linux/drivers/gpu/drm/drm_vma_manager.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
   3 * Copyright (c) 2012 David Airlie <airlied@linux.ie>
   4 * Copyright (c) 2013 David Herrmann <dh.herrmann@gmail.com>
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a
   7 * copy of this software and associated documentation files (the "Software"),
   8 * to deal in the Software without restriction, including without limitation
   9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  10 * and/or sell copies of the Software, and to permit persons to whom the
  11 * Software is furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  22 * OTHER DEALINGS IN THE SOFTWARE.
  23 */
  24
  25#include <drm/drmP.h>
  26#include <drm/drm_mm.h>
  27#include <drm/drm_vma_manager.h>
  28#include <linux/mm.h>
  29#include <linux/module.h>
  30#include <linux/rbtree.h>
  31#include <linux/slab.h>
  32#include <linux/spinlock.h>
  33#include <linux/types.h>
  34
  35/**
  36 * DOC: vma offset manager
  37 *
  38 * The vma-manager is responsible to map arbitrary driver-dependent memory
  39 * regions into the linear user address-space. It provides offsets to the
  40 * caller which can then be used on the address_space of the drm-device. It
  41 * takes care to not overlap regions, size them appropriately and to not
  42 * confuse mm-core by inconsistent fake vm_pgoff fields.
  43 * Drivers shouldn't use this for object placement in VMEM. This manager should
  44 * only be used to manage mappings into linear user-space VMs.
  45 *
  46 * We use drm_mm as backend to manage object allocations. But it is highly
  47 * optimized for alloc/free calls, not lookups. Hence, we use an rb-tree to
  48 * speed up offset lookups.
  49 *
  50 * You must not use multiple offset managers on a single address_space.
  51 * Otherwise, mm-core will be unable to tear down memory mappings as the VM will
  52 * no longer be linear.
  53 *
  54 * This offset manager works on page-based addresses. That is, every argument
  55 * and return code (with the exception of drm_vma_node_offset_addr()) is given
  56 * in number of pages, not number of bytes. That means, object sizes and offsets
  57 * must always be page-aligned (as usual).
  58 * If you want to get a valid byte-based user-space address for a given offset,
  59 * please see drm_vma_node_offset_addr().
  60 *
  61 * Additionally to offset management, the vma offset manager also handles access
  62 * management. For every open-file context that is allowed to access a given
  63 * node, you must call drm_vma_node_allow(). Otherwise, an mmap() call on this
  64 * open-file with the offset of the node will fail with -EACCES. To revoke
  65 * access again, use drm_vma_node_revoke(). However, the caller is responsible
  66 * for destroying already existing mappings, if required.
  67 */
  68
  69/**
  70 * drm_vma_offset_manager_init - Initialize new offset-manager
  71 * @mgr: Manager object
  72 * @page_offset: Offset of available memory area (page-based)
  73 * @size: Size of available address space range (page-based)
  74 *
  75 * Initialize a new offset-manager. The offset and area size available for the
  76 * manager are given as @page_offset and @size. Both are interpreted as
  77 * page-numbers, not bytes.
  78 *
  79 * Adding/removing nodes from the manager is locked internally and protected
  80 * against concurrent access. However, node allocation and destruction is left
  81 * for the caller. While calling into the vma-manager, a given node must
  82 * always be guaranteed to be referenced.
  83 */
  84void drm_vma_offset_manager_init(struct drm_vma_offset_manager *mgr,
  85                                 unsigned long page_offset, unsigned long size)
  86{
  87        rwlock_init(&mgr->vm_lock);
  88        drm_mm_init(&mgr->vm_addr_space_mm, page_offset, size);
  89}
  90EXPORT_SYMBOL(drm_vma_offset_manager_init);
  91
  92/**
  93 * drm_vma_offset_manager_destroy() - Destroy offset manager
  94 * @mgr: Manager object
  95 *
  96 * Destroy an object manager which was previously created via
  97 * drm_vma_offset_manager_init(). The caller must remove all allocated nodes
  98 * before destroying the manager. Otherwise, drm_mm will refuse to free the
  99 * requested resources.
 100 *
 101 * The manager must not be accessed after this function is called.
 102 */
 103void drm_vma_offset_manager_destroy(struct drm_vma_offset_manager *mgr)
 104{
 105        /* take the lock to protect against buggy drivers */
 106        write_lock(&mgr->vm_lock);
 107        drm_mm_takedown(&mgr->vm_addr_space_mm);
 108        write_unlock(&mgr->vm_lock);
 109}
 110EXPORT_SYMBOL(drm_vma_offset_manager_destroy);
 111
 112/**
 113 * drm_vma_offset_lookup_locked() - Find node in offset space
 114 * @mgr: Manager object
 115 * @start: Start address for object (page-based)
 116 * @pages: Size of object (page-based)
 117 *
 118 * Find a node given a start address and object size. This returns the _best_
 119 * match for the given node. That is, @start may point somewhere into a valid
 120 * region and the given node will be returned, as long as the node spans the
 121 * whole requested area (given the size in number of pages as @pages).
