linux/arch/alpha/kernel/core_t2.c
<<
>>
Prefs
   1/*
   2 *      linux/arch/alpha/kernel/core_t2.c
   3 *
   4 * Written by Jay A Estabrook (jestabro@amt.tay1.dec.com).
   5 * December 1996.
   6 *
   7 * based on CIA code by David A Rusling (david.rusling@reo.mts.dec.com)
   8 *
   9 * Code common to all T2 core logic chips.
  10 */
  11
  12#define __EXTERN_INLINE
  13#include <asm/io.h>
  14#include <asm/core_t2.h>
  15#undef __EXTERN_INLINE
  16
  17#include <linux/types.h>
  18#include <linux/pci.h>
  19#include <linux/sched.h>
  20#include <linux/init.h>
  21
  22#include <asm/ptrace.h>
  23#include <asm/delay.h>
  24#include <asm/mce.h>
  25
  26#include "proto.h"
  27#include "pci_impl.h"
  28
  29/* For dumping initial DMA window settings. */
  30#define DEBUG_PRINT_INITIAL_SETTINGS 0
  31
  32/* For dumping final DMA window settings. */
  33#define DEBUG_PRINT_FINAL_SETTINGS 0
  34
  35/*
  36 * By default, we direct-map starting at 2GB, in order to allow the
  37 * maximum size direct-map window (2GB) to match the maximum amount of
  38 * memory (2GB) that can be present on SABLEs. But that limits the
  39 * floppy to DMA only via the scatter/gather window set up for 8MB
  40 * ISA DMA, since the maximum ISA DMA address is 2GB-1.
  41 *
  42 * For now, this seems a reasonable trade-off: even though most SABLEs
  43 * have less than 1GB of memory, floppy usage/performance will not
  44 * really be affected by forcing it to go via scatter/gather...
  45 */
  46#define T2_DIRECTMAP_2G 1
  47
  48#if T2_DIRECTMAP_2G
  49# define T2_DIRECTMAP_START     0x80000000UL
  50# define T2_DIRECTMAP_LENGTH    0x80000000UL
  51#else
  52# define T2_DIRECTMAP_START     0x40000000UL
  53# define T2_DIRECTMAP_LENGTH    0x40000000UL
  54#endif
  55
  56/* The ISA scatter/gather window settings. */
  57#define T2_ISA_SG_START         0x00800000UL
  58#define T2_ISA_SG_LENGTH        0x00800000UL
  59
  60/*
  61 * NOTE: Herein lie back-to-back mb instructions.  They are magic. 
  62 * One plausible explanation is that the i/o controller does not properly
  63 * handle the system transaction.  Another involves timing.  Ho hum.
  64 */
  65
  66/*
  67 * BIOS32-style PCI interface:
  68 */
  69
  70#define DEBUG_CONFIG 0
  71
  72#if DEBUG_CONFIG
  73# define DBG(args)      printk args
  74#else
  75# define DBG(args)
  76#endif
  77
  78static volatile unsigned int t2_mcheck_any_expected;
  79static volatile unsigned int t2_mcheck_last_taken;
  80
  81/* Place to save the DMA Window registers as set up by SRM
  82   for restoration during shutdown. */
  83static struct
  84{
  85        struct {
  86                unsigned long wbase;
  87                unsigned long wmask;
  88                unsigned long tbase;
  89        } window[2];
  90        unsigned long hae_1;
  91        unsigned long hae_2;
  92        unsigned long hae_3;
  93        unsigned long hae_4;
  94        unsigned long hbase;
  95} t2_saved_config __attribute((common));
  96
  97/*
  98 * Given a bus, device, and function number, compute resulting
  99 * configuration space address and setup the T2_HAXR2 register
 100 * accordingly.  It is therefore not safe to have concurrent
 101 * invocations to configuration space access routines, but there
 102 * really shouldn't be any need for this.
 103 *
 104 * Type 0:
 105 *
 106 *  3 3|3 3 2 2|2 2 2 2|2 2 2 2|1 1 1 1|1 1 1 1|1 1 
 107 *  3 2|1 0 9 8|7 6 5 4|3 2 1 0|9 8 7 6|5 4 3 2|1 0 9 8|7 6 5 4|3 2 1 0
 108 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 109 * | | |D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|F|F|F|R|R|R|R|R|R|0|0|
 110 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 111 *
 112 *      31:11   Device select bit.
