linux/drivers/net/ethernet/intel/ixgbe/ixgbe_common.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4#include <linux/pci.h>
   5#include <linux/delay.h>
   6#include <linux/sched.h>
   7#include <linux/netdevice.h>
   8
   9#include "ixgbe.h"
  10#include "ixgbe_common.h"
  11#include "ixgbe_phy.h"
  12
  13static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
  14static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
  15static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
  16static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
  17static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
  18static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
  19                                        u16 count);
  20static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
  21static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  22static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  23static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
  24
  25static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
  26static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
  27static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
  28                                             u16 words, u16 *data);
  29static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
  30                                             u16 words, u16 *data);
  31static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
  32                                                 u16 offset);
  33static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
  34
  35/* Base table for registers values that change by MAC */
  36const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
  37        IXGBE_MVALS_INIT(8259X)
  38};
  39
  40/**
  41 *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
  42 *  control
  43 *  @hw: pointer to hardware structure
  44 *
  45 *  There are several phys that do not support autoneg flow control. This
  46 *  function check the device id to see if the associated phy supports
  47 *  autoneg flow control.
  48 **/
  49bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
  50{
  51        bool supported = false;
  52        ixgbe_link_speed speed;
  53        bool link_up;
  54
  55        switch (hw->phy.media_type) {
  56        case ixgbe_media_type_fiber:
  57                /* flow control autoneg black list */
  58                switch (hw->device_id) {
  59                case IXGBE_DEV_ID_X550EM_A_SFP:
  60                case IXGBE_DEV_ID_X550EM_A_SFP_N:
  61                        supported = false;
  62                        break;
  63                default:
  64                        hw->mac.ops.check_link(hw, &speed, &link_up, false);
  65                        /* if link is down, assume supported */
  66                        if (link_up)
  67                                supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
  68                                true : false;
  69                        else
  70                                supported = true;
  71                }
  72
  73                break;
  74        case ixgbe_media_type_backplane:
  75                if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
  76                        supported = false;
  77                else
  78                        supported = true;
  79                break;
  80        case ixgbe_media_type_copper:
  81                /* only some copper devices support flow control autoneg */
  82                switch (hw->device_id) {
  83                case IXGBE_DEV_ID_82599_T3_LOM:
  84                case IXGBE_DEV_ID_X540T:
  85                case IXGBE_DEV_ID_X540T1:
  86                case IXGBE_DEV_ID_X550T:
  87                case IXGBE_DEV_ID_X550T1:
  88                case IXGBE_DEV_ID_X550EM_X_10G_T:
  89                case IXGBE_DEV_ID_X550EM_A_10G_T:
  90                case IXGBE_DEV_ID_X550EM_A_1G_T:
  91                case IXGBE_DEV_ID_X550EM_A_1G_T_L:
  92                        supported = true;
  93                        break;
  94                default:
  95                        break;
  96                }
  97        default:
  98                break;
  99        }
 100
 101        if (!supported)
 102                hw_dbg(hw, "Device %x does not support flow control autoneg\n",
 103                       hw->device_id);
 104
 105        return supported;
 106}
 107
 108/**
 109 *  ixgbe_setup_fc_generic - Set up flow control
 110 *  @hw: pointer to hardware structure
 111 *
 112 *  Called at init time to set up flow control.
 113 **/
 114s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
 115{
 116        s32 ret_val = 0;
 117        u32 reg = 0, reg_bp = 0;
 118        u16 reg_cu = 0;
 119        bool locked = false;
 120
 121        /*
 122         * Validate the requested mode.  Strict IEEE mode does not allow
 123         * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
 124         */
 125        if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
 126                hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
 127                return IXGBE_ERR_INVALID_LINK_SETTINGS;
 128        }
 129
 130        /*
 131         * 10gig parts do not have a word in the EEPROM to determine the
 132         * default flow control setting, so we explicitly set it to full.
 133         */
 134        if (hw->fc.requested_mode == ixgbe_fc_default)
 135                hw->fc.requested_mode = ixgbe_fc_full;
 136
 137        /*
 138         * Set up the 1G and 10G flow control advertisement registers so the
 139         * HW will be able to do fc autoneg once the cable is plugged in.  If
 140         * we link at 10G, the 1G advertisement is harmless and vice versa.
 141         */
 142        switch (hw->phy.media_type) {
 143        case ixgbe_media_type_backplane:
 144                /* some MAC's need RMW protection on AUTOC */
 145                ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
 146                if (ret_val)
 147                        return ret_val;
 148
 149                /* fall through - only backplane uses autoc */
 150        case ixgbe_media_type_fiber:
 151                reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
 152
 153                break;
 154        case ixgbe_media_type_copper:
 155                hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
 156                                        MDIO_MMD_AN, &reg_cu);
 157                break;
 158        default:
 159                break;
 160        }
 161
 162        /*
 163         * The possible values of fc.requested_mode are:
 164         * 0: Flow control is completely disabled
 165         * 1: Rx flow control is enabled (we can receive pause frames,
 166         *    but not send pause frames).
 167         * 2: Tx flow control is enabled (we can send pause frames but
 168         *    we do not support receiving pause frames).
 169         * 3: Both Rx and Tx flow control (symmetric) are enabled.
 170         * other: Invalid.
 171         */
 172        switch (hw->fc.requested_mode) {
 173        case ixgbe_fc_none:
 174                /* Flow control completely disabled by software override. */
 175                reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
 176                if (hw->phy.media_type == ixgbe_media_type_backplane)
 177                        reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
 178                                    IXGBE_AUTOC_ASM_PAUSE);
 179                else if (hw->phy.media_type == ixgbe_media_type_copper)
 180                        reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
 181                break;
 182        case ixgbe_fc_tx_pause:
 183                /*
 184                 * Tx Flow control is enabled, and Rx Flow control is
 185                 * disabled by software override.
 186                 */
 187                reg |= IXGBE_PCS1GANA_ASM_PAUSE;
 188                reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
 189                if (hw->phy.media_type == ixgbe_media_type_backplane) {
 190                        reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
 191                        reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
 192                } else if (hw->phy.media_type == ixgbe_media_type_copper) {
 193                        reg_cu |= IXGBE_TAF_ASM_PAUSE;
 194                        reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
 195                }
 196                break;
 197        case ixgbe_fc_rx_pause:
 198                /*
 199                 * Rx Flow control is enabled and Tx Flow control is
 200                 * disabled by software override. Since there really
 201                 * isn't a way to advertise that we are capable of RX
 202                 * Pause ONLY, we will advertise that we support both
 203                 * symmetric and asymmetric Rx PAUSE, as such we fall
 204                 * through to the fc_full statement.  Later, we will
 205                 * disable the adapter's ability to send PAUSE frames.
 206                 */
 207        case ixgbe_fc_full:
 208                /* Flow control (both Rx and Tx) is enabled by SW override. */
 209                reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
 210                if (hw->phy.media_type == ixgbe_media_type_backplane)
 211                        reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
 212                                  IXGBE_AUTOC_ASM_PAUSE;
 213                else if (hw->phy.media_type == ixgbe_media_type_copper)
 214                        reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
 215                break;
 216        default:
 217                hw_dbg(hw, "Flow control param set incorrectly\n");
 218                return IXGBE_ERR_CONFIG;
 219        }
 220
 221        if (hw->mac.type != ixgbe_mac_X540) {
 222                /*
 223                 * Enable auto-negotiation between the MAC & PHY;
 224                 * the MAC will advertise clause 37 flow control.
 225                 */
 226                IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
 227                reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
 228
 229                /* Disable AN timeout */
 230                if (hw->fc.strict_ieee)
 231                        reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
 232
 233                IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
 234                hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
 235        }
 236
 237        /*
 238         * AUTOC restart handles negotiation of 1G and 10G on backplane
 239         * and copper. There is no need to set the PCS1GCTL register.