 122 *
 123 * Note that before lookup the vma offset manager lookup lock must be acquired
 124 * with drm_vma_offset_lock_lookup(). See there for an example. This can then be
 125 * used to implement weakly referenced lookups using kref_get_unless_zero().
 126 *
 127 * Example:
 128 *
 129 * ::
 130 *
 131 *     drm_vma_offset_lock_lookup(mgr);
 132 *     node = drm_vma_offset_lookup_locked(mgr);
 133 *     if (node)
 134 *         kref_get_unless_zero(container_of(node, sth, entr));
 135 *     drm_vma_offset_unlock_lookup(mgr);
 136 *
 137 * RETURNS:
 138 * Returns NULL if no suitable node can be found. Otherwise, the best match
 139 * is returned. It's the caller's responsibility to make sure the node doesn't
 140 * get destroyed before the caller can access it.
 141 */
 142struct drm_vma_offset_node *drm_vma_offset_lookup_locked(struct drm_vma_offset_manager *mgr,
 143                                                         unsigned long start,
 144                                                         unsigned long pages)
 145{
 146        struct drm_mm_node *node, *best;
 147        struct rb_node *iter;
 148        unsigned long offset;
 149
 150        iter = mgr->vm_addr_space_mm.interval_tree.rb_node;
 151        best = NULL;
 152
 153        while (likely(iter)) {
 154                node = rb_entry(iter, struct drm_mm_node, rb);
 155                offset = node->start;
 156                if (start >= offset) {
 157                        iter = iter->rb_right;
 158                        best = node;
 159                        if (start == offset)
 160                                break;
 161                } else {
 162                        iter = iter->rb_left;
 163                }
 164        }
 165
 166        /* verify that the node spans the requested area */
 167        if (best) {
 168                offset = best->start + best->size;
 169                if (offset < start + pages)
 170                        best = NULL;
 171        }
 172
 173        if (!best)
 174                return NULL;
 175
 176        return container_of(best, struct drm_vma_offset_node, vm_node);
 177}
 178EXPORT_SYMBOL(drm_vma_offset_lookup_locked);
 179
 180/**
 181 * drm_vma_offset_add() - Add offset node to manager
 182 * @mgr: Manager object
 183 * @node: Node to be added
 184 * @pages: Allocation size visible to user-space (in number of pages)
 185 *
 186 * Add a node to the offset-manager. If the node was already added, this does
 187 * nothing and return 0. @pages is the size of the object given in number of
 188 * pages.
 189 * After this call succeeds, you can access the offset of the node until it
 190 * is removed again.
 191 *
 192 * If this call fails, it is safe to retry the operation or call
 193 * drm_vma_offset_remove(), anyway. However, no cleanup is required in that
 194 * case.
 195 *
 196 * @pages is not required to be the same size as the underlying memory object
 197 * that you want to map. It only limits the size that user-space can map into
 198 * their address space.
 199 *
 200 * RETURNS:
 201 * 0 on success, negative error code on failure.
 202 */
 203int drm_vma_offset_add(struct drm_vma_offset_manager *mgr,
 204                       struct drm_vma_offset_node *node, unsigned long pages)
 205{
 206        int ret = 0;
 207
 208        write_lock(&mgr->vm_lock);
 209
 210        if (!drm_mm_node_allocated(&node->vm_node))
 211                ret = drm_mm_insert_node(&mgr->vm_addr_space_mm,
 212                                         &node->vm_node, pages);
 213
 214        write_unlock(&mgr->vm_lock);
 215
 216        return ret;
 217}
 218EXPORT_SYMBOL(drm_vma_offset_add);
 219
 220/**
 221 * drm_vma_offset_remove() - Remove offset node from manager
 222 * @mgr: Manager object
 223 * @node: Node to be removed
 224 *
 225 * Remove a node from the offset manager. If the node wasn't added before, this
 226 * does nothing. After this call returns, the offset and size will be 0 until a
 227 * new offset is allocated via drm_vma_offset_add() again. Helper functions like
 228 * drm_vma_node_start() and drm_vma_node_offset_addr() will return 0 if no
 229 * offset is allocated.
 230 */
 231void drm_vma_offset_remove(struct drm_vma_offset_manager *mgr,
 232                           struct drm_vma_offset_node *node)
 233{
 234        write_lock(&mgr->vm_lock);
 235
 236        if (drm_mm_node_allocated(&node->vm_node)) {
 237                drm_mm_remove_node(&node->vm_node);
 238                memset(&node->vm_node, 0, sizeof(node->vm_node));
 239        }
 240
 241        write_unlock(&mgr->vm_lock);
 242}
 243EXPORT_SYMBOL(drm_vma_offset_remove);
 244
 245/**
 246 * drm_vma_node_allow - Add open-file to list of allowed users
 247 * @node: Node to modify
 248 * @tag: Tag of file to remove
 249 *
 250 * Add @tag to the list of allowed open-files for this node. If @tag is
 251 * already on this list, the ref-count is incremented.