 113 *      10:8    Function number
 114 *       7:2    Register number
 115 *
 116 * Type 1:
 117 *
 118 *  3 3|3 3 2 2|2 2 2 2|2 2 2 2|1 1 1 1|1 1 1 1|1 1 
 119 *  3 2|1 0 9 8|7 6 5 4|3 2 1 0|9 8 7 6|5 4 3 2|1 0 9 8|7 6 5 4|3 2 1 0
 120 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 121 * | | | | | | | | | | |B|B|B|B|B|B|B|B|D|D|D|D|D|F|F|F|R|R|R|R|R|R|0|1|
 122 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 123 *
 124 *      31:24   reserved
 125 *      23:16   bus number (8 bits = 128 possible buses)
 126 *      15:11   Device number (5 bits)
 127 *      10:8    function number
 128 *       7:2    register number
 129 *  
 130 * Notes:
 131 *      The function number selects which function of a multi-function device 
 132 *      (e.g., SCSI and Ethernet).
 133 * 
 134 *      The register selects a DWORD (32 bit) register offset.  Hence it
 135 *      doesn't get shifted by 2 bits as we want to "drop" the bottom two
 136 *      bits.
 137 */
 138
 139static int
 140mk_conf_addr(struct pci_bus *pbus, unsigned int device_fn, int where,
 141             unsigned long *pci_addr, unsigned char *type1)
 142{
 143        unsigned long addr;
 144        u8 bus = pbus->number;
 145
 146        DBG(("mk_conf_addr(bus=%d, dfn=0x%x, where=0x%x,"
 147             " addr=0x%lx, type1=0x%x)\n",
 148             bus, device_fn, where, pci_addr, type1));
 149
 150        if (bus == 0) {
 151                int device = device_fn >> 3;
 152
 153                /* Type 0 configuration cycle.  */
 154
 155                if (device > 8) {
 156                        DBG(("mk_conf_addr: device (%d)>20, returning -1\n",
 157                             device));
 158                        return -1;
 159                }
 160
 161                *type1 = 0;
 162                addr = (0x0800L << device) | ((device_fn & 7) << 8) | (where);
 163        } else {
 164                /* Type 1 configuration cycle.  */
 165                *type1 = 1;
 166                addr = (bus << 16) | (device_fn << 8) | (where);
 167        }
 168        *pci_addr = addr;
 169        DBG(("mk_conf_addr: returning pci_addr 0x%lx\n", addr));
 170        return 0;
 171}
 172
 173/*
 174 * NOTE: both conf_read() and conf_write() may set HAE_3 when needing
 175 *       to do type1 access. This is protected by the use of spinlock IRQ
 176 *       primitives in the wrapper functions pci_{read,write}_config_*()
 177 *       defined in drivers/pci/pci.c.
 178 */
 179static unsigned int
 180conf_read(unsigned long addr, unsigned char type1)
 181{
 182        unsigned int value, cpu, taken;
 183        unsigned long t2_cfg = 0;
 184
 185        cpu = smp_processor_id();
 186
 187        DBG(("conf_read(addr=0x%lx, type1=%d)\n", addr, type1));
 188
 189        /* If Type1 access, must set T2 CFG.  */
 190        if (type1) {
 191                t2_cfg = *(vulp)T2_HAE_3 & ~0xc0000000UL;
 192                *(vulp)T2_HAE_3 = 0x40000000UL | t2_cfg;
 193                mb();
 194        }
 195        mb();
 196        draina();
 197
 198        mcheck_expected(cpu) = 1;
 199        mcheck_taken(cpu) = 0;
 200        t2_mcheck_any_expected |= (1 << cpu);
 201        mb();
 202
 203        /* Access configuration space. */
 204        value = *(vuip)addr;
 205        mb();
 206        mb();  /* magic */
 207
 208        /* Wait for possible mcheck. Also, this lets other CPUs clear
 209           their mchecks as well, as they can reliably tell when
 210           another CPU is in the midst of handling a real mcheck via
 211           the "taken" function. */
 212        udelay(100);
 213
 214        if ((taken = mcheck_taken(cpu))) {
 215                mcheck_taken(cpu) = 0;
 216                t2_mcheck_last_taken |= (1 << cpu);
