linux/drivers/firewire/ohci.c
<<
>>
Prefs
   1/*
   2 * Driver for OHCI 1394 controllers
   3 *
   4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software Foundation,
  18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21#include <linux/bitops.h>
  22#include <linux/bug.h>
  23#include <linux/compiler.h>
  24#include <linux/delay.h>
  25#include <linux/device.h>
  26#include <linux/dma-mapping.h>
  27#include <linux/firewire.h>
  28#include <linux/firewire-constants.h>
  29#include <linux/init.h>
  30#include <linux/interrupt.h>
  31#include <linux/io.h>
  32#include <linux/kernel.h>
  33#include <linux/list.h>
  34#include <linux/mm.h>
  35#include <linux/module.h>
  36#include <linux/moduleparam.h>
  37#include <linux/mutex.h>
  38#include <linux/pci.h>
  39#include <linux/pci_ids.h>
  40#include <linux/slab.h>
  41#include <linux/spinlock.h>
  42#include <linux/string.h>
  43#include <linux/time.h>
  44#include <linux/vmalloc.h>
  45#include <linux/workqueue.h>
  46
  47#include <asm/byteorder.h>
  48#include <asm/page.h>
  49
  50#ifdef CONFIG_PPC_PMAC
  51#include <asm/pmac_feature.h>
  52#endif
  53
  54#include "core.h"
  55#include "ohci.h"
  56
  57#define ohci_info(ohci, f, args...)     dev_info(ohci->card.device, f, ##args)
  58#define ohci_notice(ohci, f, args...)   dev_notice(ohci->card.device, f, ##args)
  59#define ohci_err(ohci, f, args...)      dev_err(ohci->card.device, f, ##args)
  60
  61#define DESCRIPTOR_OUTPUT_MORE          0
  62#define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
  63#define DESCRIPTOR_INPUT_MORE           (2 << 12)
  64#define DESCRIPTOR_INPUT_LAST           (3 << 12)
  65#define DESCRIPTOR_STATUS               (1 << 11)
  66#define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
  67#define DESCRIPTOR_PING                 (1 << 7)
  68#define DESCRIPTOR_YY                   (1 << 6)
  69#define DESCRIPTOR_NO_IRQ               (0 << 4)
  70#define DESCRIPTOR_IRQ_ERROR            (1 << 4)
  71#define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
  72#define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
  73#define DESCRIPTOR_WAIT                 (3 << 0)
  74
  75#define DESCRIPTOR_CMD                  (0xf << 12)
  76
  77struct descriptor {
  78        __le16 req_count;
  79        __le16 control;
  80        __le32 data_address;
  81        __le32 branch_address;
  82        __le16 res_count;
  83        __le16 transfer_status;
  84} __attribute__((aligned(16)));
  85
  86#define CONTROL_SET(regs)       (regs)
  87#define CONTROL_CLEAR(regs)     ((regs) + 4)
  88#define COMMAND_PTR(regs)       ((regs) + 12)
  89#define CONTEXT_MATCH(regs)     ((regs) + 16)
  90
  91#define AR_BUFFER_SIZE  (32*1024)
  92#define AR_BUFFERS_MIN  DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
  93/* we need at least two pages for proper list management */
  94#define AR_BUFFERS      (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
  95
  96#define MAX_ASYNC_PAYLOAD       4096
  97#define MAX_AR_PACKET_SIZE      (16 + MAX_ASYNC_PAYLOAD + 4)
  98#define AR_WRAPAROUND_PAGES     DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
  99
 100struct ar_context {
 101        struct fw_ohci *ohci;
 102        struct page *pages[AR_BUFFERS];
 103        void *buffer;
 104        struct descriptor *descriptors;
 105        dma_addr_t descriptors_bus;
 106        void *pointer;
 107        unsigned int last_buffer_index;
 108        u32 regs;
 109        struct tasklet_struct tasklet;
 110};
 111
 112struct context;
 113
 114typedef int (*descriptor_callback_t)(struct context *ctx,
 115                                     struct descriptor *d,
 116                                     struct descriptor *last);
 117
 118/*
 119 * A buffer that contains a block of DMA-able coherent memory used for
 120 * storing a portion of a DMA descriptor program.
 121 */
 122struct descriptor_buffer {
 123        struct list_head list;
 124        dma_addr_t buffer_bus;
 125        size_t buffer_size;
 126        size_t used;
 127        struct descriptor buffer[0];
 128};
 129
 130struct context {
 131        struct fw_ohci *ohci;
 132        u32 regs;
 133        int total_allocation;
 134        u32 current_bus;
 135        bool running;
 136        bool flushing;
 137
 138        /*
 139         * List of page-sized buffers for storing DMA descriptors.
 140         * Head of list contains buffers in use and tail of list contains
 141         * free buffers.
 142         */
 143        struct list_head buffer_list;
 144
 145        /*
 146         * Pointer to a buffer inside buffer_list that contains the tail
 147         * end of the current DMA program.
 148         */
 149        struct descriptor_buffer *buffer_tail;
 150
 151        /*
 152         * The descriptor containing the branch address of the first
 153         * descriptor that has not yet been filled by the device.
 154         */
 155        struct descriptor *last;
 156
 157        /*
 158         * The last descriptor block in the DMA program. It contains the branch
 159         * address that must be updated upon appending a new descriptor.
 160         */
 161        struct descriptor *prev;
 162        int prev_z;
 163
 164        descriptor_callback_t callback;
 165
 166        struct tasklet_struct tasklet;
 167};
 168
 169#define IT_HEADER_SY(v)          ((v) <<  0)
 170#define IT_HEADER_TCODE(v)       ((v) <<  4)
 171#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
 172#define IT_HEADER_TAG(v)         ((v) << 14)
 173#define IT_HEADER_SPEED(v)       ((v) << 16)
 174#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
 175
 176struct iso_context {
 177        struct fw_iso_context base;
 178        struct context context;
 179        void *header;
 180        size_t header_length;
 181        unsigned long flushing_completions;
 182        u32 mc_buffer_bus;
 183        u16 mc_completed;
 184        u16 last_timestamp;
 185        u8 sync;
 186        u8 tags;
 187};
 188
 189#define CONFIG_ROM_SIZE 1024
 190
 191struct fw_ohci {
 192        struct fw_card card;
 193
 194        __iomem char *registers;
 195        int node_id;
 196        int generation;
 197        int request_generation; /* for timestamping incoming requests */
 198        unsigned quirks;
 199        unsigned int pri_req_max;
 200        u32 bus_time;
 201        bool bus_time_running;
 202        bool is_root;
 203        bool csr_state_setclear_abdicate;
 204        int n_ir;
 205        int n_it;
 206        /*
 207         * Spinlock for accessing fw_ohci data.  Never call out of
 208         * this driver with this lock held.
 209         */
 210        spinlock_t lock;
 211
 212        struct mutex phy_reg_mutex;
 213
 214        void *misc_buffer;
 215        dma_addr_t misc_buffer_bus;
 216
 217        struct ar_context ar_request_ctx;
 218        struct ar_context ar_response_ctx;
 219        struct context at_request_ctx;
 220        struct context at_response_ctx;
 221
 222        u32 it_context_support;
 223        u32 it_context_mask;     /* unoccupied IT contexts */
 224        struct iso_context *it_context_list;
 225        u64 ir_context_channels; /* unoccupied channels */
 226        u32 ir_context_support;
 227        u32 ir_context_mask;     /* unoccupied IR contexts */
 228        struct iso_context *ir_context_list;
 229        u64 mc_channels; /* channels in use by the multichannel IR context */
 230        bool mc_allocated;
 231
 232        __be32    *config_rom;
 233        dma_addr_t config_rom_bus;
 234        __be32    *next_config_rom;
 235        dma_addr_t next_config_rom_bus;
 236        __be32     next_header;
 237
 238        __le32    *self_id_cpu;
 239        dma_addr_t self_id_bus;
 240        struct work_struct bus_reset_work;
 241
 242        u32 self_id_buffer[512];
 243};
 244
 245static inline struct fw_ohci *fw_ohci(struct fw_card *card)
 246{
 247        return container_of(card, struct fw_ohci, card);
 248}
 249
 250#define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
 251#define IR_CONTEXT_BUFFER_FILL          0x80000000
 252#define IR_CONTEXT_ISOCH_HEADER         0x40000000
 253#define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
 254#define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
 255#define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
 256
 257#define CONTEXT_RUN     0x8000
 258#define CONTEXT_WAKE    0x1000
 259#define CONTEXT_DEAD    0x0800
 260#define CONTEXT_ACTIVE  0x0400
 261
 262#define OHCI1394_MAX_AT_REQ_RETRIES     0xf
 263#define OHCI1394_MAX_AT_RESP_RETRIES    0x2
 264#define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
 265
 266#define OHCI1394_REGISTER_SIZE          0x800
 267#define OHCI1394_PCI_HCI_Control        0x40
 268#define SELF_ID_BUF_SIZE                0x800
 269#define OHCI_TCODE_PHY_PACKET           0x0e
 270#define OHCI_VERSION_1_1                0x010010
 271
 272static char ohci_driver_name[] = KBUILD_MODNAME;
 273
 274#define PCI_VENDOR_ID_PINNACLE_SYSTEMS  0x11bd
 275#define PCI_DEVICE_ID_AGERE_FW643       0x5901
 276#define PCI_DEVICE_ID_CREATIVE_SB1394   0x4001
 277#define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
 278#define PCI_DEVICE_ID_TI_TSB12LV22      0x8009
 279#define PCI_DEVICE_ID_TI_TSB12LV26      0x8020
 280#define PCI_DEVICE_ID_TI_TSB82AA2       0x8025
 281#define PCI_DEVICE_ID_VIA_VT630X        0x3044
 282#define PCI_REV_ID_VIA_VT6306           0x46
 283
 284#define QUIRK_CYCLE_TIMER               0x1
 285#define QUIRK_RESET_PACKET              0x2
 286#define QUIRK_BE_HEADERS                0x4
 287#define QUIRK_NO_1394A                  0x8
 288#define QUIRK_NO_MSI                    0x10
 289#define QUIRK_TI_SLLZ059                0x20
 290#define QUIRK_IR_WAKE                   0x40
 291
 292/* In case of multiple matches in ohci_quirks[], only the first one is used. */
 293static const struct {
 294        unsigned short vendor, device, revision, flags;
 295} ohci_quirks[] = {
 296        {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
 297                QUIRK_CYCLE_TIMER},
 298
 299        {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
 300                QUIRK_BE_HEADERS},
 301
 302        {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
 303                QUIRK_NO_MSI},
 304
 305        {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
 306                QUIRK_RESET_PACKET},
 307
 308        {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
 309                QUIRK_NO_MSI},
 310
 311        {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
 312                QUIRK_CYCLE_TIMER},
 313
 314        {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
 315                QUIRK_NO_MSI},
 316
 317        {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
 318                QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
 319
 320        {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
 321                QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
 322
 323        {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
 324                QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
 325
 326        {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
 327                QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
 328
 329        {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
 330                QUIRK_RESET_PACKET},
 331
 332        {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
 333                QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
 334
 335        {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
 336                QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
 337};
 338
 339/* This overrides anything that was found in ohci_quirks[]. */
 340static int param_quirks;
 341module_param_named(quirks, param_quirks, int, 0644);
 342MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
 343        ", nonatomic cycle timer = "    __stringify(QUIRK_CYCLE_TIMER)
 344        ", reset packet generation = "  __stringify(QUIRK_RESET_PACKET)
 345        ", AR/selfID endianness = "     __stringify(QUIRK_BE_HEADERS)
 346        ", no 1394a enhancements = "    __stringify(QUIRK_NO_1394A)
 347        ", disable MSI = "              __stringify(QUIRK_NO_MSI)
 348        ", TI SLLZ059 erratum = "       __stringify(QUIRK_TI_SLLZ059)
 349        ", IR wake unreliable = "       __stringify(QUIRK_IR_WAKE)
 350        ")");
 351
 352#define OHCI_PARAM_DEBUG_AT_AR          1
 353#define OHCI_PARAM_DEBUG_SELFIDS        2
 354#define OHCI_PARAM_DEBUG_IRQS           4
 355#define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
 356
 357static int param_debug;
 358module_param_named(debug, param_debug, int, 0644);
 359MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
 360        ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
 361        ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
 362        ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
 363        ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
 364        ", or a combination, or all = -1)");
 365
 366static void log_irqs(struct fw_ohci *ohci, u32 evt)
 367{
 368        if (likely(!(param_debug &
 369                        (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
 370                return;
 371
 372        if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
 373            !(evt & OHCI1394_busReset))
 374                return;
 375
 376        ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
 377            evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
 378            evt & OHCI1394_RQPkt                ? " AR_req"             : "",
 379            evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
 380            evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
 381            evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
 382            evt & OHCI1394_isochRx              ? " IR"                 : "",
 383            evt & OHCI1394_isochTx              ? " IT"                 : "",
 384            evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
 385            evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
 386            evt & OHCI1394_cycle64Seconds       ? " cycle64Seconds"     : "",
 387            evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
 388            evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
 389            evt & OHCI1394_unrecoverableError   ? " unrecoverableError" : "",
 390            evt & OHCI1394_busReset             ? " busReset"           : "",
 391            evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
 392                    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
 393                    OHCI1394_respTxComplete | OHCI1394_isochRx |
 394                    OHCI1394_isochTx | OHCI1394_postedWriteErr |
 395                    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
 396                    OHCI1394_cycleInconsistent |
 397                    OHCI1394_regAccessFail | OHCI1394_busReset)
 398                                                ? " ?"                  : "");
 399}
 400
 401static const char *speed[] = {
 402        [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
 403};
 404static const char *power[] = {
 405        [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
 406        [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
 407};
 408static const char port[] = { '.', '-', 'p', 'c', };
 409
 410static char _p(u32 *s, int shift)
 411{
 412        return port[*s >> shift & 3];
 413}
 414
 415static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
 416{
 417        u32 *s;
 418
 419        if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
 420                return;
 421
 422        ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
 423                    self_id_count, generation, ohci->node_id);
 424
 425        for (s = ohci->self_id_buffer; self_id_count--; ++s)
 426                if ((*s & 1 << 23) == 0)
 427                        ohci_notice(ohci,
 428                            "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
 429                            *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
 430                            speed[*s >> 14 & 3], *s >> 16 & 63,
 431                            power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
 432                            *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
 433                else
 434                        ohci_notice(ohci,
 435                            "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
 436                            *s, *s >> 24 & 63,
 437                            _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
 438                            _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
 439}
 440
 441static const char *evts[] = {
 442        [0x00] = "evt_no_status",       [0x01] = "-reserved-",
 443        [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
 444        [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
 445        [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
 446        [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
 447        [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
 448        [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
 449        [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
 450        [0x10] = "-reserved-",          [0x11] = "ack_complete",
 451        [0x12] = "ack_pending ",        [0x13] = "-reserved-",
 452        [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
 453        [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
 454        [0x18] = "-reserved-",          [0x19] = "-reserved-",
 455        [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
 456        [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
 457        [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
 458        [0x20] = "pending/cancelled",
 459};
 460static const char *tcodes[] = {
 461        [0x0] = "QW req",               [0x1] = "BW req",
 462        [0x2] = "W resp",               [0x3] = "-reserved-",
 463        [0x4] = "QR req",               [0x5] = "BR req",
 464        [0x6] = "QR resp",              [0x7] = "BR resp",
 465        [0x8] = "cycle start",          [0x9] = "Lk req",
 466        [0xa] = "async stream packet",  [0xb] = "Lk resp",
 467        [0xc] = "-reserved-",           [0xd] = "-reserved-",
 468        [0xe] = "link internal",        [0xf] = "-reserved-",
 469};
 470
 471static void log_ar_at_event(struct fw_ohci *ohci,
 472                            char dir, int speed, u32 *header, int evt)
 473{
 474        int tcode = header[0] >> 4 & 0xf;
 475        char specific[12];
 476
 477        if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
 478                return;
 479
 480        if (unlikely(evt >= ARRAY_SIZE(evts)))
 481                        evt = 0x1f;
 482
 483        if (evt == OHCI1394_evt_bus_reset) {
 484                ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
 485                            dir, (header[2] >> 16) & 0xff);
 486                return;
 487        }
 488
 489        switch (tcode) {
 490        case 0x0: case 0x6: case 0x8:
 491                snprintf(specific, sizeof(specific), " = %08x",
 492                         be32_to_cpu((__force __be32)header[3]));
 493                break;
 494        case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
 495                snprintf(specific, sizeof(specific), " %x,%x",
 496                         header[3] >> 16, header[3] & 0xffff);
 497                break;
 498        default:
 499                specific[0] = '\0';
 500        }
 501
 502        switch (tcode) {
 503        case 0xa:
 504                ohci_notice(ohci, "A%c %s, %s\n",
 505                            dir, evts[evt], tcodes[tcode]);
 506                break;
 507        case 0xe:
 508                ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
 509                            dir, evts[evt], header[1], header[2]);
 510                break;
 511        case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
 512                ohci_notice(ohci,
 513                            "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
 514                            dir, speed, header[0] >> 10 & 0x3f,
 515                            header[1] >> 16, header[0] >> 16, evts[evt],
 516                            tcodes[tcode], header[1] & 0xffff, header[2], specific);
 517                break;
 518        default:
 519                ohci_notice(ohci,
 520                            "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
 521                            dir, speed, header[0] >> 10 & 0x3f,
 522                            header[1] >> 16, header[0] >> 16, evts[evt],
 523                            tcodes[tcode], specific);
 524        }
 525}
 526
 527static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
 528{
 529        writel(data, ohci->registers + offset);
 530}
 531
 532static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
 533{
 534        return readl(ohci->registers + offset);
 535}
 536
 537static inline void flush_writes(const struct fw_ohci *ohci)
 538{
 539        /* Do a dummy read to flush writes. */
 540        reg_read(ohci, OHCI1394_Version);
 541}
 542
 543/*
 544 * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
 545 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
 546 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
 547 * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
 548 */
 549static int read_phy_reg(struct fw_ohci *ohci, int addr)
 550{
 551        u32 val;
 552        int i;
 553
 554        reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
 555        for (i = 0; i < 3 + 100; i++) {
 556                val = reg_read(ohci, OHCI1394_PhyControl);
 557                if (!~val)
 558                        return -ENODEV; /* Card was ejected. */
 559
 560                if (val & OHCI1394_PhyControl_ReadDone)
 561                        return OHCI1394_PhyControl_ReadData(val);
 562
 563                /*
 564                 * Try a few times without waiting.  Sleeping is necessary
 565                 * only when the link/PHY interface is busy.
