linux/arch/ia64/kernel/unaligned.c
<<
>>
Prefs
   1/*
   2 * Architecture-specific unaligned trap handling.
   3 *
   4 * Copyright (C) 1999-2002, 2004 Hewlett-Packard Co
   5 *      Stephane Eranian <eranian@hpl.hp.com>
   6 *      David Mosberger-Tang <davidm@hpl.hp.com>
   7 *
   8 * 2002/12/09   Fix rotating register handling (off-by-1 error, missing fr-rotation).  Fix
   9 *              get_rse_reg() to not leak kernel bits to user-level (reading an out-of-frame
  10 *              stacked register returns an undefined value; it does NOT trigger a
  11 *              "rsvd register fault").
  12 * 2001/10/11   Fix unaligned access to rotating registers in s/w pipelined loops.
  13 * 2001/08/13   Correct size of extended floats (float_fsz) from 16 to 10 bytes.
  14 * 2001/01/17   Add support emulation of unaligned kernel accesses.
  15 */
  16#include <linux/jiffies.h>
  17#include <linux/kernel.h>
  18#include <linux/sched.h>
  19#include <linux/tty.h>
  20#include <linux/ratelimit.h>
  21
  22#include <asm/intrinsics.h>
  23#include <asm/processor.h>
  24#include <asm/rse.h>
  25#include <asm/uaccess.h>
  26#include <asm/unaligned.h>
  27
  28extern int die_if_kernel(char *str, struct pt_regs *regs, long err);
  29
  30#undef DEBUG_UNALIGNED_TRAP
  31
  32#ifdef DEBUG_UNALIGNED_TRAP
  33# define DPRINT(a...)   do { printk("%s %u: ", __func__, __LINE__); printk (a); } while (0)
  34# define DDUMP(str,vp,len)      dump(str, vp, len)
  35
  36static void
  37dump (const char *str, void *vp, size_t len)
  38{
  39        unsigned char *cp = vp;
  40        int i;
  41
  42        printk("%s", str);
  43        for (i = 0; i < len; ++i)
  44                printk (" %02x", *cp++);
  45        printk("\n");
  46}
  47#else
  48# define DPRINT(a...)
  49# define DDUMP(str,vp,len)
  50#endif
  51
  52#define IA64_FIRST_STACKED_GR   32
  53#define IA64_FIRST_ROTATING_FR  32
  54#define SIGN_EXT9               0xffffffffffffff00ul
  55
  56/*
  57 *  sysctl settable hook which tells the kernel whether to honor the
  58 *  IA64_THREAD_UAC_NOPRINT prctl.  Because this is user settable, we want
  59 *  to allow the super user to enable/disable this for security reasons
  60 *  (i.e. don't allow attacker to fill up logs with unaligned accesses).
  61 */
  62int no_unaligned_warning;
  63int unaligned_dump_stack;
  64
  65/*
  66 * For M-unit:
  67 *
  68 *  opcode |   m  |   x6    |
  69 * --------|------|---------|
  70 * [40-37] | [36] | [35:30] |
  71 * --------|------|---------|
  72 *     4   |   1  |    6    | = 11 bits
  73 * --------------------------
  74 * However bits [31:30] are not directly useful to distinguish between
  75 * load/store so we can use [35:32] instead, which gives the following
  76 * mask ([40:32]) using 9 bits. The 'e' comes from the fact that we defer
  77 * checking the m-bit until later in the load/store emulation.
  78 */
  79#define IA64_OPCODE_MASK        0x1ef
  80#define IA64_OPCODE_SHIFT       32
  81
  82/*
  83 * Table C-28 Integer Load/Store
  84 *
  85 * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF
  86 *
  87 * ld8.fill, st8.fill  MUST be aligned because the RNATs are based on
  88 * the address (bits [8:3]), so we must failed.
  89 */
  90#define LD_OP            0x080
  91#define LDS_OP           0x081
  92#define LDA_OP           0x082
  93#define LDSA_OP          0x083
  94#define LDBIAS_OP        0x084
  95#define LDACQ_OP         0x085
  96/* 0x086, 0x087 are not relevant */
  97#define LDCCLR_OP        0x088
  98#define LDCNC_OP         0x089
  99#define LDCCLRACQ_OP     0x08a
 100#define ST_OP            0x08c
 101#define STREL_OP         0x08d
 102/* 0x08e,0x8f are not relevant */
 103
 104/*
 105 * Table C-29 Integer Load +Reg
 106 *
 107 * we use the ld->m (bit [36:36]) field to determine whether or not we have
 108 * a load/store of this form.
 109 */
 110
 111/*
 112 * Table C-30 Integer Load/Store +Imm
 113 *
 114 * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF
 115 *
 116 * ld8.fill, st8.fill  must be aligned because the Nat register are based on
 117 * the address, so we must fail and the program must be fixed.
 118 */
 119#define LD_IMM_OP            0x0a0
 120#define LDS_IMM_OP           0x0a1
 121#define LDA_IMM_OP           0x0a2
 122#define LDSA_IMM_OP          0x0a3
 123#define LDBIAS_IMM_OP        0x0a4
 124#define LDACQ_IMM_OP         0x0a5
 125/* 0x0a6, 0xa7 are not relevant */
 126#define LDCCLR_IMM_OP        0x0a8
 127#define LDCNC_IMM_OP         0x0a9
 128#define LDCCLRACQ_IMM_OP     0x0aa
 129#define ST_IMM_OP            0x0ac
 130#define STREL_IMM_OP         0x0ad
 131/* 0x0ae,0xaf are not relevant */
 132
 133/*
 134 * Table C-32 Floating-point Load/Store
 135 */
 136#define LDF_OP           0x0c0
 137#define LDFS_OP          0x0c1
 138#define LDFA_OP          0x0c2
 139#define LDFSA_OP         0x0c3
 140/* 0x0c6 is irrelevant */
 141#define LDFCCLR_OP       0x0c8
 142#define LDFCNC_OP        0x0c9
 143/* 0x0cb is irrelevant  */
 144#define STF_OP           0x0cc
 145
 146/*
 147 * Table C-33 Floating-point Load +Reg
 148 *
 149 * we use the ld->m (bit [36:36]) field to determine whether or not we have
 150 * a load/store of this form.
 151 */
 152
 153/*
 154 * Table C-34 Floating-point Load/Store +Imm
 155 */
 156#define LDF_IMM_OP       0x0e0
 157#define LDFS_IMM_OP      0x0e1
 158#define LDFA_IMM_OP      0x0e2
 159#define LDFSA_IMM_OP     0x0e3
 160/* 0x0e6 is irrelevant */
 161#define LDFCCLR_IMM_OP   0x0e8
 162#define LDFCNC_IMM_OP    0x0e9
 163#define STF_IMM_OP       0x0ec
 164
 165typedef struct {
 166        unsigned long    qp:6;  /* [0:5]   */
 167        unsigned long    r1:7;  /* [6:12]  */
 168        unsigned long   imm:7;  /* [13:19] */
 169        unsigned long    r3:7;  /* [20:26] */
 170        unsigned long     x:1;  /* [27:27] */
 171        unsigned long  hint:2;  /* [28:29] */
 172        unsigned long x6_sz:2;  /* [30:31] */
 173        unsigned long x6_op:4;  /* [32:35], x6 = x6_sz|x6_op */
 174        unsigned long     m:1;  /* [36:36] */
 175        unsigned long    op:4;  /* [37:40] */
 176        unsigned long   pad:23; /* [41:63] */
 177} load_store_t;
 178
 179
 180typedef enum {
 181        UPD_IMMEDIATE,  /* ldXZ r1=[r3],imm(9) */
 182        UPD_REG         /* ldXZ r1=[r3],r2     */
 183} update_t;
 184
 185/*
 186 * We use tables to keep track of the offsets of registers in the saved state.
