1
2
3
4
5
6
7
8#include "dm-core.h"
9
10#include <linux/module.h>
11#include <linux/vmalloc.h>
12#include <linux/blkdev.h>
13#include <linux/namei.h>
14#include <linux/ctype.h>
15#include <linux/string.h>
16#include <linux/overflow.h>
17#include <linux/slab.h>
18#include <linux/interrupt.h>
19#include <linux/mutex.h>
20#include <linux/delay.h>
21#include <linux/atomic.h>
22#include <linux/blk-mq.h>
23#include <linux/mount.h>
24#include <linux/dax.h>
25
26#define DM_MSG_PREFIX "table"
27
28#define MAX_DEPTH 16
29#define NODE_SIZE L1_CACHE_BYTES
30#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
31#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
32
33struct dm_table {
34 struct mapped_device *md;
35 enum dm_queue_mode type;
36
37
38 unsigned int depth;
39 unsigned int counts[MAX_DEPTH];
40 sector_t *index[MAX_DEPTH];
41
42 unsigned int num_targets;
43 unsigned int num_allocated;
44 sector_t *highs;
45 struct dm_target *targets;
46
47 struct target_type *immutable_target_type;
48
49 bool integrity_supported:1;
50 bool singleton:1;
51 bool all_blk_mq:1;
52
53
54
55
56
57
58 fmode_t mode;
59
60
61 struct list_head devices;
62
63
64 void (*event_fn)(void *);
65 void *event_context;
66
67 struct dm_md_mempools *mempools;
68
69 struct list_head target_callbacks;
70};
71
72
73
74
75static unsigned int int_log(unsigned int n, unsigned int base)
76{
77 int result = 0;
78
79 while (n > 1) {
80 n = dm_div_up(n, base);
81 result++;
82 }
83
84 return result;
85}
86
87
88
89
90static inline unsigned int get_child(unsigned int n, unsigned int k)
91{
92 return (n * CHILDREN_PER_NODE) + k;
93}
94
95
96
97
98static inline sector_t *get_node(struct dm_table *t,
99 unsigned int l, unsigned int n)
100{
101 return t->index[l] + (n * KEYS_PER_NODE);
102}
103
104
105
106
107
108static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
109{
110 for (; l < t->depth - 1; l++)
111 n = get_child(n, CHILDREN_PER_NODE - 1);
112
113 if (n >= t->counts[l])
114 return (sector_t) - 1;
115
116 return get_node(t, l, n)[KEYS_PER_NODE - 1];
117}
118
119
120
121
122
123static int setup_btree_index(unsigned int l, struct dm_table *t)
124{
125 unsigned int n, k;
126 sector_t *node;
127
128 for (n = 0U; n < t->counts[l]; n++) {
129 node = get_node(t, l, n);
130
131 for (k = 0U; k < KEYS_PER_NODE; k++)
132 node[k] = high(t, l + 1, get_child(n, k));
133 }
134
135 return 0;
136}
137
138void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
139{
140 unsigned long size;
141 void *addr;
142
143
144
145
146 if (nmemb > (ULONG_MAX / elem_size))
147 return NULL;
148
149 size = nmemb * elem_size;
150 addr = vzalloc(size);
151
152 return addr;
153}
154EXPORT_SYMBOL(dm_vcalloc);
155
156
157
158
159
160static int alloc_targets(struct dm_table *t, unsigned int num)
161{
162 sector_t *n_highs;
163 struct dm_target *n_targets;
164
165
166
167
168
169
170 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
171 sizeof(sector_t));
172 if (!n_highs)
173 return -ENOMEM;
174
175 n_targets = (struct dm_target *) (n_highs + num);
176
177 memset(n_highs, -1, sizeof(*n_highs) * num);
178 vfree(t->highs);
179
180 t->num_allocated = num;
181 t->highs = n_highs;
182 t->targets = n_targets;
183
184 return 0;
185}
186
187int dm_table_create(struct dm_table **result, fmode_t mode,
188 unsigned num_targets, struct mapped_device *md)
189{
190 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
191
192 if (!t)
193 return -ENOMEM;
194
195 INIT_LIST_HEAD(&t->devices);
196 INIT_LIST_HEAD(&t->target_callbacks);
197
198 if (!num_targets)
199 num_targets = KEYS_PER_NODE;
200
201 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
202
203 if (!num_targets) {
204 kfree(t);
205 return -ENOMEM;
206 }
207
208 if (alloc_targets(t, num_targets)) {
209 kfree(t);
210 return -ENOMEM;
211 }
212
213 t->type = DM_TYPE_NONE;
214 t->mode = mode;
215 t->md = md;
216 *result = t;
217 return 0;
218}
219
220static void free_devices(struct list_head *devices, struct mapped_device *md)
221{
222 struct list_head *tmp, *next;
223
224 list_for_each_safe(tmp, next, devices) {
225 struct dm_dev_internal *dd =
226 list_entry(tmp, struct dm_dev_internal, list);
227 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
228 dm_device_name(md), dd->dm_dev->name);
229 dm_put_table_device(md, dd->dm_dev);
230 kfree(dd);
