linux/drivers/dma-buf/dma-buf.c
<<
>>
Prefs
   1/*
   2 * Framework for buffer objects that can be shared across devices/subsystems.
   3 *
   4 * Copyright(C) 2011 Linaro Limited. All rights reserved.
   5 * Author: Sumit Semwal <sumit.semwal@ti.com>
   6 *
   7 * Many thanks to linaro-mm-sig list, and specially
   8 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
   9 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
  10 * refining of this idea.
  11 *
  12 * This program is free software; you can redistribute it and/or modify it
  13 * under the terms of the GNU General Public License version 2 as published by
  14 * the Free Software Foundation.
  15 *
  16 * This program is distributed in the hope that it will be useful, but WITHOUT
  17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  18 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  19 * more details.
  20 *
  21 * You should have received a copy of the GNU General Public License along with
  22 * this program.  If not, see <http://www.gnu.org/licenses/>.
  23 */
  24
  25#include <linux/fs.h>
  26#include <linux/slab.h>
  27#include <linux/dma-buf.h>
  28#include <linux/dma-fence.h>
  29#include <linux/anon_inodes.h>
  30#include <linux/export.h>
  31#include <linux/debugfs.h>
  32#include <linux/module.h>
  33#include <linux/seq_file.h>
  34#include <linux/poll.h>
  35#include <linux/reservation.h>
  36#include <linux/mm.h>
  37
  38#include <uapi/linux/dma-buf.h>
  39
  40static inline int is_dma_buf_file(struct file *);
  41
  42struct dma_buf_list {
  43        struct list_head head;
  44        struct mutex lock;
  45};
  46
  47static struct dma_buf_list db_list;
  48
  49static int dma_buf_release(struct inode *inode, struct file *file)
  50{
  51        struct dma_buf *dmabuf;
  52
  53        if (!is_dma_buf_file(file))
  54                return -EINVAL;
  55
  56        dmabuf = file->private_data;
  57
  58        BUG_ON(dmabuf->vmapping_counter);
  59
  60        /*
  61         * Any fences that a dma-buf poll can wait on should be signaled
  62         * before releasing dma-buf. This is the responsibility of each
  63         * driver that uses the reservation objects.
  64         *
  65         * If you hit this BUG() it means someone dropped their ref to the
  66         * dma-buf while still having pending operation to the buffer.
  67         */
  68        BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active);
  69
  70        dmabuf->ops->release(dmabuf);
  71
  72        mutex_lock(&db_list.lock);
  73        list_del(&dmabuf->list_node);
  74        mutex_unlock(&db_list.lock);
  75
  76        if (dmabuf->resv == (struct reservation_object *)&dmabuf[1])
  77                reservation_object_fini(dmabuf->resv);
  78
  79        module_put(dmabuf->owner);
  80        kfree(dmabuf);
  81        return 0;
  82}
  83
  84static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
  85{
  86        struct dma_buf *dmabuf;
  87
  88        if (!is_dma_buf_file(file))
  89                return -EINVAL;
  90
  91        dmabuf = file->private_data;
  92
  93        /* check for overflowing the buffer's size */
  94        if (vma->vm_pgoff + vma_pages(vma) >
  95            dmabuf->size >> PAGE_SHIFT)
  96                return -EINVAL;
  97
  98        return dmabuf->ops->mmap(dmabuf, vma);
  99}
 100
 101static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
 102{
 103        struct dma_buf *dmabuf;
 104        loff_t base;
 105
 106        if (!is_dma_buf_file(file))
 107                return -EBADF;
 108
 109        dmabuf = file->private_data;
 110
 111        /* only support discovering the end of the buffer,
 112           but also allow SEEK_SET to maintain the idiomatic
 113           SEEK_END(0), SEEK_CUR(0) pattern */
 114        if (whence == SEEK_END)
 115                base = dmabuf->size;
 116        else if (whence == SEEK_SET)
 117                base = 0;
 118        else
 119                return -EINVAL;
 120
 121        if (offset != 0)
 122                return -EINVAL;
 123
 124        return base + offset;
 125}
 126
 127/**
 128 * DOC: fence polling
 129 *
 130 * To support cross-device and cross-driver synchronization of buffer access
 131 * implicit fences (represented internally in the kernel with &struct fence) can
 132 * be attached to a &dma_buf. The glue for that and a few related things are
 133 * provided in the &reservation_object structure.
 134 *
 135 * Userspace can query the state of these implicitly tracked fences using poll()
 136 * and related system calls:
 137 *
 138 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
 139 *   most recent write or exclusive fence.
 140 *
 141 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
 142 *   all attached fences, shared and exclusive ones.
 143 *
 144 * Note that this only signals the completion of the respective fences, i.e. the
 145 * DMA transfers are complete. Cache flushing and any other necessary
 146 * preparations before CPU access can begin still need to happen.