 217                value = 0xffffffffU;
 218                mb();
 219        }
 220        mcheck_expected(cpu) = 0;
 221        t2_mcheck_any_expected = 0;
 222        mb();
 223
 224        /* If Type1 access, must reset T2 CFG so normal IO space ops work.  */
 225        if (type1) {
 226                *(vulp)T2_HAE_3 = t2_cfg;
 227                mb();
 228        }
 229
 230        return value;
 231}
 232
 233static void
 234conf_write(unsigned long addr, unsigned int value, unsigned char type1)
 235{
 236        unsigned int cpu, taken;
 237        unsigned long t2_cfg = 0;
 238
 239        cpu = smp_processor_id();
 240
 241        /* If Type1 access, must set T2 CFG.  */
 242        if (type1) {
 243                t2_cfg = *(vulp)T2_HAE_3 & ~0xc0000000UL;
 244                *(vulp)T2_HAE_3 = t2_cfg | 0x40000000UL;
 245                mb();
 246        }
 247        mb();
 248        draina();
 249
 250        mcheck_expected(cpu) = 1;
 251        mcheck_taken(cpu) = 0;
 252        t2_mcheck_any_expected |= (1 << cpu);
 253        mb();
 254
 255        /* Access configuration space.  */
 256        *(vuip)addr = value;
 257        mb();
 258        mb();  /* magic */
 259
 260        /* Wait for possible mcheck. Also, this lets other CPUs clear
 261           their mchecks as well, as they can reliably tell when
 262           this CPU is in the midst of handling a real mcheck via
 263           the "taken" function. */
 264        udelay(100);
 265
 266        if ((taken = mcheck_taken(cpu))) {
 267                mcheck_taken(cpu) = 0;
 268                t2_mcheck_last_taken |= (1 << cpu);
 269                mb();
 270        }
 271        mcheck_expected(cpu) = 0;
 272        t2_mcheck_any_expected = 0;
 273        mb();
 274
 275        /* If Type1 access, must reset T2 CFG so normal IO space ops work.  */
 276        if (type1) {
 277                *(vulp)T2_HAE_3 = t2_cfg;
 278                mb();
 279        }
 280}
 281
 282static int
 283t2_read_config(struct pci_bus *bus, unsigned int devfn, int where,
 284               int size, u32 *value)
 285{
 286        unsigned long addr, pci_addr;
 287        unsigned char type1;
 288        int shift;
 289        long mask;
 290
 291        if (mk_conf_addr(bus, devfn, where, &pci_addr, &type1))
 292                return PCIBIOS_DEVICE_NOT_FOUND;
 293
 294        mask = (size - 1) * 8;
 295        shift = (where & 3) * 8;
 296        addr = (pci_addr << 5) + mask + T2_CONF;
 297        *value = conf_read(addr, type1) >> (shift);
 298        return PCIBIOS_SUCCESSFUL;
 299}
 300
 301static int 
 302t2_write_config(struct pci_bus *bus, unsigned int devfn, int where, int size,
 303                u32 value)
 304{
 305        unsigned long addr, pci_addr;
 306        unsigned char type1;
 307        long mask;
 308
 309        if (mk_conf_addr(bus, devfn, where, &pci_addr, &type1))
 310                return PCIBIOS_DEVICE_NOT_FOUND;
 311
 312        mask = (size - 1) * 8;
 313        addr = (pci_addr << 5) + mask + T2_CONF;
 314        conf_write(addr, value << ((where & 3) * 8), type1);
 315        return PCIBIOS_SUCCESSFUL;
 316}
 317
 318struct pci_ops t2_pci_ops = 
 319{
 320        .read =         t2_read_config,
 321        .write =        t2_write_config,
 322};
 323
 324static void __init
 325t2_direct_map_window1(unsigned long base, unsigned long length)
 326{
 327        unsigned long temp;
 328
 329        __direct_map_base = base;
 330        __direct_map_size = length;
 331
 332        temp = (base & 0xfff00000UL) | ((base + length - 1) >> 20);
 333        *(vulp)T2_WBASE1 = temp | 0x80000UL; /* OR in ENABLE bit */
 334        temp = (length - 1) & 0xfff00000UL;
 335        *(vulp)T2_WMASK1 = temp;
 336        *(vulp)T2_TBASE1 = 0;