231 }
232}
233
234void dm_table_destroy(struct dm_table *t)
235{
236 unsigned int i;
237
238 if (!t)
239 return;
240
241
242 if (t->depth >= 2)
243 vfree(t->index[t->depth - 2]);
244
245
246 for (i = 0; i < t->num_targets; i++) {
247 struct dm_target *tgt = t->targets + i;
248
249 if (tgt->type->dtr)
250 tgt->type->dtr(tgt);
251
252 dm_put_target_type(tgt->type);
253 }
254
255 vfree(t->highs);
256
257
258 free_devices(&t->devices, t->md);
259
260 dm_free_md_mempools(t->mempools);
261
262 kfree(t);
263}
264
265
266
267
268static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
269{
270 struct dm_dev_internal *dd;
271
272 list_for_each_entry (dd, l, list)
273 if (dd->dm_dev->bdev->bd_dev == dev)
274 return dd;
275
276 return NULL;
277}
278
279
280
281
282static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
283 sector_t start, sector_t len, void *data)
284{
285 struct request_queue *q;
286 struct queue_limits *limits = data;
287 struct block_device *bdev = dev->bdev;
288 sector_t dev_size =
289 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
290 unsigned short logical_block_size_sectors =
291 limits->logical_block_size >> SECTOR_SHIFT;
292 char b[BDEVNAME_SIZE];
293
294
295
296
297
298
299 q = bdev_get_queue(bdev);
300 if (!q || !q->make_request_fn) {
301 DMWARN("%s: %s is not yet initialised: "
302 "start=%llu, len=%llu, dev_size=%llu",
303 dm_device_name(ti->table->md), bdevname(bdev, b),
304 (unsigned long long)start,
305 (unsigned long long)len,
306 (unsigned long long)dev_size);
307 return 1;
308 }
309
310 if (!dev_size)
311 return 0;
312
313 if ((start >= dev_size) || (start + len > dev_size)) {
314 DMWARN("%s: %s too small for target: "
315 "start=%llu, len=%llu, dev_size=%llu",
316 dm_device_name(ti->table->md), bdevname(bdev, b),
317 (unsigned long long)start,
318 (unsigned long long)len,
319 (unsigned long long)dev_size);
320 return 1;
321 }
322
323 if (logical_block_size_sectors <= 1)
324 return 0;
325
326 if (start & (logical_block_size_sectors - 1)) {
327 DMWARN("%s: start=%llu not aligned to h/w "
328 "logical block size %u of %s",
329 dm_device_name(ti->table->md),
330 (unsigned long long)start,
331 limits->logical_block_size, bdevname(bdev, b));
332 return 1;
333 }
334
335 if (len & (logical_block_size_sectors - 1)) {
336 DMWARN("%s: len=%llu not aligned to h/w "
337 "logical block size %u of %s",
338 dm_device_name(ti->table->md),
339 (unsigned long long)len,
340 limits->logical_block_size, bdevname(bdev, b));
341 return 1;
342 }
343
344 return 0;
345}
346
347
348
349
350
351
352
353static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
354 struct mapped_device *md)
355{
356 int r;
357 struct dm_dev *old_dev, *new_dev;
358
359 old_dev = dd->dm_dev;
360
361 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
362 dd->dm_dev->mode | new_mode, &new_dev);
363 if (r)
364 return r;
365
366 dd->dm_dev = new_dev;
367 dm_put_table_device(md, old_dev);
368
369 return 0;
370}
371
372
373
374
375dev_t dm_get_dev_t(const char *path)
376{
377 dev_t dev;
378 struct block_device *bdev;
379
380 bdev = lookup_bdev(path);
381 if (IS_ERR(bdev))
382 dev = name_to_dev_t(path);
383 else {
384 dev = bdev->bd_dev;
385 bdput(bdev);
386 }
387
388 return dev;
389}
390EXPORT_SYMBOL_GPL(dm_get_dev_t);
391
392
393
394
395
396int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
397 struct dm_dev **result)
398{
399 int r;
400 dev_t dev;
401 struct dm_dev_internal *dd;
402 struct dm_table *t = ti->table;
403
404 BUG_ON(!t);
405
406 dev = dm_get_dev_t(path);
407 if (!dev)
408 return -ENODEV;
409
410 dd = find_device(&t->devices, dev);
411 if (!dd) {
412 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
413 if (!dd)
414 return -ENOMEM;
415
416 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
417 kfree(dd);
418 return r;
419 }
420
421 atomic_set(&dd->count, 0);
422 list_add(&dd->list, &t->devices);
423
424 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
425 r = upgrade_mode(dd, mode, t->md);
426 if (r)
427 return r;
428 }
429 atomic_inc(&dd->count);
430
431 *result = dd->dm_dev;
432 return 0;
433}
434EXPORT_SYMBOL(dm_get_device);
435
436static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
437 sector_t start, sector_t len, void *data)
438{
439 struct queue_limits *limits = data;