 147 */
 148
 149static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
 150{
 151        struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
 152        unsigned long flags;
 153
 154        spin_lock_irqsave(&dcb->poll->lock, flags);
 155        wake_up_locked_poll(dcb->poll, dcb->active);
 156        dcb->active = 0;
 157        spin_unlock_irqrestore(&dcb->poll->lock, flags);
 158}
 159
 160static unsigned int dma_buf_poll(struct file *file, poll_table *poll)
 161{
 162        struct dma_buf *dmabuf;
 163        struct reservation_object *resv;
 164        struct reservation_object_list *fobj;
 165        struct dma_fence *fence_excl;
 166        unsigned long events;
 167        unsigned shared_count, seq;
 168
 169        dmabuf = file->private_data;
 170        if (!dmabuf || !dmabuf->resv)
 171                return POLLERR;
 172
 173        resv = dmabuf->resv;
 174
 175        poll_wait(file, &dmabuf->poll, poll);
 176
 177        events = poll_requested_events(poll) & (POLLIN | POLLOUT);
 178        if (!events)
 179                return 0;
 180
 181retry:
 182        seq = read_seqcount_begin(&resv->seq);
 183        rcu_read_lock();
 184
 185        fobj = rcu_dereference(resv->fence);
 186        if (fobj)
 187                shared_count = fobj->shared_count;
 188        else
 189                shared_count = 0;
 190        fence_excl = rcu_dereference(resv->fence_excl);
 191        if (read_seqcount_retry(&resv->seq, seq)) {
 192                rcu_read_unlock();
 193                goto retry;
 194        }
 195
 196        if (fence_excl && (!(events & POLLOUT) || shared_count == 0)) {
 197                struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl;
 198                unsigned long pevents = POLLIN;
 199
 200                if (shared_count == 0)
 201                        pevents |= POLLOUT;
 202
 203                spin_lock_irq(&dmabuf->poll.lock);
 204                if (dcb->active) {
 205                        dcb->active |= pevents;
 206                        events &= ~pevents;
 207                } else
 208                        dcb->active = pevents;
 209                spin_unlock_irq(&dmabuf->poll.lock);
 210
 211                if (events & pevents) {
 212                        if (!dma_fence_get_rcu(fence_excl)) {
 213                                /* force a recheck */
 214                                events &= ~pevents;
 215                                dma_buf_poll_cb(NULL, &dcb->cb);
 216                        } else if (!dma_fence_add_callback(fence_excl, &dcb->cb,
 217                                                           dma_buf_poll_cb)) {
 218                                events &= ~pevents;
 219                                dma_fence_put(fence_excl);
 220                        } else {
 221                                /*
 222                                 * No callback queued, wake up any additional
 223                                 * waiters.
 224                                 */
 225                                dma_fence_put(fence_excl);
 226                                dma_buf_poll_cb(NULL, &dcb->cb);
 227                        }
 228                }
 229        }
 230
 231        if ((events & POLLOUT) && shared_count > 0) {
 232                struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared;
 233                int i;
 234
 235                /* Only queue a new callback if no event has fired yet */
 236                spin_lock_irq(&dmabuf->poll.lock);
 237                if (dcb->active)
 238                        events &= ~POLLOUT;
 239                else
 240                        dcb->active = POLLOUT;
 241                spin_unlock_irq(&dmabuf->poll.lock);
 242
 243                if (!(events & POLLOUT))
 244                        goto out;
 245
 246                for (i = 0; i < shared_count; ++i) {
 247                        struct dma_fence *fence = rcu_dereference(fobj->shared[i]);
 248
 249                        if (!dma_fence_get_rcu(fence)) {
 250                                /*
 251                                 * fence refcount dropped to zero, this means
 252                                 * that fobj has been freed
 253                                 *
 254                                 * call dma_buf_poll_cb and force a recheck!
 255                                 */
 256                                events &= ~POLLOUT;
 257                                dma_buf_poll_cb(NULL, &dcb->cb);
 258                                break;
 259                        }
 260                        if (!dma_fence_add_callback(fence, &dcb->cb,
 261                                                    dma_buf_poll_cb)) {
 262                                dma_fence_put(fence);
 263                                events &= ~POLLOUT;
 264                                break;
 265                        }
 266                        dma_fence_put(fence);
 267                }
 268
 269                /* No callback queued, wake up any additional waiters. */
 270                if (i == shared_count)
 271                        dma_buf_poll_cb(NULL, &dcb->cb);
 272        }
 273
 274out:
 275        rcu_read_unlock();
 276        return events;
 277}
 278
 279static long dma_buf_ioctl(struct file *file,
 280                          unsigned int cmd, unsigned long arg)
 281{
 282        struct dma_buf *dmabuf;
 283        struct dma_buf_sync sync;
 284        enum dma_data_direction direction;
 285        int ret;
 286
 287        dmabuf = file->private_data;
 288
 289        switch (cmd) {
 290        case DMA_BUF_IOCTL_SYNC:
 291                if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
 292                        return -EFAULT;
 293
 294                if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
 295                        return -EINVAL;
 296
 297                switch (sync.flags & DMA_BUF_SYNC_RW) {
 298                case DMA_BUF_SYNC_READ:
 299                        direction = DMA_FROM_DEVICE;
 300                        break;
 301                case DMA_BUF_SYNC_WRITE:
 302                        direction = DMA_TO_DEVICE;
 303                        break;
 304                case DMA_BUF_SYNC_RW:
 305                        direction = DMA_BIDIRECTIONAL;
 306                        break;
 307                default:
 308                        return -EINVAL;
 309                }
 310
 311                if (sync.flags & DMA_BUF_SYNC_END)
 312                        ret = dma_buf_end_cpu_access(dmabuf, direction);
 313                else
 314                        ret = dma_buf_begin_cpu_access(dmabuf, direction);
 315
 316                return ret;
 317        default:
 318                return -ENOTTY;
 319        }
 320}
 321
 322static const struct file_operations dma_buf_fops = {
 323        .release        = dma_buf_release,
 324        .mmap           = dma_buf_mmap_internal,
 325        .llseek         = dma_buf_llseek,
 326        .poll           = dma_buf_poll,
 327        .unlocked_ioctl = dma_buf_ioctl,
 328#ifdef CONFIG_COMPAT
 329        .compat_ioctl   = dma_buf_ioctl,
 330#endif
 331};
 332
 333/*
 334 * is_dma_buf_file - Check if struct file* is associated with dma_buf
 335 */
 336static inline int is_dma_buf_file(struct file *file)
 337{
 338        return file->f_op == &dma_buf_fops;
 339}
 340
 341/**
 342 * DOC: dma buf device access
 343 *
 344 * For device DMA access to a shared DMA buffer the usual sequence of operations
 345 * is fairly simple:
 346 *
 347 * 1. The exporter defines his exporter instance using
 348 *    DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
 349 *    buffer object into a &dma_buf. It then exports that &dma_buf to userspace
 350 *    as a file descriptor by calling dma_buf_fd().