 337
 338#if DEBUG_PRINT_FINAL_SETTINGS
 339        printk("%s: setting WBASE1=0x%lx WMASK1=0x%lx TBASE1=0x%lx\n",
 340               __func__, *(vulp)T2_WBASE1, *(vulp)T2_WMASK1, *(vulp)T2_TBASE1);
 341#endif
 342}
 343
 344static void __init
 345t2_sg_map_window2(struct pci_controller *hose,
 346                  unsigned long base,
 347                  unsigned long length)
 348{
 349        unsigned long temp;
 350
 351        /* Note we can only do 1 SG window, as the other is for direct, so
 352           do an ISA SG area, especially for the floppy. */
 353        hose->sg_isa = iommu_arena_new(hose, base, length, 0);
 354        hose->sg_pci = NULL;
 355
 356        temp = (base & 0xfff00000UL) | ((base + length - 1) >> 20);
 357        *(vulp)T2_WBASE2 = temp | 0xc0000UL; /* OR in ENABLE/SG bits */
 358        temp = (length - 1) & 0xfff00000UL;
 359        *(vulp)T2_WMASK2 = temp;
 360        *(vulp)T2_TBASE2 = virt_to_phys(hose->sg_isa->ptes) >> 1;
 361        mb();
 362
 363        t2_pci_tbi(hose, 0, -1); /* flush TLB all */
 364
 365#if DEBUG_PRINT_FINAL_SETTINGS
 366        printk("%s: setting WBASE2=0x%lx WMASK2=0x%lx TBASE2=0x%lx\n",
 367               __func__, *(vulp)T2_WBASE2, *(vulp)T2_WMASK2, *(vulp)T2_TBASE2);
 368#endif
 369}
 370
 371static void __init
 372t2_save_configuration(void)
 373{
 374#if DEBUG_PRINT_INITIAL_SETTINGS
 375        printk("%s: HAE_1 was 0x%lx\n", __func__, srm_hae); /* HW is 0 */
 376        printk("%s: HAE_2 was 0x%lx\n", __func__, *(vulp)T2_HAE_2);
 377        printk("%s: HAE_3 was 0x%lx\n", __func__, *(vulp)T2_HAE_3);
 378        printk("%s: HAE_4 was 0x%lx\n", __func__, *(vulp)T2_HAE_4);
 379        printk("%s: HBASE was 0x%lx\n", __func__, *(vulp)T2_HBASE);
 380
 381        printk("%s: WBASE1=0x%lx WMASK1=0x%lx TBASE1=0x%lx\n", __func__,
 382               *(vulp)T2_WBASE1, *(vulp)T2_WMASK1, *(vulp)T2_TBASE1);
 383        printk("%s: WBASE2=0x%lx WMASK2=0x%lx TBASE2=0x%lx\n", __func__,
 384               *(vulp)T2_WBASE2, *(vulp)T2_WMASK2, *(vulp)T2_TBASE2);
 385#endif
 386
 387        /*
 388         * Save the DMA Window registers.
 389         */
 390        t2_saved_config.window[0].wbase = *(vulp)T2_WBASE1;
 391        t2_saved_config.window[0].wmask = *(vulp)T2_WMASK1;
 392        t2_saved_config.window[0].tbase = *(vulp)T2_TBASE1;
 393        t2_saved_config.window[1].wbase = *(vulp)T2_WBASE2;
 394        t2_saved_config.window[1].wmask = *(vulp)T2_WMASK2;
 395        t2_saved_config.window[1].tbase = *(vulp)T2_TBASE2;
 396
 397        t2_saved_config.hae_1 = srm_hae; /* HW is already set to 0 */
 398        t2_saved_config.hae_2 = *(vulp)T2_HAE_2;
 399        t2_saved_config.hae_3 = *(vulp)T2_HAE_3;
 400        t2_saved_config.hae_4 = *(vulp)T2_HAE_4;
 401        t2_saved_config.hbase = *(vulp)T2_HBASE;
 402}
 403
 404void __init
 405t2_init_arch(void)
 406{
 407        struct pci_controller *hose;
 408        struct resource *hae_mem;
 409        unsigned long temp;
 410        unsigned int i;
 411
 412        for (i = 0; i < NR_CPUS; i++) {
 413                mcheck_expected(i) = 0;
 414                mcheck_taken(i) = 0;
 415        }
 416        t2_mcheck_any_expected = 0;
 417        t2_mcheck_last_taken = 0;
 418
 419        /* Enable scatter/gather TLB use.  */
 420        temp = *(vulp)T2_IOCSR;
 421        if (!(temp & (0x1UL << 26))) {
 422                printk("t2_init_arch: enabling SG TLB, IOCSR was 0x%lx\n",
 423                       temp);
 424                *(vulp)T2_IOCSR = temp | (0x1UL << 26);
 425                mb();   
 426                *(vulp)T2_IOCSR; /* read it back to make sure */
 427        }
 428
 429        t2_save_configuration();
 430
 431        /*
 432         * Create our single hose.