 240         *
 241         */
 242        if (hw->phy.media_type == ixgbe_media_type_backplane) {
 243                /* Need the SW/FW semaphore around AUTOC writes if 82599 and
 244                 * LESM is on, likewise reset_pipeline requries the lock as
 245                 * it also writes AUTOC.
 246                 */
 247                ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
 248                if (ret_val)
 249                        return ret_val;
 250
 251        } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
 252                   ixgbe_device_supports_autoneg_fc(hw)) {
 253                hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
 254                                      MDIO_MMD_AN, reg_cu);
 255        }
 256
 257        hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
 258        return ret_val;
 259}
 260
 261/**
 262 *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
 263 *  @hw: pointer to hardware structure
 264 *
 265 *  Starts the hardware by filling the bus info structure and media type, clears
 266 *  all on chip counters, initializes receive address registers, multicast
 267 *  table, VLAN filter table, calls routine to set up link and flow control
 268 *  settings, and leaves transmit and receive units disabled and uninitialized
 269 **/
 270s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
 271{
 272        s32 ret_val;
 273        u32 ctrl_ext;
 274        u16 device_caps;
 275
 276        /* Set the media type */
 277        hw->phy.media_type = hw->mac.ops.get_media_type(hw);
 278
 279        /* Identify the PHY */
 280        hw->phy.ops.identify(hw);
 281
 282        /* Clear the VLAN filter table */
 283        hw->mac.ops.clear_vfta(hw);
 284
 285        /* Clear statistics registers */
 286        hw->mac.ops.clear_hw_cntrs(hw);
 287
 288        /* Set No Snoop Disable */
 289        ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
 290        ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
 291        IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
 292        IXGBE_WRITE_FLUSH(hw);
 293
 294        /* Setup flow control if method for doing so */
 295        if (hw->mac.ops.setup_fc) {
 296                ret_val = hw->mac.ops.setup_fc(hw);
 297                if (ret_val)
 298                        return ret_val;
 299        }
 300
 301        /* Cashe bit indicating need for crosstalk fix */
 302        switch (hw->mac.type) {
 303        case ixgbe_mac_82599EB:
 304        case ixgbe_mac_X550EM_x:
 305        case ixgbe_mac_x550em_a:
 306                hw->mac.ops.get_device_caps(hw, &device_caps);
 307                if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
 308                        hw->need_crosstalk_fix = false;
 309                else
 310                        hw->need_crosstalk_fix = true;
 311                break;
 312        default:
 313                hw->need_crosstalk_fix = false;
 314                break;
 315        }
 316
 317        /* Clear adapter stopped flag */
 318        hw->adapter_stopped = false;
 319
 320        return 0;
 321}
 322
 323/**
 324 *  ixgbe_start_hw_gen2 - Init sequence for common device family
 325 *  @hw: pointer to hw structure
 326 *
 327 * Performs the init sequence common to the second generation
 328 * of 10 GbE devices.
 329 * Devices in the second generation:
 330 *     82599
 331 *     X540
 332 **/
 333s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
 334{
 335        u32 i;
 336
 337        /* Clear the rate limiters */
 338        for (i = 0; i < hw->mac.max_tx_queues; i++) {
 339                IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
 340                IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
 341        }
 342        IXGBE_WRITE_FLUSH(hw);
 343
 344        return 0;
 345}
 346
 347/**
 348 *  ixgbe_init_hw_generic - Generic hardware initialization
 349 *  @hw: pointer to hardware structure
 350 *
 351 *  Initialize the hardware by resetting the hardware, filling the bus info
 352 *  structure and media type, clears all on chip counters, initializes receive
 353 *  address registers, multicast table, VLAN filter table, calls routine to set
 354 *  up link and flow control settings, and leaves transmit and receive units
 355 *  disabled and uninitialized
 356 **/
 357s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
 358{
 359        s32 status;
 360
 361        /* Reset the hardware */
 362        status = hw->mac.ops.reset_hw(hw);
 363
 364        if (status == 0) {
 365                /* Start the HW */
 366                status = hw->mac.ops.start_hw(hw);
 367        }
 368
 369        /* Initialize the LED link active for LED blink support */
 370        if (hw->mac.ops.init_led_link_act)
 371                hw->mac.ops.init_led_link_act(hw);
 372
 373        return status;
 374}
 375
 376/**
 377 *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
 378 *  @hw: pointer to hardware structure
 379 *
 380 *  Clears all hardware statistics counters by reading them from the hardware
 381 *  Statistics counters are clear on read.
 382 **/
 383s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
 384{
 385        u16 i = 0;
 386
 387        IXGBE_READ_REG(hw, IXGBE_CRCERRS);
 388        IXGBE_READ_REG(hw, IXGBE_ILLERRC);
 389        IXGBE_READ_REG(hw, IXGBE_ERRBC);
 390        IXGBE_READ_REG(hw, IXGBE_MSPDC);
 391        for (i = 0; i < 8; i++)
 392                IXGBE_READ_REG(hw, IXGBE_MPC(i));
 393
 394        IXGBE_READ_REG(hw, IXGBE_MLFC);
 395        IXGBE_READ_REG(hw, IXGBE_MRFC);
 396        IXGBE_READ_REG(hw, IXGBE_RLEC);
 397        IXGBE_READ_REG(hw, IXGBE_LXONTXC);
 398        IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
 399        if (hw->mac.type >= ixgbe_mac_82599EB) {
 400                IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
 401                IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
 402        } else {
 403                IXGBE_READ_REG(hw, IXGBE_LXONRXC);
 404                IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
 405        }
 406
 407        for (i = 0; i < 8; i++) {
 408                IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
 409                IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
 410                if (hw->mac.type >= ixgbe_mac_82599EB) {
 411                        IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
 412                        IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
 413                } else {
 414                        IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
 415                        IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
 416                }
 417        }
 418        if (hw->mac.type >= ixgbe_mac_82599EB)
 419                for (i = 0; i < 8; i++)
 420                        IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
 421        IXGBE_READ_REG(hw, IXGBE_PRC64);
 422        IXGBE_READ_REG(hw, IXGBE_PRC127);
 423        IXGBE_READ_REG(hw, IXGBE_PRC255);
 424        IXGBE_READ_REG(hw, IXGBE_PRC511);
 425        IXGBE_READ_REG(hw, IXGBE_PRC1023);
 426        IXGBE_READ_REG(hw, IXGBE_PRC1522);
 427        IXGBE_READ_REG(hw, IXGBE_GPRC);
 428        IXGBE_READ_REG(hw, IXGBE_BPRC);
 429        IXGBE_READ_REG(hw, IXGBE_MPRC);
 430        IXGBE_READ_REG(hw, IXGBE_GPTC);
 431        IXGBE_READ_REG(hw, IXGBE_GORCL);
 432        IXGBE_READ_REG(hw, IXGBE_GORCH);
 433        IXGBE_READ_REG(hw, IXGBE_GOTCL);
 434        IXGBE_READ_REG(hw, IXGBE_GOTCH);
 435        if (hw->mac.type == ixgbe_mac_82598EB)
 436                for (i = 0; i < 8; i++)
 437                        IXGBE_READ_REG(hw, IXGBE_RNBC(i));
 438        IXGBE_READ_REG(hw, IXGBE_RUC);
 439        IXGBE_READ_REG(hw, IXGBE_RFC);
 440        IXGBE_READ_REG(hw, IXGBE_ROC);
 441        IXGBE_READ_REG(hw, IXGBE_RJC);
 442        IXGBE_READ_REG(hw, IXGBE_MNGPRC);
 443        IXGBE_READ_REG(hw, IXGBE_MNGPDC);
 444        IXGBE_READ_REG(hw, IXGBE_MNGPTC);
 445        IXGBE_READ_REG(hw, IXGBE_TORL);
 446        IXGBE_READ_REG(hw, IXGBE_TORH);
 447        IXGBE_READ_REG(hw, IXGBE_TPR);
 448        IXGBE_READ_REG(hw, IXGBE_TPT);
 449        IXGBE_READ_REG(hw, IXGBE_PTC64);
 450        IXGBE_READ_REG(hw, IXGBE_PTC127);
 451        IXGBE_READ_REG(hw, IXGBE_PTC255);
 452        IXGBE_READ_REG(hw, IXGBE_PTC511);
 453        IXGBE_READ_REG(hw, IXGBE_PTC1023);
 454        IXGBE_READ_REG(hw, IXGBE_PTC1522);
 455        IXGBE_READ_REG(hw, IXGBE_MPTC);
 456        IXGBE_READ_REG(hw, IXGBE_BPTC);
 457        for (i = 0; i < 16; i++) {
 458                IXGBE_READ_REG(hw, IXGBE_QPRC(i));
 459                IXGBE_READ_REG(hw, IXGBE_QPTC(i));
 460                if (hw->mac.type >= ixgbe_mac_82599EB) {
 461                        IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
 462                        IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
 463                        IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
 464                        IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
 465                        IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
 466                } else {
 467                        IXGBE_READ_REG(hw, IXGBE_QBRC(i));
 468                        IXGBE_READ_REG(hw, IXGBE_QBTC(i));
 469                }
 470        }
 471
 472        if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
 473                if (hw->phy.id == 0)
 474                        hw->phy.ops.identify(hw);
 475                hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
 476                hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
 477                hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
 478                hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
 479        }
 480
 481        return 0;
 482}
 483
 484/**
 485 *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
 486 *  @hw: pointer to hardware structure
 487 *  @pba_num: stores the part number string from the EEPROM
 488 *  @pba_num_size: part number string buffer length
 489 *
 490 *  Reads the part number string from the EEPROM.