 351 *
 352 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
 353 *    to share with: First the filedescriptor is converted to a &dma_buf using
 354 *    dma_buf_get(). Then the buffer is attached to the device using
 355 *    dma_buf_attach().
 356 *
 357 *    Up to this stage the exporter is still free to migrate or reallocate the
 358 *    backing storage.
 359 *
 360 * 3. Once the buffer is attached to all devices userspace can initiate DMA
 361 *    access to the shared buffer. In the kernel this is done by calling
 362 *    dma_buf_map_attachment() and dma_buf_unmap_attachment().
 363 *
 364 * 4. Once a driver is done with a shared buffer it needs to call
 365 *    dma_buf_detach() (after cleaning up any mappings) and then release the
 366 *    reference acquired with dma_buf_get by calling dma_buf_put().
 367 *
 368 * For the detailed semantics exporters are expected to implement see
 369 * &dma_buf_ops.
 370 */
 371
 372/**
 373 * dma_buf_export - Creates a new dma_buf, and associates an anon file
 374 * with this buffer, so it can be exported.
 375 * Also connect the allocator specific data and ops to the buffer.
 376 * Additionally, provide a name string for exporter; useful in debugging.
 377 *
 378 * @exp_info:   [in]    holds all the export related information provided
 379 *                      by the exporter. see &struct dma_buf_export_info
 380 *                      for further details.
 381 *
 382 * Returns, on success, a newly created dma_buf object, which wraps the
 383 * supplied private data and operations for dma_buf_ops. On either missing
 384 * ops, or error in allocating struct dma_buf, will return negative error.
 385 *
 386 * For most cases the easiest way to create @exp_info is through the
 387 * %DEFINE_DMA_BUF_EXPORT_INFO macro.
 388 */
 389struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
 390{
 391        struct dma_buf *dmabuf;
 392        struct reservation_object *resv = exp_info->resv;
 393        struct file *file;
 394        size_t alloc_size = sizeof(struct dma_buf);
 395        int ret;
 396
 397        if (!exp_info->resv)
 398                alloc_size += sizeof(struct reservation_object);
 399        else
 400                /* prevent &dma_buf[1] == dma_buf->resv */
 401                alloc_size += 1;
 402
 403        if (WARN_ON(!exp_info->priv
 404                          || !exp_info->ops
 405                          || !exp_info->ops->map_dma_buf
 406                          || !exp_info->ops->unmap_dma_buf
 407                          || !exp_info->ops->release
 408                          || !exp_info->ops->map_atomic
 409                          || !exp_info->ops->map
 410                          || !exp_info->ops->mmap)) {
 411                return ERR_PTR(-EINVAL);
 412        }
 413
 414        if (!try_module_get(exp_info->owner))
 415                return ERR_PTR(-ENOENT);
 416
 417        dmabuf = kzalloc(alloc_size, GFP_KERNEL);
 418        if (!dmabuf) {
 419                ret = -ENOMEM;
 420                goto err_module;
 421        }
 422
 423        dmabuf->priv = exp_info->priv;
 424        dmabuf->ops = exp_info->ops;
 425        dmabuf->size = exp_info->size;
 426        dmabuf->exp_name = exp_info->exp_name;
 427        dmabuf->owner = exp_info->owner;
 428        init_waitqueue_head(&dmabuf->poll);
 429        dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll;
 430        dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0;
 431
 432        if (!resv) {
 433                resv = (struct reservation_object *)&dmabuf[1];
 434                reservation_object_init(resv);
 435        }
 436        dmabuf->resv = resv;
 437
 438        file = anon_inode_getfile("dmabuf", &dma_buf_fops, dmabuf,
 439                                        exp_info->flags);
 440        if (IS_ERR(file)) {
 441                ret = PTR_ERR(file);
 442                goto err_dmabuf;
 443        }
 444
 445        file->f_mode |= FMODE_LSEEK;
 446        dmabuf->file = file;
 447
 448        mutex_init(&dmabuf->lock);
 449        INIT_LIST_HEAD(&dmabuf->attachments);
 450
 451        mutex_lock(&db_list.lock);
 452        list_add(&dmabuf->list_node, &db_list.head);
 453        mutex_unlock(&db_list.lock);
 454
 455        return dmabuf;
 456
 457err_dmabuf:
 458        kfree(dmabuf);
 459err_module:
 460        module_put(exp_info->owner);
 461        return ERR_PTR(ret);
 462}
 463EXPORT_SYMBOL_GPL(dma_buf_export);
 464
 465/**
 466 * dma_buf_fd - returns a file descriptor for the given dma_buf
 467 * @dmabuf:     [in]    pointer to dma_buf for which fd is required.