 187 * This way we save having big switch/case statements.
 188 *
 189 * We use bit 0 to indicate switch_stack or pt_regs.
 190 * The offset is simply shifted by 1 bit.
 191 * A 2-byte value should be enough to hold any kind of offset
 192 *
 193 * In case the calling convention changes (and thus pt_regs/switch_stack)
 194 * simply use RSW instead of RPT or vice-versa.
 195 */
 196
 197#define RPO(x)  ((size_t) &((struct pt_regs *)0)->x)
 198#define RSO(x)  ((size_t) &((struct switch_stack *)0)->x)
 199
 200#define RPT(x)          (RPO(x) << 1)
 201#define RSW(x)          (1| RSO(x)<<1)
 202
 203#define GR_OFFS(x)      (gr_info[x]>>1)
 204#define GR_IN_SW(x)     (gr_info[x] & 0x1)
 205
 206#define FR_OFFS(x)      (fr_info[x]>>1)
 207#define FR_IN_SW(x)     (fr_info[x] & 0x1)
 208
 209static u16 gr_info[32]={
 210        0,                      /* r0 is read-only : WE SHOULD NEVER GET THIS */
 211
 212        RPT(r1), RPT(r2), RPT(r3),
 213
 214        RSW(r4), RSW(r5), RSW(r6), RSW(r7),
 215
 216        RPT(r8), RPT(r9), RPT(r10), RPT(r11),
 217        RPT(r12), RPT(r13), RPT(r14), RPT(r15),
 218
 219        RPT(r16), RPT(r17), RPT(r18), RPT(r19),
 220        RPT(r20), RPT(r21), RPT(r22), RPT(r23),
 221        RPT(r24), RPT(r25), RPT(r26), RPT(r27),
 222        RPT(r28), RPT(r29), RPT(r30), RPT(r31)
 223};
 224
 225static u16 fr_info[32]={
 226        0,                      /* constant : WE SHOULD NEVER GET THIS */
 227        0,                      /* constant : WE SHOULD NEVER GET THIS */
 228
 229        RSW(f2), RSW(f3), RSW(f4), RSW(f5),
 230
 231        RPT(f6), RPT(f7), RPT(f8), RPT(f9),
 232        RPT(f10), RPT(f11),
 233
 234        RSW(f12), RSW(f13), RSW(f14),
 235        RSW(f15), RSW(f16), RSW(f17), RSW(f18), RSW(f19),
 236        RSW(f20), RSW(f21), RSW(f22), RSW(f23), RSW(f24),
 237        RSW(f25), RSW(f26), RSW(f27), RSW(f28), RSW(f29),
 238        RSW(f30), RSW(f31)
 239};
 240
 241/* Invalidate ALAT entry for integer register REGNO.  */
 242static void
 243invala_gr (int regno)
 244{
 245#       define F(reg)   case reg: ia64_invala_gr(reg); break
 246
 247        switch (regno) {
 248                F(  0); F(  1); F(  2); F(  3); F(  4); F(  5); F(  6); F(  7);
 249                F(  8); F(  9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15);
 250                F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23);
 251                F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31);
 252                F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39);
 253                F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47);
 254                F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55);
 255                F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63);
 256                F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71);
 257                F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79);
 258                F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87);
 259                F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95);
 260                F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103);
 261                F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111);
 262                F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119);
 263                F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127);
 264        }
 265#       undef F
 266}
 267
 268/* Invalidate ALAT entry for floating-point register REGNO.  */
 269static void
 270invala_fr (int regno)
 271{
 272#       define F(reg)   case reg: ia64_invala_fr(reg); break
 273
 274        switch (regno) {
 275                F(  0); F(  1); F(  2); F(  3); F(  4); F(  5); F(  6); F(  7);
 276                F(  8); F(  9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15);
 277                F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23);
 278                F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31);
 279                F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39);
 280                F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47);
 281                F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55);
 282                F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63);
 283                F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71);
 284                F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79);
 285                F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87);
 286                F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95);
 287                F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103);
 288                F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111);
 289                F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119);
 290                F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127);
 291        }
 292#       undef F
 293}
 294
 295static inline unsigned long
 296rotate_reg (unsigned long sor, unsigned long rrb, unsigned long reg)
 297{
 298        reg += rrb;
 299        if (reg >= sor)
 300                reg -= sor;
 301        return reg;
 302}
 303
 304static void
 305set_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long val, int nat)
 306{
 307        struct switch_stack *sw = (struct switch_stack *) regs - 1;
 308        unsigned long *bsp, *bspstore, *addr, *rnat_addr, *ubs_end;
 309        unsigned long *kbs = (void *) current + IA64_RBS_OFFSET;
 310        unsigned long rnats, nat_mask;
 311        unsigned long on_kbs;
 312        long sof = (regs->cr_ifs) & 0x7f;
 313        long sor = 8 * ((regs->cr_ifs >> 14) & 0xf);
 314        long rrb_gr = (regs->cr_ifs >> 18) & 0x7f;
 315        long ridx = r1 - 32;
 316
 317        if (ridx >= sof) {
 318                /* this should never happen, as the "rsvd register fault" has higher priority */
 319                DPRINT("ignoring write to r%lu; only %lu registers are allocated!\n", r1, sof);
 320                return;
 321        }
 322
 323        if (ridx < sor)
 324                ridx = rotate_reg(sor, rrb_gr, ridx);
 325
 326        DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n",
 327               r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx);
 328
 329        on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore);
 330        addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx);
 331        if (addr >= kbs) {
 332                /* the register is on the kernel backing store: easy... */
 333                rnat_addr = ia64_rse_rnat_addr(addr);
 334                if ((unsigned long) rnat_addr >= sw->ar_bspstore)
 335                        rnat_addr = &sw->ar_rnat;
 336                nat_mask = 1UL << ia64_rse_slot_num(addr);
 337
 338                *addr = val;
 339                if (nat)
 340                        *rnat_addr |=  nat_mask;
 341                else
 342                        *rnat_addr &= ~nat_mask;
 343                return;
 344        }
 345
 346        if (!user_stack(current, regs)) {
 347                DPRINT("ignoring kernel write to r%lu; register isn't on the kernel RBS!", r1);
 348                return;
 349        }
 350
 351        bspstore = (unsigned long *)regs->ar_bspstore;
 352        ubs_end = ia64_rse_skip_regs(bspstore, on_kbs);
 353        bsp     = ia64_rse_skip_regs(ubs_end, -sof);
 354        addr    = ia64_rse_skip_regs(bsp, ridx);
 355
 356        DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr);
 357
 358        ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val);