 566                 */
 567                if (i >= 3)
 568                        msleep(1);
 569        }
 570        ohci_err(ohci, "failed to read phy reg %d\n", addr);
 571        dump_stack();
 572
 573        return -EBUSY;
 574}
 575
 576static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
 577{
 578        int i;
 579
 580        reg_write(ohci, OHCI1394_PhyControl,
 581                  OHCI1394_PhyControl_Write(addr, val));
 582        for (i = 0; i < 3 + 100; i++) {
 583                val = reg_read(ohci, OHCI1394_PhyControl);
 584                if (!~val)
 585                        return -ENODEV; /* Card was ejected. */
 586
 587                if (!(val & OHCI1394_PhyControl_WritePending))
 588                        return 0;
 589
 590                if (i >= 3)
 591                        msleep(1);
 592        }
 593        ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
 594        dump_stack();
 595
 596        return -EBUSY;
 597}
 598
 599static int update_phy_reg(struct fw_ohci *ohci, int addr,
 600                          int clear_bits, int set_bits)
 601{
 602        int ret = read_phy_reg(ohci, addr);
 603        if (ret < 0)
 604                return ret;
 605
 606        /*
 607         * The interrupt status bits are cleared by writing a one bit.
 608         * Avoid clearing them unless explicitly requested in set_bits.
 609         */
 610        if (addr == 5)
 611                clear_bits |= PHY_INT_STATUS_BITS;
 612
 613        return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
 614}
 615
 616static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
 617{
 618        int ret;
 619
 620        ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
 621        if (ret < 0)
 622                return ret;
 623
 624        return read_phy_reg(ohci, addr);
 625}
 626
 627static int ohci_read_phy_reg(struct fw_card *card, int addr)
 628{
 629        struct fw_ohci *ohci = fw_ohci(card);
 630        int ret;
 631
 632        mutex_lock(&ohci->phy_reg_mutex);
 633        ret = read_phy_reg(ohci, addr);
 634        mutex_unlock(&ohci->phy_reg_mutex);
 635
 636        return ret;
 637}
 638
 639static int ohci_update_phy_reg(struct fw_card *card, int addr,
 640                               int clear_bits, int set_bits)
 641{
 642        struct fw_ohci *ohci = fw_ohci(card);
 643        int ret;
 644
 645        mutex_lock(&ohci->phy_reg_mutex);
 646        ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
 647        mutex_unlock(&ohci->phy_reg_mutex);
 648
 649        return ret;
 650}
 651
 652static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
 653{
 654        return page_private(ctx->pages[i]);
 655}
 656
 657static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
 658{
 659        struct descriptor *d;
 660
 661        d = &ctx->descriptors[index];
 662        d->branch_address  &= cpu_to_le32(~0xf);
 663        d->res_count       =  cpu_to_le16(PAGE_SIZE);
 664        d->transfer_status =  0;
 665
 666        wmb(); /* finish init of new descriptors before branch_address update */
 667        d = &ctx->descriptors[ctx->last_buffer_index];
 668        d->branch_address  |= cpu_to_le32(1);
 669
 670        ctx->last_buffer_index = index;
 671
 672        reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
 673}
 674
 675static void ar_context_release(struct ar_context *ctx)
 676{
 677        unsigned int i;
 678
 679        if (ctx->buffer)
 680                vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
 681
 682        for (i = 0; i < AR_BUFFERS; i++)
 683                if (ctx->pages[i]) {
 684                        dma_unmap_page(ctx->ohci->card.device,
 685                                       ar_buffer_bus(ctx, i),
 686                                       PAGE_SIZE, DMA_FROM_DEVICE);
 687                        __free_page(ctx->pages[i]);
 688                }
 689}
 690
 691static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
 692{
 693        struct fw_ohci *ohci = ctx->ohci;
 694
 695        if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
 696                reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
 697                flush_writes(ohci);
 698
 699                ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
 700        }
 701        /* FIXME: restart? */
 702}
 703
 704static inline unsigned int ar_next_buffer_index(unsigned int index)
 705{
 706        return (index + 1) % AR_BUFFERS;
 707}
 708
 709static inline unsigned int ar_prev_buffer_index(unsigned int index)
 710{
 711        return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
 712}
 713
 714static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
 715{
 716        return ar_next_buffer_index(ctx->last_buffer_index);
 717}
 718
 719/*
 720 * We search for the buffer that contains the last AR packet DMA data written
 721 * by the controller.
 722 */
 723static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
 724                                                 unsigned int *buffer_offset)
 725{
 726        unsigned int i, next_i, last = ctx->last_buffer_index;
 727        __le16 res_count, next_res_count;
 728
 729        i = ar_first_buffer_index(ctx);
 730        res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
 731
 732        /* A buffer that is not yet completely filled must be the last one. */
 733        while (i != last && res_count == 0) {
 734
 735                /* Peek at the next descriptor. */
 736                next_i = ar_next_buffer_index(i);
 737                rmb(); /* read descriptors in order */
 738                next_res_count = ACCESS_ONCE(
 739                                ctx->descriptors[next_i].res_count);
 740                /*
 741                 * If the next descriptor is still empty, we must stop at this
 742                 * descriptor.
 743                 */
 744                if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
 745                        /*
 746                         * The exception is when the DMA data for one packet is
 747                         * split over three buffers; in this case, the middle
 748                         * buffer's descriptor might be never updated by the
 749                         * controller and look still empty, and we have to peek
 750                         * at the third one.
 751                         */
 752                        if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
 753                                next_i = ar_next_buffer_index(next_i);
 754                                rmb();
 755                                next_res_count = ACCESS_ONCE(
 756                                        ctx->descriptors[next_i].res_count);
 757                                if (next_res_count != cpu_to_le16(PAGE_SIZE))
 758                                        goto next_buffer_is_active;
 759                        }
 760
 761                        break;
 762                }
 763
 764next_buffer_is_active:
 765                i = next_i;
 766                res_count = next_res_count;
 767        }
 768
 769        rmb(); /* read res_count before the DMA data */
 770
 771        *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
 772        if (*buffer_offset > PAGE_SIZE) {
 773                *buffer_offset = 0;
 774                ar_context_abort(ctx, "corrupted descriptor");
 775        }
 776
 777        return i;
 778}
 779
 780static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
 781                                    unsigned int end_buffer_index,
 782                                    unsigned int end_buffer_offset)
 783{
 784        unsigned int i;
 785
 786        i = ar_first_buffer_index(ctx);
 787        while (i != end_buffer_index) {
 788                dma_sync_single_for_cpu(ctx->ohci->card.device,
 789                                        ar_buffer_bus(ctx, i),
 790                                        PAGE_SIZE, DMA_FROM_DEVICE);
 791                i = ar_next_buffer_index(i);
 792        }
 793        if (end_buffer_offset > 0)
 794                dma_sync_single_for_cpu(ctx->ohci->card.device,
 795                                        ar_buffer_bus(ctx, i),
 796                                        end_buffer_offset, DMA_FROM_DEVICE);
 797}
 798
 799#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
 800#define cond_le32_to_cpu(v) \
 801        (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
 802#else
 803#define cond_le32_to_cpu(v) le32_to_cpu(v)
 804#endif
 805
 806static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
 807{
 808        struct fw_ohci *ohci = ctx->ohci;
 809        struct fw_packet p;
 810        u32 status, length, tcode;
 811        int evt;
 812
 813        p.header[0] = cond_le32_to_cpu(buffer[0]);
 814        p.header[1] = cond_le32_to_cpu(buffer[1]);
 815        p.header[2] = cond_le32_to_cpu(buffer[2]);
 816
 817        tcode = (p.header[0] >> 4) & 0x0f;
 818        switch (tcode) {
 819        case TCODE_WRITE_QUADLET_REQUEST:
 820        case TCODE_READ_QUADLET_RESPONSE:
 821                p.header[3] = (__force __u32) buffer[3];
 822                p.header_length = 16;
 823                p.payload_length = 0;
 824                break;
 825
 826        case TCODE_READ_BLOCK_REQUEST :
 827                p.header[3] = cond_le32_to_cpu(buffer[3]);
 828                p.header_length = 16;
 829                p.payload_length = 0;
 830                break;
 831
 832        case TCODE_WRITE_BLOCK_REQUEST:
 833        case TCODE_READ_BLOCK_RESPONSE:
 834        case TCODE_LOCK_REQUEST:
 835        case TCODE_LOCK_RESPONSE:
 836                p.header[3] = cond_le32_to_cpu(buffer[3]);
 837                p.header_length = 16;
 838                p.payload_length = p.header[3] >> 16;
 839                if (p.payload_length > MAX_ASYNC_PAYLOAD) {
 840                        ar_context_abort(ctx, "invalid packet length");
 841                        return NULL;
 842                }
 843                break;
 844
 845        case TCODE_WRITE_RESPONSE:
 846        case TCODE_READ_QUADLET_REQUEST:
 847        case OHCI_TCODE_PHY_PACKET:
 848                p.header_length = 12;
 849                p.payload_length = 0;
 850                break;
 851
 852        default:
 853                ar_context_abort(ctx, "invalid tcode");
 854                return NULL;
 855        }
 856
 857        p.payload = (void *) buffer + p.header_length;
 858
 859        /* FIXME: What to do about evt_* errors? */
 860        length = (p.header_length + p.payload_length + 3) / 4;
 861        status = cond_le32_to_cpu(buffer[length]);
 862        evt    = (status >> 16) & 0x1f;
 863
 864        p.ack        = evt - 16;
 865        p.speed      = (status >> 21) & 0x7;
 866        p.timestamp  = status & 0xffff;
 867        p.generation = ohci->request_generation;
 868
 869        log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
 870
 871        /*
 872         * Several controllers, notably from NEC and VIA, forget to
 873         * write ack_complete status at PHY packet reception.
 874         */
 875        if (evt == OHCI1394_evt_no_status &&
 876            (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
 877                p.ack = ACK_COMPLETE;
 878
 879        /*
 880         * The OHCI bus reset handler synthesizes a PHY packet with
 881         * the new generation number when a bus reset happens (see
 882         * section 8.4.2.3).  This helps us determine when a request
 883         * was received and make sure we send the response in the same
 884         * generation.  We only need this for requests; for responses
 885         * we use the unique tlabel for finding the matching
 886         * request.
 887         *
 888         * Alas some chips sometimes emit bus reset packets with a
 889         * wrong generation.  We set the correct generation for these
 890         * at a slightly incorrect time (in bus_reset_work).
 891         */
 892        if (evt == OHCI1394_evt_bus_reset) {
 893                if (!(ohci->quirks & QUIRK_RESET_PACKET))
 894                        ohci->request_generation = (p.header[2] >> 16) & 0xff;
 895        } else if (ctx == &ohci->ar_request_ctx) {
 896                fw_core_handle_request(&ohci->card, &p);
 897        } else {
 898                fw_core_handle_response(&ohci->card, &p);
 899        }
 900
 901        return buffer + length + 1;
 902}
 903
 904static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
 905{
 906        void *next;
 907
 908        while (p < end) {
 909                next = handle_ar_packet(ctx, p);
 910                if (!next)
 911                        return p;
 912                p = next;
 913        }
 914
 915        return p;
 916}
 917
 918static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
 919{
 920        unsigned int i;
 921
 922        i = ar_first_buffer_index(ctx);
 923        while (i != end_buffer) {
 924                dma_sync_single_for_device(ctx->ohci->card.device,
 925                                           ar_buffer_bus(ctx, i),
 926                                           PAGE_SIZE, DMA_FROM_DEVICE);
 927                ar_context_link_page(ctx, i);
 928                i = ar_next_buffer_index(i);
 929        }
 930}
 931
 932static void ar_context_tasklet(unsigned long data)
 933{
 934        struct ar_context *ctx = (struct ar_context *)data;
 935        unsigned int end_buffer_index, end_buffer_offset;
 936        void *p, *end;
 937
 938        p = ctx->pointer;
 939        if (!p)
 940                return;
 941
 942        end_buffer_index = ar_search_last_active_buffer(ctx,
 943                                                        &end_buffer_offset);
 944        ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
 945        end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
 946
 947        if (end_buffer_index < ar_first_buffer_index(ctx)) {
 948                /*
 949                 * The filled part of the overall buffer wraps around; handle
 950                 * all packets up to the buffer end here.  If the last packet
 951                 * wraps around, its tail will be visible after the buffer end
 952                 * because the buffer start pages are mapped there again.