440 struct block_device *bdev = dev->bdev;
441 struct request_queue *q = bdev_get_queue(bdev);
442 char b[BDEVNAME_SIZE];
443
444 if (unlikely(!q)) {
445 DMWARN("%s: Cannot set limits for nonexistent device %s",
446 dm_device_name(ti->table->md), bdevname(bdev, b));
447 return 0;
448 }
449
450 if (bdev_stack_limits(limits, bdev, start) < 0)
451 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
452 "physical_block_size=%u, logical_block_size=%u, "
453 "alignment_offset=%u, start=%llu",
454 dm_device_name(ti->table->md), bdevname(bdev, b),
455 q->limits.physical_block_size,
456 q->limits.logical_block_size,
457 q->limits.alignment_offset,
458 (unsigned long long) start << SECTOR_SHIFT);
459
460
461
462
463
464
465 if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
466 blk_limits_max_hw_sectors(limits,
467 (unsigned int) (PAGE_SIZE >> 9));
468 return 0;
469}
470
471
472
473
474void dm_put_device(struct dm_target *ti, struct dm_dev *d)
475{
476 int found = 0;
477 struct list_head *devices = &ti->table->devices;
478 struct dm_dev_internal *dd;
479
480 list_for_each_entry(dd, devices, list) {
481 if (dd->dm_dev == d) {
482 found = 1;
483 break;
484 }
485 }
486 if (!found) {
487 DMWARN("%s: device %s not in table devices list",
488 dm_device_name(ti->table->md), d->name);
489 return;
490 }
491 if (atomic_dec_and_test(&dd->count)) {
492 dm_put_table_device(ti->table->md, d);
493 list_del(&dd->list);
494 kfree(dd);
495 }
496}
497EXPORT_SYMBOL(dm_put_device);
498
499
500
501
502static int adjoin(struct dm_table *table, struct dm_target *ti)
503{
504 struct dm_target *prev;
505
506 if (!table->num_targets)
507 return !ti->begin;
508
509 prev = &table->targets[table->num_targets - 1];
510 return (ti->begin == (prev->begin + prev->len));
511}
512
513
514
515
516
517
518
519
520
521
522
523static char **realloc_argv(unsigned *size, char **old_argv)
524{
525 char **argv;
526 unsigned new_size;
527 gfp_t gfp;
528
529 if (*size) {
530 new_size = *size * 2;
531 gfp = GFP_KERNEL;
532 } else {
533 new_size = 8;
534 gfp = GFP_NOIO;
535 }
536 argv = kmalloc(new_size * sizeof(*argv), gfp);
537 if (argv) {
538 memcpy(argv, old_argv, *size * sizeof(*argv));
539 *size = new_size;
540 }
541
542 kfree(old_argv);
543 return argv;
544}
545
546
547
548
549int dm_split_args(int *argc, char ***argvp, char *input)
550{
551 char *start, *end = input, *out, **argv = NULL;
552 unsigned array_size = 0;
553
554 *argc = 0;
555
556 if (!input) {
557 *argvp = NULL;
558 return 0;
559 }
560
561 argv = realloc_argv(&array_size, argv);
562 if (!argv)
563 return -ENOMEM;
564
565 while (1) {
566
567 start = skip_spaces(end);
568
569 if (!*start)
570 break;
571
572
573 end = out = start;
574 while (*end) {
575
576 if (*end == '\\' && *(end + 1)) {
577 *out++ = *(end + 1);
578 end += 2;
579 continue;
580 }
581
582 if (isspace(*end))
583 break;
584
585 *out++ = *end++;
586 }
587
588
589 if ((*argc + 1) > array_size) {
590 argv = realloc_argv(&array_size, argv);
591 if (!argv)
592 return -ENOMEM;
593 }
594
595
596 if (*end)
597 end++;
598
599
600 *out = '\0';
601 argv[*argc] = start;
602 (*argc)++;
603 }
604
605 *argvp = argv;
606 return 0;
607}
608
609
610
611
612
613
614
615
616static int validate_hardware_logical_block_alignment(struct dm_table *table,
617 struct queue_limits *limits)
618{
619
620
621
622
623 unsigned short device_logical_block_size_sects =
624 limits->logical_block_size >> SECTOR_SHIFT;
625
626
627
628
629 unsigned short next_target_start = 0;
630
631
632
633
634
635 unsigned short remaining = 0;
636
637 struct dm_target *uninitialized_var(ti);
638 struct queue_limits ti_limits;
639 struct queue_limits_aux ti_limits_aux;
640 unsigned i;
641
642
643
644
645
646 ti_limits.limits_aux = &ti_limits_aux;
647
648
649
650
651 for (i = 0; i < dm_table_get_num_targets(table); i++) {
652 ti = dm_table_get_target(table, i);
653
654 blk_set_stacking_limits(&ti_limits);
655
656
657 if (ti->type->iterate_devices)
658 ti->type->iterate_devices(ti, dm_set_device_limits,
659 &ti_limits);
660
661
662
663
664
665 if (remaining < ti->len &&
666 remaining & ((ti_limits.logical_block_size >>
667 SECTOR_SHIFT) - 1))
668 break;
669
670 next_target_start =
671 (unsigned short) ((next_target_start + ti->len) &
672 (device_logical_block_size_sects - 1));
673 remaining = next_target_start ?