 359
 360        rnat_addr = ia64_rse_rnat_addr(addr);
 361
 362        ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats);
 363        DPRINT("rnat @%p = 0x%lx nat=%d old nat=%ld\n",
 364               (void *) rnat_addr, rnats, nat, (rnats >> ia64_rse_slot_num(addr)) & 1);
 365
 366        nat_mask = 1UL << ia64_rse_slot_num(addr);
 367        if (nat)
 368                rnats |=  nat_mask;
 369        else
 370                rnats &= ~nat_mask;
 371        ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, rnats);
 372
 373        DPRINT("rnat changed to @%p = 0x%lx\n", (void *) rnat_addr, rnats);
 374}
 375
 376
 377static void
 378get_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long *val, int *nat)
 379{
 380        struct switch_stack *sw = (struct switch_stack *) regs - 1;
 381        unsigned long *bsp, *addr, *rnat_addr, *ubs_end, *bspstore;
 382        unsigned long *kbs = (void *) current + IA64_RBS_OFFSET;
 383        unsigned long rnats, nat_mask;
 384        unsigned long on_kbs;
 385        long sof = (regs->cr_ifs) & 0x7f;
 386        long sor = 8 * ((regs->cr_ifs >> 14) & 0xf);
 387        long rrb_gr = (regs->cr_ifs >> 18) & 0x7f;
 388        long ridx = r1 - 32;
 389
 390        if (ridx >= sof) {
 391                /* read of out-of-frame register returns an undefined value; 0 in our case.  */
 392                DPRINT("ignoring read from r%lu; only %lu registers are allocated!\n", r1, sof);
 393                goto fail;
 394        }
 395
 396        if (ridx < sor)
 397                ridx = rotate_reg(sor, rrb_gr, ridx);
 398
 399        DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n",
 400               r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx);
 401
 402        on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore);
 403        addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx);
 404        if (addr >= kbs) {
 405                /* the register is on the kernel backing store: easy... */
 406                *val = *addr;
 407                if (nat) {
 408                        rnat_addr = ia64_rse_rnat_addr(addr);
 409                        if ((unsigned long) rnat_addr >= sw->ar_bspstore)
 410                                rnat_addr = &sw->ar_rnat;
 411                        nat_mask = 1UL << ia64_rse_slot_num(addr);
 412                        *nat = (*rnat_addr & nat_mask) != 0;
 413                }
 414                return;
 415        }
 416
 417        if (!user_stack(current, regs)) {
 418                DPRINT("ignoring kernel read of r%lu; register isn't on the RBS!", r1);
 419                goto fail;
 420        }
 421
 422        bspstore = (unsigned long *)regs->ar_bspstore;
 423        ubs_end = ia64_rse_skip_regs(bspstore, on_kbs);
 424        bsp     = ia64_rse_skip_regs(ubs_end, -sof);
 425        addr    = ia64_rse_skip_regs(bsp, ridx);
 426
 427        DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr);
 428
 429        ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val);
 430
 431        if (nat) {
 432                rnat_addr = ia64_rse_rnat_addr(addr);
 433                nat_mask = 1UL << ia64_rse_slot_num(addr);
 434
 435                DPRINT("rnat @%p = 0x%lx\n", (void *) rnat_addr, rnats);
 436
 437                ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats);
 438                *nat = (rnats & nat_mask) != 0;
 439        }
 440        return;
 441
 442  fail:
 443        *val = 0;
 444        if (nat)
 445                *nat = 0;
 446        return;
 447}
 448
 449
 450static void
 451setreg (unsigned long regnum, unsigned long val, int nat, struct pt_regs *regs)
 452{
 453        struct switch_stack *sw = (struct switch_stack *) regs - 1;
 454        unsigned long addr;
 455        unsigned long bitmask;
 456        unsigned long *unat;
 457
 458        /*
 459         * First takes care of stacked registers
 460         */
 461        if (regnum >= IA64_FIRST_STACKED_GR) {
 462                set_rse_reg(regs, regnum, val, nat);
 463                return;
 464        }
 465
 466        /*
 467         * Using r0 as a target raises a General Exception fault which has higher priority
 468         * than the Unaligned Reference fault.
 469         */
 470
 471        /*
 472         * Now look at registers in [0-31] range and init correct UNAT
 473         */
 474        if (GR_IN_SW(regnum)) {
 475                addr = (unsigned long)sw;
 476                unat = &sw->ar_unat;
 477        } else {
 478                addr = (unsigned long)regs;
 479                unat = &sw->caller_unat;
 480        }
 481        DPRINT("tmp_base=%lx switch_stack=%s offset=%d\n",
 482               addr, unat==&sw->ar_unat ? "yes":"no", GR_OFFS(regnum));
 483        /*
 484         * add offset from base of struct
 485         * and do it !
 486         */
 487        addr += GR_OFFS(regnum);
 488
 489        *(unsigned long *)addr = val;
 490
 491        /*
 492         * We need to clear the corresponding UNAT bit to fully emulate the load
 493         * UNAT bit_pos = GR[r3]{8:3} form EAS-2.4
 494         */
 495        bitmask   = 1UL << (addr >> 3 & 0x3f);
 496        DPRINT("*0x%lx=0x%lx NaT=%d prev_unat @%p=%lx\n", addr, val, nat, (void *) unat, *unat);
 497        if (nat) {
 498                *unat |= bitmask;
 499        } else {
 500                *unat &= ~bitmask;
 501        }
 502        DPRINT("*0x%lx=0x%lx NaT=%d new unat: %p=%lx\n", addr, val, nat, (void *) unat,*unat);
 503}
 504
 505/*
 506 * Return the (rotated) index for floating point register REGNUM (REGNUM must be in the
 507 * range from 32-127, result is in the range from 0-95.
 508 */
 509static inline unsigned long
 510fph_index (struct pt_regs *regs, long regnum)
 511{
 512        unsigned long rrb_fr = (regs->cr_ifs >> 25) & 0x7f;
 513        return rotate_reg(96, rrb_fr, (regnum - IA64_FIRST_ROTATING_FR));
 514}
 515
 516static void
 517setfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs)
 518{
 519        struct switch_stack *sw = (struct switch_stack *)regs - 1;
 520        unsigned long addr;
 521
 522        /*
 523         * From EAS-2.5: FPDisableFault has higher priority than Unaligned
 524         * Fault. Thus, when we get here, we know the partition is enabled.
 525         * To update f32-f127, there are three choices:
 526         *
 527         *      (1) save f32-f127 to thread.fph and update the values there
 528         *      (2) use a gigantic switch statement to directly access the registers
 529         *      (3) generate code on the fly to update the desired register
 530         *
 531         * For now, we are using approach (1).
 532         */
 533        if (regnum >= IA64_FIRST_ROTATING_FR) {
 534                ia64_sync_fph(current);
 535                current->thread.fph[fph_index(regs, regnum)] = *fpval;
 536        } else {
 537                /*
 538                 * pt_regs or switch_stack ?
 539                 */
 540                if (FR_IN_SW(regnum)) {
 541                        addr = (unsigned long)sw;
 542                } else {
 543                        addr = (unsigned long)regs;
 544                }
 545
 546                DPRINT("tmp_base=%lx offset=%d\n", addr, FR_OFFS(regnum));
 547
 548                addr += FR_OFFS(regnum);
 549                *(struct ia64_fpreg *)addr = *fpval;
 550
 551                /*
 552                 * mark the low partition as being used now
 553                 *
 554                 * It is highly unlikely that this bit is not already set, but
 555                 * let's do it for safety.