 468 * @flags:      [in]    flags to give to fd
 469 *
 470 * On success, returns an associated 'fd'. Else, returns error.
 471 */
 472int dma_buf_fd(struct dma_buf *dmabuf, int flags)
 473{
 474        int fd;
 475
 476        if (!dmabuf || !dmabuf->file)
 477                return -EINVAL;
 478
 479        fd = get_unused_fd_flags(flags);
 480        if (fd < 0)
 481                return fd;
 482
 483        fd_install(fd, dmabuf->file);
 484
 485        return fd;
 486}
 487EXPORT_SYMBOL_GPL(dma_buf_fd);
 488
 489/**
 490 * dma_buf_get - returns the dma_buf structure related to an fd
 491 * @fd: [in]    fd associated with the dma_buf to be returned
 492 *
 493 * On success, returns the dma_buf structure associated with an fd; uses
 494 * file's refcounting done by fget to increase refcount. returns ERR_PTR
 495 * otherwise.
 496 */
 497struct dma_buf *dma_buf_get(int fd)
 498{
 499        struct file *file;
 500
 501        file = fget(fd);
 502
 503        if (!file)
 504                return ERR_PTR(-EBADF);
 505
 506        if (!is_dma_buf_file(file)) {
 507                fput(file);
 508                return ERR_PTR(-EINVAL);
 509        }
 510
 511        return file->private_data;
 512}
 513EXPORT_SYMBOL_GPL(dma_buf_get);
 514
 515/**
 516 * dma_buf_put - decreases refcount of the buffer
 517 * @dmabuf:     [in]    buffer to reduce refcount of
 518 *
 519 * Uses file's refcounting done implicitly by fput().
 520 *
 521 * If, as a result of this call, the refcount becomes 0, the 'release' file
 522 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
 523 * in turn, and frees the memory allocated for dmabuf when exported.
 524 */
 525void dma_buf_put(struct dma_buf *dmabuf)
 526{
 527        if (WARN_ON(!dmabuf || !dmabuf->file))
 528                return;
 529
 530        fput(dmabuf->file);
 531}
 532EXPORT_SYMBOL_GPL(dma_buf_put);
 533
 534/**
 535 * dma_buf_attach - Add the device to dma_buf's attachments list; optionally,
 536 * calls attach() of dma_buf_ops to allow device-specific attach functionality
 537 * @dmabuf:     [in]    buffer to attach device to.
 538 * @dev:        [in]    device to be attached.
 539 *
 540 * Returns struct dma_buf_attachment pointer for this attachment. Attachments
 541 * must be cleaned up by calling dma_buf_detach().
 542 *
 543 * Returns:
 544 *
 545 * A pointer to newly created &dma_buf_attachment on success, or a negative
 546 * error code wrapped into a pointer on failure.
 547 *
 548 * Note that this can fail if the backing storage of @dmabuf is in a place not
 549 * accessible to @dev, and cannot be moved to a more suitable place. This is
 550 * indicated with the error code -EBUSY.
 551 */
 552struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
 553                                          struct device *dev)
 554{
 555        struct dma_buf_attachment *attach;
 556        int ret;
 557
 558        if (WARN_ON(!dmabuf || !dev))
 559                return ERR_PTR(-EINVAL);
 560
 561        attach = kzalloc(sizeof(*attach), GFP_KERNEL);
 562        if (!attach)
 563                return ERR_PTR(-ENOMEM);
 564
 565        attach->dev = dev;
 566        attach->dmabuf = dmabuf;
 567
 568        mutex_lock(&dmabuf->lock);
 569
 570        if (dmabuf->ops->attach) {
 571                ret = dmabuf->ops->attach(dmabuf, dev, attach);
 572                if (ret)
 573                        goto err_attach;
 574        }
 575        list_add(&attach->node, &dmabuf->attachments);
 576
 577        mutex_unlock(&dmabuf->lock);
 578        return attach;
 579
 580err_attach:
 581        kfree(attach);
 582        mutex_unlock(&dmabuf->lock);
 583        return ERR_PTR(ret);
 584}
 585EXPORT_SYMBOL_GPL(dma_buf_attach);
 586
 587/**
 588 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list;
 589 * optionally calls detach() of dma_buf_ops for device-specific detach
 590 * @dmabuf:     [in]    buffer to detach from.
 591 * @attach:     [in]    attachment to be detached; is free'd after this call.
 592 *
 593 * Clean up a device attachment obtained by calling dma_buf_attach().
 594 */
 595void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
 596{
 597        if (WARN_ON(!dmabuf || !attach))
 598                return;
 599
 600        mutex_lock(&dmabuf->lock);
 601        list_del(&attach->node);
 602        if (dmabuf->ops->detach)
 603                dmabuf->ops->detach(dmabuf, attach);
 604
 605        mutex_unlock(&dmabuf->lock);
 606        kfree(attach);
 607}
 608EXPORT_SYMBOL_GPL(dma_buf_detach);
 609
 610/**
 611 * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
 612 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
 613 * dma_buf_ops.
 614 * @attach:     [in]    attachment whose scatterlist is to be returned
 615 * @direction:  [in]    direction of DMA transfer
 616 *
 617 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
 618 * on error. May return -EINTR if it is interrupted by a signal.
 619 *
 620 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
 621 * the underlying backing storage is pinned for as long as a mapping exists,
 622 * therefore users/importers should not hold onto a mapping for undue amounts of
 623 * time.