 491 **/
 492s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
 493                                  u32 pba_num_size)
 494{
 495        s32 ret_val;
 496        u16 data;
 497        u16 pba_ptr;
 498        u16 offset;
 499        u16 length;
 500
 501        if (pba_num == NULL) {
 502                hw_dbg(hw, "PBA string buffer was null\n");
 503                return IXGBE_ERR_INVALID_ARGUMENT;
 504        }
 505
 506        ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
 507        if (ret_val) {
 508                hw_dbg(hw, "NVM Read Error\n");
 509                return ret_val;
 510        }
 511
 512        ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
 513        if (ret_val) {
 514                hw_dbg(hw, "NVM Read Error\n");
 515                return ret_val;
 516        }
 517
 518        /*
 519         * if data is not ptr guard the PBA must be in legacy format which
 520         * means pba_ptr is actually our second data word for the PBA number
 521         * and we can decode it into an ascii string
 522         */
 523        if (data != IXGBE_PBANUM_PTR_GUARD) {
 524                hw_dbg(hw, "NVM PBA number is not stored as string\n");
 525
 526                /* we will need 11 characters to store the PBA */
 527                if (pba_num_size < 11) {
 528                        hw_dbg(hw, "PBA string buffer too small\n");
 529                        return IXGBE_ERR_NO_SPACE;
 530                }
 531
 532                /* extract hex string from data and pba_ptr */
 533                pba_num[0] = (data >> 12) & 0xF;
 534                pba_num[1] = (data >> 8) & 0xF;
 535                pba_num[2] = (data >> 4) & 0xF;
 536                pba_num[3] = data & 0xF;
 537                pba_num[4] = (pba_ptr >> 12) & 0xF;
 538                pba_num[5] = (pba_ptr >> 8) & 0xF;
 539                pba_num[6] = '-';
 540                pba_num[7] = 0;
 541                pba_num[8] = (pba_ptr >> 4) & 0xF;
 542                pba_num[9] = pba_ptr & 0xF;
 543
 544                /* put a null character on the end of our string */
 545                pba_num[10] = '\0';
 546
 547                /* switch all the data but the '-' to hex char */
 548                for (offset = 0; offset < 10; offset++) {
 549                        if (pba_num[offset] < 0xA)
 550                                pba_num[offset] += '0';
 551                        else if (pba_num[offset] < 0x10)
 552                                pba_num[offset] += 'A' - 0xA;
 553                }
 554
 555                return 0;
 556        }
 557
 558        ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
 559        if (ret_val) {
 560                hw_dbg(hw, "NVM Read Error\n");
 561                return ret_val;
 562        }
 563
 564        if (length == 0xFFFF || length == 0) {
 565                hw_dbg(hw, "NVM PBA number section invalid length\n");
 566                return IXGBE_ERR_PBA_SECTION;
 567        }
 568
 569        /* check if pba_num buffer is big enough */
 570        if (pba_num_size  < (((u32)length * 2) - 1)) {
 571                hw_dbg(hw, "PBA string buffer too small\n");
 572                return IXGBE_ERR_NO_SPACE;
 573        }
 574
 575        /* trim pba length from start of string */
 576        pba_ptr++;
 577        length--;
 578
 579        for (offset = 0; offset < length; offset++) {
 580                ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
 581                if (ret_val) {
 582                        hw_dbg(hw, "NVM Read Error\n");
 583                        return ret_val;
 584                }
 585                pba_num[offset * 2] = (u8)(data >> 8);
 586                pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
 587        }
 588        pba_num[offset * 2] = '\0';
 589
 590        return 0;
 591}
 592
 593/**
 594 *  ixgbe_get_mac_addr_generic - Generic get MAC address
 595 *  @hw: pointer to hardware structure
 596 *  @mac_addr: Adapter MAC address
 597 *
 598 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
 599 *  A reset of the adapter must be performed prior to calling this function
 600 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
 601 **/
 602s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
 603{
 604        u32 rar_high;
 605        u32 rar_low;
 606        u16 i;
 607
 608        rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
 609        rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
 610
 611        for (i = 0; i < 4; i++)
 612                mac_addr[i] = (u8)(rar_low >> (i*8));
 613
 614        for (i = 0; i < 2; i++)
 615                mac_addr[i+4] = (u8)(rar_high >> (i*8));
 616
 617        return 0;
 618}
 619
 620enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
 621{
 622        switch (link_status & IXGBE_PCI_LINK_WIDTH) {
 623        case IXGBE_PCI_LINK_WIDTH_1:
 624                return ixgbe_bus_width_pcie_x1;
 625        case IXGBE_PCI_LINK_WIDTH_2:
 626                return ixgbe_bus_width_pcie_x2;
 627        case IXGBE_PCI_LINK_WIDTH_4:
 628                return ixgbe_bus_width_pcie_x4;
 629        case IXGBE_PCI_LINK_WIDTH_8:
 630                return ixgbe_bus_width_pcie_x8;
 631        default:
 632                return ixgbe_bus_width_unknown;
 633        }
 634}
 635
 636enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
 637{
 638        switch (link_status & IXGBE_PCI_LINK_SPEED) {
 639        case IXGBE_PCI_LINK_SPEED_2500:
 640                return ixgbe_bus_speed_2500;
 641        case IXGBE_PCI_LINK_SPEED_5000:
 642                return ixgbe_bus_speed_5000;
 643        case IXGBE_PCI_LINK_SPEED_8000:
 644                return ixgbe_bus_speed_8000;
 645        default:
 646                return ixgbe_bus_speed_unknown;
 647        }
 648}
 649
 650/**
 651 *  ixgbe_get_bus_info_generic - Generic set PCI bus info
 652 *  @hw: pointer to hardware structure
 653 *
 654 *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
 655 **/
 656s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
 657{
 658        u16 link_status;
 659
 660        hw->bus.type = ixgbe_bus_type_pci_express;
 661
 662        /* Get the negotiated link width and speed from PCI config space */
 663        link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
 664
 665        hw->bus.width = ixgbe_convert_bus_width(link_status);
 666        hw->bus.speed = ixgbe_convert_bus_speed(link_status);
 667
 668        hw->mac.ops.set_lan_id(hw);
 669
 670        return 0;
 671}
 672
 673/**
 674 *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
 675 *  @hw: pointer to the HW structure
 676 *
 677 *  Determines the LAN function id by reading memory-mapped registers
 678 *  and swaps the port value if requested.