 433         */
 434        pci_isa_hose = hose = alloc_pci_controller();
 435        hose->io_space = &ioport_resource;
 436        hae_mem = alloc_resource();
 437        hae_mem->start = 0;
 438        hae_mem->end = T2_MEM_R1_MASK;
 439        hae_mem->name = pci_hae0_name;
 440        if (request_resource(&iomem_resource, hae_mem) < 0)
 441                printk(KERN_ERR "Failed to request HAE_MEM\n");
 442        hose->mem_space = hae_mem;
 443        hose->index = 0;
 444
 445        hose->sparse_mem_base = T2_SPARSE_MEM - IDENT_ADDR;
 446        hose->dense_mem_base = T2_DENSE_MEM - IDENT_ADDR;
 447        hose->sparse_io_base = T2_IO - IDENT_ADDR;
 448        hose->dense_io_base = 0;
 449
 450        /*
 451         * Set up the PCI->physical memory translation windows.
 452         *
 453         * Window 1 is direct mapped.
 454         * Window 2 is scatter/gather (for ISA).
 455         */
 456
 457        t2_direct_map_window1(T2_DIRECTMAP_START, T2_DIRECTMAP_LENGTH);
 458
 459        /* Always make an ISA DMA window. */
 460        t2_sg_map_window2(hose, T2_ISA_SG_START, T2_ISA_SG_LENGTH);
 461
 462        *(vulp)T2_HBASE = 0x0; /* Disable HOLES. */
 463
 464        /* Zero HAE.  */
 465        *(vulp)T2_HAE_1 = 0; mb(); /* Sparse MEM HAE */
 466        *(vulp)T2_HAE_2 = 0; mb(); /* Sparse I/O HAE */
 467        *(vulp)T2_HAE_3 = 0; mb(); /* Config Space HAE */
 468
 469        /*
 470         * We also now zero out HAE_4, the dense memory HAE, so that
 471         * we need not account for its "offset" when accessing dense
 472         * memory resources which we allocated in our normal way. This
 473         * HAE would need to stay untouched were we to keep the SRM
 474         * resource settings.
 475         *
 476         * Thus we can now run standard X servers on SABLE/LYNX. :-)
 477         */
 478        *(vulp)T2_HAE_4 = 0; mb();
 479}
 480
 481void
 482t2_kill_arch(int mode)
 483{
 484        /*
 485         * Restore the DMA Window registers.
 486         */
 487        *(vulp)T2_WBASE1 = t2_saved_config.window[0].wbase;
 488        *(vulp)T2_WMASK1 = t2_saved_config.window[0].wmask;
 489        *(vulp)T2_TBASE1 = t2_saved_config.window[0].tbase;
 490        *(vulp)T2_WBASE2 = t2_saved_config.window[1].wbase;
 491        *(vulp)T2_WMASK2 = t2_saved_config.window[1].wmask;
 492        *(vulp)T2_TBASE2 = t2_saved_config.window[1].tbase;
 493        mb();
 494
 495        *(vulp)T2_HAE_1 = srm_hae;
 496        *(vulp)T2_HAE_2 = t2_saved_config.hae_2;
 497        *(vulp)T2_HAE_3 = t2_saved_config.hae_3;
 498        *(vulp)T2_HAE_4 = t2_saved_config.hae_4;
 499        *(vulp)T2_HBASE = t2_saved_config.hbase;
 500        mb();
 501        *(vulp)T2_HBASE; /* READ it back to ensure WRITE occurred. */
 502}
 503
 504void
 505t2_pci_tbi(struct pci_controller *hose, dma_addr_t start, dma_addr_t end)
 506{
 507        unsigned long t2_iocsr;
 508
 509        t2_iocsr = *(vulp)T2_IOCSR;
 510
 511        /* set the TLB Clear bit */
 512        *(vulp)T2_IOCSR = t2_iocsr | (0x1UL << 28);
 513        mb();
 514        *(vulp)T2_IOCSR; /* read it back to make sure */
 515
 516        /* clear the TLB Clear bit */
 517        *(vulp)T2_IOCSR = t2_iocsr & ~(0x1UL << 28);
 518        mb();
 519        *(vulp)T2_IOCSR; /* read it back to make sure */
 520}
 521
 522#define SIC_SEIC (1UL << 33)    /* System Event Clear */
 523
 524static void
 525t2_clear_errors(int cpu)
 526{
 527        struct sable_cpu_csr *cpu_regs;
 528
 529        cpu_regs = (struct sable_cpu_csr *)T2_CPUn_BASE(cpu);
 530                
 531        cpu_regs->sic &= ~SIC_SEIC;