 624 */
 625struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
 626                                        enum dma_data_direction direction)
 627{
 628        struct sg_table *sg_table;
 629
 630        might_sleep();
 631
 632        if (WARN_ON(!attach || !attach->dmabuf))
 633                return ERR_PTR(-EINVAL);
 634
 635        sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
 636        if (!sg_table)
 637                sg_table = ERR_PTR(-ENOMEM);
 638
 639        return sg_table;
 640}
 641EXPORT_SYMBOL_GPL(dma_buf_map_attachment);
 642
 643/**
 644 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
 645 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
 646 * dma_buf_ops.
 647 * @attach:     [in]    attachment to unmap buffer from
 648 * @sg_table:   [in]    scatterlist info of the buffer to unmap
 649 * @direction:  [in]    direction of DMA transfer
 650 *
 651 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
 652 */
 653void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
 654                                struct sg_table *sg_table,
 655                                enum dma_data_direction direction)
 656{
 657        might_sleep();
 658
 659        if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
 660                return;
 661
 662        attach->dmabuf->ops->unmap_dma_buf(attach, sg_table,
 663                                                direction);
 664}
 665EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment);
 666
 667/**
 668 * DOC: cpu access
 669 *
 670 * There are mutliple reasons for supporting CPU access to a dma buffer object:
 671 *
 672 * - Fallback operations in the kernel, for example when a device is connected
 673 *   over USB and the kernel needs to shuffle the data around first before
 674 *   sending it away. Cache coherency is handled by braketing any transactions
 675 *   with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
 676 *   access.
 677 *
 678 *   To support dma_buf objects residing in highmem cpu access is page-based
 679 *   using an api similar to kmap. Accessing a dma_buf is done in aligned chunks
 680 *   of PAGE_SIZE size. Before accessing a chunk it needs to be mapped, which
 681 *   returns a pointer in kernel virtual address space. Afterwards the chunk
 682 *   needs to be unmapped again. There is no limit on how often a given chunk
 683 *   can be mapped and unmapped, i.e. the importer does not need to call
 684 *   begin_cpu_access again before mapping the same chunk again.
 685 *
 686 *   Interfaces::
 687 *      void \*dma_buf_kmap(struct dma_buf \*, unsigned long);
 688 *      void dma_buf_kunmap(struct dma_buf \*, unsigned long, void \*);
 689 *
 690 *   There are also atomic variants of these interfaces. Like for kmap they
 691 *   facilitate non-blocking fast-paths. Neither the importer nor the exporter
 692 *   (in the callback) is allowed to block when using these.
 693 *
 694 *   Interfaces::
 695 *      void \*dma_buf_kmap_atomic(struct dma_buf \*, unsigned long);
 696 *      void dma_buf_kunmap_atomic(struct dma_buf \*, unsigned long, void \*);
 697 *
 698 *   For importers all the restrictions of using kmap apply, like the limited
 699 *   supply of kmap_atomic slots. Hence an importer shall only hold onto at
 700 *   max 2 atomic dma_buf kmaps at the same time (in any given process context).
 701 *
 702 *   dma_buf kmap calls outside of the range specified in begin_cpu_access are
 703 *   undefined. If the range is not PAGE_SIZE aligned, kmap needs to succeed on
 704 *   the partial chunks at the beginning and end but may return stale or bogus
 705 *   data outside of the range (in these partial chunks).
 706 *
 707 *   Note that these calls need to always succeed. The exporter needs to
 708 *   complete any preparations that might fail in begin_cpu_access.
 709 *
 710 *   For some cases the overhead of kmap can be too high, a vmap interface
 711 *   is introduced. This interface should be used very carefully, as vmalloc
 712 *   space is a limited resources on many architectures.
 713 *
 714 *   Interfaces::
 715 *      void \*dma_buf_vmap(struct dma_buf \*dmabuf)
 716 *      void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
 717 *
 718 *   The vmap call can fail if there is no vmap support in the exporter, or if
 719 *   it runs out of vmalloc space. Fallback to kmap should be implemented. Note
 720 *   that the dma-buf layer keeps a reference count for all vmap access and
 721 *   calls down into the exporter's vmap function only when no vmapping exists,
 722 *   and only unmaps it once. Protection against concurrent vmap/vunmap calls is
 723 *   provided by taking the dma_buf->lock mutex.
 724 *
 725 * - For full compatibility on the importer side with existing userspace
 726 *   interfaces, which might already support mmap'ing buffers. This is needed in
 727 *   many processing pipelines (e.g. feeding a software rendered image into a
 728 *   hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
 729 *   framework already supported this and for DMA buffer file descriptors to
 730 *   replace ION buffers mmap support was needed.
 731 *
 732 *   There is no special interfaces, userspace simply calls mmap on the dma-buf
 733 *   fd. But like for CPU access there's a need to braket the actual access,
 734 *   which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
 735 *   DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
 736 *   be restarted.
 737 *
 738 *   Some systems might need some sort of cache coherency management e.g. when
 739 *   CPU and GPU domains are being accessed through dma-buf at the same time.
 740 *   To circumvent this problem there are begin/end coherency markers, that
 741 *   forward directly to existing dma-buf device drivers vfunc hooks. Userspace
 742 *   can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
 743 *   sequence would be used like following:
 744 *
 745 *     - mmap dma-buf fd
 746 *     - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
 747 *       to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
 748 *       want (with the new data being consumed by say the GPU or the scanout
 749 *       device)
 750 *     - munmap once you don't need the buffer any more
 751 *
 752 *    For correctness and optimal performance, it is always required to use
 753 *    SYNC_START and SYNC_END before and after, respectively, when accessing the
 754 *    mapped address. Userspace cannot rely on coherent access, even when there
 755 *    are systems where it just works without calling these ioctls.