 679 **/
 680void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
 681{
 682        struct ixgbe_bus_info *bus = &hw->bus;
 683        u16 ee_ctrl_4;
 684        u32 reg;
 685
 686        reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
 687        bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
 688        bus->lan_id = bus->func;
 689
 690        /* check for a port swap */
 691        reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
 692        if (reg & IXGBE_FACTPS_LFS)
 693                bus->func ^= 0x1;
 694
 695        /* Get MAC instance from EEPROM for configuring CS4227 */
 696        if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
 697                hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
 698                bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
 699                                   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
 700        }
 701}
 702
 703/**
 704 *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
 705 *  @hw: pointer to hardware structure
 706 *
 707 *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
 708 *  disables transmit and receive units. The adapter_stopped flag is used by
 709 *  the shared code and drivers to determine if the adapter is in a stopped
 710 *  state and should not touch the hardware.
 711 **/
 712s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
 713{
 714        u32 reg_val;
 715        u16 i;
 716
 717        /*
 718         * Set the adapter_stopped flag so other driver functions stop touching
 719         * the hardware
 720         */
 721        hw->adapter_stopped = true;
 722
 723        /* Disable the receive unit */
 724        hw->mac.ops.disable_rx(hw);
 725
 726        /* Clear interrupt mask to stop interrupts from being generated */
 727        IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
 728
 729        /* Clear any pending interrupts, flush previous writes */
 730        IXGBE_READ_REG(hw, IXGBE_EICR);
 731
 732        /* Disable the transmit unit.  Each queue must be disabled. */
 733        for (i = 0; i < hw->mac.max_tx_queues; i++)
 734                IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
 735
 736        /* Disable the receive unit by stopping each queue */
 737        for (i = 0; i < hw->mac.max_rx_queues; i++) {
 738                reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
 739                reg_val &= ~IXGBE_RXDCTL_ENABLE;
 740                reg_val |= IXGBE_RXDCTL_SWFLSH;
 741                IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
 742        }
 743
 744        /* flush all queues disables */
 745        IXGBE_WRITE_FLUSH(hw);
 746        usleep_range(1000, 2000);
 747
 748        /*
 749         * Prevent the PCI-E bus from from hanging by disabling PCI-E master
 750         * access and verify no pending requests
 751         */
 752        return ixgbe_disable_pcie_master(hw);
 753}
 754
 755/**
 756 *  ixgbe_init_led_link_act_generic - Store the LED index link/activity.
 757 *  @hw: pointer to hardware structure
 758 *
 759 *  Store the index for the link active LED. This will be used to support
 760 *  blinking the LED.
 761 **/
 762s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
 763{
 764        struct ixgbe_mac_info *mac = &hw->mac;
 765        u32 led_reg, led_mode;
 766        u16 i;
 767
 768        led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 769
 770        /* Get LED link active from the LEDCTL register */
 771        for (i = 0; i < 4; i++) {
 772                led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
 773
 774                if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
 775                    IXGBE_LED_LINK_ACTIVE) {
 776                        mac->led_link_act = i;
 777                        return 0;
 778                }
 779        }
 780
 781        /* If LEDCTL register does not have the LED link active set, then use
 782         * known MAC defaults.
 783         */
 784        switch (hw->mac.type) {
 785        case ixgbe_mac_x550em_a:
 786                mac->led_link_act = 0;
 787                break;
 788        case ixgbe_mac_X550EM_x:
 789                mac->led_link_act = 1;
 790                break;
 791        default:
 792                mac->led_link_act = 2;
 793        }
 794
 795        return 0;
 796}
 797
 798/**
 799 *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
 800 *  @hw: pointer to hardware structure
 801 *  @index: led number to turn on
 802 **/
 803s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
 804{
 805        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 806
 807        if (index > 3)
 808                return IXGBE_ERR_PARAM;
 809
 810        /* To turn on the LED, set mode to ON. */
 811        led_reg &= ~IXGBE_LED_MODE_MASK(index);
 812        led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
 813        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 814        IXGBE_WRITE_FLUSH(hw);
 815
 816        return 0;
 817}
 818
 819/**
 820 *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
 821 *  @hw: pointer to hardware structure
 822 *  @index: led number to turn off
 823 **/
 824s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
 825{
 826        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 827
 828        if (index > 3)
 829                return IXGBE_ERR_PARAM;
 830
 831        /* To turn off the LED, set mode to OFF. */
 832        led_reg &= ~IXGBE_LED_MODE_MASK(index);
 833        led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
 834        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 835        IXGBE_WRITE_FLUSH(hw);
 836
 837        return 0;
 838}
 839
 840/**
 841 *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
 842 *  @hw: pointer to hardware structure
 843 *
 844 *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
 845 *  ixgbe_hw struct in order to set up EEPROM access.
 846 **/
 847s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
 848{
 849        struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
 850        u32 eec;
 851        u16 eeprom_size;
 852
 853        if (eeprom->type == ixgbe_eeprom_uninitialized) {
 854                eeprom->type = ixgbe_eeprom_none;
 855                /* Set default semaphore delay to 10ms which is a well
 856                 * tested value */
 857                eeprom->semaphore_delay = 10;
 858                /* Clear EEPROM page size, it will be initialized as needed */
 859                eeprom->word_page_size = 0;
 860
 861                /*
 862                 * Check for EEPROM present first.
 863                 * If not present leave as none
 864                 */
 865                eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
 866                if (eec & IXGBE_EEC_PRES) {
 867                        eeprom->type = ixgbe_eeprom_spi;
 868
 869                        /*
 870                         * SPI EEPROM is assumed here.  This code would need to
 871                         * change if a future EEPROM is not SPI.
 872                         */
 873                        eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
 874                                            IXGBE_EEC_SIZE_SHIFT);
 875                        eeprom->word_size = BIT(eeprom_size +
 876                                                 IXGBE_EEPROM_WORD_SIZE_SHIFT);
 877                }
 878
 879                if (eec & IXGBE_EEC_ADDR_SIZE)
 880                        eeprom->address_bits = 16;
 881                else
 882                        eeprom->address_bits = 8;
 883                hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
 884                       eeprom->type, eeprom->word_size, eeprom->address_bits);
 885        }
 886
 887        return 0;
 888}
 889
 890/**
 891 *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
 892 *  @hw: pointer to hardware structure
 893 *  @offset: offset within the EEPROM to write
 894 *  @words: number of words
 895 *  @data: 16 bit word(s) to write to EEPROM
 896 *
 897 *  Reads 16 bit word(s) from EEPROM through bit-bang method
 898 **/
 899s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
 900                                               u16 words, u16 *data)
 901{
 902        s32 status;
 903        u16 i, count;
 904
 905        hw->eeprom.ops.init_params(hw);
 906
 907        if (words == 0)
 908                return IXGBE_ERR_INVALID_ARGUMENT;
 909
 910        if (offset + words > hw->eeprom.word_size)
 911                return IXGBE_ERR_EEPROM;
 912
 913        /*
 914         * The EEPROM page size cannot be queried from the chip. We do lazy
 915         * initialization. It is worth to do that when we write large buffer.
 916         */
 917        if ((hw->eeprom.word_page_size == 0) &&
 918            (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
 919                ixgbe_detect_eeprom_page_size_generic(hw, offset);
 920
 921        /*
 922         * We cannot hold synchronization semaphores for too long
 923         * to avoid other entity starvation. However it is more efficient
 924         * to read in bursts than synchronizing access for each word.