 556                 */
 557                regs->cr_ipsr |= IA64_PSR_MFL;
 558        }
 559}
 560
 561/*
 562 * Those 2 inline functions generate the spilled versions of the constant floating point
 563 * registers which can be used with stfX
 564 */
 565static inline void
 566float_spill_f0 (struct ia64_fpreg *final)
 567{
 568        ia64_stf_spill(final, 0);
 569}
 570
 571static inline void
 572float_spill_f1 (struct ia64_fpreg *final)
 573{
 574        ia64_stf_spill(final, 1);
 575}
 576
 577static void
 578getfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs)
 579{
 580        struct switch_stack *sw = (struct switch_stack *) regs - 1;
 581        unsigned long addr;
 582
 583        /*
 584         * From EAS-2.5: FPDisableFault has higher priority than
 585         * Unaligned Fault. Thus, when we get here, we know the partition is
 586         * enabled.
 587         *
 588         * When regnum > 31, the register is still live and we need to force a save
 589         * to current->thread.fph to get access to it.  See discussion in setfpreg()
 590         * for reasons and other ways of doing this.
 591         */
 592        if (regnum >= IA64_FIRST_ROTATING_FR) {
 593                ia64_flush_fph(current);
 594                *fpval = current->thread.fph[fph_index(regs, regnum)];
 595        } else {
 596                /*
 597                 * f0 = 0.0, f1= 1.0. Those registers are constant and are thus
 598                 * not saved, we must generate their spilled form on the fly
 599                 */
 600                switch(regnum) {
 601                case 0:
 602                        float_spill_f0(fpval);
 603                        break;
 604                case 1:
 605                        float_spill_f1(fpval);
 606                        break;
 607                default:
 608                        /*
 609                         * pt_regs or switch_stack ?
 610                         */
 611                        addr =  FR_IN_SW(regnum) ? (unsigned long)sw
 612                                                 : (unsigned long)regs;
 613
 614                        DPRINT("is_sw=%d tmp_base=%lx offset=0x%x\n",
 615                               FR_IN_SW(regnum), addr, FR_OFFS(regnum));
 616
 617                        addr  += FR_OFFS(regnum);
 618                        *fpval = *(struct ia64_fpreg *)addr;
 619                }
 620        }
 621}
 622
 623
 624static void
 625getreg (unsigned long regnum, unsigned long *val, int *nat, struct pt_regs *regs)
 626{
 627        struct switch_stack *sw = (struct switch_stack *) regs - 1;
 628        unsigned long addr, *unat;
 629
 630        if (regnum >= IA64_FIRST_STACKED_GR) {
 631                get_rse_reg(regs, regnum, val, nat);
 632                return;
 633        }
 634
 635        /*
 636         * take care of r0 (read-only always evaluate to 0)
 637         */
 638        if (regnum == 0) {
 639                *val = 0;
 640                if (nat)
 641                        *nat = 0;
 642                return;
 643        }
 644
 645        /*
 646         * Now look at registers in [0-31] range and init correct UNAT
 647         */
 648        if (GR_IN_SW(regnum)) {
 649                addr = (unsigned long)sw;
 650                unat = &sw->ar_unat;
 651        } else {
 652                addr = (unsigned long)regs;
 653                unat = &sw->caller_unat;
 654        }
 655
 656        DPRINT("addr_base=%lx offset=0x%x\n", addr,  GR_OFFS(regnum));
 657
 658        addr += GR_OFFS(regnum);
 659
 660        *val  = *(unsigned long *)addr;
 661
 662        /*
 663         * do it only when requested
 664         */
 665        if (nat)
 666                *nat  = (*unat >> (addr >> 3 & 0x3f)) & 0x1UL;
 667}
 668
 669static void
 670emulate_load_updates (update_t type, load_store_t ld, struct pt_regs *regs, unsigned long ifa)
 671{
 672        /*
 673         * IMPORTANT:
 674         * Given the way we handle unaligned speculative loads, we should
 675         * not get to this point in the code but we keep this sanity check,
 676         * just in case.
 677         */
 678        if (ld.x6_op == 1 || ld.x6_op == 3) {
 679                printk(KERN_ERR "%s: register update on speculative load, error\n", __func__);
 680                if (die_if_kernel("unaligned reference on speculative load with register update\n",
 681                                  regs, 30))
 682                        return;
 683        }
 684
 685
 686        /*
 687         * at this point, we know that the base register to update is valid i.e.,
 688         * it's not r0
 689         */
 690        if (type == UPD_IMMEDIATE) {
 691                unsigned long imm;
 692
 693                /*
 694                 * Load +Imm: ldXZ r1=[r3],imm(9)
 695                 *
 696                 *
 697                 * form imm9: [13:19] contain the first 7 bits
 698                 */
 699                imm = ld.x << 7 | ld.imm;
 700
 701                /*
 702                 * sign extend (1+8bits) if m set
 703                 */
 704                if (ld.m) imm |= SIGN_EXT9;
 705
 706                /*
 707                 * ifa == r3 and we know that the NaT bit on r3 was clear so
 708                 * we can directly use ifa.
 709                 */
 710                ifa += imm;
 711
 712                setreg(ld.r3, ifa, 0, regs);
 713
 714                DPRINT("ld.x=%d ld.m=%d imm=%ld r3=0x%lx\n", ld.x, ld.m, imm, ifa);
 715
 716        } else if (ld.m) {
 717                unsigned long r2;
 718                int nat_r2;
 719
 720                /*
 721                 * Load +Reg Opcode: ldXZ r1=[r3],r2
 722                 *
 723                 * Note: that we update r3 even in the case of ldfX.a
 724                 * (where the load does not happen)
 725                 *
 726                 * The way the load algorithm works, we know that r3 does not
 727                 * have its NaT bit set (would have gotten NaT consumption
 728                 * before getting the unaligned fault). So we can use ifa
 729                 * which equals r3 at this point.
 730                 *
 731                 * IMPORTANT:
 732                 * The above statement holds ONLY because we know that we
 733                 * never reach this code when trying to do a ldX.s.
 734                 * If we ever make it to here on an ldfX.s then
 735                 */
 736                getreg(ld.imm, &r2, &nat_r2, regs);
 737
 738                ifa += r2;
 739
 740                /*
 741                 * propagate Nat r2 -> r3
 742                 */
 743                setreg(ld.r3, ifa, nat_r2, regs);
 744
 745                DPRINT("imm=%d r2=%ld r3=0x%lx nat_r2=%d\n",ld.imm, r2, ifa, nat_r2);
 746        }
 747}
 748
 749
 750static int
 751emulate_load_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
 752{
 753        unsigned int len = 1 << ld.x6_sz;
 754        unsigned long val = 0;
 755
 756        /*
 757         * r0, as target, doesn't need to be checked because Illegal Instruction
 758         * faults have higher priority than unaligned faults.
 759         *
 760         * r0 cannot be found as the base as it would never generate an
 761         * unaligned reference.