 756 *
 757 * - And as a CPU fallback in userspace processing pipelines.
 758 *
 759 *   Similar to the motivation for kernel cpu access it is again important that
 760 *   the userspace code of a given importing subsystem can use the same
 761 *   interfaces with a imported dma-buf buffer object as with a native buffer
 762 *   object. This is especially important for drm where the userspace part of
 763 *   contemporary OpenGL, X, and other drivers is huge, and reworking them to
 764 *   use a different way to mmap a buffer rather invasive.
 765 *
 766 *   The assumption in the current dma-buf interfaces is that redirecting the
 767 *   initial mmap is all that's needed. A survey of some of the existing
 768 *   subsystems shows that no driver seems to do any nefarious thing like
 769 *   syncing up with outstanding asynchronous processing on the device or
 770 *   allocating special resources at fault time. So hopefully this is good
 771 *   enough, since adding interfaces to intercept pagefaults and allow pte
 772 *   shootdowns would increase the complexity quite a bit.
 773 *
 774 *   Interface::
 775 *      int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
 776 *                     unsigned long);
 777 *
 778 *   If the importing subsystem simply provides a special-purpose mmap call to
 779 *   set up a mapping in userspace, calling do_mmap with dma_buf->file will
 780 *   equally achieve that for a dma-buf object.
 781 */
 782
 783static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
 784                                      enum dma_data_direction direction)
 785{
 786        bool write = (direction == DMA_BIDIRECTIONAL ||
 787                      direction == DMA_TO_DEVICE);
 788        struct reservation_object *resv = dmabuf->resv;
 789        long ret;
 790
 791        /* Wait on any implicit rendering fences */
 792        ret = reservation_object_wait_timeout_rcu(resv, write, true,
 793                                                  MAX_SCHEDULE_TIMEOUT);
 794        if (ret < 0)
 795                return ret;
 796
 797        return 0;
 798}
 799
 800/**
 801 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
 802 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
 803 * preparations. Coherency is only guaranteed in the specified range for the
 804 * specified access direction.
 805 * @dmabuf:     [in]    buffer to prepare cpu access for.
 806 * @direction:  [in]    length of range for cpu access.
 807 *
 808 * After the cpu access is complete the caller should call
 809 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
 810 * it guaranteed to be coherent with other DMA access.
 811 *
 812 * Can return negative error values, returns 0 on success.
 813 */
 814int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
 815                             enum dma_data_direction direction)
 816{
 817        int ret = 0;
 818
 819        if (WARN_ON(!dmabuf))
 820                return -EINVAL;
 821
 822        if (dmabuf->ops->begin_cpu_access)
 823                ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
 824
 825        /* Ensure that all fences are waited upon - but we first allow
 826         * the native handler the chance to do so more efficiently if it
 827         * chooses. A double invocation here will be reasonably cheap no-op.
 828         */
 829        if (ret == 0)
 830                ret = __dma_buf_begin_cpu_access(dmabuf, direction);
 831
 832        return ret;
 833}
 834EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access);
 835
 836/**
 837 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
 838 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
 839 * actions. Coherency is only guaranteed in the specified range for the
 840 * specified access direction.
 841 * @dmabuf:     [in]    buffer to complete cpu access for.
 842 * @direction:  [in]    length of range for cpu access.
 843 *
 844 * This terminates CPU access started with dma_buf_begin_cpu_access().
 845 *
 846 * Can return negative error values, returns 0 on success.
 847 */
 848int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
 849                           enum dma_data_direction direction)
 850{
 851        int ret = 0;
 852
 853        WARN_ON(!dmabuf);
 854
 855        if (dmabuf->ops->end_cpu_access)
 856                ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
 857
 858        return ret;
 859}
 860EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access);
 861
 862/**
 863 * dma_buf_kmap_atomic - Map a page of the buffer object into kernel address
 864 * space. The same restrictions as for kmap_atomic and friends apply.
 865 * @dmabuf:     [in]    buffer to map page from.
 866 * @page_num:   [in]    page in PAGE_SIZE units to map.
 867 *
 868 * This call must always succeed, any necessary preparations that might fail
 869 * need to be done in begin_cpu_access.
 870 */
 871void *dma_buf_kmap_atomic(struct dma_buf *dmabuf, unsigned long page_num)
 872{
 873        WARN_ON(!dmabuf);
 874
 875        return dmabuf->ops->map_atomic(dmabuf, page_num);
 876}
 877EXPORT_SYMBOL_GPL(dma_buf_kmap_atomic);
 878
 879/**
 880 * dma_buf_kunmap_atomic - Unmap a page obtained by dma_buf_kmap_atomic.
 881 * @dmabuf:     [in]    buffer to unmap page from.
 882 * @page_num:   [in]    page in PAGE_SIZE units to unmap.
 883 * @vaddr:      [in]    kernel space pointer obtained from dma_buf_kmap_atomic.
 884 *
 885 * This call must always succeed.
 886 */
 887void dma_buf_kunmap_atomic(struct dma_buf *dmabuf, unsigned long page_num,
 888                           void *vaddr)
 889{
 890        WARN_ON(!dmabuf);
 891
 892        if (dmabuf->ops->unmap_atomic)
 893                dmabuf->ops->unmap_atomic(dmabuf, page_num, vaddr);
 894}
 895EXPORT_SYMBOL_GPL(dma_buf_kunmap_atomic);
 896
 897/**
 898 * dma_buf_kmap - Map a page of the buffer object into kernel address space. The
 899 * same restrictions as for kmap and friends apply.