 925         */
 926        for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
 927                count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
 928                         IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
 929                status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
 930                                                            count, &data[i]);
 931
 932                if (status != 0)
 933                        break;
 934        }
 935
 936        return status;
 937}
 938
 939/**
 940 *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
 941 *  @hw: pointer to hardware structure
 942 *  @offset: offset within the EEPROM to be written to
 943 *  @words: number of word(s)
 944 *  @data: 16 bit word(s) to be written to the EEPROM
 945 *
 946 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 947 *  EEPROM will most likely contain an invalid checksum.
 948 **/
 949static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
 950                                              u16 words, u16 *data)
 951{
 952        s32 status;
 953        u16 word;
 954        u16 page_size;
 955        u16 i;
 956        u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
 957
 958        /* Prepare the EEPROM for writing  */
 959        status = ixgbe_acquire_eeprom(hw);
 960        if (status)
 961                return status;
 962
 963        if (ixgbe_ready_eeprom(hw) != 0) {
 964                ixgbe_release_eeprom(hw);
 965                return IXGBE_ERR_EEPROM;
 966        }
 967
 968        for (i = 0; i < words; i++) {
 969                ixgbe_standby_eeprom(hw);
 970
 971                /* Send the WRITE ENABLE command (8 bit opcode) */
 972                ixgbe_shift_out_eeprom_bits(hw,
 973                                            IXGBE_EEPROM_WREN_OPCODE_SPI,
 974                                            IXGBE_EEPROM_OPCODE_BITS);
 975
 976                ixgbe_standby_eeprom(hw);
 977
 978                /* Some SPI eeproms use the 8th address bit embedded
 979                 * in the opcode
 980                 */
 981                if ((hw->eeprom.address_bits == 8) &&
 982                    ((offset + i) >= 128))
 983                        write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
 984
 985                /* Send the Write command (8-bit opcode + addr) */
 986                ixgbe_shift_out_eeprom_bits(hw, write_opcode,
 987                                            IXGBE_EEPROM_OPCODE_BITS);
 988                ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
 989                                            hw->eeprom.address_bits);
 990
 991                page_size = hw->eeprom.word_page_size;
 992
 993                /* Send the data in burst via SPI */
 994                do {
 995                        word = data[i];
 996                        word = (word >> 8) | (word << 8);
 997                        ixgbe_shift_out_eeprom_bits(hw, word, 16);
 998
 999                        if (page_size == 0)
1000                                break;
1001
1002                        /* do not wrap around page */
1003                        if (((offset + i) & (page_size - 1)) ==
1004                            (page_size - 1))
1005                                break;
1006                } while (++i < words);
1007
1008                ixgbe_standby_eeprom(hw);
1009                usleep_range(10000, 20000);
1010        }
1011        /* Done with writing - release the EEPROM */
1012        ixgbe_release_eeprom(hw);
1013
1014        return 0;
1015}
1016
1017/**
1018 *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1019 *  @hw: pointer to hardware structure
1020 *  @offset: offset within the EEPROM to be written to
1021 *  @data: 16 bit word to be written to the EEPROM
1022 *
1023 *  If ixgbe_eeprom_update_checksum is not called after this function, the
1024 *  EEPROM will most likely contain an invalid checksum.
1025 **/
1026s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1027{
1028        hw->eeprom.ops.init_params(hw);
1029
1030        if (offset >= hw->eeprom.word_size)
1031                return IXGBE_ERR_EEPROM;
1032
1033        return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1034}
1035
1036/**
1037 *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1038 *  @hw: pointer to hardware structure
1039 *  @offset: offset within the EEPROM to be read
1040 *  @words: number of word(s)
1041 *  @data: read 16 bit words(s) from EEPROM
1042 *
1043 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1044 **/
1045s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1046                                              u16 words, u16 *data)
1047{
1048        s32 status;
1049        u16 i, count;
1050
1051        hw->eeprom.ops.init_params(hw);
1052
1053        if (words == 0)
1054                return IXGBE_ERR_INVALID_ARGUMENT;
1055
1056        if (offset + words > hw->eeprom.word_size)
1057                return IXGBE_ERR_EEPROM;
1058
1059        /*
1060         * We cannot hold synchronization semaphores for too long
1061         * to avoid other entity starvation. However it is more efficient
1062         * to read in bursts than synchronizing access for each word.
1063         */
1064        for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1065                count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1066                         IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1067
1068                status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1069                                                           count, &data[i]);
1070
1071                if (status)
1072                        return status;
1073        }
1074
1075        return 0;
1076}
1077
1078/**
1079 *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1080 *  @hw: pointer to hardware structure
1081 *  @offset: offset within the EEPROM to be read
1082 *  @words: number of word(s)
1083 *  @data: read 16 bit word(s) from EEPROM
1084 *
1085 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1086 **/
1087static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1088                                             u16 words, u16 *data)
1089{
1090        s32 status;
1091        u16 word_in;
1092        u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1093        u16 i;
1094
1095        /* Prepare the EEPROM for reading  */
1096        status = ixgbe_acquire_eeprom(hw);
1097        if (status)
1098                return status;
1099
1100        if (ixgbe_ready_eeprom(hw) != 0) {
1101                ixgbe_release_eeprom(hw);
1102                return IXGBE_ERR_EEPROM;
1103        }
1104
1105        for (i = 0; i < words; i++) {
1106                ixgbe_standby_eeprom(hw);
1107                /* Some SPI eeproms use the 8th address bit embedded
1108                 * in the opcode
1109                 */
1110                if ((hw->eeprom.address_bits == 8) &&
1111                    ((offset + i) >= 128))
1112                        read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1113
1114                /* Send the READ command (opcode + addr) */
1115                ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1116                                            IXGBE_EEPROM_OPCODE_BITS);
1117                ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1118                                            hw->eeprom.address_bits);
1119
1120                /* Read the data. */
1121                word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1122                data[i] = (word_in >> 8) | (word_in << 8);
1123        }
1124
1125        /* End this read operation */
1126        ixgbe_release_eeprom(hw);
1127
1128        return 0;
1129}
1130
1131/**
1132 *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1133 *  @hw: pointer to hardware structure
1134 *  @offset: offset within the EEPROM to be read
1135 *  @data: read 16 bit value from EEPROM
1136 *
1137 *  Reads 16 bit value from EEPROM through bit-bang method
1138 **/
1139s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1140                                       u16 *data)
1141{
1142        hw->eeprom.ops.init_params(hw);
1143
1144        if (offset >= hw->eeprom.word_size)
1145                return IXGBE_ERR_EEPROM;
1146
1147        return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1148}
1149
1150/**
1151 *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1152 *  @hw: pointer to hardware structure
1153 *  @offset: offset of word in the EEPROM to read
1154 *  @words: number of word(s)
1155 *  @data: 16 bit word(s) from the EEPROM
1156 *
1157 *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1158 **/
1159s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1160                                   u16 words, u16 *data)
1161{
1162        u32 eerd;
1163        s32 status;
1164        u32 i;
1165
1166        hw->eeprom.ops.init_params(hw);
1167
1168        if (words == 0)
1169                return IXGBE_ERR_INVALID_ARGUMENT;
1170
1171        if (offset >= hw->eeprom.word_size)
1172                return IXGBE_ERR_EEPROM;
1173
1174        for (i = 0; i < words; i++) {
1175                eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1176                       IXGBE_EEPROM_RW_REG_START;
1177
1178                IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1179                status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1180
1181                if (status == 0) {
1182                        data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1183                                   IXGBE_EEPROM_RW_REG_DATA);
1184                } else {
1185                        hw_dbg(hw, "Eeprom read timed out\n");
1186                        return status;
1187                }
1188        }
1189
1190        return 0;
1191}
1192
1193/**
1194 *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1195 *  @hw: pointer to hardware structure
1196 *  @offset: offset within the EEPROM to be used as a scratch pad
1197 *
1198 *  Discover EEPROM page size by writing marching data at given offset.