 953                 */
 954                void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
 955                p = handle_ar_packets(ctx, p, buffer_end);
 956                if (p < buffer_end)
 957                        goto error;
 958                /* adjust p to point back into the actual buffer */
 959                p -= AR_BUFFERS * PAGE_SIZE;
 960        }
 961
 962        p = handle_ar_packets(ctx, p, end);
 963        if (p != end) {
 964                if (p > end)
 965                        ar_context_abort(ctx, "inconsistent descriptor");
 966                goto error;
 967        }
 968
 969        ctx->pointer = p;
 970        ar_recycle_buffers(ctx, end_buffer_index);
 971
 972        return;
 973
 974error:
 975        ctx->pointer = NULL;
 976}
 977
 978static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
 979                           unsigned int descriptors_offset, u32 regs)
 980{
 981        unsigned int i;
 982        dma_addr_t dma_addr;
 983        struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
 984        struct descriptor *d;
 985
 986        ctx->regs        = regs;
 987        ctx->ohci        = ohci;
 988        tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
 989
 990        for (i = 0; i < AR_BUFFERS; i++) {
 991                ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
 992                if (!ctx->pages[i])
 993                        goto out_of_memory;
 994                dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
 995                                        0, PAGE_SIZE, DMA_FROM_DEVICE);
 996                if (dma_mapping_error(ohci->card.device, dma_addr)) {
 997                        __free_page(ctx->pages[i]);
 998                        ctx->pages[i] = NULL;
 999                        goto out_of_memory;
1000                }
1001                set_page_private(ctx->pages[i], dma_addr);
1002        }
1003
1004        for (i = 0; i < AR_BUFFERS; i++)
1005                pages[i]              = ctx->pages[i];
1006        for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1007                pages[AR_BUFFERS + i] = ctx->pages[i];
1008        ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
1009                                 -1, PAGE_KERNEL);
1010        if (!ctx->buffer)
1011                goto out_of_memory;
1012
1013        ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
1014        ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1015
1016        for (i = 0; i < AR_BUFFERS; i++) {
1017                d = &ctx->descriptors[i];
1018                d->req_count      = cpu_to_le16(PAGE_SIZE);
1019                d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1020                                                DESCRIPTOR_STATUS |
1021                                                DESCRIPTOR_BRANCH_ALWAYS);
1022                d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
1023                d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1024                        ar_next_buffer_index(i) * sizeof(struct descriptor));
1025        }
1026
1027        return 0;
1028
1029out_of_memory:
1030        ar_context_release(ctx);
1031
1032        return -ENOMEM;
1033}
1034
1035static void ar_context_run(struct ar_context *ctx)
1036{
1037        unsigned int i;
1038
1039        for (i = 0; i < AR_BUFFERS; i++)
1040                ar_context_link_page(ctx, i);
1041
1042        ctx->pointer = ctx->buffer;
1043
1044        reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1045        reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1046}
1047
1048static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1049{
1050        __le16 branch;
1051
1052        branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1053
1054        /* figure out which descriptor the branch address goes in */
1055        if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1056                return d;
1057        else
1058                return d + z - 1;
1059}
1060
1061static void context_tasklet(unsigned long data)
1062{
1063        struct context *ctx = (struct context *) data;
1064        struct descriptor *d, *last;
1065        u32 address;
1066        int z;
1067        struct descriptor_buffer *desc;
1068
1069        desc = list_entry(ctx->buffer_list.next,
1070                        struct descriptor_buffer, list);
1071        last = ctx->last;
1072        while (last->branch_address != 0) {
1073                struct descriptor_buffer *old_desc = desc;
1074                address = le32_to_cpu(last->branch_address);
1075                z = address & 0xf;
1076                address &= ~0xf;
1077                ctx->current_bus = address;
1078
1079                /* If the branch address points to a buffer outside of the
1080                 * current buffer, advance to the next buffer. */
1081                if (address < desc->buffer_bus ||
1082                                address >= desc->buffer_bus + desc->used)
1083                        desc = list_entry(desc->list.next,
1084                                        struct descriptor_buffer, list);
1085                d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1086                last = find_branch_descriptor(d, z);
1087
1088                if (!ctx->callback(ctx, d, last))
1089                        break;
1090
1091                if (old_desc != desc) {
1092                        /* If we've advanced to the next buffer, move the
1093                         * previous buffer to the free list. */
1094                        unsigned long flags;
1095                        old_desc->used = 0;
1096                        spin_lock_irqsave(&ctx->ohci->lock, flags);
1097                        list_move_tail(&old_desc->list, &ctx->buffer_list);
1098                        spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1099                }
1100                ctx->last = last;
1101        }
1102}
1103
1104/*
1105 * Allocate a new buffer and add it to the list of free buffers for this
1106 * context.  Must be called with ohci->lock held.
1107 */
1108static int context_add_buffer(struct context *ctx)
1109{
1110        struct descriptor_buffer *desc;
1111        dma_addr_t uninitialized_var(bus_addr);
1112        int offset;
1113
1114        /*
1115         * 16MB of descriptors should be far more than enough for any DMA
1116         * program.  This will catch run-away userspace or DoS attacks.
1117         */
1118        if (ctx->total_allocation >= 16*1024*1024)
1119                return -ENOMEM;
1120
1121        desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1122                        &bus_addr, GFP_ATOMIC);
1123        if (!desc)
1124                return -ENOMEM;
1125
1126        offset = (void *)&desc->buffer - (void *)desc;
1127        desc->buffer_size = PAGE_SIZE - offset;
1128        desc->buffer_bus = bus_addr + offset;
1129        desc->used = 0;
1130
1131        list_add_tail(&desc->list, &ctx->buffer_list);
1132        ctx->total_allocation += PAGE_SIZE;
1133
1134        return 0;
1135}
1136
1137static int context_init(struct context *ctx, struct fw_ohci *ohci,
1138                        u32 regs, descriptor_callback_t callback)
1139{
1140        ctx->ohci = ohci;
1141        ctx->regs = regs;
1142        ctx->total_allocation = 0;
1143
1144        INIT_LIST_HEAD(&ctx->buffer_list);
1145        if (context_add_buffer(ctx) < 0)
1146                return -ENOMEM;
1147
1148        ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1149                        struct descriptor_buffer, list);
1150
1151        tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1152        ctx->callback = callback;
1153
1154        /*
1155         * We put a dummy descriptor in the buffer that has a NULL
1156         * branch address and looks like it's been sent.  That way we
1157         * have a descriptor to append DMA programs to.
1158         */
1159        memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1160        ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1161        ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1162        ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1163        ctx->last = ctx->buffer_tail->buffer;
1164        ctx->prev = ctx->buffer_tail->buffer;
1165        ctx->prev_z = 1;
1166
1167        return 0;
1168}
1169
1170static void context_release(struct context *ctx)
1171{
1172        struct fw_card *card = &ctx->ohci->card;
1173        struct descriptor_buffer *desc, *tmp;
1174
1175        list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1176                dma_free_coherent(card->device, PAGE_SIZE, desc,
1177                        desc->buffer_bus -
1178                        ((void *)&desc->buffer - (void *)desc));
1179}
1180
1181/* Must be called with ohci->lock held */
1182static struct descriptor *context_get_descriptors(struct context *ctx,
1183                                                  int z, dma_addr_t *d_bus)
1184{
1185        struct descriptor *d = NULL;
1186        struct descriptor_buffer *desc = ctx->buffer_tail;
1187
1188        if (z * sizeof(*d) > desc->buffer_size)
1189                return NULL;
1190
1191        if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1192                /* No room for the descriptor in this buffer, so advance to the
1193                 * next one. */
1194
1195                if (desc->list.next == &ctx->buffer_list) {
1196                        /* If there is no free buffer next in the list,
1197                         * allocate one. */
1198                        if (context_add_buffer(ctx) < 0)
1199                                return NULL;
1200                }
1201                desc = list_entry(desc->list.next,
1202                                struct descriptor_buffer, list);
1203                ctx->buffer_tail = desc;
1204        }
1205
1206        d = desc->buffer + desc->used / sizeof(*d);
1207        memset(d, 0, z * sizeof(*d));
1208        *d_bus = desc->buffer_bus + desc->used;
1209
1210        return d;
1211}
1212
1213static void context_run(struct context *ctx, u32 extra)
1214{
1215        struct fw_ohci *ohci = ctx->ohci;
1216
1217        reg_write(ohci, COMMAND_PTR(ctx->regs),
1218                  le32_to_cpu(ctx->last->branch_address));
1219        reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1220        reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1221        ctx->running = true;
1222        flush_writes(ohci);
1223}
1224
1225static void context_append(struct context *ctx,
1226                           struct descriptor *d, int z, int extra)
1227{
1228        dma_addr_t d_bus;
1229        struct descriptor_buffer *desc = ctx->buffer_tail;
1230        struct descriptor *d_branch;
1231
1232        d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1233
1234        desc->used += (z + extra) * sizeof(*d);
1235
1236        wmb(); /* finish init of new descriptors before branch_address update */
1237
1238        d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1239        d_branch->branch_address = cpu_to_le32(d_bus | z);
1240
1241        /*
1242         * VT6306 incorrectly checks only the single descriptor at the
1243         * CommandPtr when the wake bit is written, so if it's a
1244         * multi-descriptor block starting with an INPUT_MORE, put a copy of
1245         * the branch address in the first descriptor.
1246         *
1247         * Not doing this for transmit contexts since not sure how it interacts
1248         * with skip addresses.
1249         */
1250        if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1251            d_branch != ctx->prev &&
1252            (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1253             cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1254                ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1255        }
1256
1257        ctx->prev = d;
1258        ctx->prev_z = z;
1259}
1260
1261static void context_stop(struct context *ctx)
1262{
1263        struct fw_ohci *ohci = ctx->ohci;
1264        u32 reg;
1265        int i;
1266
1267        reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1268        ctx->running = false;
1269
1270        for (i = 0; i < 1000; i++) {
1271                reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1272                if ((reg & CONTEXT_ACTIVE) == 0)
1273                        return;
1274
1275                if (i)
1276                        udelay(10);
1277        }
1278        ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1279}
1280
1281struct driver_data {
1282        u8 inline_data[8];
1283        struct fw_packet *packet;
1284};
1285
1286/*
1287 * This function apppends a packet to the DMA queue for transmission.
1288 * Must always be called with the ochi->lock held to ensure proper
1289 * generation handling and locking around packet queue manipulation.
1290 */
1291static int at_context_queue_packet(struct context *ctx,
1292                                   struct fw_packet *packet)
1293{
1294        struct fw_ohci *ohci = ctx->ohci;
1295        dma_addr_t d_bus, uninitialized_var(payload_bus);
1296        struct driver_data *driver_data;
1297        struct descriptor *d, *last;
1298        __le32 *header;
1299        int z, tcode;
1300
1301        d = context_get_descriptors(ctx, 4, &d_bus);
1302        if (d == NULL) {
1303                packet->ack = RCODE_SEND_ERROR;
1304                return -1;
1305        }
1306
1307        d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1308        d[0].res_count = cpu_to_le16(packet->timestamp);
1309
1310        /*
1311         * The DMA format for asynchronous link packets is different
1312         * from the IEEE1394 layout, so shift the fields around
1313         * accordingly.
1314         */
1315
1316        tcode = (packet->header[0] >> 4) & 0x0f;
1317        header = (__le32 *) &d[1];
1318        switch (tcode) {
1319        case TCODE_WRITE_QUADLET_REQUEST:
1320        case TCODE_WRITE_BLOCK_REQUEST:
1321        case TCODE_WRITE_RESPONSE:
1322        case TCODE_READ_QUADLET_REQUEST:
1323        case TCODE_READ_BLOCK_REQUEST:
1324        case TCODE_READ_QUADLET_RESPONSE:
1325        case TCODE_READ_BLOCK_RESPONSE:
1326        case TCODE_LOCK_REQUEST:
1327        case TCODE_LOCK_RESPONSE:
1328                header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1329                                        (packet->speed << 16));
1330                header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1331                                        (packet->header[0] & 0xffff0000));
1332                header[2] = cpu_to_le32(packet->header[2]);
1333
1334                if (TCODE_IS_BLOCK_PACKET(tcode))
1335                        header[3] = cpu_to_le32(packet->header[3]);
1336                else
1337                        header[3] = (__force __le32) packet->header[3];
1338
1339                d[0].req_count = cpu_to_le16(packet->header_length);
1340                break;
1341
1342        case TCODE_LINK_INTERNAL:
1343                header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1344                                        (packet->speed << 16));
1345                header[1] = cpu_to_le32(packet->header[1]);
1346                header[2] = cpu_to_le32(packet->header[2]);
1347                d[0].req_count = cpu_to_le16(12);
1348
1349                if (is_ping_packet(&packet->header[1]))
1350                        d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1351                break;
1352
1353        case TCODE_STREAM_DATA:
1354                header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1355                                        (packet->speed << 16));
1356                header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1357                d[0].req_count = cpu_to_le16(8);
1358                break;
1359
1360        default:
1361                /* BUG(); */
1362                packet->ack = RCODE_SEND_ERROR;
1363                return -1;
1364        }
1365
1366        BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1367        driver_data = (struct driver_data *) &d[3];
1368        driver_data->packet = packet;
1369        packet->driver_data = driver_data;
1370
1371        if (packet->payload_length > 0) {
1372                if (packet->payload_length > sizeof(driver_data->inline_data)) {
1373                        payload_bus = dma_map_single(ohci->card.device,
1374                                                     packet->payload,
1375                                                     packet->payload_length,
1376                                                     DMA_TO_DEVICE);
1377                        if (dma_mapping_error(ohci->card.device, payload_bus)) {
1378                                packet->ack = RCODE_SEND_ERROR;
1379                                return -1;
1380                        }
1381                        packet->payload_bus     = payload_bus;
1382                        packet->payload_mapped  = true;
1383                } else {
1384                        memcpy(driver_data->inline_data, packet->payload,
1385                               packet->payload_length);
1386                        payload_bus = d_bus + 3 * sizeof(*d);
1387                }
1388
1389                d[2].req_count    = cpu_to_le16(packet->payload_length);
1390                d[2].data_address = cpu_to_le32(payload_bus);
1391                last = &d[2];
1392                z = 3;
1393        } else {
1394                last = &d[0];
1395                z = 2;
1396        }
1397
1398        last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1399                                     DESCRIPTOR_IRQ_ALWAYS |
1400                                     DESCRIPTOR_BRANCH_ALWAYS);
1401
1402        /* FIXME: Document how the locking works. */
1403        if (ohci->generation != packet->generation) {
1404                if (packet->payload_mapped)
1405                        dma_unmap_single(ohci->card.device, payload_bus,
1406                                         packet->payload_length, DMA_TO_DEVICE);
1407                packet->ack = RCODE_GENERATION;
1408                return -1;
1409        }
1410
1411        context_append(ctx, d, z, 4 - z);
1412
1413        if (ctx->running)
1414                reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1415        else
1416                context_run(ctx, 0);
1417
1418        return 0;
1419}
1420
1421static void at_context_flush(struct context *ctx)
1422{
1423        tasklet_disable(&ctx->tasklet);
1424
1425        ctx->flushing = true;
1426        context_tasklet((unsigned long)ctx);
1427        ctx->flushing = false;
1428
1429        tasklet_enable(&ctx->tasklet);
1430}
1431
1432static int handle_at_packet(struct context *context,
1433                            struct descriptor *d,
1434                            struct descriptor *last)
1435{
1436        struct driver_data *driver_data;
1437        struct fw_packet *packet;
1438        struct fw_ohci *ohci = context->ohci;
1439        int evt;
1440
1441        if (last->transfer_status == 0 && !context->flushing)
1442                /* This descriptor isn't done yet, stop iteration. */
1443                return 0;
1444
1445        driver_data = (struct driver_data *) &d[3];
1446        packet = driver_data->packet;
1447        if (packet == NULL)
1448                /* This packet was cancelled, just continue. */
1449                return 1;
1450
1451        if (packet->payload_mapped)
1452                dma_unmap_single(ohci->card.device, packet->payload_bus,
1453                                 packet->payload_length, DMA_TO_DEVICE);
1454
1455        evt = le16_to_cpu(last->transfer_status) & 0x1f;
1456        packet->timestamp = le16_to_cpu(last->res_count);
1457
1458        log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1459
1460        switch (evt) {
1461        case OHCI1394_evt_timeout:
1462                /* Async response transmit timed out. */
1463                packet->ack = RCODE_CANCELLED;
1464                break;
1465
1466        case OHCI1394_evt_flushed:
1467                /*
1468                 * The packet was flushed should give same error as
1469                 * when we try to use a stale generation count.