 900 * @dmabuf:     [in]    buffer to map page from.
 901 * @page_num:   [in]    page in PAGE_SIZE units to map.
 902 *
 903 * This call must always succeed, any necessary preparations that might fail
 904 * need to be done in begin_cpu_access.
 905 */
 906void *dma_buf_kmap(struct dma_buf *dmabuf, unsigned long page_num)
 907{
 908        WARN_ON(!dmabuf);
 909
 910        return dmabuf->ops->map(dmabuf, page_num);
 911}
 912EXPORT_SYMBOL_GPL(dma_buf_kmap);
 913
 914/**
 915 * dma_buf_kunmap - Unmap a page obtained by dma_buf_kmap.
 916 * @dmabuf:     [in]    buffer to unmap page from.
 917 * @page_num:   [in]    page in PAGE_SIZE units to unmap.
 918 * @vaddr:      [in]    kernel space pointer obtained from dma_buf_kmap.
 919 *
 920 * This call must always succeed.
 921 */
 922void dma_buf_kunmap(struct dma_buf *dmabuf, unsigned long page_num,
 923                    void *vaddr)
 924{
 925        WARN_ON(!dmabuf);
 926
 927        if (dmabuf->ops->unmap)
 928                dmabuf->ops->unmap(dmabuf, page_num, vaddr);
 929}
 930EXPORT_SYMBOL_GPL(dma_buf_kunmap);
 931
 932
 933/**
 934 * dma_buf_mmap - Setup up a userspace mmap with the given vma
 935 * @dmabuf:     [in]    buffer that should back the vma
 936 * @vma:        [in]    vma for the mmap
 937 * @pgoff:      [in]    offset in pages where this mmap should start within the
 938 *                      dma-buf buffer.
 939 *
 940 * This function adjusts the passed in vma so that it points at the file of the
 941 * dma_buf operation. It also adjusts the starting pgoff and does bounds
 942 * checking on the size of the vma. Then it calls the exporters mmap function to
 943 * set up the mapping.
 944 *
 945 * Can return negative error values, returns 0 on success.
 946 */
 947int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
 948                 unsigned long pgoff)
 949{
 950        struct file *oldfile;
 951        int ret;
 952
 953        if (WARN_ON(!dmabuf || !vma))
 954                return -EINVAL;
 955
 956        /* check for offset overflow */
 957        if (pgoff + vma_pages(vma) < pgoff)
 958                return -EOVERFLOW;
 959
 960        /* check for overflowing the buffer's size */
 961        if (pgoff + vma_pages(vma) >
 962            dmabuf->size >> PAGE_SHIFT)
 963                return -EINVAL;
 964
 965        /* readjust the vma */
 966        get_file(dmabuf->file);
 967        oldfile = vma->vm_file;
 968        vma->vm_file = dmabuf->file;
 969        vma->vm_pgoff = pgoff;
 970
 971        ret = dmabuf->ops->mmap(dmabuf, vma);
 972        if (ret) {
 973                /* restore old parameters on failure */
 974                vma->vm_file = oldfile;
 975                fput(dmabuf->file);
 976        } else {
 977                if (oldfile)
 978                        fput(oldfile);
 979        }
 980        return ret;
 981
 982}
 983EXPORT_SYMBOL_GPL(dma_buf_mmap);
 984
 985/**
 986 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
 987 * address space. Same restrictions as for vmap and friends apply.
 988 * @dmabuf:     [in]    buffer to vmap
 989 *
 990 * This call may fail due to lack of virtual mapping address space.
 991 * These calls are optional in drivers. The intended use for them
 992 * is for mapping objects linear in kernel space for high use objects.
 993 * Please attempt to use kmap/kunmap before thinking about these interfaces.
 994 *
 995 * Returns NULL on error.
 996 */
 997void *dma_buf_vmap(struct dma_buf *dmabuf)
 998{
 999        void *ptr;
1000
1001        if (WARN_ON(!dmabuf))
1002                return NULL;
1003
1004        if (!dmabuf->ops->vmap)
1005                return NULL;
1006
1007        mutex_lock(&dmabuf->lock);
1008        if (dmabuf->vmapping_counter) {
1009                dmabuf->vmapping_counter++;
1010                BUG_ON(!dmabuf->vmap_ptr);
1011                ptr = dmabuf->vmap_ptr;
1012                goto out_unlock;
1013        }
1014
1015        BUG_ON(dmabuf->vmap_ptr);
1016
1017        ptr = dmabuf->ops->vmap(dmabuf);
1018        if (WARN_ON_ONCE(IS_ERR(ptr)))
1019                ptr = NULL;
1020        if (!ptr)
1021                goto out_unlock;
1022
1023        dmabuf->vmap_ptr = ptr;
1024        dmabuf->vmapping_counter = 1;
1025
1026out_unlock:
1027        mutex_unlock(&dmabuf->lock);
1028        return ptr;
1029}
1030EXPORT_SYMBOL_GPL(dma_buf_vmap);
1031
1032/**
1033 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1034 * @dmabuf:     [in]    buffer to vunmap
1035 * @vaddr:      [in]    vmap to vunmap
1036 */
1037void dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr)
1038{
1039        if (WARN_ON(!dmabuf))
1040                return;
1041
1042        BUG_ON(!dmabuf->vmap_ptr);
1043        BUG_ON(dmabuf->vmapping_counter == 0);
1044        BUG_ON(dmabuf->vmap_ptr != vaddr);
1045
1046        mutex_lock(&dmabuf->lock);
1047        if (--dmabuf->vmapping_counter == 0) {
1048                if (dmabuf->ops->vunmap)
1049                        dmabuf->ops->vunmap(dmabuf, vaddr);
1050                dmabuf->vmap_ptr = NULL;
1051        }
1052        mutex_unlock(&dmabuf->lock);
1053}
1054EXPORT_SYMBOL_GPL(dma_buf_vunmap);
1055
1056#ifdef CONFIG_DEBUG_FS
1057static int dma_buf_debug_show(struct seq_file *s, void *unused)
1058{
1059        int ret;
1060        struct dma_buf *buf_obj;
1061        struct dma_buf_attachment *attach_obj;