 252 *
 253 * The list of allowed-users is preserved across drm_vma_offset_add() and
 254 * drm_vma_offset_remove() calls. You may even call it if the node is currently
 255 * not added to any offset-manager.
 256 *
 257 * You must remove all open-files the same number of times as you added them
 258 * before destroying the node. Otherwise, you will leak memory.
 259 *
 260 * This is locked against concurrent access internally.
 261 *
 262 * RETURNS:
 263 * 0 on success, negative error code on internal failure (out-of-mem)
 264 */
 265int drm_vma_node_allow(struct drm_vma_offset_node *node, struct drm_file *tag)
 266{
 267        struct rb_node **iter;
 268        struct rb_node *parent = NULL;
 269        struct drm_vma_offset_file *new, *entry;
 270        int ret = 0;
 271
 272        /* Preallocate entry to avoid atomic allocations below. It is quite
 273         * unlikely that an open-file is added twice to a single node so we
 274         * don't optimize for this case. OOM is checked below only if the entry
 275         * is actually used. */
 276        new = kmalloc(sizeof(*entry), GFP_KERNEL);
 277
 278        write_lock(&node->vm_lock);
 279
 280        iter = &node->vm_files.rb_node;
 281
 282        while (likely(*iter)) {
 283                parent = *iter;
 284                entry = rb_entry(*iter, struct drm_vma_offset_file, vm_rb);
 285
 286                if (tag == entry->vm_tag) {
 287                        entry->vm_count++;
 288                        goto unlock;
 289                } else if (tag > entry->vm_tag) {
 290                        iter = &(*iter)->rb_right;
 291                } else {
 292                        iter = &(*iter)->rb_left;
 293                }
 294        }
 295
 296        if (!new) {
 297                ret = -ENOMEM;
 298                goto unlock;
 299        }
 300
 301        new->vm_tag = tag;
 302        new->vm_count = 1;
 303        rb_link_node(&new->vm_rb, parent, iter);
 304        rb_insert_color(&new->vm_rb, &node->vm_files);
 305        new = NULL;
 306
 307unlock:
 308        write_unlock(&node->vm_lock);
 309        kfree(new);
 310        return ret;
 311}
 312EXPORT_SYMBOL(drm_vma_node_allow);
 313
 314/**
 315 * drm_vma_node_revoke - Remove open-file from list of allowed users
 316 * @node: Node to modify
 317 * @tag: Tag of file to remove
 318 *
 319 * Decrement the ref-count of @tag in the list of allowed open-files on @node.
 320 * If the ref-count drops to zero, remove @tag from the list. You must call
 321 * this once for every drm_vma_node_allow() on @tag.
 322 *
 323 * This is locked against concurrent access internally.
 324 *
 325 * If @tag is not on the list, nothing is done.
 326 */
 327void drm_vma_node_revoke(struct drm_vma_offset_node *node,
 328                         struct drm_file *tag)
 329{
 330        struct drm_vma_offset_file *entry;
 331        struct rb_node *iter;
 332
 333        write_lock(&node->vm_lock);
 334
 335        iter = node->vm_files.rb_node;
 336        while (likely(iter)) {
 337                entry = rb_entry(iter, struct drm_vma_offset_file, vm_rb);
 338                if (tag == entry->vm_tag) {
 339                        if (!--entry->vm_count) {
 340                                rb_erase(&entry->vm_rb, &node->vm_files);
 341                                kfree(entry);
 342                        }
 343                        break;
 344                } else if (tag > entry->vm_tag) {
 345                        iter = iter->rb_right;
 346                } else {
 347                        iter = iter->rb_left;
 348                }
 349        }
 350
 351        write_unlock(&node->vm_lock);
 352}
 353EXPORT_SYMBOL(drm_vma_node_revoke);
 354
 355/**
 356 * drm_vma_node_is_allowed - Check whether an open-file is granted access
 357 * @node: Node to check
 358 * @tag: Tag of file to remove
 359 *
 360 * Search the list in @node whether @tag is currently on the list of allowed
 361 * open-files (see drm_vma_node_allow()).
 362 *
 363 * This is locked against concurrent access internally.
 364 *
 365 * RETURNS:
 366 * true iff @filp is on the list
 367 */
 368bool drm_vma_node_is_allowed(struct drm_vma_offset_node *node,
 369                             struct drm_file *tag)
 370{
 371        struct drm_vma_offset_file *entry;
 372        struct rb_node *iter;
 373
 374        read_lock(&node->vm_lock);
 375
 376        iter = node->vm_files.rb_node;
 377        while (likely(iter)) {
 378                entry = rb_entry(iter, struct drm_vma_offset_file, vm_rb);
 379                if (tag == entry->vm_tag)
 380                        break;
 381                else if (tag > entry->vm_tag)
 382                        iter = iter->rb_right;
 383                else
 384                        iter = iter->rb_left;
 385        }
 386
 387        read_unlock(&node->vm_lock);
 388
 389        return iter;
 390}
 391EXPORT_SYMBOL(drm_vma_node_is_allowed);
 392