1470                 */
1471                packet->ack = RCODE_GENERATION;
1472                break;
1473
1474        case OHCI1394_evt_missing_ack:
1475                if (context->flushing)
1476                        packet->ack = RCODE_GENERATION;
1477                else {
1478                        /*
1479                         * Using a valid (current) generation count, but the
1480                         * node is not on the bus or not sending acks.
1481                         */
1482                        packet->ack = RCODE_NO_ACK;
1483                }
1484                break;
1485
1486        case ACK_COMPLETE + 0x10:
1487        case ACK_PENDING + 0x10:
1488        case ACK_BUSY_X + 0x10:
1489        case ACK_BUSY_A + 0x10:
1490        case ACK_BUSY_B + 0x10:
1491        case ACK_DATA_ERROR + 0x10:
1492        case ACK_TYPE_ERROR + 0x10:
1493                packet->ack = evt - 0x10;
1494                break;
1495
1496        case OHCI1394_evt_no_status:
1497                if (context->flushing) {
1498                        packet->ack = RCODE_GENERATION;
1499                        break;
1500                }
1501                /* fall through */
1502
1503        default:
1504                packet->ack = RCODE_SEND_ERROR;
1505                break;
1506        }
1507
1508        packet->callback(packet, &ohci->card, packet->ack);
1509
1510        return 1;
1511}
1512
1513#define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1514#define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1515#define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1516#define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1517#define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1518
1519static void handle_local_rom(struct fw_ohci *ohci,
1520                             struct fw_packet *packet, u32 csr)
1521{
1522        struct fw_packet response;
1523        int tcode, length, i;
1524
1525        tcode = HEADER_GET_TCODE(packet->header[0]);
1526        if (TCODE_IS_BLOCK_PACKET(tcode))
1527                length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1528        else
1529                length = 4;
1530
1531        i = csr - CSR_CONFIG_ROM;
1532        if (i + length > CONFIG_ROM_SIZE) {
1533                fw_fill_response(&response, packet->header,
1534                                 RCODE_ADDRESS_ERROR, NULL, 0);
1535        } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1536                fw_fill_response(&response, packet->header,
1537                                 RCODE_TYPE_ERROR, NULL, 0);
1538        } else {
1539                fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1540                                 (void *) ohci->config_rom + i, length);
1541        }
1542
1543        fw_core_handle_response(&ohci->card, &response);
1544}
1545
1546static void handle_local_lock(struct fw_ohci *ohci,
1547                              struct fw_packet *packet, u32 csr)
1548{
1549        struct fw_packet response;
1550        int tcode, length, ext_tcode, sel, try;
1551        __be32 *payload, lock_old;
1552        u32 lock_arg, lock_data;
1553
1554        tcode = HEADER_GET_TCODE(packet->header[0]);
1555        length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1556        payload = packet->payload;
1557        ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1558
1559        if (tcode == TCODE_LOCK_REQUEST &&
1560            ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1561                lock_arg = be32_to_cpu(payload[0]);
1562                lock_data = be32_to_cpu(payload[1]);
1563        } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1564                lock_arg = 0;
1565                lock_data = 0;
1566        } else {
1567                fw_fill_response(&response, packet->header,
1568                                 RCODE_TYPE_ERROR, NULL, 0);
1569                goto out;
1570        }
1571
1572        sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1573        reg_write(ohci, OHCI1394_CSRData, lock_data);
1574        reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1575        reg_write(ohci, OHCI1394_CSRControl, sel);
1576
1577        for (try = 0; try < 20; try++)
1578                if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1579                        lock_old = cpu_to_be32(reg_read(ohci,
1580                                                        OHCI1394_CSRData));
1581                        fw_fill_response(&response, packet->header,
1582                                         RCODE_COMPLETE,
1583                                         &lock_old, sizeof(lock_old));
1584                        goto out;
1585                }
1586
1587        ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1588        fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1589
1590 out:
1591        fw_core_handle_response(&ohci->card, &response);
1592}
1593
1594static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1595{
1596        u64 offset, csr;
1597
1598        if (ctx == &ctx->ohci->at_request_ctx) {
1599                packet->ack = ACK_PENDING;
1600                packet->callback(packet, &ctx->ohci->card, packet->ack);
1601        }
1602
1603        offset =
1604                ((unsigned long long)
1605                 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1606                packet->header[2];
1607        csr = offset - CSR_REGISTER_BASE;
1608
1609        /* Handle config rom reads. */
1610        if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1611                handle_local_rom(ctx->ohci, packet, csr);
1612        else switch (csr) {
1613        case CSR_BUS_MANAGER_ID:
1614        case CSR_BANDWIDTH_AVAILABLE:
1615        case CSR_CHANNELS_AVAILABLE_HI:
1616        case CSR_CHANNELS_AVAILABLE_LO:
1617                handle_local_lock(ctx->ohci, packet, csr);
1618                break;
1619        default:
1620                if (ctx == &ctx->ohci->at_request_ctx)
1621                        fw_core_handle_request(&ctx->ohci->card, packet);
1622                else
1623                        fw_core_handle_response(&ctx->ohci->card, packet);
1624                break;
1625        }
1626
1627        if (ctx == &ctx->ohci->at_response_ctx) {
1628                packet->ack = ACK_COMPLETE;
1629                packet->callback(packet, &ctx->ohci->card, packet->ack);
1630        }
1631}
1632
1633static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1634{
1635        unsigned long flags;
1636        int ret;
1637
1638        spin_lock_irqsave(&ctx->ohci->lock, flags);
1639
1640        if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1641            ctx->ohci->generation == packet->generation) {
1642                spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1643                handle_local_request(ctx, packet);
1644                return;
1645        }
1646
1647        ret = at_context_queue_packet(ctx, packet);
1648        spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1649
1650        if (ret < 0)
1651                packet->callback(packet, &ctx->ohci->card, packet->ack);
1652
1653}
1654
1655static void detect_dead_context(struct fw_ohci *ohci,
1656                                const char *name, unsigned int regs)
1657{
1658        u32 ctl;
1659
1660        ctl = reg_read(ohci, CONTROL_SET(regs));
1661        if (ctl & CONTEXT_DEAD)
1662                ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1663                        name, evts[ctl & 0x1f]);
1664}
1665
1666static void handle_dead_contexts(struct fw_ohci *ohci)
1667{
1668        unsigned int i;
1669        char name[8];
1670
1671        detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1672        detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1673        detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1674        detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1675        for (i = 0; i < 32; ++i) {
1676                if (!(ohci->it_context_support & (1 << i)))
1677                        continue;
1678                sprintf(name, "IT%u", i);
1679                detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1680        }
1681        for (i = 0; i < 32; ++i) {
1682                if (!(ohci->ir_context_support & (1 << i)))
1683                        continue;
1684                sprintf(name, "IR%u", i);
1685                detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1686        }
1687        /* TODO: maybe try to flush and restart the dead contexts */
1688}
1689
1690static u32 cycle_timer_ticks(u32 cycle_timer)
1691{
1692        u32 ticks;
1693
1694        ticks = cycle_timer & 0xfff;
1695        ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1696        ticks += (3072 * 8000) * (cycle_timer >> 25);
1697
1698        return ticks;
1699}
1700
1701/*
1702 * Some controllers exhibit one or more of the following bugs when updating the
1703 * iso cycle timer register:
1704 *  - When the lowest six bits are wrapping around to zero, a read that happens
1705 *    at the same time will return garbage in the lowest ten bits.
1706 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1707 *    not incremented for about 60 ns.
1708 *  - Occasionally, the entire register reads zero.
1709 *
1710 * To catch these, we read the register three times and ensure that the
1711 * difference between each two consecutive reads is approximately the same, i.e.
1712 * less than twice the other.  Furthermore, any negative difference indicates an
1713 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1714 * execute, so we have enough precision to compute the ratio of the differences.)
1715 */
1716static u32 get_cycle_time(struct fw_ohci *ohci)
1717{
1718        u32 c0, c1, c2;
1719        u32 t0, t1, t2;
1720        s32 diff01, diff12;
1721        int i;
1722
1723        c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1724
1725        if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1726                i = 0;
1727                c1 = c2;
1728                c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1729                do {
1730                        c0 = c1;
1731                        c1 = c2;
1732                        c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1733                        t0 = cycle_timer_ticks(c0);
1734                        t1 = cycle_timer_ticks(c1);
1735                        t2 = cycle_timer_ticks(c2);
1736                        diff01 = t1 - t0;
1737                        diff12 = t2 - t1;
1738                } while ((diff01 <= 0 || diff12 <= 0 ||
1739                          diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1740                         && i++ < 20);
1741        }
1742
1743        return c2;
1744}
1745
1746/*
1747 * This function has to be called at least every 64 seconds.  The bus_time
1748 * field stores not only the upper 25 bits of the BUS_TIME register but also
1749 * the most significant bit of the cycle timer in bit 6 so that we can detect
1750 * changes in this bit.
1751 */
1752static u32 update_bus_time(struct fw_ohci *ohci)
1753{
1754        u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1755
1756        if (unlikely(!ohci->bus_time_running)) {
1757                reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1758                ohci->bus_time = (lower_32_bits(get_seconds()) & ~0x7f) |
1759                                 (cycle_time_seconds & 0x40);
1760                ohci->bus_time_running = true;
1761        }
1762
1763        if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1764                ohci->bus_time += 0x40;
1765
1766        return ohci->bus_time | cycle_time_seconds;
1767}
1768
1769static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1770{
1771        int reg;
1772
1773        mutex_lock(&ohci->phy_reg_mutex);
1774        reg = write_phy_reg(ohci, 7, port_index);
1775        if (reg >= 0)
1776                reg = read_phy_reg(ohci, 8);
1777        mutex_unlock(&ohci->phy_reg_mutex);
1778        if (reg < 0)
1779                return reg;
1780
1781        switch (reg & 0x0f) {
1782        case 0x06:
1783                return 2;       /* is child node (connected to parent node) */
1784        case 0x0e:
1785                return 3;       /* is parent node (connected to child node) */
1786        }
1787        return 1;               /* not connected */
1788}
1789
1790static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1791        int self_id_count)
1792{
1793        int i;
1794        u32 entry;
1795
1796        for (i = 0; i < self_id_count; i++) {
1797                entry = ohci->self_id_buffer[i];
1798                if ((self_id & 0xff000000) == (entry & 0xff000000))
1799                        return -1;
1800                if ((self_id & 0xff000000) < (entry & 0xff000000))
1801                        return i;
1802        }
1803        return i;
1804}
1805
1806static int initiated_reset(struct fw_ohci *ohci)
1807{
1808        int reg;
1809        int ret = 0;
1810
1811        mutex_lock(&ohci->phy_reg_mutex);
1812        reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1813        if (reg >= 0) {
1814                reg = read_phy_reg(ohci, 8);
1815                reg |= 0x40;
1816                reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1817                if (reg >= 0) {
1818                        reg = read_phy_reg(ohci, 12); /* read register 12 */
1819                        if (reg >= 0) {
1820                                if ((reg & 0x08) == 0x08) {
1821                                        /* bit 3 indicates "initiated reset" */
1822                                        ret = 0x2;
1823                                }
1824                        }
1825                }
1826        }
1827        mutex_unlock(&ohci->phy_reg_mutex);
1828        return ret;
1829}
1830
1831/*
1832 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1833 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1834 * Construct the selfID from phy register contents.
1835 */
1836static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1837{
1838        int reg, i, pos, status;
1839        /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1840        u32 self_id = 0x8040c800;
1841
1842        reg = reg_read(ohci, OHCI1394_NodeID);
1843        if (!(reg & OHCI1394_NodeID_idValid)) {
1844                ohci_notice(ohci,
1845                            "node ID not valid, new bus reset in progress\n");
1846                return -EBUSY;
1847        }
1848        self_id |= ((reg & 0x3f) << 24); /* phy ID */
1849
1850        reg = ohci_read_phy_reg(&ohci->card, 4);
1851        if (reg < 0)
1852                return reg;
1853        self_id |= ((reg & 0x07) << 8); /* power class */
1854
1855        reg = ohci_read_phy_reg(&ohci->card, 1);
1856        if (reg < 0)
1857                return reg;
1858        self_id |= ((reg & 0x3f) << 16); /* gap count */
1859
1860        for (i = 0; i < 3; i++) {
1861                status = get_status_for_port(ohci, i);
1862                if (status < 0)
1863                        return status;
1864                self_id |= ((status & 0x3) << (6 - (i * 2)));
1865        }
1866
1867        self_id |= initiated_reset(ohci);
1868
1869        pos = get_self_id_pos(ohci, self_id, self_id_count);
1870        if (pos >= 0) {
1871                memmove(&(ohci->self_id_buffer[pos+1]),
1872                        &(ohci->self_id_buffer[pos]),
1873                        (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1874                ohci->self_id_buffer[pos] = self_id;
1875                self_id_count++;
1876        }
1877        return self_id_count;
1878}
1879
1880static void bus_reset_work(struct work_struct *work)
1881{
1882        struct fw_ohci *ohci =
1883                container_of(work, struct fw_ohci, bus_reset_work);
1884        int self_id_count, generation, new_generation, i, j;
1885        u32 reg;
1886        void *free_rom = NULL;
1887        dma_addr_t free_rom_bus = 0;
1888        bool is_new_root;
1889
1890        reg = reg_read(ohci, OHCI1394_NodeID);
1891        if (!(reg & OHCI1394_NodeID_idValid)) {
1892                ohci_notice(ohci,
1893                            "node ID not valid, new bus reset in progress\n");
1894                return;
1895        }
1896        if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1897                ohci_notice(ohci, "malconfigured bus\n");
1898                return;
1899        }
1900        ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1901                               OHCI1394_NodeID_nodeNumber);
1902
1903        is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1904        if (!(ohci->is_root && is_new_root))
1905                reg_write(ohci, OHCI1394_LinkControlSet,
1906                          OHCI1394_LinkControl_cycleMaster);
1907        ohci->is_root = is_new_root;
1908
1909        reg = reg_read(ohci, OHCI1394_SelfIDCount);
1910        if (reg & OHCI1394_SelfIDCount_selfIDError) {
1911                ohci_notice(ohci, "self ID receive error\n");
1912                return;
1913        }
1914        /*
1915         * The count in the SelfIDCount register is the number of
1916         * bytes in the self ID receive buffer.  Since we also receive
1917         * the inverted quadlets and a header quadlet, we shift one
1918         * bit extra to get the actual number of self IDs.
1919         */
1920        self_id_count = (reg >> 3) & 0xff;
1921
1922        if (self_id_count > 252) {
1923                ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1924                return;
1925        }
1926
1927        generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1928        rmb();
1929
1930        for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1931                u32 id  = cond_le32_to_cpu(ohci->self_id_cpu[i]);
1932                u32 id2 = cond_le32_to_cpu(ohci->self_id_cpu[i + 1]);
1933
1934                if (id != ~id2) {
1935                        /*
1936                         * If the invalid data looks like a cycle start packet,
1937                         * it's likely to be the result of the cycle master
1938                         * having a wrong gap count.  In this case, the self IDs
1939                         * so far are valid and should be processed so that the
1940                         * bus manager can then correct the gap count.