1199 *  This function is called only when we are writing a new large buffer
1200 *  at given offset so the data would be overwritten anyway.
1201 **/
1202static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1203                                                 u16 offset)
1204{
1205        u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1206        s32 status;
1207        u16 i;
1208
1209        for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1210                data[i] = i;
1211
1212        hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1213        status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1214                                             IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1215        hw->eeprom.word_page_size = 0;
1216        if (status)
1217                return status;
1218
1219        status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1220        if (status)
1221                return status;
1222
1223        /*
1224         * When writing in burst more than the actual page size
1225         * EEPROM address wraps around current page.
1226         */
1227        hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1228
1229        hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1230               hw->eeprom.word_page_size);
1231        return 0;
1232}
1233
1234/**
1235 *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1236 *  @hw: pointer to hardware structure
1237 *  @offset: offset of  word in the EEPROM to read
1238 *  @data: word read from the EEPROM
1239 *
1240 *  Reads a 16 bit word from the EEPROM using the EERD register.
1241 **/
1242s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1243{
1244        return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1245}
1246
1247/**
1248 *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1249 *  @hw: pointer to hardware structure
1250 *  @offset: offset of  word in the EEPROM to write
1251 *  @words: number of words
1252 *  @data: word(s) write to the EEPROM
1253 *
1254 *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1255 **/
1256s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1257                                    u16 words, u16 *data)
1258{
1259        u32 eewr;
1260        s32 status;
1261        u16 i;
1262
1263        hw->eeprom.ops.init_params(hw);
1264
1265        if (words == 0)
1266                return IXGBE_ERR_INVALID_ARGUMENT;
1267
1268        if (offset >= hw->eeprom.word_size)
1269                return IXGBE_ERR_EEPROM;
1270
1271        for (i = 0; i < words; i++) {
1272                eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1273                       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1274                       IXGBE_EEPROM_RW_REG_START;
1275
1276                status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1277                if (status) {
1278                        hw_dbg(hw, "Eeprom write EEWR timed out\n");
1279                        return status;
1280                }
1281
1282                IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1283
1284                status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1285                if (status) {
1286                        hw_dbg(hw, "Eeprom write EEWR timed out\n");
1287                        return status;
1288                }
1289        }
1290
1291        return 0;
1292}
1293
1294/**
1295 *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1296 *  @hw: pointer to hardware structure
1297 *  @offset: offset of  word in the EEPROM to write
1298 *  @data: word write to the EEPROM
1299 *
1300 *  Write a 16 bit word to the EEPROM using the EEWR register.
1301 **/
1302s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1303{
1304        return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1305}
1306
1307/**
1308 *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1309 *  @hw: pointer to hardware structure
1310 *  @ee_reg: EEPROM flag for polling
1311 *
1312 *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1313 *  read or write is done respectively.
1314 **/
1315static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1316{
1317        u32 i;
1318        u32 reg;
1319
1320        for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1321                if (ee_reg == IXGBE_NVM_POLL_READ)
1322                        reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1323                else
1324                        reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1325
1326                if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1327                        return 0;
1328                }
1329                udelay(5);
1330        }
1331        return IXGBE_ERR_EEPROM;
1332}
1333
1334/**
1335 *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1336 *  @hw: pointer to hardware structure
1337 *
1338 *  Prepares EEPROM for access using bit-bang method. This function should
1339 *  be called before issuing a command to the EEPROM.
1340 **/
1341static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1342{
1343        u32 eec;
1344        u32 i;
1345
1346        if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1347                return IXGBE_ERR_SWFW_SYNC;
1348
1349        eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1350
1351        /* Request EEPROM Access */
1352        eec |= IXGBE_EEC_REQ;
1353        IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1354
1355        for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1356                eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1357                if (eec & IXGBE_EEC_GNT)
1358                        break;
1359                udelay(5);
1360        }
1361
1362        /* Release if grant not acquired */
1363        if (!(eec & IXGBE_EEC_GNT)) {
1364                eec &= ~IXGBE_EEC_REQ;
1365                IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1366                hw_dbg(hw, "Could not acquire EEPROM grant\n");
1367
1368                hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1369                return IXGBE_ERR_EEPROM;
1370        }
1371
1372        /* Setup EEPROM for Read/Write */
1373        /* Clear CS and SK */
1374        eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1375        IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1376        IXGBE_WRITE_FLUSH(hw);
1377        udelay(1);
1378        return 0;
1379}
1380
1381/**
1382 *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1383 *  @hw: pointer to hardware structure
1384 *
1385 *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1386 **/
1387static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1388{
1389        u32 timeout = 2000;
1390        u32 i;
1391        u32 swsm;
1392
1393        /* Get SMBI software semaphore between device drivers first */
1394        for (i = 0; i < timeout; i++) {
1395                /*
1396                 * If the SMBI bit is 0 when we read it, then the bit will be
1397                 * set and we have the semaphore
1398                 */
1399                swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1400                if (!(swsm & IXGBE_SWSM_SMBI))
1401                        break;
1402                usleep_range(50, 100);
1403        }
1404
1405        if (i == timeout) {
1406                hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1407                /* this release is particularly important because our attempts
1408                 * above to get the semaphore may have succeeded, and if there
1409                 * was a timeout, we should unconditionally clear the semaphore
1410                 * bits to free the driver to make progress
1411                 */
1412                ixgbe_release_eeprom_semaphore(hw);
1413
1414                usleep_range(50, 100);
1415                /* one last try
1416                 * If the SMBI bit is 0 when we read it, then the bit will be
1417                 * set and we have the semaphore
1418                 */
1419                swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1420                if (swsm & IXGBE_SWSM_SMBI) {
1421                        hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1422                        return IXGBE_ERR_EEPROM;
1423                }
1424        }
1425
1426        /* Now get the semaphore between SW/FW through the SWESMBI bit */
1427        for (i = 0; i < timeout; i++) {
1428                swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1429
1430                /* Set the SW EEPROM semaphore bit to request access */
1431                swsm |= IXGBE_SWSM_SWESMBI;
1432                IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1433
1434                /* If we set the bit successfully then we got the
1435                 * semaphore.
1436                 */
1437                swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1438                if (swsm & IXGBE_SWSM_SWESMBI)
1439                        break;
1440
1441                usleep_range(50, 100);
1442        }
1443
1444        /* Release semaphores and return error if SW EEPROM semaphore
1445         * was not granted because we don't have access to the EEPROM
1446         */
1447        if (i >= timeout) {
1448                hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1449                ixgbe_release_eeprom_semaphore(hw);
1450                return IXGBE_ERR_EEPROM;
1451        }
1452
1453        return 0;
1454}
1455
1456/**
1457 *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1458 *  @hw: pointer to hardware structure
1459 *
1460 *  This function clears hardware semaphore bits.
1461 **/
1462static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1463{
1464        u32 swsm;
1465
1466        swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1467
1468        /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1469        swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1470        IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1471        IXGBE_WRITE_FLUSH(hw);
1472}
1473
1474/**
1475 *  ixgbe_ready_eeprom - Polls for EEPROM ready
1476 *  @hw: pointer to hardware structure
1477 **/
1478static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1479{
1480        u16 i;
1481        u8 spi_stat_reg;
1482
1483        /*
1484         * Read "Status Register" repeatedly until the LSB is cleared.  The
1485         * EEPROM will signal that the command has been completed by clearing
1486         * bit 0 of the internal status register.  If it's not cleared within
1487         * 5 milliseconds, then error out.