 762         */
 763
 764        /*
 765         * ldX.a we will emulate load and also invalidate the ALAT entry.
 766         * See comment below for explanation on how we handle ldX.a
 767         */
 768
 769        if (len != 2 && len != 4 && len != 8) {
 770                DPRINT("unknown size: x6=%d\n", ld.x6_sz);
 771                return -1;
 772        }
 773        /* this assumes little-endian byte-order: */
 774        if (copy_from_user(&val, (void __user *) ifa, len))
 775                return -1;
 776        setreg(ld.r1, val, 0, regs);
 777
 778        /*
 779         * check for updates on any kind of loads
 780         */
 781        if (ld.op == 0x5 || ld.m)
 782                emulate_load_updates(ld.op == 0x5 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa);
 783
 784        /*
 785         * handling of various loads (based on EAS2.4):
 786         *
 787         * ldX.acq (ordered load):
 788         *      - acquire semantics would have been used, so force fence instead.
 789         *
 790         * ldX.c.clr (check load and clear):
 791         *      - if we get to this handler, it's because the entry was not in the ALAT.
 792         *        Therefore the operation reverts to a normal load
 793         *
 794         * ldX.c.nc (check load no clear):
 795         *      - same as previous one
 796         *
 797         * ldX.c.clr.acq (ordered check load and clear):
 798         *      - same as above for c.clr part. The load needs to have acquire semantics. So
 799         *        we use the fence semantics which is stronger and thus ensures correctness.
 800         *
 801         * ldX.a (advanced load):
 802         *      - suppose ldX.a r1=[r3]. If we get to the unaligned trap it's because the
 803         *        address doesn't match requested size alignment. This means that we would
 804         *        possibly need more than one load to get the result.
 805         *
 806         *        The load part can be handled just like a normal load, however the difficult
 807         *        part is to get the right thing into the ALAT. The critical piece of information
 808         *        in the base address of the load & size. To do that, a ld.a must be executed,
 809         *        clearly any address can be pushed into the table by using ld1.a r1=[r3]. Now
 810         *        if we use the same target register, we will be okay for the check.a instruction.
 811         *        If we look at the store, basically a stX [r3]=r1 checks the ALAT  for any entry
 812         *        which would overlap within [r3,r3+X] (the size of the load was store in the
 813         *        ALAT). If such an entry is found the entry is invalidated. But this is not good
 814         *        enough, take the following example:
 815         *              r3=3
 816         *              ld4.a r1=[r3]
 817         *
 818         *        Could be emulated by doing:
 819         *              ld1.a r1=[r3],1
 820         *              store to temporary;
 821         *              ld1.a r1=[r3],1
 822         *              store & shift to temporary;
 823         *              ld1.a r1=[r3],1
 824         *              store & shift to temporary;
 825         *              ld1.a r1=[r3]
 826         *              store & shift to temporary;
 827         *              r1=temporary
 828         *
 829         *        So in this case, you would get the right value is r1 but the wrong info in
 830         *        the ALAT.  Notice that you could do it in reverse to finish with address 3
 831         *        but you would still get the size wrong.  To get the size right, one needs to
 832         *        execute exactly the same kind of load. You could do it from a aligned
 833         *        temporary location, but you would get the address wrong.
 834         *
 835         *        So no matter what, it is not possible to emulate an advanced load
 836         *        correctly. But is that really critical ?
 837         *
 838         *        We will always convert ld.a into a normal load with ALAT invalidated.  This
 839         *        will enable compiler to do optimization where certain code path after ld.a
 840         *        is not required to have ld.c/chk.a, e.g., code path with no intervening stores.
 841         *
 842         *        If there is a store after the advanced load, one must either do a ld.c.* or
 843         *        chk.a.* to reuse the value stored in the ALAT. Both can "fail" (meaning no
 844         *        entry found in ALAT), and that's perfectly ok because:
 845         *
 846         *              - ld.c.*, if the entry is not present a  normal load is executed
 847         *              - chk.a.*, if the entry is not present, execution jumps to recovery code
 848         *
 849         *        In either case, the load can be potentially retried in another form.
 850         *
 851         *        ALAT must be invalidated for the register (so that chk.a or ld.c don't pick
 852         *        up a stale entry later). The register base update MUST also be performed.
 853         */
 854
 855        /*
 856         * when the load has the .acq completer then
 857         * use ordering fence.
 858         */
 859        if (ld.x6_op == 0x5 || ld.x6_op == 0xa)
 860                mb();
 861
 862        /*
 863         * invalidate ALAT entry in case of advanced load
 864         */
 865        if (ld.x6_op == 0x2)
 866                invala_gr(ld.r1);
 867
 868        return 0;
 869}
 870
 871static int
 872emulate_store_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
 873{
 874        unsigned long r2;
 875        unsigned int len = 1 << ld.x6_sz;
 876
 877        /*
 878         * if we get to this handler, Nat bits on both r3 and r2 have already
 879         * been checked. so we don't need to do it
 880         *
 881         * extract the value to be stored
 882         */
 883        getreg(ld.imm, &r2, NULL, regs);
 884
 885        /*
 886         * we rely on the macros in unaligned.h for now i.e.,
 887         * we let the compiler figure out how to read memory gracefully.
 888         *
 889         * We need this switch/case because the way the inline function
 890         * works. The code is optimized by the compiler and looks like
 891         * a single switch/case.
 892         */
 893        DPRINT("st%d [%lx]=%lx\n", len, ifa, r2);
 894
 895        if (len != 2 && len != 4 && len != 8) {
 896                DPRINT("unknown size: x6=%d\n", ld.x6_sz);
 897                return -1;
 898        }
 899
 900        /* this assumes little-endian byte-order: */
 901        if (copy_to_user((void __user *) ifa, &r2, len))
 902                return -1;
 903
 904        /*
 905         * stX [r3]=r2,imm(9)
 906         *
 907         * NOTE:
 908         * ld.r3 can never be r0, because r0 would not generate an
 909         * unaligned access.
