3253                                    enum nl80211_dfs_state dfs_state,
3254                                    enum nl80211_radar_event event)
3255{
3256        struct cfg80211_registered_device *rdev;
3257
3258        ASSERT_RTNL();
3259
3260        if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3261                return;
3262
3263        list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3264                if (wiphy == &rdev->wiphy)
3265                        continue;
3266
3267                if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3268                        continue;
3269
3270                if (!ieee80211_get_channel(&rdev->wiphy,
3271                                           chandef->chan->center_freq))
3272                        continue;
3273
3274                cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3275
3276                if (event == NL80211_RADAR_DETECTED ||
3277                    event == NL80211_RADAR_CAC_FINISHED)
3278                        cfg80211_sched_dfs_chan_update(rdev);
3279
3280                nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3281        }
3282}
3283
3284int __init regulatory_init(void)
3285{
3286        int err = 0;
3287
3288        reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3289        if (IS_ERR(reg_pdev))
3290                return PTR_ERR(reg_pdev);
3291
3292        spin_lock_init(&reg_requests_lock);
3293        spin_lock_init(&reg_pending_beacons_lock);
3294        spin_lock_init(&reg_indoor_lock);
3295
3296        reg_regdb_size_check();
3297
3298        rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3299
3300        user_alpha2[0] = '9';
3301        user_alpha2[1] = '7';
3302
3303        /* We always try to get an update for the static regdomain */
3304        err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3305        if (err) {
3306                if (err == -ENOMEM) {
3307                        platform_device_unregister(reg_pdev);
3308                        return err;
3309                }
3310                /*
3311                 * N.B. kobject_uevent_env() can fail mainly for when we're out
3312                 * memory which is handled and propagated appropriately above
3313                 * but it can also fail during a netlink_broadcast() or during
3314                 * early boot for call_usermodehelper(). For now treat these
3315                 * errors as non-fatal.
3316                 */
3317                pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3318        }
3319
3320        /*
3321         * Finally, if the user set the module parameter treat it
3322         * as a user hint.
3323         */
3324        if (!is_world_regdom(ieee80211_regdom))
3325                regulatory_hint_user(ieee80211_regdom,
3326                                     NL80211_USER_REG_HINT_USER);
3327
3328        return 0;
3329}
3330
3331void regulatory_exit(void)
3332{
3333        struct regulatory_request *reg_request, *tmp;
3334        struct reg_beacon *reg_beacon, *btmp;
3335
3336        cancel_work_sync(&reg_work);
3337        cancel_crda_timeout_sync();
3338        cancel_delayed_work_sync(&reg_check_chans);
3339
3340        /* Lock to suppress warnings */
3341        rtnl_lock();
3342        reset_regdomains(true, NULL);
3343        rtnl_unlock();
3344
3345        dev_set_uevent_suppress(&reg_pdev->dev, true);
3346
3347        platform_device_unregister(reg_pdev);
3348
3349        list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3350                list_del(&reg_beacon->list);
3351                kfree(reg_beacon);
3352        }
3353
3354        list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3355                list_del(&reg_beacon->list);
3356                kfree(reg_beacon);
3357        }
3358
3359        list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3360                list_del(&reg_request->list);
3361                kfree(reg_request);
3362        }
3363}
3364