1488         */
1489        for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1490                ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1491                                            IXGBE_EEPROM_OPCODE_BITS);
1492                spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1493                if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1494                        break;
1495
1496                udelay(5);
1497                ixgbe_standby_eeprom(hw);
1498        }
1499
1500        /*
1501         * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1502         * devices (and only 0-5mSec on 5V devices)
1503         */
1504        if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1505                hw_dbg(hw, "SPI EEPROM Status error\n");
1506                return IXGBE_ERR_EEPROM;
1507        }
1508
1509        return 0;
1510}
1511
1512/**
1513 *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1514 *  @hw: pointer to hardware structure
1515 **/
1516static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1517{
1518        u32 eec;
1519
1520        eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1521
1522        /* Toggle CS to flush commands */
1523        eec |= IXGBE_EEC_CS;
1524        IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1525        IXGBE_WRITE_FLUSH(hw);
1526        udelay(1);
1527        eec &= ~IXGBE_EEC_CS;
1528        IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1529        IXGBE_WRITE_FLUSH(hw);
1530        udelay(1);
1531}
1532
1533/**
1534 *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1535 *  @hw: pointer to hardware structure
1536 *  @data: data to send to the EEPROM
1537 *  @count: number of bits to shift out
1538 **/
1539static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1540                                        u16 count)
1541{
1542        u32 eec;
1543        u32 mask;
1544        u32 i;
1545
1546        eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1547
1548        /*
1549         * Mask is used to shift "count" bits of "data" out to the EEPROM
1550         * one bit at a time.  Determine the starting bit based on count
1551         */
1552        mask = BIT(count - 1);
1553
1554        for (i = 0; i < count; i++) {
1555                /*
1556                 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1557                 * "1", and then raising and then lowering the clock (the SK
1558                 * bit controls the clock input to the EEPROM).  A "0" is
1559                 * shifted out to the EEPROM by setting "DI" to "0" and then
1560                 * raising and then lowering the clock.
1561                 */
1562                if (data & mask)
1563                        eec |= IXGBE_EEC_DI;
1564                else
1565                        eec &= ~IXGBE_EEC_DI;
1566
1567                IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1568                IXGBE_WRITE_FLUSH(hw);
1569
1570                udelay(1);
1571
1572                ixgbe_raise_eeprom_clk(hw, &eec);
1573                ixgbe_lower_eeprom_clk(hw, &eec);
1574
1575                /*
1576                 * Shift mask to signify next bit of data to shift in to the
1577                 * EEPROM
1578                 */
1579                mask = mask >> 1;
1580        }
1581
1582        /* We leave the "DI" bit set to "0" when we leave this routine. */
1583        eec &= ~IXGBE_EEC_DI;
1584        IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1585        IXGBE_WRITE_FLUSH(hw);
1586}
1587
1588/**
1589 *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1590 *  @hw: pointer to hardware structure
1591 *  @count: number of bits to shift
1592 **/
1593static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1594{
1595        u32 eec;
1596        u32 i;
1597        u16 data = 0;
1598
1599        /*
1600         * In order to read a register from the EEPROM, we need to shift
1601         * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1602         * the clock input to the EEPROM (setting the SK bit), and then reading
1603         * the value of the "DO" bit.  During this "shifting in" process the
1604         * "DI" bit should always be clear.
1605         */
1606        eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1607
1608        eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1609
1610        for (i = 0; i < count; i++) {
1611                data = data << 1;
1612                ixgbe_raise_eeprom_clk(hw, &eec);
1613
1614                eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1615
1616                eec &= ~(IXGBE_EEC_DI);
1617                if (eec & IXGBE_EEC_DO)
1618                        data |= 1;
1619
1620                ixgbe_lower_eeprom_clk(hw, &eec);
1621        }
1622
1623        return data;
1624}
1625
1626/**
1627 *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1628 *  @hw: pointer to hardware structure
1629 *  @eec: EEC register's current value
1630 **/
1631static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1632{
1633        /*
1634         * Raise the clock input to the EEPROM
1635         * (setting the SK bit), then delay
1636         */
1637        *eec = *eec | IXGBE_EEC_SK;
1638        IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1639        IXGBE_WRITE_FLUSH(hw);
1640        udelay(1);
1641}
1642
1643/**
1644 *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1645 *  @hw: pointer to hardware structure
1646 *  @eec: EEC's current value
1647 **/
1648static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1649{
1650        /*
1651         * Lower the clock input to the EEPROM (clearing the SK bit), then
1652         * delay
1653         */
1654        *eec = *eec & ~IXGBE_EEC_SK;
1655        IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1656        IXGBE_WRITE_FLUSH(hw);
1657        udelay(1);
1658}
1659
1660/**
1661 *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1662 *  @hw: pointer to hardware structure
1663 **/
1664static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1665{
1666        u32 eec;
1667
1668        eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1669
1670        eec |= IXGBE_EEC_CS;  /* Pull CS high */
1671        eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1672
1673        IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1674        IXGBE_WRITE_FLUSH(hw);
1675
1676        udelay(1);
1677
1678        /* Stop requesting EEPROM access */
1679        eec &= ~IXGBE_EEC_REQ;
1680        IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1681
1682        hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1683
1684        /*
1685         * Delay before attempt to obtain semaphore again to allow FW
1686         * access. semaphore_delay is in ms we need us for usleep_range
1687         */
1688        usleep_range(hw->eeprom.semaphore_delay * 1000,
1689                     hw->eeprom.semaphore_delay * 2000);
1690}
1691
1692/**
1693 *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1694 *  @hw: pointer to hardware structure
1695 **/
1696s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1697{
1698        u16 i;
1699        u16 j;
1700        u16 checksum = 0;
1701        u16 length = 0;
1702        u16 pointer = 0;
1703        u16 word = 0;
1704
1705        /* Include 0x0-0x3F in the checksum */
1706        for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1707                if (hw->eeprom.ops.read(hw, i, &word)) {
1708                        hw_dbg(hw, "EEPROM read failed\n");
1709                        break;
1710                }
1711                checksum += word;
1712        }
1713
1714        /* Include all data from pointers except for the fw pointer */
1715        for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1716                if (hw->eeprom.ops.read(hw, i, &pointer)) {
1717                        hw_dbg(hw, "EEPROM read failed\n");
1718                        return IXGBE_ERR_EEPROM;
1719                }
1720
1721                /* If the pointer seems invalid */
1722                if (pointer == 0xFFFF || pointer == 0)
1723                        continue;
1724
1725                if (hw->eeprom.ops.read(hw, pointer, &length)) {
1726                        hw_dbg(hw, "EEPROM read failed\n");
1727                        return IXGBE_ERR_EEPROM;
1728                }
1729
1730                if (length == 0xFFFF || length == 0)
1731                        continue;
1732
1733                for (j = pointer + 1; j <= pointer + length; j++) {
1734                        if (hw->eeprom.ops.read(hw, j, &word)) {
1735                                hw_dbg(hw, "EEPROM read failed\n");
1736                                return IXGBE_ERR_EEPROM;
1737                        }
1738                        checksum += word;
1739                }
1740        }
1741
1742        checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1743
1744        return (s32)checksum;
1745}
1746
1747/**
1748 *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1749 *  @hw: pointer to hardware structure
1750 *  @checksum_val: calculated checksum
1751 *
1752 *  Performs checksum calculation and validates the EEPROM checksum.  If the
1753 *  caller does not need checksum_val, the value can be NULL.