674 device_logical_block_size_sects - next_target_start : 0;
675 }
676
677 if (remaining) {
678 DMWARN("%s: table line %u (start sect %llu len %llu) "
679 "not aligned to h/w logical block size %u",
680 dm_device_name(table->md), i,
681 (unsigned long long) ti->begin,
682 (unsigned long long) ti->len,
683 limits->logical_block_size);
684 return -EINVAL;
685 }
686
687 return 0;
688}
689
690int dm_table_add_target(struct dm_table *t, const char *type,
691 sector_t start, sector_t len, char *params)
692{
693 int r = -EINVAL, argc;
694 char **argv;
695 struct dm_target *tgt;
696
697 if (t->singleton) {
698 DMERR("%s: target type %s must appear alone in table",
699 dm_device_name(t->md), t->targets->type->name);
700 return -EINVAL;
701 }
702
703 BUG_ON(t->num_targets >= t->num_allocated);
704
705 tgt = t->targets + t->num_targets;
706 memset(tgt, 0, sizeof(*tgt));
707
708 if (!len) {
709 DMERR("%s: zero-length target", dm_device_name(t->md));
710 return -EINVAL;
711 }
712
713 tgt->type = dm_get_target_type(type);
714 if (!tgt->type) {
715 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
716 return -EINVAL;
717 }
718
719 if (dm_target_needs_singleton(tgt->type)) {
720 if (t->num_targets) {
721 tgt->error = "singleton target type must appear alone in table";
722 goto bad;
723 }
724 t->singleton = true;
725 }
726
727 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
728 tgt->error = "target type may not be included in a read-only table";
729 goto bad;
730 }
731
732 if (t->immutable_target_type) {
733 if (t->immutable_target_type != tgt->type) {
734 tgt->error = "immutable target type cannot be mixed with other target types";
735 goto bad;
736 }
737 } else if (dm_target_is_immutable(tgt->type)) {
738 if (t->num_targets) {
739 tgt->error = "immutable target type cannot be mixed with other target types";
740 goto bad;
741 }
742 t->immutable_target_type = tgt->type;
743 }
744
745 tgt->table = t;
746 tgt->begin = start;
747 tgt->len = len;
748 tgt->error = "Unknown error";
749
750
751
752
753 if (!adjoin(t, tgt)) {
754 tgt->error = "Gap in table";
755 goto bad;
756 }
757
758 r = dm_split_args(&argc, &argv, params);
759 if (r) {
760 tgt->error = "couldn't split parameters (insufficient memory)";
761 goto bad;
762 }
763
764 r = tgt->type->ctr(tgt, argc, argv);
765 kfree(argv);
766 if (r)
767 goto bad;
768
769 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
770
771 if (!tgt->num_discard_bios && tgt->discards_supported)
772 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
773 dm_device_name(t->md), type);
774
775 return 0;
776
777 bad:
778 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
779 dm_put_target_type(tgt->type);
780 return r;
781}
782
783
784
785
786static int validate_next_arg(const struct dm_arg *arg,
787 struct dm_arg_set *arg_set,
788 unsigned *value, char **error, unsigned grouped)
789{
790 const char *arg_str = dm_shift_arg(arg_set);
791 char dummy;
792
793 if (!arg_str ||
794 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
795 (*value < arg->min) ||
796 (*value > arg->max) ||
797 (grouped && arg_set->argc < *value)) {
798 *error = arg->error;
799 return -EINVAL;
800 }
801
802 return 0;
803}
804
805int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
806 unsigned *value, char **error)
807{
808 return validate_next_arg(arg, arg_set, value, error, 0);
809}
810EXPORT_SYMBOL(dm_read_arg);
811
812int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
813 unsigned *value, char **error)
814{
815 return validate_next_arg(arg, arg_set, value, error, 1);
816}
817EXPORT_SYMBOL(dm_read_arg_group);
818
819const char *dm_shift_arg(struct dm_arg_set *as)
820{
821 char *r;
822
823 if (as->argc) {
824 as->argc--;
825 r = *as->argv;
826 as->argv++;
827 return r;
828 }
829
830 return NULL;
831}
832EXPORT_SYMBOL(dm_shift_arg);
833
834void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
835{
836 BUG_ON(as->argc < num_args);
837 as->argc -= num_args;
838 as->argv += num_args;
839}
840EXPORT_SYMBOL(dm_consume_args);
841
842static bool __table_type_bio_based(enum dm_queue_mode table_type)
843{
844 return (table_type == DM_TYPE_BIO_BASED ||
845 table_type == DM_TYPE_DAX_BIO_BASED);
846}
847
848static bool __table_type_request_based(enum dm_queue_mode table_type)
849{
850 return (table_type == DM_TYPE_REQUEST_BASED ||
851 table_type == DM_TYPE_MQ_REQUEST_BASED);
852}
853
854void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
855{
856 t->type = type;
857}
858EXPORT_SYMBOL_GPL(dm_table_set_type);
859
860static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
861 sector_t start, sector_t len, void *data)
862{
863 return bdev_dax_supported(dev->bdev, PAGE_SIZE);
864}
865
866static bool dm_table_supports_dax(struct dm_table *t)
867{
868 struct dm_target *ti;
869 unsigned i;
870
871
872 for (i = 0; i < dm_table_get_num_targets(t); i++) {
873 ti = dm_table_get_target(t, i);
874
875 if (!ti->type->direct_access)
876 return false;
877
878 if (!ti->type->iterate_devices ||
879 !ti->type->iterate_devices(ti, device_supports_dax, NULL))
880 return false;
881 }
882
883 return true;
884}
885
886static int dm_table_determine_type(struct dm_table *t)
887{
888 unsigned i;
889 unsigned bio_based = 0, request_based = 0, hybrid = 0;
890 unsigned sq_count = 0, mq_count = 0;
891 struct dm_target *tgt;
892 struct dm_dev_internal *dd;
893 struct list_head *devices = dm_table_get_devices(t);