 532
 533        /* Clear CPU errors.  */
 534        cpu_regs->bcce |= cpu_regs->bcce;
 535        cpu_regs->cbe  |= cpu_regs->cbe;
 536        cpu_regs->bcue |= cpu_regs->bcue;
 537        cpu_regs->dter |= cpu_regs->dter;
 538
 539        *(vulp)T2_CERR1 |= *(vulp)T2_CERR1;
 540        *(vulp)T2_PERR1 |= *(vulp)T2_PERR1;
 541
 542        mb();
 543        mb();  /* magic */
 544}
 545
 546/*
 547 * SABLE seems to have a "broadcast" style machine check, in that all
 548 * CPUs receive it. And, the issuing CPU, in the case of PCI Config
 549 * space read/write faults, will also receive a second mcheck, upon
 550 * lowering IPL during completion processing in pci_read_config_byte()
 551 * et al.
 552 *
 553 * Hence all the taken/expected/any_expected/last_taken stuff...
 554 */
 555void
 556t2_machine_check(unsigned long vector, unsigned long la_ptr)
 557{
 558        int cpu = smp_processor_id();
 559#ifdef CONFIG_VERBOSE_MCHECK
 560        struct el_common *mchk_header = (struct el_common *)la_ptr;
 561#endif
 562
 563        /* Clear the error before any reporting.  */
 564        mb();
 565        mb();  /* magic */
 566        draina();
 567        t2_clear_errors(cpu);
 568
 569        /* This should not actually be done until the logout frame is
 570           examined, but, since we don't do that, go on and do this... */
 571        wrmces(0x7);
 572        mb();
 573
 574        /* Now, do testing for the anomalous conditions. */
 575        if (!mcheck_expected(cpu) && t2_mcheck_any_expected) {
 576                /*
 577                 * FUNKY: Received mcheck on a CPU and not
 578                 * expecting it, but another CPU is expecting one.
 579                 *
 580                 * Just dismiss it for now on this CPU...
 581                 */
 582#ifdef CONFIG_VERBOSE_MCHECK
 583                if (alpha_verbose_mcheck > 1) {
 584                        printk("t2_machine_check(cpu%d): any_expected 0x%x -"
 585                               " (assumed) spurious -"
 586                               " code 0x%x\n", cpu, t2_mcheck_any_expected,
 587                               (unsigned int)mchk_header->code);
 588                }
 589#endif
 590                return;
 591        }
 592
 593        if (!mcheck_expected(cpu) && !t2_mcheck_any_expected) {
 594                if (t2_mcheck_last_taken & (1 << cpu)) {
 595#ifdef CONFIG_VERBOSE_MCHECK
 596                    if (alpha_verbose_mcheck > 1) {
 597                        printk("t2_machine_check(cpu%d): last_taken 0x%x - "
 598                               "unexpected mcheck - code 0x%x\n",
 599                               cpu, t2_mcheck_last_taken,
 600                               (unsigned int)mchk_header->code);
 601                    }
 602#endif
 603                    t2_mcheck_last_taken = 0;
 604                    mb();
 605                    return;
 606                } else {
 607                        t2_mcheck_last_taken = 0;
 608                        mb();
 609                }
 610        }
 611
 612#ifdef CONFIG_VERBOSE_MCHECK
 613        if (alpha_verbose_mcheck > 1) {
 614                printk("%s t2_mcheck(cpu%d): last_taken 0x%x - "
 615                       "any_expected 0x%x - code 0x%x\n",
 616                       (mcheck_expected(cpu) ? "EX" : "UN"), cpu,
 617                       t2_mcheck_last_taken, t2_mcheck_any_expected,
 618                       (unsigned int)mchk_header->code);
 619        }
 620#endif
 621
 622        process_mcheck_info(vector, la_ptr, "T2", mcheck_expected(cpu));
 623}
 624