 910         */
 911        if (ld.op == 0x5) {
 912                unsigned long imm;
 913
 914                /*
 915                 * form imm9: [12:6] contain first 7bits
 916                 */
 917                imm = ld.x << 7 | ld.r1;
 918                /*
 919                 * sign extend (8bits) if m set
 920                 */
 921                if (ld.m) imm |= SIGN_EXT9;
 922                /*
 923                 * ifa == r3 (NaT is necessarily cleared)
 924                 */
 925                ifa += imm;
 926
 927                DPRINT("imm=%lx r3=%lx\n", imm, ifa);
 928
 929                setreg(ld.r3, ifa, 0, regs);
 930        }
 931        /*
 932         * we don't have alat_invalidate_multiple() so we need
 933         * to do the complete flush :-<<
 934         */
 935        ia64_invala();
 936
 937        /*
 938         * stX.rel: use fence instead of release
 939         */
 940        if (ld.x6_op == 0xd)
 941                mb();
 942
 943        return 0;
 944}
 945
 946/*
 947 * floating point operations sizes in bytes
 948 */
 949static const unsigned char float_fsz[4]={
 950        10, /* extended precision (e) */
 951        8,  /* integer (8)            */
 952        4,  /* single precision (s)   */
 953        8   /* double precision (d)   */
 954};
 955
 956static inline void
 957mem2float_extended (struct ia64_fpreg *init, struct ia64_fpreg *final)
 958{
 959        ia64_ldfe(6, init);
 960        ia64_stop();
 961        ia64_stf_spill(final, 6);
 962}
 963
 964static inline void
 965mem2float_integer (struct ia64_fpreg *init, struct ia64_fpreg *final)
 966{
 967        ia64_ldf8(6, init);
 968        ia64_stop();
 969        ia64_stf_spill(final, 6);
 970}
 971
 972static inline void
 973mem2float_single (struct ia64_fpreg *init, struct ia64_fpreg *final)
 974{
 975        ia64_ldfs(6, init);
 976        ia64_stop();
 977        ia64_stf_spill(final, 6);
 978}
 979
 980static inline void
 981mem2float_double (struct ia64_fpreg *init, struct ia64_fpreg *final)
 982{
 983        ia64_ldfd(6, init);
 984        ia64_stop();
 985        ia64_stf_spill(final, 6);
 986}
 987
 988static inline void
 989float2mem_extended (struct ia64_fpreg *init, struct ia64_fpreg *final)
 990{
 991        ia64_ldf_fill(6, init);
 992        ia64_stop();
 993        ia64_stfe(final, 6);
 994}
 995
 996static inline void
 997float2mem_integer (struct ia64_fpreg *init, struct ia64_fpreg *final)
 998{
 999        ia64_ldf_fill(6, init);
1000        ia64_stop();
1001        ia64_stf8(final, 6);
1002}
1003
1004static inline void
1005float2mem_single (struct ia64_fpreg *init, struct ia64_fpreg *final)
1006{
1007        ia64_ldf_fill(6, init);
1008        ia64_stop();
1009        ia64_stfs(final, 6);
1010}
1011
1012static inline void
1013float2mem_double (struct ia64_fpreg *init, struct ia64_fpreg *final)
1014{
1015        ia64_ldf_fill(6, init);
1016        ia64_stop();
1017        ia64_stfd(final, 6);
1018}
1019
1020static int
1021emulate_load_floatpair (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
1022{
1023        struct ia64_fpreg fpr_init[2];
1024        struct ia64_fpreg fpr_final[2];
1025        unsigned long len = float_fsz[ld.x6_sz];
1026
1027        /*
1028         * fr0 & fr1 don't need to be checked because Illegal Instruction faults have
1029         * higher priority than unaligned faults.
1030         *
1031         * r0 cannot be found as the base as it would never generate an unaligned
1032         * reference.
1033         */
1034
1035        /*
1036         * make sure we get clean buffers
1037         */
1038        memset(&fpr_init, 0, sizeof(fpr_init));
1039        memset(&fpr_final, 0, sizeof(fpr_final));
1040
1041        /*
1042         * ldfpX.a: we don't try to emulate anything but we must
1043         * invalidate the ALAT entry and execute updates, if any.
1044         */
1045        if (ld.x6_op != 0x2) {
1046                /*
1047                 * This assumes little-endian byte-order.  Note that there is no "ldfpe"
1048                 * instruction:
1049                 */
1050                if (copy_from_user(&fpr_init[0], (void __user *) ifa, len)
1051                    || copy_from_user(&fpr_init[1], (void __user *) (ifa + len), len))
1052                        return -1;
1053
1054                DPRINT("ld.r1=%d ld.imm=%d x6_sz=%d\n", ld.r1, ld.imm, ld.x6_sz);
1055                DDUMP("frp_init =", &fpr_init, 2*len);
1056                /*
1057                 * XXX fixme
1058                 * Could optimize inlines by using ldfpX & 2 spills
1059                 */
1060                switch( ld.x6_sz ) {
1061                        case 0:
1062                                mem2float_extended(&fpr_init[0], &fpr_final[0]);
1063                                mem2float_extended(&fpr_init[1], &fpr_final[1]);
1064                                break;
1065                        case 1:
1066                                mem2float_integer(&fpr_init[0], &fpr_final[0]);
1067                                mem2float_integer(&fpr_init[1], &fpr_final[1]);
1068                                break;
1069                        case 2:
1070                                mem2float_single(&fpr_init[0], &fpr_final[0]);
1071                                mem2float_single(&fpr_init[1], &fpr_final[1]);
1072                                break;
1073                        case 3:
1074                                mem2float_double(&fpr_init[0], &fpr_final[0]);
1075                                mem2float_double(&fpr_init[1], &fpr_final[1]);
1076                                break;
1077                }
1078                DDUMP("fpr_final =", &fpr_final, 2*len);
1079                /*
1080                 * XXX fixme
1081                 *
1082                 * A possible optimization would be to drop fpr_final and directly
1083                 * use the storage from the saved context i.e., the actual final
1084                 * destination (pt_regs, switch_stack or thread structure).
1085                 */
1086                setfpreg(ld.r1, &fpr_final[0], regs);
1087                setfpreg(ld.imm, &fpr_final[1], regs);
1088        }
1089
1090        /*
1091         * Check for updates: only immediate updates are available for this
1092         * instruction.
1093         */
1094        if (ld.m) {
1095                /*
1096                 * the immediate is implicit given the ldsz of the operation:
1097                 * single: 8 (2x4) and for  all others it's 16 (2x8)
1098                 */
1099                ifa += len<<1;
1100
1101                /*
1102                 * IMPORTANT:
1103                 * the fact that we force the NaT of r3 to zero is ONLY valid
1104                 * as long as we don't come here with a ldfpX.s.
1105                 * For this reason we keep this sanity check
1106                 */
1107                if (ld.x6_op == 1 || ld.x6_op == 3)
1108                        printk(KERN_ERR "%s: register update on speculative load pair, error\n",
1109                               __func__);
1110
1111                setreg(ld.r3, ifa, 0, regs);
1112        }
1113
1114        /*
1115         * Invalidate ALAT entries, if any, for both registers.
1116         */
1117        if (ld.x6_op == 0x2) {
1118                invala_fr(ld.r1);
1119                invala_fr(ld.imm);
1120        }
1121        return 0;
1122}
1123
1124
1125static int
1126emulate_load_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
1127{
1128        struct ia64_fpreg fpr_init;
1129        struct ia64_fpreg fpr_final;
1130        unsigned long len = float_fsz[ld.x6_sz];
1131
1132        /*
1133         * fr0 & fr1 don't need to be checked because Illegal Instruction
1134         * faults have higher priority than unaligned faults.
1135         *
1136         * r0 cannot be found as the base as it would never generate an
1137         * unaligned reference.
1138         */
1139
1140        /*
1141         * make sure we get clean buffers
1142         */
1143        memset(&fpr_init,0, sizeof(fpr_init));
1144        memset(&fpr_final,0, sizeof(fpr_final));
1145
1146        /*
1147         * ldfX.a we don't try to emulate anything but we must
1148         * invalidate the ALAT entry.
1149         * See comments in ldX for descriptions on how the various loads are handled.