894 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
895
896 if (t->type != DM_TYPE_NONE) {
897
898 if (t->type == DM_TYPE_BIO_BASED)
899 return 0;
900 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
901 goto verify_rq_based;
902 }
903
904 for (i = 0; i < t->num_targets; i++) {
905 tgt = t->targets + i;
906 if (dm_target_hybrid(tgt))
907 hybrid = 1;
908 else if (dm_target_request_based(tgt))
909 request_based = 1;
910 else
911 bio_based = 1;
912
913 if (bio_based && request_based) {
914 DMWARN("Inconsistent table: different target types"
915 " can't be mixed up");
916 return -EINVAL;
917 }
918 }
919
920 if (hybrid && !bio_based && !request_based) {
921
922
923
924
925
926 if (__table_type_request_based(live_md_type))
927 request_based = 1;
928 else
929 bio_based = 1;
930 }
931
932 if (bio_based) {
933
934 t->type = DM_TYPE_BIO_BASED;
935 if (dm_table_supports_dax(t) ||
936 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED))
937 t->type = DM_TYPE_DAX_BIO_BASED;
938 return 0;
939 }
940
941 BUG_ON(!request_based);
942
943
944
945
946
947 t->type = DM_TYPE_REQUEST_BASED;
948
949verify_rq_based:
950
951
952
953
954
955
956 if (t->num_targets > 1) {
957 DMWARN("Request-based dm doesn't support multiple targets yet");
958 return -EINVAL;
959 }
960
961 if (list_empty(devices)) {
962 int srcu_idx;
963 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
964
965
966 if (live_table) {
967 t->type = live_table->type;
968 t->all_blk_mq = live_table->all_blk_mq;
969 }
970 dm_put_live_table(t->md, srcu_idx);
971 return 0;
972 }
973
974
975 list_for_each_entry(dd, devices, list) {
976 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
977
978 if (!blk_queue_stackable(q)) {
979 DMERR("table load rejected: including"
980 " non-request-stackable devices");
981 return -EINVAL;
982 }
983
984 if (q->mq_ops)
985 mq_count++;
986 else
987 sq_count++;
988 }
989 if (sq_count && mq_count) {
990 DMERR("table load rejected: not all devices are blk-mq request-stackable");
991 return -EINVAL;
992 }
993 t->all_blk_mq = mq_count > 0;
994
995 if (t->type == DM_TYPE_MQ_REQUEST_BASED && !t->all_blk_mq) {
996 DMERR("table load rejected: all devices are not blk-mq request-stackable");
997 return -EINVAL;
998 }
999
1000 return 0;
1001}
1002
1003enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1004{
1005 return t->type;
1006}
1007
1008struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1009{
1010 return t->immutable_target_type;
1011}
1012
1013struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1014{
1015
1016 if (t->num_targets > 1 ||
1017 !dm_target_is_immutable(t->targets[0].type))
1018 return NULL;
1019
1020 return t->targets;
1021}
1022
1023struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1024{
1025 struct dm_target *ti;
1026 unsigned i;
1027
1028 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1029 ti = dm_table_get_target(t, i);
1030 if (dm_target_is_wildcard(ti->type))
1031 return ti;
1032 }
1033
1034 return NULL;
1035}
1036
1037bool dm_table_bio_based(struct dm_table *t)
1038{
1039 return __table_type_bio_based(dm_table_get_type(t));
1040}
1041
1042bool dm_table_request_based(struct dm_table *t)
1043{
1044 return __table_type_request_based(dm_table_get_type(t));
1045}
1046
1047bool dm_table_all_blk_mq_devices(struct dm_table *t)
1048{
1049 return t->all_blk_mq;
1050}
1051
1052static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1053{
1054 enum dm_queue_mode type = dm_table_get_type(t);
1055 unsigned per_io_data_size = 0;
1056 struct dm_target *tgt;
1057 unsigned i;
1058
1059 if (unlikely(type == DM_TYPE_NONE)) {
1060 DMWARN("no table type is set, can't allocate mempools");
1061 return -EINVAL;
1062 }
1063
1064 if (__table_type_bio_based(type))
1065 for (i = 0; i < t->num_targets; i++) {
1066 tgt = t->targets + i;
1067 per_io_data_size = max(per_io_data_size, tgt->per_io_data_size);
1068 }
1069
1070 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_io_data_size);
1071 if (!t->mempools)
1072 return -ENOMEM;
1073
1074 return 0;
1075}
1076
1077void dm_table_free_md_mempools(struct dm_table *t)
1078{
1079 dm_free_md_mempools(t->mempools);
1080 t->mempools = NULL;
1081}
1082
1083struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1084{
1085 return t->mempools;
1086}
1087
1088static int setup_indexes(struct dm_table *t)
1089{
1090 int i;
1091 unsigned int total = 0;
1092 sector_t *indexes;
1093
1094
1095 for (i = t->depth - 2; i >= 0; i--) {
1096 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1097 total += t->counts[i];
1098 }
1099
1100 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1101 if (!indexes)
1102 return -ENOMEM;
1103
1104
1105 for (i = t->depth - 2; i >= 0; i--) {
1106 t->index[i] = indexes;
1107 indexes += (KEYS_PER_NODE * t->counts[i]);
1108 setup_btree_index(i, t);
1109 }
1110
1111 return 0;
1112}
1113
1114
1115
1116
1117static int dm_table_build_index(struct dm_table *t)
1118{
1119 int r = 0;
1120 unsigned int leaf_nodes;
1121
1122
1123 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1124 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1125
1126
1127 t->counts[t->depth - 1] = leaf_nodes;
1128 t->index[t->depth - 1] = t->highs;
1129
1130 if (t->depth >= 2)
1131 r = setup_indexes(t);
1132
1133 return r;
1134}
1135
1136
1137
1138
1139
1140
1141
1142
1143static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
1144 bool match_all)
1145{