1062        struct reservation_object *robj;
1063        struct reservation_object_list *fobj;
1064        struct dma_fence *fence;
1065        unsigned seq;
1066        int count = 0, attach_count, shared_count, i;
1067        size_t size = 0;
1068
1069        ret = mutex_lock_interruptible(&db_list.lock);
1070
1071        if (ret)
1072                return ret;
1073
1074        seq_puts(s, "\nDma-buf Objects:\n");
1075        seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\n",
1076                   "size", "flags", "mode", "count");
1077
1078        list_for_each_entry(buf_obj, &db_list.head, list_node) {
1079                ret = mutex_lock_interruptible(&buf_obj->lock);
1080
1081                if (ret) {
1082                        seq_puts(s,
1083                                 "\tERROR locking buffer object: skipping\n");
1084                        continue;
1085                }
1086
1087                seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\n",
1088                                buf_obj->size,
1089                                buf_obj->file->f_flags, buf_obj->file->f_mode,
1090                                file_count(buf_obj->file),
1091                                buf_obj->exp_name);
1092
1093                robj = buf_obj->resv;
1094                while (true) {
1095                        seq = read_seqcount_begin(&robj->seq);
1096                        rcu_read_lock();
1097                        fobj = rcu_dereference(robj->fence);
1098                        shared_count = fobj ? fobj->shared_count : 0;
1099                        fence = rcu_dereference(robj->fence_excl);
1100                        if (!read_seqcount_retry(&robj->seq, seq))
1101                                break;
1102                        rcu_read_unlock();
1103                }
1104
1105                if (fence)
1106                        seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n",
1107                                   fence->ops->get_driver_name(fence),
1108                                   fence->ops->get_timeline_name(fence),
1109                                   dma_fence_is_signaled(fence) ? "" : "un");
1110                for (i = 0; i < shared_count; i++) {
1111                        fence = rcu_dereference(fobj->shared[i]);
1112                        if (!dma_fence_get_rcu(fence))
1113                                continue;
1114                        seq_printf(s, "\tShared fence: %s %s %ssignalled\n",
1115                                   fence->ops->get_driver_name(fence),
1116                                   fence->ops->get_timeline_name(fence),
1117                                   dma_fence_is_signaled(fence) ? "" : "un");
1118                }
1119                rcu_read_unlock();
1120
1121                seq_puts(s, "\tAttached Devices:\n");
1122                attach_count = 0;
1123
1124                list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1125                        seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1126                        attach_count++;
1127                }
1128
1129                seq_printf(s, "Total %d devices attached\n\n",
1130                                attach_count);
1131
1132                count++;
1133                size += buf_obj->size;
1134                mutex_unlock(&buf_obj->lock);
1135        }
1136
1137        seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1138
1139        mutex_unlock(&db_list.lock);
1140        return 0;
1141}
1142
1143static int dma_buf_debug_open(struct inode *inode, struct file *file)
1144{
1145        return single_open(file, dma_buf_debug_show, NULL);
1146}
1147
1148static const struct file_operations dma_buf_debug_fops = {
1149        .open           = dma_buf_debug_open,
1150        .read           = seq_read,
1151        .llseek         = seq_lseek,
1152        .release        = single_release,
1153};
1154
1155static struct dentry *dma_buf_debugfs_dir;
1156
1157static int dma_buf_init_debugfs(void)
1158{
1159        struct dentry *d;
1160        int err = 0;
1161
1162        d = debugfs_create_dir("dma_buf", NULL);
1163        if (IS_ERR(d))
1164                return PTR_ERR(d);
1165
1166        dma_buf_debugfs_dir = d;
1167
1168        d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1169                                NULL, &dma_buf_debug_fops);
1170        if (IS_ERR(d)) {
1171                pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1172                debugfs_remove_recursive(dma_buf_debugfs_dir);
1173                dma_buf_debugfs_dir = NULL;
1174                err = PTR_ERR(d);
1175        }
1176
1177        return err;
1178}
1179
1180static void dma_buf_uninit_debugfs(void)
1181{
1182        debugfs_remove_recursive(dma_buf_debugfs_dir);
1183}
1184#else
1185static inline int dma_buf_init_debugfs(void)
1186{
1187        return 0;
1188}
1189static inline void dma_buf_uninit_debugfs(void)
1190{
1191}
1192#endif
1193
1194static int __init dma_buf_init(void)
1195{
1196        mutex_init(&db_list.lock);
1197        INIT_LIST_HEAD(&db_list.head);
1198        dma_buf_init_debugfs();
1199        return 0;
1200}
1201subsys_initcall(dma_buf_init);
1202
1203static void __exit dma_buf_deinit(void)
1204{
1205        dma_buf_uninit_debugfs();
1206}
1207__exitcall(dma_buf_deinit);
1208