1150         */
1151        if (ld.x6_op != 0x2) {
1152                if (copy_from_user(&fpr_init, (void __user *) ifa, len))
1153                        return -1;
1154
1155                DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz);
1156                DDUMP("fpr_init =", &fpr_init, len);
1157                /*
1158                 * we only do something for x6_op={0,8,9}
1159                 */
1160                switch( ld.x6_sz ) {
1161                        case 0:
1162                                mem2float_extended(&fpr_init, &fpr_final);
1163                                break;
1164                        case 1:
1165                                mem2float_integer(&fpr_init, &fpr_final);
1166                                break;
1167                        case 2:
1168                                mem2float_single(&fpr_init, &fpr_final);
1169                                break;
1170                        case 3:
1171                                mem2float_double(&fpr_init, &fpr_final);
1172                                break;
1173                }
1174                DDUMP("fpr_final =", &fpr_final, len);
1175                /*
1176                 * XXX fixme
1177                 *
1178                 * A possible optimization would be to drop fpr_final and directly
1179                 * use the storage from the saved context i.e., the actual final
1180                 * destination (pt_regs, switch_stack or thread structure).
1181                 */
1182                setfpreg(ld.r1, &fpr_final, regs);
1183        }
1184
1185        /*
1186         * check for updates on any loads
1187         */
1188        if (ld.op == 0x7 || ld.m)
1189                emulate_load_updates(ld.op == 0x7 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa);
1190
1191        /*
1192         * invalidate ALAT entry in case of advanced floating point loads
1193         */
1194        if (ld.x6_op == 0x2)
1195                invala_fr(ld.r1);
1196
1197        return 0;
1198}
1199
1200
1201static int
1202emulate_store_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
1203{
1204        struct ia64_fpreg fpr_init;
1205        struct ia64_fpreg fpr_final;
1206        unsigned long len = float_fsz[ld.x6_sz];
1207
1208        /*
1209         * make sure we get clean buffers
1210         */
1211        memset(&fpr_init,0, sizeof(fpr_init));
1212        memset(&fpr_final,0, sizeof(fpr_final));
1213
1214        /*
1215         * if we get to this handler, Nat bits on both r3 and r2 have already
1216         * been checked. so we don't need to do it
1217         *
1218         * extract the value to be stored
1219         */
1220        getfpreg(ld.imm, &fpr_init, regs);
1221        /*
1222         * during this step, we extract the spilled registers from the saved
1223         * context i.e., we refill. Then we store (no spill) to temporary
1224         * aligned location
1225         */
1226        switch( ld.x6_sz ) {
1227                case 0:
1228                        float2mem_extended(&fpr_init, &fpr_final);
1229                        break;
1230                case 1:
1231                        float2mem_integer(&fpr_init, &fpr_final);
1232                        break;
1233                case 2:
1234                        float2mem_single(&fpr_init, &fpr_final);
1235                        break;
1236                case 3:
1237                        float2mem_double(&fpr_init, &fpr_final);
1238                        break;
1239        }
1240        DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz);
1241        DDUMP("fpr_init =", &fpr_init, len);
1242        DDUMP("fpr_final =", &fpr_final, len);
1243
1244        if (copy_to_user((void __user *) ifa, &fpr_final, len))
1245                return -1;
1246
1247        /*
1248         * stfX [r3]=r2,imm(9)
1249         *
1250         * NOTE:
1251         * ld.r3 can never be r0, because r0 would not generate an
1252         * unaligned access.
1253         */
1254        if (ld.op == 0x7) {
1255                unsigned long imm;
1256
1257                /*
1258                 * form imm9: [12:6] contain first 7bits
1259                 */
1260                imm = ld.x << 7 | ld.r1;
1261                /*
1262                 * sign extend (8bits) if m set
1263                 */
1264                if (ld.m)
1265                        imm |= SIGN_EXT9;
1266                /*
1267                 * ifa == r3 (NaT is necessarily cleared)
1268                 */
1269                ifa += imm;
1270
1271                DPRINT("imm=%lx r3=%lx\n", imm, ifa);
1272
1273                setreg(ld.r3, ifa, 0, regs);
1274        }
1275        /*
1276         * we don't have alat_invalidate_multiple() so we need
1277         * to do the complete flush :-<<
1278         */
1279        ia64_invala();
1280
1281        return 0;
1282}
1283
1284/*
1285 * Make sure we log the unaligned access, so that user/sysadmin can notice it and
1286 * eventually fix the program.  However, we don't want to do that for every access so we
1287 * pace it with jiffies.
1288 */
1289static DEFINE_RATELIMIT_STATE(logging_rate_limit, 5 * HZ, 5);
1290
1291void
1292ia64_handle_unaligned (unsigned long ifa, struct pt_regs *regs)
1293{
1294        struct ia64_psr *ipsr = ia64_psr(regs);
1295        mm_segment_t old_fs = get_fs();
1296        unsigned long bundle[2];
1297        unsigned long opcode;
1298        struct siginfo si;
1299        const struct exception_table_entry *eh = NULL;
1300        union {
1301                unsigned long l;
1302                load_store_t insn;
1303        } u;
1304        int ret = -1;
1305
1306        if (ia64_psr(regs)->be) {
1307                /* we don't support big-endian accesses */
1308                if (die_if_kernel("big-endian unaligned accesses are not supported", regs, 0))
1309                        return;
1310                goto force_sigbus;
1311        }
1312
1313        /*
1314         * Treat kernel accesses for which there is an exception handler entry the same as
1315         * user-level unaligned accesses.  Otherwise, a clever program could trick this
1316         * handler into reading an arbitrary kernel addresses...
1317         */
1318        if (!user_mode(regs))
1319                eh = search_exception_tables(regs->cr_iip + ia64_psr(regs)->ri);
1320        if (user_mode(regs) || eh) {
1321                if ((current->thread.flags & IA64_THREAD_UAC_SIGBUS) != 0)
1322                        goto force_sigbus;
1323
1324                if (!no_unaligned_warning &&
1325                    !(current->thread.flags & IA64_THREAD_UAC_NOPRINT) &&
1326                    __ratelimit(&logging_rate_limit))
1327                {
1328                        char buf[200];  /* comm[] is at most 16 bytes... */
1329                        size_t len;
1330
1331                        len = sprintf(buf, "%s(%d): unaligned access to 0x%016lx, "
1332                                      "ip=0x%016lx\n\r", current->comm,
1333                                      task_pid_nr(current),
1334                                      ifa, regs->cr_iip + ipsr->ri);
1335                        /*
1336                         * Don't call tty_write_message() if we're in the kernel; we might
1337                         * be holding locks...