1146 struct list_head *devices = dm_table_get_devices(t);
1147 struct dm_dev_internal *dd = NULL;
1148 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1149
1150 list_for_each_entry(dd, devices, list) {
1151 template_disk = dd->dm_dev->bdev->bd_disk;
1152 if (!blk_get_integrity(template_disk))
1153 goto no_integrity;
1154 if (!match_all && !blk_integrity_is_initialized(template_disk))
1155 continue;
1156 else if (prev_disk &&
1157 blk_integrity_compare(prev_disk, template_disk) < 0)
1158 goto no_integrity;
1159 prev_disk = template_disk;
1160 }
1161
1162 return template_disk;
1163
1164no_integrity:
1165 if (prev_disk)
1166 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1167 dm_device_name(t->md),
1168 prev_disk->disk_name,
1169 template_disk->disk_name);
1170 return NULL;
1171}
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
1184{
1185 struct gendisk *template_disk = NULL;
1186
1187 template_disk = dm_table_get_integrity_disk(t, false);
1188 if (!template_disk)
1189 return 0;
1190
1191 if (!blk_integrity_is_initialized(dm_disk(md))) {
1192 t->integrity_supported = true;
1193 return blk_integrity_register(dm_disk(md), NULL);
1194 }
1195
1196
1197
1198
1199
1200 if (blk_integrity_is_initialized(template_disk) &&
1201 blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1202 DMWARN("%s: conflict with existing integrity profile: "
1203 "%s profile mismatch",
1204 dm_device_name(t->md),
1205 template_disk->disk_name);
1206 return 1;
1207 }
1208
1209
1210 t->integrity_supported = true;
1211 return 0;
1212}
1213
1214
1215
1216
1217
1218int dm_table_complete(struct dm_table *t)
1219{
1220 int r;
1221
1222 r = dm_table_determine_type(t);
1223 if (r) {
1224 DMERR("unable to determine table type");
1225 return r;
1226 }
1227
1228 r = dm_table_build_index(t);
1229 if (r) {
1230 DMERR("unable to build btrees");
1231 return r;
1232 }
1233
1234 r = dm_table_prealloc_integrity(t, t->md);
1235 if (r) {
1236 DMERR("could not register integrity profile.");
1237 return r;
1238 }
1239
1240 r = dm_table_alloc_md_mempools(t, t->md);
1241 if (r)
1242 DMERR("unable to allocate mempools");
1243
1244 return r;
1245}
1246
1247static DEFINE_MUTEX(_event_lock);
1248void dm_table_event_callback(struct dm_table *t,
1249 void (*fn)(void *), void *context)
1250{
1251 mutex_lock(&_event_lock);
1252 t->event_fn = fn;
1253 t->event_context = context;
1254 mutex_unlock(&_event_lock);
1255}
1256
1257void dm_table_event(struct dm_table *t)
1258{
1259
1260
1261
1262
1263 BUG_ON(in_interrupt());
1264
1265 mutex_lock(&_event_lock);
1266 if (t->event_fn)
1267 t->event_fn(t->event_context);
1268 mutex_unlock(&_event_lock);
1269}
1270EXPORT_SYMBOL(dm_table_event);
1271
1272sector_t dm_table_get_size(struct dm_table *t)
1273{
1274 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1275}
1276EXPORT_SYMBOL(dm_table_get_size);
1277
1278struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1279{
1280 if (index >= t->num_targets)
1281 return NULL;
1282
1283 return t->targets + index;
1284}
1285
1286
1287
1288
1289
1290
1291
1292struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1293{
1294 unsigned int l, n = 0, k = 0;
1295 sector_t *node;
1296
1297 for (l = 0; l < t->depth; l++) {
1298 n = get_child(n, k);
1299 node = get_node(t, l, n);
1300
1301 for (k = 0; k < KEYS_PER_NODE; k++)
1302 if (node[k] >= sector)
1303 break;
1304 }
1305
1306 return &t->targets[(KEYS_PER_NODE * n) + k];
1307}
1308
1309static int count_device(struct dm_target *ti, struct dm_dev *dev,
1310 sector_t start, sector_t len, void *data)
1311{
1312 unsigned *num_devices = data;
1313
1314 (*num_devices)++;
1315
1316 return 0;
1317}
1318
1319
1320
1321
1322
1323
1324
1325bool dm_table_has_no_data_devices(struct dm_table *table)
1326{
1327 struct dm_target *ti;
1328 unsigned i, num_devices;
1329
1330 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1331 ti = dm_table_get_target(table, i);
1332
1333 if (!ti->type->iterate_devices)
1334 return false;
1335
1336 num_devices = 0;
1337 ti->type->iterate_devices(ti, count_device, &num_devices);
1338 if (num_devices)
1339 return false;
1340 }
1341
1342 return true;
1343}
1344
1345
1346
1347
1348int dm_calculate_queue_limits(struct dm_table *table,
1349 struct queue_limits *limits)
1350{
1351 struct dm_target *uninitialized_var(ti);
1352 struct queue_limits ti_limits;
1353 struct queue_limits_aux ti_limits_aux;
1354 unsigned i;
1355
1356 blk_set_stacking_limits(limits);
1357
1358
1359
1360
1361
1362 ti_limits.limits_aux = &ti_limits_aux;
1363
1364 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1365 blk_set_stacking_limits(&ti_limits);
1366
1367 ti = dm_table_get_target(table, i);
1368
1369 if (!ti->type->iterate_devices)
1370 goto combine_limits;
1371
1372
1373
1374
1375 ti->type->iterate_devices(ti, dm_set_device_limits,
1376 &ti_limits);
1377
1378
1379 if (ti->type->io_hints)
1380 ti->type->io_hints(ti, &ti_limits);
1381
1382
1383
1384
1385
1386 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1387 &ti_limits))
1388 return -EINVAL;
1389
1390combine_limits:
1391
1392
1393
1394
1395 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1396 DMWARN("%s: adding target device "
1397 "(start sect %llu len %llu) "
1398 "caused an alignment inconsistency",
1399 dm_device_name(table->md),
1400 (unsigned long long) ti->begin,
1401 (unsigned long long) ti->len);
1402 }
1403
1404 return validate_hardware_logical_block_alignment(table, limits);