1941                         */
1942                        if (id == 0xffff008f) {
1943                                ohci_notice(ohci, "ignoring spurious self IDs\n");
1944                                self_id_count = j;
1945                                break;
1946                        }
1947
1948                        ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
1949                                    j, self_id_count, id, id2);
1950                        return;
1951                }
1952                ohci->self_id_buffer[j] = id;
1953        }
1954
1955        if (ohci->quirks & QUIRK_TI_SLLZ059) {
1956                self_id_count = find_and_insert_self_id(ohci, self_id_count);
1957                if (self_id_count < 0) {
1958                        ohci_notice(ohci,
1959                                    "could not construct local self ID\n");
1960                        return;
1961                }
1962        }
1963
1964        if (self_id_count == 0) {
1965                ohci_notice(ohci, "no self IDs\n");
1966                return;
1967        }
1968        rmb();
1969
1970        /*
1971         * Check the consistency of the self IDs we just read.  The
1972         * problem we face is that a new bus reset can start while we
1973         * read out the self IDs from the DMA buffer. If this happens,
1974         * the DMA buffer will be overwritten with new self IDs and we
1975         * will read out inconsistent data.  The OHCI specification
1976         * (section 11.2) recommends a technique similar to
1977         * linux/seqlock.h, where we remember the generation of the
1978         * self IDs in the buffer before reading them out and compare
1979         * it to the current generation after reading them out.  If
1980         * the two generations match we know we have a consistent set
1981         * of self IDs.
1982         */
1983
1984        new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1985        if (new_generation != generation) {
1986                ohci_notice(ohci, "new bus reset, discarding self ids\n");
1987                return;
1988        }
1989
1990        /* FIXME: Document how the locking works. */
1991        spin_lock_irq(&ohci->lock);
1992
1993        ohci->generation = -1; /* prevent AT packet queueing */
1994        context_stop(&ohci->at_request_ctx);
1995        context_stop(&ohci->at_response_ctx);
1996
1997        spin_unlock_irq(&ohci->lock);
1998
1999        /*
2000         * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2001         * packets in the AT queues and software needs to drain them.
2002         * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2003         */
2004        at_context_flush(&ohci->at_request_ctx);
2005        at_context_flush(&ohci->at_response_ctx);
2006
2007        spin_lock_irq(&ohci->lock);
2008
2009        ohci->generation = generation;
2010        reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2011
2012        if (ohci->quirks & QUIRK_RESET_PACKET)
2013                ohci->request_generation = generation;
2014
2015        /*
2016         * This next bit is unrelated to the AT context stuff but we
2017         * have to do it under the spinlock also.  If a new config rom
2018         * was set up before this reset, the old one is now no longer
2019         * in use and we can free it. Update the config rom pointers
2020         * to point to the current config rom and clear the
2021         * next_config_rom pointer so a new update can take place.
2022         */
2023
2024        if (ohci->next_config_rom != NULL) {
2025                if (ohci->next_config_rom != ohci->config_rom) {
2026                        free_rom      = ohci->config_rom;
2027                        free_rom_bus  = ohci->config_rom_bus;
2028                }
2029                ohci->config_rom      = ohci->next_config_rom;
2030                ohci->config_rom_bus  = ohci->next_config_rom_bus;
2031                ohci->next_config_rom = NULL;
2032
2033                /*
2034                 * Restore config_rom image and manually update
2035                 * config_rom registers.  Writing the header quadlet
2036                 * will indicate that the config rom is ready, so we
2037                 * do that last.
2038                 */
2039                reg_write(ohci, OHCI1394_BusOptions,
2040                          be32_to_cpu(ohci->config_rom[2]));
2041                ohci->config_rom[0] = ohci->next_header;
2042                reg_write(ohci, OHCI1394_ConfigROMhdr,
2043                          be32_to_cpu(ohci->next_header));
2044        }
2045
2046#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2047        reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2048        reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2049#endif
2050
2051        spin_unlock_irq(&ohci->lock);
2052
2053        if (free_rom)
2054                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2055                                  free_rom, free_rom_bus);
2056
2057        log_selfids(ohci, generation, self_id_count);
2058
2059        fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2060                                 self_id_count, ohci->self_id_buffer,
2061                                 ohci->csr_state_setclear_abdicate);
2062        ohci->csr_state_setclear_abdicate = false;
2063}
2064
2065static irqreturn_t irq_handler(int irq, void *data)
2066{
2067        struct fw_ohci *ohci = data;
2068        u32 event, iso_event;
2069        int i;
2070
2071        event = reg_read(ohci, OHCI1394_IntEventClear);
2072
2073        if (!event || !~event)
2074                return IRQ_NONE;
2075
2076        /*
2077         * busReset and postedWriteErr must not be cleared yet
2078         * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2079         */
2080        reg_write(ohci, OHCI1394_IntEventClear,
2081                  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2082        log_irqs(ohci, event);
2083
2084        if (event & OHCI1394_selfIDComplete)
2085                queue_work(fw_workqueue, &ohci->bus_reset_work);
2086
2087        if (event & OHCI1394_RQPkt)
2088                tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2089
2090        if (event & OHCI1394_RSPkt)
2091                tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2092
2093        if (event & OHCI1394_reqTxComplete)
2094                tasklet_schedule(&ohci->at_request_ctx.tasklet);
2095
2096        if (event & OHCI1394_respTxComplete)
2097                tasklet_schedule(&ohci->at_response_ctx.tasklet);
2098
2099        if (event & OHCI1394_isochRx) {
2100                iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2101                reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2102
2103                while (iso_event) {
2104                        i = ffs(iso_event) - 1;
2105                        tasklet_schedule(
2106                                &ohci->ir_context_list[i].context.tasklet);
2107                        iso_event &= ~(1 << i);
2108                }
2109        }
2110
2111        if (event & OHCI1394_isochTx) {
2112                iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2113                reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2114
2115                while (iso_event) {
2116                        i = ffs(iso_event) - 1;
2117                        tasklet_schedule(
2118                                &ohci->it_context_list[i].context.tasklet);
2119                        iso_event &= ~(1 << i);
2120                }
2121        }
2122
2123        if (unlikely(event & OHCI1394_regAccessFail))
2124                ohci_err(ohci, "register access failure\n");
2125
2126        if (unlikely(event & OHCI1394_postedWriteErr)) {
2127                reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2128                reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2129                reg_write(ohci, OHCI1394_IntEventClear,
2130                          OHCI1394_postedWriteErr);
2131                if (printk_ratelimit())
2132                        ohci_err(ohci, "PCI posted write error\n");
2133        }
2134
2135        if (unlikely(event & OHCI1394_cycleTooLong)) {
2136                if (printk_ratelimit())
2137                        ohci_notice(ohci, "isochronous cycle too long\n");
2138                reg_write(ohci, OHCI1394_LinkControlSet,
2139                          OHCI1394_LinkControl_cycleMaster);
2140        }
2141
2142        if (unlikely(event & OHCI1394_cycleInconsistent)) {
2143                /*
2144                 * We need to clear this event bit in order to make
2145                 * cycleMatch isochronous I/O work.  In theory we should
2146                 * stop active cycleMatch iso contexts now and restart
2147                 * them at least two cycles later.  (FIXME?)
2148                 */
2149                if (printk_ratelimit())
2150                        ohci_notice(ohci, "isochronous cycle inconsistent\n");
2151        }
2152
2153        if (unlikely(event & OHCI1394_unrecoverableError))
2154                handle_dead_contexts(ohci);
2155
2156        if (event & OHCI1394_cycle64Seconds) {
2157                spin_lock(&ohci->lock);
2158                update_bus_time(ohci);
2159                spin_unlock(&ohci->lock);
2160        } else
2161                flush_writes(ohci);
2162
2163        return IRQ_HANDLED;
2164}
2165
2166static int software_reset(struct fw_ohci *ohci)
2167{
2168        u32 val;
2169        int i;
2170
2171        reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2172        for (i = 0; i < 500; i++) {
2173                val = reg_read(ohci, OHCI1394_HCControlSet);
2174                if (!~val)
2175                        return -ENODEV; /* Card was ejected. */
2176
2177                if (!(val & OHCI1394_HCControl_softReset))
2178                        return 0;
2179
2180                msleep(1);
2181        }
2182
2183        return -EBUSY;
2184}
2185
2186static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2187{
2188        size_t size = length * 4;
2189
2190        memcpy(dest, src, size);
2191        if (size < CONFIG_ROM_SIZE)
2192                memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2193}
2194
2195static int configure_1394a_enhancements(struct fw_ohci *ohci)
2196{
2197        bool enable_1394a;
2198        int ret, clear, set, offset;
2199
2200        /* Check if the driver should configure link and PHY. */
2201        if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2202              OHCI1394_HCControl_programPhyEnable))
2203                return 0;
2204
2205        /* Paranoia: check whether the PHY supports 1394a, too. */
2206        enable_1394a = false;
2207        ret = read_phy_reg(ohci, 2);
2208        if (ret < 0)
2209                return ret;
2210        if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2211                ret = read_paged_phy_reg(ohci, 1, 8);
2212                if (ret < 0)
2213                        return ret;
2214                if (ret >= 1)
2215                        enable_1394a = true;
2216        }
2217
2218        if (ohci->quirks & QUIRK_NO_1394A)
2219                enable_1394a = false;
2220
2221        /* Configure PHY and link consistently. */
2222        if (enable_1394a) {
2223                clear = 0;
2224                set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2225        } else {
2226                clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2227                set = 0;
2228        }
2229        ret = update_phy_reg(ohci, 5, clear, set);
2230        if (ret < 0)
2231                return ret;
2232
2233        if (enable_1394a)
2234                offset = OHCI1394_HCControlSet;
2235        else
2236                offset = OHCI1394_HCControlClear;
2237        reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2238
2239        /* Clean up: configuration has been taken care of. */
2240        reg_write(ohci, OHCI1394_HCControlClear,
2241                  OHCI1394_HCControl_programPhyEnable);
2242
2243        return 0;
2244}
2245
2246static int probe_tsb41ba3d(struct fw_ohci *ohci)
2247{
2248        /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2249        static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2250        int reg, i;
2251
2252        reg = read_phy_reg(ohci, 2);
2253        if (reg < 0)
2254                return reg;
2255        if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2256                return 0;
2257
2258        for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2259                reg = read_paged_phy_reg(ohci, 1, i + 10);
2260                if (reg < 0)
2261                        return reg;
2262                if (reg != id[i])
2263                        return 0;
2264        }
2265        return 1;
2266}
2267
2268static int ohci_enable(struct fw_card *card,
2269                       const __be32 *config_rom, size_t length)
2270{
2271        struct fw_ohci *ohci = fw_ohci(card);
2272        u32 lps, version, irqs;
2273        int i, ret;
2274
2275        if (software_reset(ohci)) {
2276                ohci_err(ohci, "failed to reset ohci card\n");
2277                return -EBUSY;
2278        }
2279
2280        /*
2281         * Now enable LPS, which we need in order to start accessing
2282         * most of the registers.  In fact, on some cards (ALI M5251),
2283         * accessing registers in the SClk domain without LPS enabled
2284         * will lock up the machine.  Wait 50msec to make sure we have
2285         * full link enabled.  However, with some cards (well, at least
2286         * a JMicron PCIe card), we have to try again sometimes.
2287         *
2288         * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2289         * cannot actually use the phy at that time.  These need tens of
2290         * millisecods pause between LPS write and first phy access too.
2291         */
2292
2293        reg_write(ohci, OHCI1394_HCControlSet,
2294                  OHCI1394_HCControl_LPS |
2295                  OHCI1394_HCControl_postedWriteEnable);
2296        flush_writes(ohci);
2297
2298        for (lps = 0, i = 0; !lps && i < 3; i++) {
2299                msleep(50);
2300                lps = reg_read(ohci, OHCI1394_HCControlSet) &
2301                      OHCI1394_HCControl_LPS;
2302        }
2303
2304        if (!lps) {
2305                ohci_err(ohci, "failed to set Link Power Status\n");
2306                return -EIO;
2307        }
2308
2309        if (ohci->quirks & QUIRK_TI_SLLZ059) {
2310                ret = probe_tsb41ba3d(ohci);
2311                if (ret < 0)
2312                        return ret;
2313                if (ret)
2314                        ohci_notice(ohci, "local TSB41BA3D phy\n");
2315                else
2316                        ohci->quirks &= ~QUIRK_TI_SLLZ059;
2317        }
2318
2319        reg_write(ohci, OHCI1394_HCControlClear,
2320                  OHCI1394_HCControl_noByteSwapData);
2321
2322        reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2323        reg_write(ohci, OHCI1394_LinkControlSet,
2324                  OHCI1394_LinkControl_cycleTimerEnable |
2325                  OHCI1394_LinkControl_cycleMaster);
2326
2327        reg_write(ohci, OHCI1394_ATRetries,
2328                  OHCI1394_MAX_AT_REQ_RETRIES |
2329                  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2330                  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2331                  (200 << 16));
2332
2333        ohci->bus_time_running = false;
2334
2335        for (i = 0; i < 32; i++)
2336                if (ohci->ir_context_support & (1 << i))
2337                        reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2338                                  IR_CONTEXT_MULTI_CHANNEL_MODE);
2339
2340        version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2341        if (version >= OHCI_VERSION_1_1) {
2342                reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2343                          0xfffffffe);
2344                card->broadcast_channel_auto_allocated = true;
2345        }
2346
2347        /* Get implemented bits of the priority arbitration request counter. */
2348        reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2349        ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2350        reg_write(ohci, OHCI1394_FairnessControl, 0);
2351        card->priority_budget_implemented = ohci->pri_req_max != 0;
2352
2353        reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
2354        reg_write(ohci, OHCI1394_IntEventClear, ~0);
2355        reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2356
2357        ret = configure_1394a_enhancements(ohci);
2358        if (ret < 0)
2359                return ret;
2360
2361        /* Activate link_on bit and contender bit in our self ID packets.*/
2362        ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2363        if (ret < 0)
2364                return ret;
2365
2366        /*
2367         * When the link is not yet enabled, the atomic config rom
2368         * update mechanism described below in ohci_set_config_rom()
2369         * is not active.  We have to update ConfigRomHeader and
2370         * BusOptions manually, and the write to ConfigROMmap takes
2371         * effect immediately.  We tie this to the enabling of the
2372         * link, so we have a valid config rom before enabling - the
2373         * OHCI requires that ConfigROMhdr and BusOptions have valid
2374         * values before enabling.
2375         *
2376         * However, when the ConfigROMmap is written, some controllers
2377         * always read back quadlets 0 and 2 from the config rom to
2378         * the ConfigRomHeader and BusOptions registers on bus reset.
2379         * They shouldn't do that in this initial case where the link
2380         * isn't enabled.  This means we have to use the same
2381         * workaround here, setting the bus header to 0 and then write
2382         * the right values in the bus reset tasklet.
2383         */
2384
2385        if (config_rom) {
2386                ohci->next_config_rom =
2387                        dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2388                                           &ohci->next_config_rom_bus,
2389                                           GFP_KERNEL);
2390                if (ohci->next_config_rom == NULL)
2391                        return -ENOMEM;
2392
2393                copy_config_rom(ohci->next_config_rom, config_rom, length);
2394        } else {
2395                /*
2396                 * In the suspend case, config_rom is NULL, which
2397                 * means that we just reuse the old config rom.