1338                         */
1339                        if (user_mode(regs))
1340                                tty_write_message(current->signal->tty, buf);
1341                        buf[len-1] = '\0';      /* drop '\r' */
1342                        /* watch for command names containing %s */
1343                        printk(KERN_WARNING "%s", buf);
1344                } else {
1345                        if (no_unaligned_warning) {
1346                                printk_once(KERN_WARNING "%s(%d) encountered an "
1347                                       "unaligned exception which required\n"
1348                                       "kernel assistance, which degrades "
1349                                       "the performance of the application.\n"
1350                                       "Unaligned exception warnings have "
1351                                       "been disabled by the system "
1352                                       "administrator\n"
1353                                       "echo 0 > /proc/sys/kernel/ignore-"
1354                                       "unaligned-usertrap to re-enable\n",
1355                                       current->comm, task_pid_nr(current));
1356                        }
1357                }
1358        } else {
1359                if (__ratelimit(&logging_rate_limit)) {
1360                        printk(KERN_WARNING "kernel unaligned access to 0x%016lx, ip=0x%016lx\n",
1361                               ifa, regs->cr_iip + ipsr->ri);
1362                        if (unaligned_dump_stack)
1363                                dump_stack();
1364                }
1365                set_fs(KERNEL_DS);
1366        }
1367
1368        DPRINT("iip=%lx ifa=%lx isr=%lx (ei=%d, sp=%d)\n",
1369               regs->cr_iip, ifa, regs->cr_ipsr, ipsr->ri, ipsr->it);
1370
1371        if (__copy_from_user(bundle, (void __user *) regs->cr_iip, 16))
1372                goto failure;
1373
1374        /*
1375         * extract the instruction from the bundle given the slot number
1376         */
1377        switch (ipsr->ri) {
1378              case 0: u.l = (bundle[0] >>  5); break;
1379              case 1: u.l = (bundle[0] >> 46) | (bundle[1] << 18); break;
1380              case 2: u.l = (bundle[1] >> 23); break;
1381        }
1382        opcode = (u.l >> IA64_OPCODE_SHIFT) & IA64_OPCODE_MASK;
1383
1384        DPRINT("opcode=%lx ld.qp=%d ld.r1=%d ld.imm=%d ld.r3=%d ld.x=%d ld.hint=%d "
1385               "ld.x6=0x%x ld.m=%d ld.op=%d\n", opcode, u.insn.qp, u.insn.r1, u.insn.imm,
1386               u.insn.r3, u.insn.x, u.insn.hint, u.insn.x6_sz, u.insn.m, u.insn.op);
1387
1388        /*
1389         * IMPORTANT:
1390         * Notice that the switch statement DOES not cover all possible instructions
1391         * that DO generate unaligned references. This is made on purpose because for some
1392         * instructions it DOES NOT make sense to try and emulate the access. Sometimes it
1393         * is WRONG to try and emulate. Here is a list of instruction we don't emulate i.e.,
1394         * the program will get a signal and die:
1395         *
1396         *      load/store:
1397         *              - ldX.spill
1398         *              - stX.spill
1399         *      Reason: RNATs are based on addresses
1400         *              - ld16
1401         *              - st16
1402         *      Reason: ld16 and st16 are supposed to occur in a single
1403         *              memory op
1404         *
1405         *      synchronization:
1406         *              - cmpxchg
1407         *              - fetchadd
1408         *              - xchg
1409         *      Reason: ATOMIC operations cannot be emulated properly using multiple
1410         *              instructions.
1411         *
1412         *      speculative loads:
1413         *              - ldX.sZ
1414         *      Reason: side effects, code must be ready to deal with failure so simpler
1415         *              to let the load fail.
1416         * ---------------------------------------------------------------------------------
1417         * XXX fixme
1418         *
1419         * I would like to get rid of this switch case and do something
1420         * more elegant.
1421         */
1422        switch (opcode) {
1423              case LDS_OP:
1424              case LDSA_OP:
1425                if (u.insn.x)
1426                        /* oops, really a semaphore op (cmpxchg, etc) */
1427                        goto failure;
1428                /* no break */
1429              case LDS_IMM_OP:
1430              case LDSA_IMM_OP:
1431              case LDFS_OP:
1432              case LDFSA_OP:
1433              case LDFS_IMM_OP:
1434                /*
1435                 * The instruction will be retried with deferred exceptions turned on, and
1436                 * we should get Nat bit installed
1437                 *
1438                 * IMPORTANT: When PSR_ED is set, the register & immediate update forms
1439                 * are actually executed even though the operation failed. So we don't
1440                 * need to take care of this.
1441                 */
1442                DPRINT("forcing PSR_ED\n");
1443                regs->cr_ipsr |= IA64_PSR_ED;
1444                goto done;
1445
1446              case LD_OP:
1447              case LDA_OP:
1448              case LDBIAS_OP:
1449              case LDACQ_OP:
1450              case LDCCLR_OP:
1451              case LDCNC_OP:
1452              case LDCCLRACQ_OP:
1453                if (u.insn.x)
1454                        /* oops, really a semaphore op (cmpxchg, etc) */
1455                        goto failure;
1456                /* no break */
1457              case LD_IMM_OP:
1458              case LDA_IMM_OP:
1459              case LDBIAS_IMM_OP:
1460              case LDACQ_IMM_OP:
1461              case LDCCLR_IMM_OP:
1462              case LDCNC_IMM_OP:
1463              case LDCCLRACQ_IMM_OP:
1464                ret = emulate_load_int(ifa, u.insn, regs);
1465                break;
1466
1467              case ST_OP:
1468              case STREL_OP:
1469                if (u.insn.x)
1470                        /* oops, really a semaphore op (cmpxchg, etc) */
1471                        goto failure;
1472                /* no break */
1473              case ST_IMM_OP:
1474              case STREL_IMM_OP:
1475                ret = emulate_store_int(ifa, u.insn, regs);
1476                break;
1477
1478              case LDF_OP:
1479              case LDFA_OP:
1480              case LDFCCLR_OP:
1481              case LDFCNC_OP:
1482                if (u.insn.x)
1483                        ret = emulate_load_floatpair(ifa, u.insn, regs);
1484                else
1485                        ret = emulate_load_float(ifa, u.insn, regs);
1486                break;
1487
1488              case LDF_IMM_OP:
1489              case LDFA_IMM_OP:
1490              case LDFCCLR_IMM_OP:
1491              case LDFCNC_IMM_OP:
1492                ret = emulate_load_float(ifa, u.insn, regs);
1493                break;
1494
1495              case STF_OP:
1496              case STF_IMM_OP:
1497                ret = emulate_store_float(ifa, u.insn, regs);
1498                break;
1499
1500              default:
1501                goto failure;
1502        }
1503        DPRINT("ret=%d\n", ret);
1504        if (ret)
1505                goto failure;
1506
1507        if (ipsr->ri == 2)
1508                /*
1509                 * given today's architecture this case is not likely to happen because a
1510                 * memory access instruction (M) can never be in the last slot of a
1511                 * bundle. But let's keep it for now.
1512                 */
1513                regs->cr_iip += 16;
1514        ipsr->ri = (ipsr->ri + 1) & 0x3;
1515
1516        DPRINT("ipsr->ri=%d iip=%lx\n", ipsr->ri, regs->cr_iip);
1517  done:
1518        set_fs(old_fs);         /* restore original address limit */
1519        return;
1520
1521  failure:
1522        /* something went wrong... */
1523        if (!user_mode(regs)) {
1524                if (eh) {
1525                        ia64_handle_exception(regs, eh);
1526                        goto done;
1527                }
1528                if (die_if_kernel("error during unaligned kernel access\n", regs, ret))
1529                        return;
1530                /* NOT_REACHED */
1531        }
1532  force_sigbus:
1533        si.si_signo = SIGBUS;
1534        si.si_errno = 0;
1535        si.si_code = BUS_ADRALN;
1536        si.si_addr = (void __user *) ifa;
1537        si.si_flags = 0;
1538        si.si_isr = 0;
1539        si.si_imm = 0;
1540        force_sig_info(SIGBUS, &si, current);
1541        goto done;
1542}
1543