1405}
1406
1407
1408
1409
1410
1411
1412
1413
1414static void dm_table_set_integrity(struct dm_table *t)
1415{
1416 struct gendisk *template_disk = NULL;
1417
1418 if (!blk_get_integrity(dm_disk(t->md)))
1419 return;
1420
1421 template_disk = dm_table_get_integrity_disk(t, true);
1422 if (template_disk)
1423 blk_integrity_register(dm_disk(t->md),
1424 blk_get_integrity(template_disk));
1425 else if (blk_integrity_is_initialized(dm_disk(t->md)))
1426 DMWARN("%s: device no longer has a valid integrity profile",
1427 dm_device_name(t->md));
1428 else
1429 DMWARN("%s: unable to establish an integrity profile",
1430 dm_device_name(t->md));
1431}
1432
1433static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1434 sector_t start, sector_t len, void *data)
1435{
1436 unsigned flush = (*(unsigned *)data);
1437 struct request_queue *q = bdev_get_queue(dev->bdev);
1438
1439 return q && (q->flush_flags & flush);
1440}
1441
1442static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1443{
1444 struct dm_target *ti;
1445 unsigned i;
1446
1447
1448
1449
1450
1451
1452
1453 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1454 ti = dm_table_get_target(t, i);
1455
1456 if (!ti->num_flush_bios)
1457 continue;
1458
1459 if (ti->flush_supported)
1460 return true;
1461
1462 if (ti->type->iterate_devices &&
1463 ti->type->iterate_devices(ti, device_flush_capable, &flush))
1464 return true;
1465 }
1466
1467 return false;
1468}
1469
1470static bool dm_table_discard_zeroes_data(struct dm_table *t)
1471{
1472 struct dm_target *ti;
1473 unsigned i = 0;
1474
1475
1476 while (i < dm_table_get_num_targets(t)) {
1477 ti = dm_table_get_target(t, i++);
1478
1479 if (ti->discard_zeroes_data_unsupported)
1480 return false;
1481 }
1482
1483 return true;
1484}
1485
1486static int device_dax_write_cache_enabled(struct dm_target *ti,
1487 struct dm_dev *dev, sector_t start,
1488 sector_t len, void *data)
1489{
1490 struct dax_device *dax_dev = dev->dax_dev;
1491
1492 if (!dax_dev)
1493 return false;
1494
1495 if (dax_write_cache_enabled(dax_dev))
1496 return true;
1497 return false;
1498}
1499
1500static int dm_table_supports_dax_write_cache(struct dm_table *t)
1501{
1502 struct dm_target *ti;
1503 unsigned i;
1504
1505 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1506 ti = dm_table_get_target(t, i);
1507
1508 if (ti->type->iterate_devices &&
1509 ti->type->iterate_devices(ti,
1510 device_dax_write_cache_enabled, NULL))
1511 return true;
1512 }
1513
1514 return false;
1515}
1516
1517static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1518 sector_t start, sector_t len, void *data)
1519{
1520 struct request_queue *q = bdev_get_queue(dev->bdev);
1521
1522 return q && blk_queue_nonrot(q);
1523}
1524
1525static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1526 sector_t start, sector_t len, void *data)
1527{
1528 struct request_queue *q = bdev_get_queue(dev->bdev);
1529
1530 return q && !blk_queue_add_random(q);
1531}
1532
1533static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1534 sector_t start, sector_t len, void *data)
1535{
1536 struct request_queue *q = bdev_get_queue(dev->bdev);
1537
1538 return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1539}
1540
1541static bool dm_table_all_devices_attribute(struct dm_table *t,
1542 iterate_devices_callout_fn func)
1543{
1544 struct dm_target *ti;
1545 unsigned i;
1546
1547 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1548 ti = dm_table_get_target(t, i);
1549
1550 if (!ti->type->iterate_devices ||
1551 !ti->type->iterate_devices(ti, func, NULL))
1552 return false;
1553 }
1554
1555 return true;
1556}
1557
1558static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1559 sector_t start, sector_t len, void *data)
1560{
1561 struct request_queue *q = bdev_get_queue(dev->bdev);
1562
1563 return q && !q->limits.max_write_same_sectors;
1564}
1565
1566static bool dm_table_supports_write_same(struct dm_table *t)
1567{
1568 struct dm_target *ti;
1569 unsigned i;
1570
1571 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1572 ti = dm_table_get_target(t, i);
1573
1574 if (!ti->num_write_same_bios)
1575 return false;
1576
1577 if (!ti->type->iterate_devices ||
1578 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1579 return false;
1580 }
1581
1582 return true;
1583}
1584
1585static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1586 sector_t start, sector_t len, void *data)
1587{
1588 struct request_queue *q = bdev_get_queue(dev->bdev);
1589
1590 return q && !blk_queue_discard(q);
1591}
1592
1593static bool dm_table_supports_discards(struct dm_table *t)
1594{
1595 struct dm_target *ti;
1596 unsigned i;
1597
1598 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1599 ti = dm_table_get_target(t, i);
1600
1601 if (!ti->num_discard_bios)
1602 return false;
1603
1604
1605
1606
1607
1608
1609 if (!ti->discards_supported &&
1610 (!ti->type->iterate_devices ||
1611 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1612 return false;
1613 }
1614
1615 return true;
1616}
1617
1618void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1619 struct queue_limits *limits)
1620{
1621 unsigned flush = 0;
1622 struct queue_limits_aux *limits_aux = q->limits.limits_aux;
1623
1624
1625
1626
1627 q->limits = *limits;
1628 memcpy(limits_aux, limits->limits_aux, sizeof(struct queue_limits_aux));
1629 q->limits.limits_aux = limits_aux;