2398                 */
2399                ohci->next_config_rom = ohci->config_rom;
2400                ohci->next_config_rom_bus = ohci->config_rom_bus;
2401        }
2402
2403        ohci->next_header = ohci->next_config_rom[0];
2404        ohci->next_config_rom[0] = 0;
2405        reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2406        reg_write(ohci, OHCI1394_BusOptions,
2407                  be32_to_cpu(ohci->next_config_rom[2]));
2408        reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2409
2410        reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2411
2412        irqs =  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2413                OHCI1394_RQPkt | OHCI1394_RSPkt |
2414                OHCI1394_isochTx | OHCI1394_isochRx |
2415                OHCI1394_postedWriteErr |
2416                OHCI1394_selfIDComplete |
2417                OHCI1394_regAccessFail |
2418                OHCI1394_cycleInconsistent |
2419                OHCI1394_unrecoverableError |
2420                OHCI1394_cycleTooLong |
2421                OHCI1394_masterIntEnable;
2422        if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2423                irqs |= OHCI1394_busReset;
2424        reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2425
2426        reg_write(ohci, OHCI1394_HCControlSet,
2427                  OHCI1394_HCControl_linkEnable |
2428                  OHCI1394_HCControl_BIBimageValid);
2429
2430        reg_write(ohci, OHCI1394_LinkControlSet,
2431                  OHCI1394_LinkControl_rcvSelfID |
2432                  OHCI1394_LinkControl_rcvPhyPkt);
2433
2434        ar_context_run(&ohci->ar_request_ctx);
2435        ar_context_run(&ohci->ar_response_ctx);
2436
2437        flush_writes(ohci);
2438
2439        /* We are ready to go, reset bus to finish initialization. */
2440        fw_schedule_bus_reset(&ohci->card, false, true);
2441
2442        return 0;
2443}
2444
2445static int ohci_set_config_rom(struct fw_card *card,
2446                               const __be32 *config_rom, size_t length)
2447{
2448        struct fw_ohci *ohci;
2449        __be32 *next_config_rom;
2450        dma_addr_t uninitialized_var(next_config_rom_bus);
2451
2452        ohci = fw_ohci(card);
2453
2454        /*
2455         * When the OHCI controller is enabled, the config rom update
2456         * mechanism is a bit tricky, but easy enough to use.  See
2457         * section 5.5.6 in the OHCI specification.
2458         *
2459         * The OHCI controller caches the new config rom address in a
2460         * shadow register (ConfigROMmapNext) and needs a bus reset
2461         * for the changes to take place.  When the bus reset is
2462         * detected, the controller loads the new values for the
2463         * ConfigRomHeader and BusOptions registers from the specified
2464         * config rom and loads ConfigROMmap from the ConfigROMmapNext
2465         * shadow register. All automatically and atomically.
2466         *
2467         * Now, there's a twist to this story.  The automatic load of
2468         * ConfigRomHeader and BusOptions doesn't honor the
2469         * noByteSwapData bit, so with a be32 config rom, the
2470         * controller will load be32 values in to these registers
2471         * during the atomic update, even on litte endian
2472         * architectures.  The workaround we use is to put a 0 in the
2473         * header quadlet; 0 is endian agnostic and means that the
2474         * config rom isn't ready yet.  In the bus reset tasklet we
2475         * then set up the real values for the two registers.
2476         *
2477         * We use ohci->lock to avoid racing with the code that sets
2478         * ohci->next_config_rom to NULL (see bus_reset_work).
2479         */
2480
2481        next_config_rom =
2482                dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2483                                   &next_config_rom_bus, GFP_KERNEL);
2484        if (next_config_rom == NULL)
2485                return -ENOMEM;
2486
2487        spin_lock_irq(&ohci->lock);
2488
2489        /*
2490         * If there is not an already pending config_rom update,
2491         * push our new allocation into the ohci->next_config_rom
2492         * and then mark the local variable as null so that we
2493         * won't deallocate the new buffer.
2494         *
2495         * OTOH, if there is a pending config_rom update, just
2496         * use that buffer with the new config_rom data, and
2497         * let this routine free the unused DMA allocation.
2498         */
2499
2500        if (ohci->next_config_rom == NULL) {
2501                ohci->next_config_rom = next_config_rom;
2502                ohci->next_config_rom_bus = next_config_rom_bus;
2503                next_config_rom = NULL;
2504        }
2505
2506        copy_config_rom(ohci->next_config_rom, config_rom, length);
2507
2508        ohci->next_header = config_rom[0];
2509        ohci->next_config_rom[0] = 0;
2510
2511        reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2512
2513        spin_unlock_irq(&ohci->lock);
2514
2515        /* If we didn't use the DMA allocation, delete it. */
2516        if (next_config_rom != NULL)
2517                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2518                                  next_config_rom, next_config_rom_bus);
2519
2520        /*
2521         * Now initiate a bus reset to have the changes take
2522         * effect. We clean up the old config rom memory and DMA
2523         * mappings in the bus reset tasklet, since the OHCI
2524         * controller could need to access it before the bus reset
2525         * takes effect.
2526         */
2527
2528        fw_schedule_bus_reset(&ohci->card, true, true);
2529
2530        return 0;
2531}
2532
2533static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2534{
2535        struct fw_ohci *ohci = fw_ohci(card);
2536
2537        at_context_transmit(&ohci->at_request_ctx, packet);
2538}
2539
2540static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2541{
2542        struct fw_ohci *ohci = fw_ohci(card);
2543
2544        at_context_transmit(&ohci->at_response_ctx, packet);
2545}
2546
2547static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2548{
2549        struct fw_ohci *ohci = fw_ohci(card);
2550        struct context *ctx = &ohci->at_request_ctx;
2551        struct driver_data *driver_data = packet->driver_data;
2552        int ret = -ENOENT;
2553
2554        tasklet_disable(&ctx->tasklet);
2555
2556        if (packet->ack != 0)
2557                goto out;
2558
2559        if (packet->payload_mapped)
2560                dma_unmap_single(ohci->card.device, packet->payload_bus,
2561                                 packet->payload_length, DMA_TO_DEVICE);
2562
2563        log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2564        driver_data->packet = NULL;
2565        packet->ack = RCODE_CANCELLED;
2566        packet->callback(packet, &ohci->card, packet->ack);
2567        ret = 0;
2568 out:
2569        tasklet_enable(&ctx->tasklet);
2570
2571        return ret;
2572}
2573
2574static int ohci_enable_phys_dma(struct fw_card *card,
2575                                int node_id, int generation)
2576{
2577#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2578        return 0;
2579#else
2580        struct fw_ohci *ohci = fw_ohci(card);
2581        unsigned long flags;
2582        int n, ret = 0;
2583
2584        /*
2585         * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2586         * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2587         */
2588
2589        spin_lock_irqsave(&ohci->lock, flags);
2590
2591        if (ohci->generation != generation) {
2592                ret = -ESTALE;
2593                goto out;
2594        }
2595
2596        /*
2597         * Note, if the node ID contains a non-local bus ID, physical DMA is
2598         * enabled for _all_ nodes on remote buses.
2599         */
2600
2601        n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2602        if (n < 32)
2603                reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2604        else
2605                reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2606
2607        flush_writes(ohci);
2608 out:
2609        spin_unlock_irqrestore(&ohci->lock, flags);
2610
2611        return ret;
2612#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2613}
2614
2615static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2616{
2617        struct fw_ohci *ohci = fw_ohci(card);
2618        unsigned long flags;
2619        u32 value;
2620
2621        switch (csr_offset) {
2622        case CSR_STATE_CLEAR:
2623        case CSR_STATE_SET:
2624                if (ohci->is_root &&
2625                    (reg_read(ohci, OHCI1394_LinkControlSet) &
2626                     OHCI1394_LinkControl_cycleMaster))
2627                        value = CSR_STATE_BIT_CMSTR;
2628                else
2629                        value = 0;
2630                if (ohci->csr_state_setclear_abdicate)
2631                        value |= CSR_STATE_BIT_ABDICATE;
2632
2633                return value;
2634
2635        case CSR_NODE_IDS:
2636                return reg_read(ohci, OHCI1394_NodeID) << 16;
2637
2638        case CSR_CYCLE_TIME:
2639                return get_cycle_time(ohci);
2640
2641        case CSR_BUS_TIME:
2642                /*
2643                 * We might be called just after the cycle timer has wrapped
2644                 * around but just before the cycle64Seconds handler, so we
2645                 * better check here, too, if the bus time needs to be updated.
2646                 */
2647                spin_lock_irqsave(&ohci->lock, flags);
2648                value = update_bus_time(ohci);
2649                spin_unlock_irqrestore(&ohci->lock, flags);
2650                return value;
2651
2652        case CSR_BUSY_TIMEOUT:
2653                value = reg_read(ohci, OHCI1394_ATRetries);
2654                return (value >> 4) & 0x0ffff00f;
2655
2656        case CSR_PRIORITY_BUDGET:
2657                return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2658                        (ohci->pri_req_max << 8);
2659
2660        default:
2661                WARN_ON(1);
2662                return 0;
2663        }
2664}
2665
2666static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2667{
2668        struct fw_ohci *ohci = fw_ohci(card);
2669        unsigned long flags;
2670
2671        switch (csr_offset) {
2672        case CSR_STATE_CLEAR:
2673                if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2674                        reg_write(ohci, OHCI1394_LinkControlClear,
2675                                  OHCI1394_LinkControl_cycleMaster);
2676                        flush_writes(ohci);
2677                }
2678                if (value & CSR_STATE_BIT_ABDICATE)
2679                        ohci->csr_state_setclear_abdicate = false;
2680                break;
2681
2682        case CSR_STATE_SET:
2683                if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2684                        reg_write(ohci, OHCI1394_LinkControlSet,
2685                                  OHCI1394_LinkControl_cycleMaster);
2686                        flush_writes(ohci);
2687                }
2688                if (value & CSR_STATE_BIT_ABDICATE)
2689                        ohci->csr_state_setclear_abdicate = true;
2690                break;
2691
2692        case CSR_NODE_IDS:
2693                reg_write(ohci, OHCI1394_NodeID, value >> 16);
2694                flush_writes(ohci);
2695                break;
2696
2697        case CSR_CYCLE_TIME:
2698                reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2699                reg_write(ohci, OHCI1394_IntEventSet,
2700                          OHCI1394_cycleInconsistent);
2701                flush_writes(ohci);
2702                break;
2703
2704        case CSR_BUS_TIME:
2705                spin_lock_irqsave(&ohci->lock, flags);
2706                ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2707                                 (value & ~0x7f);
2708                spin_unlock_irqrestore(&ohci->lock, flags);
2709                break;
2710
2711        case CSR_BUSY_TIMEOUT:
2712                value = (value & 0xf) | ((value & 0xf) << 4) |
2713                        ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2714                reg_write(ohci, OHCI1394_ATRetries, value);
2715                flush_writes(ohci);
2716                break;
2717
2718        case CSR_PRIORITY_BUDGET:
2719                reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2720                flush_writes(ohci);
2721                break;
2722
2723        default:
2724                WARN_ON(1);
2725                break;
2726        }
2727}
2728
2729static void flush_iso_completions(struct iso_context *ctx)
2730{
2731        ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2732                              ctx->header_length, ctx->header,
2733                              ctx->base.callback_data);
2734        ctx->header_length = 0;
2735}
2736
2737static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2738{
2739        u32 *ctx_hdr;
2740
2741        if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2742                if (ctx->base.drop_overflow_headers)
2743                        return;
2744                flush_iso_completions(ctx);
2745        }
2746
2747        ctx_hdr = ctx->header + ctx->header_length;
2748        ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2749
2750        /*
2751         * The two iso header quadlets are byteswapped to little
2752         * endian by the controller, but we want to present them
2753         * as big endian for consistency with the bus endianness.
2754         */
2755        if (ctx->base.header_size > 0)
2756                ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2757        if (ctx->base.header_size > 4)
2758                ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2759        if (ctx->base.header_size > 8)
2760                memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2761        ctx->header_length += ctx->base.header_size;
2762}
2763
2764static int handle_ir_packet_per_buffer(struct context *context,
2765                                       struct descriptor *d,
2766                                       struct descriptor *last)
2767{
2768        struct iso_context *ctx =
2769                container_of(context, struct iso_context, context);
2770        struct descriptor *pd;
2771        u32 buffer_dma;
2772
2773        for (pd = d; pd <= last; pd++)
2774                if (pd->transfer_status)
2775                        break;
2776        if (pd > last)
2777                /* Descriptor(s) not done yet, stop iteration */
2778                return 0;
2779
2780        while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2781                d++;
2782                buffer_dma = le32_to_cpu(d->data_address);
2783                dma_sync_single_range_for_cpu(context->ohci->card.device,
2784                                              buffer_dma & PAGE_MASK,
2785                                              buffer_dma & ~PAGE_MASK,
2786                                              le16_to_cpu(d->req_count),
2787                                              DMA_FROM_DEVICE);
2788        }
2789
2790        copy_iso_headers(ctx, (u32 *) (last + 1));
2791
2792        if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2793                flush_iso_completions(ctx);
2794
2795        return 1;
2796}
2797
2798/* d == last because each descriptor block is only a single descriptor. */
2799static int handle_ir_buffer_fill(struct context *context,
2800                                 struct descriptor *d,
2801                                 struct descriptor *last)
2802{
2803        struct iso_context *ctx =
2804                container_of(context, struct iso_context, context);
2805        unsigned int req_count, res_count, completed;
2806        u32 buffer_dma;
2807
2808        req_count = le16_to_cpu(last->req_count);
2809        res_count = le16_to_cpu(ACCESS_ONCE(last->res_count));
2810        completed = req_count - res_count;
2811        buffer_dma = le32_to_cpu(last->data_address);
2812
2813        if (completed > 0) {
2814                ctx->mc_buffer_bus = buffer_dma;
2815                ctx->mc_completed = completed;
2816        }
2817
2818        if (res_count != 0)
2819                /* Descriptor(s) not done yet, stop iteration */
2820                return 0;
2821
2822        dma_sync_single_range_for_cpu(context->ohci->card.device,
2823                                      buffer_dma & PAGE_MASK,
2824                                      buffer_dma & ~PAGE_MASK,
2825                                      completed, DMA_FROM_DEVICE);
2826
2827        if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2828                ctx->base.callback.mc(&ctx->base,
2829                                      buffer_dma + completed,
2830                                      ctx->base.callback_data);
2831                ctx->mc_completed = 0;
2832        }
2833
2834        return 1;
2835}
2836
2837static void flush_ir_buffer_fill(struct iso_context *ctx)
2838{
2839        dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2840                                      ctx->mc_buffer_bus & PAGE_MASK,
2841                                      ctx->mc_buffer_bus & ~PAGE_MASK,
2842                                      ctx->mc_completed, DMA_FROM_DEVICE);
2843
2844        ctx->base.callback.mc(&ctx->base,
2845                              ctx->mc_buffer_bus + ctx->mc_completed,
2846                              ctx->base.callback_data);
2847        ctx->mc_completed = 0;
2848}
2849
2850static inline void sync_it_packet_for_cpu(struct context *context,
2851                                          struct descriptor *pd)
2852{
2853        __le16 control;
2854        u32 buffer_dma;
2855
2856        /* only packets beginning with OUTPUT_MORE* have data buffers */
2857        if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2858                return;
2859
2860        /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2861        pd += 2;
2862
2863        /*
2864         * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2865         * data buffer is in the context program's coherent page and must not
2866         * be synced.