1630
1631 if (!dm_table_supports_discards(t)) {
1632 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1633
1634 q->limits.max_discard_sectors = 0;
1635 q->limits.discard_granularity = 0;
1636 q->limits.discard_alignment = 0;
1637 q->limits.discard_misaligned = 0;
1638 } else
1639 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1640
1641 if (dm_table_supports_flush(t, REQ_FLUSH)) {
1642 flush |= REQ_FLUSH;
1643 if (dm_table_supports_flush(t, REQ_FUA))
1644 flush |= REQ_FUA;
1645 }
1646 blk_queue_flush(q, flush);
1647
1648 if (dm_table_supports_dax(t))
1649 queue_flag_set_unlocked(QUEUE_FLAG_DAX, q);
1650 else
1651 queue_flag_clear_unlocked(QUEUE_FLAG_DAX, q);
1652
1653 if (dm_table_supports_dax_write_cache(t))
1654 dax_write_cache(t->md->dax_dev, true);
1655
1656 if (!dm_table_discard_zeroes_data(t))
1657 q->limits.discard_zeroes_data = 0;
1658
1659
1660 if (dm_table_all_devices_attribute(t, device_is_nonrot))
1661 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1662 else
1663 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1664
1665 if (!dm_table_supports_write_same(t))
1666 q->limits.max_write_same_sectors = 0;
1667
1668 if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1669 queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1670 else
1671 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1672
1673 dm_table_set_integrity(t);
1674
1675
1676
1677
1678
1679
1680
1681 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1682 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693 smp_mb();
1694 if (dm_table_request_based(t))
1695 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1696}
1697
1698unsigned int dm_table_get_num_targets(struct dm_table *t)
1699{
1700 return t->num_targets;
1701}
1702
1703struct list_head *dm_table_get_devices(struct dm_table *t)
1704{
1705 return &t->devices;
1706}
1707
1708fmode_t dm_table_get_mode(struct dm_table *t)
1709{
1710 return t->mode;
1711}
1712EXPORT_SYMBOL(dm_table_get_mode);
1713
1714enum suspend_mode {
1715 PRESUSPEND,
1716 PRESUSPEND_UNDO,
1717 POSTSUSPEND,
1718};
1719
1720static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1721{
1722 int i = t->num_targets;
1723 struct dm_target *ti = t->targets;
1724
1725 lockdep_assert_held(&t->md->suspend_lock);
1726
1727 while (i--) {
1728 switch (mode) {
1729 case PRESUSPEND:
1730 if (ti->type->presuspend)
1731 ti->type->presuspend(ti);
1732 break;
1733 case PRESUSPEND_UNDO:
1734 if (ti->type->presuspend_undo)
1735 ti->type->presuspend_undo(ti);
1736 break;
1737 case POSTSUSPEND:
1738 if (ti->type->postsuspend)
1739 ti->type->postsuspend(ti);
1740 break;
1741 }
1742 ti++;
1743 }
1744}
1745
1746void dm_table_presuspend_targets(struct dm_table *t)
1747{
1748 if (!t)
1749 return;
1750
1751 suspend_targets(t, PRESUSPEND);
1752}
1753
1754void dm_table_presuspend_undo_targets(struct dm_table *t)
1755{
1756 if (!t)
1757 return;
1758
1759 suspend_targets(t, PRESUSPEND_UNDO);
1760}
1761
1762void dm_table_postsuspend_targets(struct dm_table *t)
1763{
1764 if (!t)
1765 return;
1766
1767 suspend_targets(t, POSTSUSPEND);
1768}
1769
1770int dm_table_resume_targets(struct dm_table *t)
1771{
1772 int i, r = 0;
1773
1774 lockdep_assert_held(&t->md->suspend_lock);
1775
1776 for (i = 0; i < t->num_targets; i++) {
1777 struct dm_target *ti = t->targets + i;
1778
1779 if (!ti->type->preresume)
1780 continue;
1781
1782 r = ti->type->preresume(ti);
1783 if (r) {
1784 DMERR("%s: %s: preresume failed, error = %d",
1785 dm_device_name(t->md), ti->type->name, r);
1786 return r;
1787 }
1788 }
1789
1790 for (i = 0; i < t->num_targets; i++) {
1791 struct dm_target *ti = t->targets + i;
1792
1793 if (ti->type->resume)
1794 ti->type->resume(ti);
1795 }
1796
1797 return 0;
1798}
1799
1800void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1801{
1802 list_add(&cb->list, &t->target_callbacks);
1803}
1804EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1805
1806int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1807{
1808 struct dm_dev_internal *dd;
1809 struct list_head *devices = dm_table_get_devices(t);
1810 struct dm_target_callbacks *cb;
1811 int r = 0;
1812
1813 list_for_each_entry(dd, devices, list) {
1814 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1815 char b[BDEVNAME_SIZE];
1816
1817 if (likely(q))
1818 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1819 else
1820 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1821 dm_device_name(t->md),
1822 bdevname(dd->dm_dev->bdev, b));
1823 }
1824
1825 list_for_each_entry(cb, &t->target_callbacks, list)
1826 if (cb->congested_fn)
1827 r |= cb->congested_fn(cb, bdi_bits);
1828
1829 return r;
1830}
1831
1832struct mapped_device *dm_table_get_md(struct dm_table *t)
1833{
1834 return t->md;
1835}
1836EXPORT_SYMBOL(dm_table_get_md);
1837
1838void dm_table_run_md_queue_async(struct dm_table *t)
1839{
1840 struct mapped_device *md;
1841 struct request_queue *queue;
1842 unsigned long flags;
1843
1844 if (!dm_table_request_based(t))
1845 return;
1846
1847 md = dm_table_get_md(t);
1848 queue = dm_get_md_queue(md);
1849 if (queue) {
1850 if (queue->mq_ops)
1851 blk_mq_run_hw_queues(queue, true);
1852 else {
1853 spin_lock_irqsave(queue->queue_lock, flags);
1854 blk_run_queue_async(queue);
1855 spin_unlock_irqrestore(queue->queue_lock, flags);
1856 }
1857 }
1858}
1859EXPORT_SYMBOL(dm_table_run_md_queue_async);
1860
1861