2867         */
2868        if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2869            (context->current_bus          & PAGE_MASK)) {
2870                if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2871                        return;
2872                pd++;
2873        }
2874
2875        do {
2876                buffer_dma = le32_to_cpu(pd->data_address);
2877                dma_sync_single_range_for_cpu(context->ohci->card.device,
2878                                              buffer_dma & PAGE_MASK,
2879                                              buffer_dma & ~PAGE_MASK,
2880                                              le16_to_cpu(pd->req_count),
2881                                              DMA_TO_DEVICE);
2882                control = pd->control;
2883                pd++;
2884        } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2885}
2886
2887static int handle_it_packet(struct context *context,
2888                            struct descriptor *d,
2889                            struct descriptor *last)
2890{
2891        struct iso_context *ctx =
2892                container_of(context, struct iso_context, context);
2893        struct descriptor *pd;
2894        __be32 *ctx_hdr;
2895
2896        for (pd = d; pd <= last; pd++)
2897                if (pd->transfer_status)
2898                        break;
2899        if (pd > last)
2900                /* Descriptor(s) not done yet, stop iteration */
2901                return 0;
2902
2903        sync_it_packet_for_cpu(context, d);
2904
2905        if (ctx->header_length + 4 > PAGE_SIZE) {
2906                if (ctx->base.drop_overflow_headers)
2907                        return 1;
2908                flush_iso_completions(ctx);
2909        }
2910
2911        ctx_hdr = ctx->header + ctx->header_length;
2912        ctx->last_timestamp = le16_to_cpu(last->res_count);
2913        /* Present this value as big-endian to match the receive code */
2914        *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2915                               le16_to_cpu(pd->res_count));
2916        ctx->header_length += 4;
2917
2918        if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2919                flush_iso_completions(ctx);
2920
2921        return 1;
2922}
2923
2924static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2925{
2926        u32 hi = channels >> 32, lo = channels;
2927
2928        reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2929        reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2930        reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2931        reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2932        mmiowb();
2933        ohci->mc_channels = channels;
2934}
2935
2936static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2937                                int type, int channel, size_t header_size)
2938{
2939        struct fw_ohci *ohci = fw_ohci(card);
2940        struct iso_context *uninitialized_var(ctx);
2941        descriptor_callback_t uninitialized_var(callback);
2942        u64 *uninitialized_var(channels);
2943        u32 *uninitialized_var(mask), uninitialized_var(regs);
2944        int index, ret = -EBUSY;
2945
2946        spin_lock_irq(&ohci->lock);
2947
2948        switch (type) {
2949        case FW_ISO_CONTEXT_TRANSMIT:
2950                mask     = &ohci->it_context_mask;
2951                callback = handle_it_packet;
2952                index    = ffs(*mask) - 1;
2953                if (index >= 0) {
2954                        *mask &= ~(1 << index);
2955                        regs = OHCI1394_IsoXmitContextBase(index);
2956                        ctx  = &ohci->it_context_list[index];
2957                }
2958                break;
2959
2960        case FW_ISO_CONTEXT_RECEIVE:
2961                channels = &ohci->ir_context_channels;
2962                mask     = &ohci->ir_context_mask;
2963                callback = handle_ir_packet_per_buffer;
2964                index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2965                if (index >= 0) {
2966                        *channels &= ~(1ULL << channel);
2967                        *mask     &= ~(1 << index);
2968                        regs = OHCI1394_IsoRcvContextBase(index);
2969                        ctx  = &ohci->ir_context_list[index];
2970                }
2971                break;
2972
2973        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2974                mask     = &ohci->ir_context_mask;
2975                callback = handle_ir_buffer_fill;
2976                index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2977                if (index >= 0) {
2978                        ohci->mc_allocated = true;
2979                        *mask &= ~(1 << index);
2980                        regs = OHCI1394_IsoRcvContextBase(index);
2981                        ctx  = &ohci->ir_context_list[index];
2982                }
2983                break;
2984
2985        default:
2986                index = -1;
2987                ret = -ENOSYS;
2988        }
2989
2990        spin_unlock_irq(&ohci->lock);
2991
2992        if (index < 0)
2993                return ERR_PTR(ret);
2994
2995        memset(ctx, 0, sizeof(*ctx));
2996        ctx->header_length = 0;
2997        ctx->header = (void *) __get_free_page(GFP_KERNEL);
2998        if (ctx->header == NULL) {
2999                ret = -ENOMEM;
3000                goto out;
3001        }
3002        ret = context_init(&ctx->context, ohci, regs, callback);
3003        if (ret < 0)
3004                goto out_with_header;
3005
3006        if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3007                set_multichannel_mask(ohci, 0);
3008                ctx->mc_completed = 0;
3009        }
3010
3011        return &ctx->base;
3012
3013 out_with_header:
3014        free_page((unsigned long)ctx->header);
3015 out:
3016        spin_lock_irq(&ohci->lock);
3017
3018        switch (type) {
3019        case FW_ISO_CONTEXT_RECEIVE:
3020                *channels |= 1ULL << channel;
3021                break;
3022
3023        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3024                ohci->mc_allocated = false;
3025                break;
3026        }
3027        *mask |= 1 << index;
3028
3029        spin_unlock_irq(&ohci->lock);
3030
3031        return ERR_PTR(ret);
3032}
3033
3034static int ohci_start_iso(struct fw_iso_context *base,
3035                          s32 cycle, u32 sync, u32 tags)
3036{
3037        struct iso_context *ctx = container_of(base, struct iso_context, base);
3038        struct fw_ohci *ohci = ctx->context.ohci;
3039        u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3040        int index;
3041
3042        /* the controller cannot start without any queued packets */
3043        if (ctx->context.last->branch_address == 0)
3044                return -ENODATA;
3045
3046        switch (ctx->base.type) {
3047        case FW_ISO_CONTEXT_TRANSMIT:
3048                index = ctx - ohci->it_context_list;
3049                match = 0;
3050                if (cycle >= 0)
3051                        match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3052                                (cycle & 0x7fff) << 16;
3053
3054                reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3055                reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3056                context_run(&ctx->context, match);
3057                break;
3058
3059        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3060                control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3061                /* fall through */
3062        case FW_ISO_CONTEXT_RECEIVE:
3063                index = ctx - ohci->ir_context_list;
3064                match = (tags << 28) | (sync << 8) | ctx->base.channel;
3065                if (cycle >= 0) {
3066                        match |= (cycle & 0x07fff) << 12;
3067                        control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3068                }
3069
3070                reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3071                reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3072                reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3073                context_run(&ctx->context, control);
3074
3075                ctx->sync = sync;
3076                ctx->tags = tags;
3077
3078                break;
3079        }
3080
3081        return 0;
3082}
3083
3084static int ohci_stop_iso(struct fw_iso_context *base)
3085{
3086        struct fw_ohci *ohci = fw_ohci(base->card);
3087        struct iso_context *ctx = container_of(base, struct iso_context, base);
3088        int index;
3089
3090        switch (ctx->base.type) {
3091        case FW_ISO_CONTEXT_TRANSMIT:
3092                index = ctx - ohci->it_context_list;
3093                reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3094                break;
3095
3096        case FW_ISO_CONTEXT_RECEIVE:
3097        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3098                index = ctx - ohci->ir_context_list;
3099                reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3100                break;
3101        }
3102        flush_writes(ohci);
3103        context_stop(&ctx->context);
3104        tasklet_kill(&ctx->context.tasklet);
3105
3106        return 0;
3107}
3108
3109static void ohci_free_iso_context(struct fw_iso_context *base)
3110{
3111        struct fw_ohci *ohci = fw_ohci(base->card);
3112        struct iso_context *ctx = container_of(base, struct iso_context, base);
3113        unsigned long flags;
3114        int index;
3115
3116        ohci_stop_iso(base);
3117        context_release(&ctx->context);
3118        free_page((unsigned long)ctx->header);
3119
3120        spin_lock_irqsave(&ohci->lock, flags);
3121
3122        switch (base->type) {
3123        case FW_ISO_CONTEXT_TRANSMIT:
3124                index = ctx - ohci->it_context_list;
3125                ohci->it_context_mask |= 1 << index;
3126                break;
3127
3128        case FW_ISO_CONTEXT_RECEIVE:
3129                index = ctx - ohci->ir_context_list;
3130                ohci->ir_context_mask |= 1 << index;
3131                ohci->ir_context_channels |= 1ULL << base->channel;
3132                break;
3133
3134        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3135                index = ctx - ohci->ir_context_list;
3136                ohci->ir_context_mask |= 1 << index;
3137                ohci->ir_context_channels |= ohci->mc_channels;
3138                ohci->mc_channels = 0;
3139                ohci->mc_allocated = false;
3140                break;
3141        }
3142
3143        spin_unlock_irqrestore(&ohci->lock, flags);
3144}
3145
3146static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3147{
3148        struct fw_ohci *ohci = fw_ohci(base->card);
3149        unsigned long flags;
3150        int ret;
3151
3152        switch (base->type) {
3153        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3154
3155                spin_lock_irqsave(&ohci->lock, flags);
3156
3157                /* Don't allow multichannel to grab other contexts' channels. */
3158                if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3159                        *channels = ohci->ir_context_channels;
3160                        ret = -EBUSY;
3161                } else {
3162                        set_multichannel_mask(ohci, *channels);
3163                        ret = 0;
3164                }
3165
3166                spin_unlock_irqrestore(&ohci->lock, flags);
3167
3168                break;
3169        default:
3170                ret = -EINVAL;
3171        }
3172
3173        return ret;
3174}
3175
3176#ifdef CONFIG_PM
3177static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3178{
3179        int i;
3180        struct iso_context *ctx;
3181
3182        for (i = 0 ; i < ohci->n_ir ; i++) {
3183                ctx = &ohci->ir_context_list[i];
3184                if (ctx->context.running)
3185                        ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3186        }
3187
3188        for (i = 0 ; i < ohci->n_it ; i++) {
3189                ctx = &ohci->it_context_list[i];
3190                if (ctx->context.running)
3191                        ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3192        }
3193}
3194#endif
3195
3196static int queue_iso_transmit(struct iso_context *ctx,
3197                              struct fw_iso_packet *packet,
3198                              struct fw_iso_buffer *buffer,
3199                              unsigned long payload)
3200{
3201        struct descriptor *d, *last, *pd;
3202        struct fw_iso_packet *p;
3203        __le32 *header;
3204        dma_addr_t d_bus, page_bus;
3205        u32 z, header_z, payload_z, irq;
3206        u32 payload_index, payload_end_index, next_page_index;
3207        int page, end_page, i, length, offset;
3208
3209        p = packet;
3210        payload_index = payload;
3211
3212        if (p->skip)
3213                z = 1;
3214        else
3215                z = 2;
3216        if (p->header_length > 0)
3217                z++;
3218
3219        /* Determine the first page the payload isn't contained in. */
3220        end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3221        if (p->payload_length > 0)
3222                payload_z = end_page - (payload_index >> PAGE_SHIFT);
3223        else
3224                payload_z = 0;
3225
3226        z += payload_z;
3227
3228        /* Get header size in number of descriptors. */
3229        header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3230
3231        d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3232        if (d == NULL)
3233                return -ENOMEM;
3234
3235        if (!p->skip) {
3236                d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3237                d[0].req_count = cpu_to_le16(8);
3238                /*
3239                 * Link the skip address to this descriptor itself.  This causes
3240                 * a context to skip a cycle whenever lost cycles or FIFO
3241                 * overruns occur, without dropping the data.  The application
3242                 * should then decide whether this is an error condition or not.
3243                 * FIXME:  Make the context's cycle-lost behaviour configurable?
3244                 */
3245                d[0].branch_address = cpu_to_le32(d_bus | z);
3246
3247                header = (__le32 *) &d[1];
3248                header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3249                                        IT_HEADER_TAG(p->tag) |
3250                                        IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3251                                        IT_HEADER_CHANNEL(ctx->base.channel) |
3252                                        IT_HEADER_SPEED(ctx->base.speed));
3253                header[1] =
3254                        cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3255                                                          p->payload_length));
3256        }
3257
3258        if (p->header_length > 0) {
3259                d[2].req_count    = cpu_to_le16(p->header_length);
3260                d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3261                memcpy(&d[z], p->header, p->header_length);
3262        }
3263
3264        pd = d + z - payload_z;
3265        payload_end_index = payload_index + p->payload_length;
3266        for (i = 0; i < payload_z; i++) {
3267                page               = payload_index >> PAGE_SHIFT;
3268                offset             = payload_index & ~PAGE_MASK;
3269                next_page_index    = (page + 1) << PAGE_SHIFT;
3270                length             =
3271                        min(next_page_index, payload_end_index) - payload_index;
3272                pd[i].req_count    = cpu_to_le16(length);
3273
3274                page_bus = page_private(buffer->pages[page]);
3275                pd[i].data_address = cpu_to_le32(page_bus + offset);
3276
3277                dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3278                                                 page_bus, offset, length,
3279                                                 DMA_TO_DEVICE);
3280
3281                payload_index += length;
3282        }
3283
3284        if (p->interrupt)
3285                irq = DESCRIPTOR_IRQ_ALWAYS;
3286        else
3287                irq = DESCRIPTOR_NO_IRQ;
3288
3289        last = z == 2 ? d : d + z - 1;
3290        last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3291                                     DESCRIPTOR_STATUS |
3292                                     DESCRIPTOR_BRANCH_ALWAYS |
3293                                     irq);
3294
3295        context_append(&ctx->context, d, z, header_z);
3296
3297        return 0;
3298}
3299
3300static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3301                                       struct fw_iso_packet *packet,
3302                                       struct fw_iso_buffer *buffer,
3303                                       unsigned long payload)
3304{
3305        struct device *device = ctx->context.ohci->card.device;
3306        struct descriptor *d, *pd;
3307        dma_addr_t d_bus, page_bus;
3308        u32 z, header_z, rest;
3309        int i, j, length;
3310        int page, offset, packet_count, header_size, payload_per_buffer;
3311
3312        /*
3313         * The OHCI controller puts the isochronous header and trailer in the
3314         * buffer, so we need at least 8 bytes.
3315         */
3316        packet_count = packet->header_length / ctx->base.header_size;
3317        header_size  = max(ctx->base.header_size, (size_t)8);
3318
3319        /* Get header size in number of descriptors. */
3320        header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3321        page     = payload >> PAGE_SHIFT;
3322        offset   = payload & ~PAGE_MASK;
3323        payload_per_buffer = packet->payload_length / packet_count;
3324
3325        for (i = 0; i < packet_count; i++) {
3326                /* d points to the header descriptor */
3327                z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3328                d = context_get_descriptors(&ctx->context,
3329                                z + header_z, &d_bus);
3330                if (d == NULL)
3331                        return -ENOMEM;
3332
3333                d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3334                                              DESCRIPTOR_INPUT_MORE);
3335                if (packet->skip && i == 0)
3336                        d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3337                d->req_count    = cpu_to_le16(header_size);
3338                d->res_count    = d->req_count;
3339                d->transfer_status = 0;
3340                d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3341
3342                rest = payload_per_buffer;
3343                pd = d;
3344                for (j = 1; j < z; j++) {
3345                        pd++;
3346                        pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3347                                                  DESCRIPTOR_INPUT_MORE);
3348
3349                        if (offset + rest < PAGE_SIZE)
3350                                length = rest;
3351                        else
3352                                length = PAGE_SIZE - offset;
3353                        pd->req_count = cpu_to_le16(length);
3354                        pd->res_count = pd->req_count;
3355                        pd->transfer_status = 0;
3356
3357                        page_bus = page_private(buffer->pages[page]);
3358                        pd->data_address = cpu_to_le32(page_bus + offset);
3359
3360                        dma_sync_single_range_for_device(device, page_bus,
3361                                                         offset, length,
3362                                                         DMA_FROM_DEVICE);
3363
3364                        offset = (offset + length) & ~PAGE_MASK;
3365                        rest -= length;
3366                        if (offset == 0)
3367                                page++;
3368                }
3369                pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3370                                          DESCRIPTOR_INPUT_LAST |
3371                                          DESCRIPTOR_BRANCH_ALWAYS);
3372                if (packet->interrupt && i == packet_count - 1)
3373                        pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3374
3375                context_append(&ctx->context, d, z, header_z);
3376        }
3377
3378        return 0;
3379}
3380
3381static int queue_iso_buffer_fill(struct iso_context *ctx,
3382                                 struct fw_iso_packet *packet,
3383                                 struct fw_iso_buffer *buffer,
3384                                 unsigned long payload)
3385{
3386        struct descriptor *d;
3387        dma_addr_t d_bus, page_bus;
3388        int page, offset, rest, z, i, length;
3389
3390        page   = payload >> PAGE_SHIFT;
3391        offset = payload & ~PAGE_MASK;
3392        rest   = packet->payload_length;
3393
3394        /* We need one descriptor for each page in the buffer. */
3395        z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3396
3397        if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3398                return -EFAULT;
3399
3400        for (i = 0; i < z; i++) {
3401                d = context_get_descriptors(&ctx->context, 1, &d_bus);
3402                if (d == NULL)
3403                        return -ENOMEM;
3404
3405                d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3406                                         DESCRIPTOR_BRANCH_ALWAYS);
3407                if (packet->skip && i == 0)
3408                        d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3409                if (packet->interrupt && i == z - 1)
3410                        d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3411
3412                if (offset + rest < PAGE_SIZE)
3413                        length = rest;
3414                else
3415                        length = PAGE_SIZE - offset;
3416                d->req_count = cpu_to_le16(length);
3417                d->res_count = d->req_count;
3418                d->transfer_status = 0;
3419
3420                page_bus = page_private(buffer->pages[page]);
3421                d->data_address = cpu_to_le32(page_bus + offset);
3422
3423                dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3424                                                 page_bus, offset, length,
3425                                                 DMA_FROM_DEVICE);
3426
3427                rest -= length;
3428                offset = 0;
3429                page++;
3430
3431                context_append(&ctx->context, d, 1, 0);
3432        }
3433
3434        return 0;
3435}
3436
3437static int ohci_queue_iso(struct fw_iso_context *base,
3438                          struct fw_iso_packet *packet,
3439                          struct fw_iso_buffer *buffer,
3440                          unsigned long payload)
3441{
3442        struct iso_context *ctx = container_of(base, struct iso_context, base);
3443        unsigned long flags;
3444        int ret = -ENOSYS;
3445
3446        spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3447        switch (base->type) {
3448        case FW_ISO_CONTEXT_TRANSMIT:
3449                ret = queue_iso_transmit(ctx, packet, buffer, payload);
3450                break;
3451        case FW_ISO_CONTEXT_RECEIVE:
3452                ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3453                break;
3454        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3455                ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3456                break;
3457        }
3458        spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3459
3460        return ret;
3461}
3462
3463static void ohci_flush_queue_iso(struct fw_iso_context *base)
3464{
3465        struct context *ctx =
3466                        &container_of(base, struct iso_context, base)->context;
3467
3468        reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3469}
3470
3471static int ohci_flush_iso_completions(struct fw_iso_context *base)
3472{
3473        struct iso_context *ctx = container_of(base, struct iso_context, base);
3474        int ret = 0;
3475
3476        tasklet_disable(&ctx->context.tasklet);
3477
3478        if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3479                context_tasklet((unsigned long)&ctx->context);
3480
3481                switch (base->type) {
3482                case FW_ISO_CONTEXT_TRANSMIT:
3483                case FW_ISO_CONTEXT_RECEIVE:
3484                        if (ctx->header_length != 0)
3485                                flush_iso_completions(ctx);
3486                        break;
3487                case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3488                        if (ctx->mc_completed != 0)
3489                                flush_ir_buffer_fill(ctx);
3490                        break;
3491                default:
3492                        ret = -ENOSYS;
3493                }
3494
3495                clear_bit_unlock(0, &ctx->flushing_completions);
3496                smp_mb__after_clear_bit();
3497        }
3498
3499        tasklet_enable(&ctx->context.tasklet);
3500
3501        return ret;
3502}
3503
3504static const struct fw_card_driver ohci_driver = {
3505        .enable                 = ohci_enable,
3506        .read_phy_reg           = ohci_read_phy_reg,
3507        .update_phy_reg         = ohci_update_phy_reg,
3508        .set_config_rom         = ohci_set_config_rom,
3509        .send_request           = ohci_send_request,
3510        .send_response          = ohci_send_response,
3511        .cancel_packet          = ohci_cancel_packet,
3512        .enable_phys_dma        = ohci_enable_phys_dma,
3513        .read_csr               = ohci_read_csr,
3514        .write_csr              = ohci_write_csr,
3515
3516        .allocate_iso_context   = ohci_allocate_iso_context,
3517        .free_iso_context       = ohci_free_iso_context,
3518        .set_iso_channels       = ohci_set_iso_channels,
3519        .queue_iso              = ohci_queue_iso,
3520        .flush_queue_iso        = ohci_flush_queue_iso,
3521        .flush_iso_completions  = ohci_flush_iso_completions,
3522        .start_iso              = ohci_start_iso,
3523        .stop_iso               = ohci_stop_iso,
3524};
3525
3526#ifdef CONFIG_PPC_PMAC
3527static void pmac_ohci_on(struct pci_dev *dev)
3528{
3529        if (machine_is(powermac)) {
3530                struct device_node *ofn = pci_device_to_OF_node(dev);
3531
3532                if (ofn) {
3533                        pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3534                        pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3535                }
3536        }
3537}
3538
3539static void pmac_ohci_off(struct pci_dev *dev)
3540{
3541        if (machine_is(powermac)) {
3542                struct device_node *ofn = pci_device_to_OF_node(dev);
3543
3544                if (ofn) {
3545                        pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3546                        pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3547                }
3548        }
3549}
3550#else
3551static inline void pmac_ohci_on(struct pci_dev *dev) {}
3552static inline void pmac_ohci_off(struct pci_dev *dev) {}
3553#endif /* CONFIG_PPC_PMAC */
3554
3555static int pci_probe(struct pci_dev *dev,
3556                               const struct pci_device_id *ent)
3557{
3558        struct fw_ohci *ohci;
3559        u32 bus_options, max_receive, link_speed, version;
3560        u64 guid;
3561        int i, err;
3562        size_t size;
3563
3564        if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3565                dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3566                return -ENOSYS;
3567        }
3568
3569        ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3570        if (ohci == NULL) {
3571                err = -ENOMEM;
3572                goto fail;
3573        }
3574
3575        fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3576
3577        pmac_ohci_on(dev);
3578
3579        err = pci_enable_device(dev);
3580        if (err) {
3581                dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3582                goto fail_free;
3583        }
3584
3585        pci_set_master(dev);
3586        pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3587        pci_set_drvdata(dev, ohci);
3588
3589        spin_lock_init(&ohci->lock);
3590        mutex_init(&ohci->phy_reg_mutex);
3591
3592        INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3593
3594        if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3595            pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3596                ohci_err(ohci, "invalid MMIO resource\n");
3597                err = -ENXIO;
3598                goto fail_disable;
3599        }
3600
3601        err = pci_request_region(dev, 0, ohci_driver_name);
3602        if (err) {
3603                ohci_err(ohci, "MMIO resource unavailable\n");
3604                goto fail_disable;
3605        }
3606
3607        ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3608        if (ohci->registers == NULL) {
3609                ohci_err(ohci, "failed to remap registers\n");
3610                err = -ENXIO;
3611                goto fail_iomem;
3612        }
3613
3614        for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3615                if ((ohci_quirks[i].vendor == dev->vendor) &&
3616                    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3617                     ohci_quirks[i].device == dev->device) &&
3618                    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3619                     ohci_quirks[i].revision >= dev->revision)) {
3620                        ohci->quirks = ohci_quirks[i].flags;
3621                        break;
3622                }
3623        if (param_quirks)
3624                ohci->quirks = param_quirks;
3625
3626        /*
3627         * Because dma_alloc_coherent() allocates at least one page,
3628         * we save space by using a common buffer for the AR request/
3629         * response descriptors and the self IDs buffer.
3630         */
3631        BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3632        BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3633        ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3634                                               PAGE_SIZE,
3635                                               &ohci->misc_buffer_bus,
3636                                               GFP_KERNEL);
3637        if (!ohci->misc_buffer) {
3638                err = -ENOMEM;
3639                goto fail_iounmap;
3640        }
3641
3642        err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3643                              OHCI1394_AsReqRcvContextControlSet);
3644        if (err < 0)
3645                goto fail_misc_buf;
3646
3647        err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3648                              OHCI1394_AsRspRcvContextControlSet);
3649        if (err < 0)
3650                goto fail_arreq_ctx;
3651
3652        err = context_init(&ohci->at_request_ctx, ohci,
3653                           OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3654        if (err < 0)
3655                goto fail_arrsp_ctx;
3656
3657        err = context_init(&ohci->at_response_ctx, ohci,
3658                           OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3659        if (err < 0)
3660                goto fail_atreq_ctx;
3661
3662        reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3663        ohci->ir_context_channels = ~0ULL;
3664        ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3665        reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3666        ohci->ir_context_mask = ohci->ir_context_support;
3667        ohci->n_ir = hweight32(ohci->ir_context_mask);
3668        size = sizeof(struct iso_context) * ohci->n_ir;
3669        ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3670
3671        reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3672        ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3673        reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3674        ohci->it_context_mask = ohci->it_context_support;
3675        ohci->n_it = hweight32(ohci->it_context_mask);
3676        size = sizeof(struct iso_context) * ohci->n_it;
3677        ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3678
3679        if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3680                err = -ENOMEM;
3681                goto fail_contexts;
3682        }
3683
3684        ohci->self_id_cpu = ohci->misc_buffer     + PAGE_SIZE/2;
3685        ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3686
3687        bus_options = reg_read(ohci, OHCI1394_BusOptions);
3688        max_receive = (bus_options >> 12) & 0xf;
3689        link_speed = bus_options & 0x7;
3690        guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3691                reg_read(ohci, OHCI1394_GUIDLo);
3692
3693        if (!(ohci->quirks & QUIRK_NO_MSI))
3694                pci_enable_msi(dev);
3695        if (request_irq(dev->irq, irq_handler,
3696                        pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
3697                        ohci_driver_name, ohci)) {
3698                ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq);
3699                err = -EIO;
3700                goto fail_msi;
3701        }
3702
3703        err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3704        if (err)
3705                goto fail_irq;
3706
3707        version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3708        ohci_notice(ohci,
3709                    "added OHCI v%x.%x device as card %d, "
3710                    "%d IR + %d IT contexts, quirks 0x%x\n",
3711                    version >> 16, version & 0xff, ohci->card.index,
3712                    ohci->n_ir, ohci->n_it, ohci->quirks);
3713
3714        return 0;
3715
3716 fail_irq:
3717        free_irq(dev->irq, ohci);
3718 fail_msi:
3719        pci_disable_msi(dev);
3720 fail_contexts:
3721        kfree(ohci->ir_context_list);
3722        kfree(ohci->it_context_list);
3723        context_release(&ohci->at_response_ctx);
3724 fail_atreq_ctx:
3725        context_release(&ohci->at_request_ctx);
3726 fail_arrsp_ctx:
3727        ar_context_release(&ohci->ar_response_ctx);
3728 fail_arreq_ctx:
3729        ar_context_release(&ohci->ar_request_ctx);
3730 fail_misc_buf:
3731        dma_free_coherent(ohci->card.device, PAGE_SIZE,
3732                          ohci->misc_buffer, ohci->misc_buffer_bus);
3733 fail_iounmap:
3734        pci_iounmap(dev, ohci->registers);
3735 fail_iomem:
3736        pci_release_region(dev, 0);
3737 fail_disable:
3738        pci_disable_device(dev);
3739 fail_free:
3740        kfree(ohci);
3741        pmac_ohci_off(dev);
3742 fail:
3743        return err;
3744}
3745
3746static void pci_remove(struct pci_dev *dev)
3747{
3748        struct fw_ohci *ohci = pci_get_drvdata(dev);
3749
3750        /*
3751         * If the removal is happening from the suspend state, LPS won't be
3752         * enabled and host registers (eg., IntMaskClear) won't be accessible.
3753         */
3754        if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3755                reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3756                flush_writes(ohci);
3757        }
3758        cancel_work_sync(&ohci->bus_reset_work);
3759        fw_core_remove_card(&ohci->card);
3760
3761        /*
3762         * FIXME: Fail all pending packets here, now that the upper
3763         * layers can't queue any more.
3764         */
3765
3766        software_reset(ohci);
3767        free_irq(dev->irq, ohci);
3768
3769        if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3770                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3771                                  ohci->next_config_rom, ohci->next_config_rom_bus);
3772        if (ohci->config_rom)
3773                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3774                                  ohci->config_rom, ohci->config_rom_bus);
3775        ar_context_release(&ohci->ar_request_ctx);
3776        ar_context_release(&ohci->ar_response_ctx);
3777        dma_free_coherent(ohci->card.device, PAGE_SIZE,
3778                          ohci->misc_buffer, ohci->misc_buffer_bus);
3779        context_release(&ohci->at_request_ctx);
3780        context_release(&ohci->at_response_ctx);
3781        kfree(ohci->it_context_list);
3782        kfree(ohci->ir_context_list);
3783        pci_disable_msi(dev);
3784        pci_iounmap(dev, ohci->registers);
3785        pci_release_region(dev, 0);
3786        pci_disable_device(dev);
3787        kfree(ohci);
3788        pmac_ohci_off(dev);
3789
3790        dev_notice(&dev->dev, "removed fw-ohci device\n");
3791}
3792
3793#ifdef CONFIG_PM
3794static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3795{
3796        struct fw_ohci *ohci = pci_get_drvdata(dev);
3797        int err;
3798
3799        software_reset(ohci);
3800        err = pci_save_state(dev);
3801        if (err) {
3802                ohci_err(ohci, "pci_save_state failed\n");
3803                return err;
3804        }
3805        err = pci_set_power_state(dev, pci_choose_state(dev, state));
3806        if (err)
3807                ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3808        pmac_ohci_off(dev);
3809
3810        return 0;
3811}
3812
3813static int pci_resume(struct pci_dev *dev)
3814{
3815        struct fw_ohci *ohci = pci_get_drvdata(dev);
3816        int err;
3817
3818        pmac_ohci_on(dev);
3819        pci_set_power_state(dev, PCI_D0);
3820        pci_restore_state(dev);
3821        err = pci_enable_device(dev);
3822        if (err) {
3823                ohci_err(ohci, "pci_enable_device failed\n");
3824                return err;
3825        }
3826
3827        /* Some systems don't setup GUID register on resume from ram  */
3828        if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3829                                        !reg_read(ohci, OHCI1394_GUIDHi)) {
3830                reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3831                reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3832        }
3833
3834        err = ohci_enable(&ohci->card, NULL, 0);
3835        if (err)
3836                return err;
3837
3838        ohci_resume_iso_dma(ohci);
3839
3840        return 0;
3841}
3842#endif
3843
3844static const struct pci_device_id pci_table[] = {
3845        { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3846        { }
3847};
3848
3849MODULE_DEVICE_TABLE(pci, pci_table);
3850
3851static struct pci_driver fw_ohci_pci_driver = {
3852        .name           = ohci_driver_name,
3853        .id_table       = pci_table,
3854        .probe          = pci_probe,
3855        .remove         = pci_remove,
3856#ifdef CONFIG_PM
3857        .resume         = pci_resume,
3858        .suspend        = pci_suspend,
3859#endif
3860};
3861
3862module_pci_driver(fw_ohci_pci_driver);
3863
3864MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3865MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3866MODULE_LICENSE("GPL");
3867
3868/* Provide a module alias so root-on-sbp2 initrds don't break. */
3869MODULE_ALIAS("ohci1394");
3870