1754 **/
1755s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1756                                           u16 *checksum_val)
1757{
1758        s32 status;
1759        u16 checksum;
1760        u16 read_checksum = 0;
1761
1762        /*
1763         * Read the first word from the EEPROM. If this times out or fails, do
1764         * not continue or we could be in for a very long wait while every
1765         * EEPROM read fails
1766         */
1767        status = hw->eeprom.ops.read(hw, 0, &checksum);
1768        if (status) {
1769                hw_dbg(hw, "EEPROM read failed\n");
1770                return status;
1771        }
1772
1773        status = hw->eeprom.ops.calc_checksum(hw);
1774        if (status < 0)
1775                return status;
1776
1777        checksum = (u16)(status & 0xffff);
1778
1779        status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1780        if (status) {
1781                hw_dbg(hw, "EEPROM read failed\n");
1782                return status;
1783        }
1784
1785        /* Verify read checksum from EEPROM is the same as
1786         * calculated checksum
1787         */
1788        if (read_checksum != checksum)
1789                status = IXGBE_ERR_EEPROM_CHECKSUM;
1790
1791        /* If the user cares, return the calculated checksum */
1792        if (checksum_val)
1793                *checksum_val = checksum;
1794
1795        return status;
1796}
1797
1798/**
1799 *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1800 *  @hw: pointer to hardware structure
1801 **/
1802s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1803{
1804        s32 status;
1805        u16 checksum;
1806
1807        /*
1808         * Read the first word from the EEPROM. If this times out or fails, do
1809         * not continue or we could be in for a very long wait while every
1810         * EEPROM read fails
1811         */
1812        status = hw->eeprom.ops.read(hw, 0, &checksum);
1813        if (status) {
1814                hw_dbg(hw, "EEPROM read failed\n");
1815                return status;
1816        }
1817
1818        status = hw->eeprom.ops.calc_checksum(hw);
1819        if (status < 0)
1820                return status;
1821
1822        checksum = (u16)(status & 0xffff);
1823
1824        status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1825
1826        return status;
1827}
1828
1829/**
1830 *  ixgbe_set_rar_generic - Set Rx address register
1831 *  @hw: pointer to hardware structure
1832 *  @index: Receive address register to write
1833 *  @addr: Address to put into receive address register
1834 *  @vmdq: VMDq "set" or "pool" index
1835 *  @enable_addr: set flag that address is active
1836 *
1837 *  Puts an ethernet address into a receive address register.
1838 **/
1839s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1840                          u32 enable_addr)
1841{
1842        u32 rar_low, rar_high;
1843        u32 rar_entries = hw->mac.num_rar_entries;
1844
1845        /* Make sure we are using a valid rar index range */
1846        if (index >= rar_entries) {
1847                hw_dbg(hw, "RAR index %d is out of range.\n", index);
1848                return IXGBE_ERR_INVALID_ARGUMENT;
1849        }
1850
1851        /* setup VMDq pool selection before this RAR gets enabled */
1852        hw->mac.ops.set_vmdq(hw, index, vmdq);
1853
1854        /*
1855         * HW expects these in little endian so we reverse the byte
1856         * order from network order (big endian) to little endian
1857         */
1858        rar_low = ((u32)addr[0] |
1859                   ((u32)addr[1] << 8) |
1860                   ((u32)addr[2] << 16) |
1861                   ((u32)addr[3] << 24));
1862        /*
1863         * Some parts put the VMDq setting in the extra RAH bits,
1864         * so save everything except the lower 16 bits that hold part
1865         * of the address and the address valid bit.
1866         */
1867        rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1868        rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1869        rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1870
1871        if (enable_addr != 0)
1872                rar_high |= IXGBE_RAH_AV;
1873
1874        IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1875        IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1876
1877        return 0;
1878}
1879
1880/**
1881 *  ixgbe_clear_rar_generic - Remove Rx address register
1882 *  @hw: pointer to hardware structure
1883 *  @index: Receive address register to write
1884 *
1885 *  Clears an ethernet address from a receive address register.
1886 **/
1887s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1888{
1889        u32 rar_high;
1890        u32 rar_entries = hw->mac.num_rar_entries;
1891
1892        /* Make sure we are using a valid rar index range */
1893        if (index >= rar_entries) {
1894                hw_dbg(hw, "RAR index %d is out of range.\n", index);
1895                return IXGBE_ERR_INVALID_ARGUMENT;
1896        }
1897
1898        /*
1899         * Some parts put the VMDq setting in the extra RAH bits,
1900         * so save everything except the lower 16 bits that hold part
1901         * of the address and the address valid bit.
1902         */
1903        rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1904        rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1905
1906        IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1907        IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1908
1909        /* clear VMDq pool/queue selection for this RAR */
1910        hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1911
1912        return 0;
1913}
1914
1915/**
1916 *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1917 *  @hw: pointer to hardware structure
1918 *
1919 *  Places the MAC address in receive address register 0 and clears the rest
1920 *  of the receive address registers. Clears the multicast table. Assumes
1921 *  the receiver is in reset when the routine is called.
1922 **/
1923s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1924{
1925        u32 i;
1926        u32 rar_entries = hw->mac.num_rar_entries;
1927
1928        /*
1929         * If the current mac address is valid, assume it is a software override
1930         * to the permanent address.
1931         * Otherwise, use the permanent address from the eeprom.
1932         */
1933        if (!is_valid_ether_addr(hw->mac.addr)) {
1934                /* Get the MAC address from the RAR0 for later reference */
1935                hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1936
1937                hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1938        } else {
1939                /* Setup the receive address. */
1940                hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1941                hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1942
1943                hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1944        }
1945
1946        /*  clear VMDq pool/queue selection for RAR 0 */
1947        hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1948
1949        hw->addr_ctrl.overflow_promisc = 0;
1950
1951        hw->addr_ctrl.rar_used_count = 1;
1952
1953        /* Zero out the other receive addresses. */
1954        hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1955        for (i = 1; i < rar_entries; i++) {
1956                IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1957                IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1958        }
1959
1960        /* Clear the MTA */
1961        hw->addr_ctrl.mta_in_use = 0;
1962        IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1963
1964        hw_dbg(hw, " Clearing MTA\n");
1965        for (i = 0; i < hw->mac.mcft_size; i++)
1966                IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1967
1968        if (hw->mac.ops.init_uta_tables)
1969                hw->mac.ops.init_uta_tables(hw);
1970
1971        return 0;
1972}
1973
1974/**
1975 *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1976 *  @hw: pointer to hardware structure
1977 *  @mc_addr: the multicast address
1978 *
1979 *  Extracts the 12 bits, from a multicast address, to determine which
1980 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1981 *  incoming rx multicast addresses, to determine the bit-vector to check in
1982 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1983 *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1984 *  to mc_filter_type.
1985 **/
1986static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1987{
1988        u32 vector = 0;
1989
1990        switch (hw->mac.mc_filter_type) {
1991        case 0:   /* use bits [47:36] of the address */
1992                vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1993                break;
1994        case 1:   /* use bits [46:35] of the address */
1995                vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1996                break;
1997        case 2:   /* use bits [45:34] of the address */
1998                vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1999                break;
2000        case 3:   /* use bits [43:32] of the address */
2001                vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2002                break;
2003        default:  /* Invalid mc_filter_type */
2004                hw_dbg(hw, "MC filter type param set incorrectly\n");
2005                break;
2006        }
2007
2008        /* vector can only be 12-bits or boundary will be exceeded */
2009        vector &= 0xFFF;
2010        return vector;
2011}
2012
2013/**
2014 *  ixgbe_set_mta - Set bit-vector in multicast table
2015 *  @hw: pointer to hardware structure
2016 *  @mc_addr: Multicast address
2017 *
2018 *  Sets the bit-vector in the multicast table.
2019 **/
2020static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2021{
2022        u32 vector;
2023        u32 vector_bit;
2024        u32 vector_reg;
2025
2026        hw->addr_ctrl.mta_in_use++;
2027
2028        vector = ixgbe_mta_vector(hw, mc_addr);
2029        hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2030
2031        /*
2032         * The MTA is a register array of 128 32-bit registers. It is treated
2033         * like an array of 4096 bits.  We want to set bit
2034         * BitArray[vector_value]. So we figure out what register the bit is
2035         * in, read it, OR in the new bit, then write back the new value.  The
2036         * register is determined by the upper 7 bits of the vector value and
2037         * the bit within that register are determined by the lower 5 bits of
2038         * the value.
2039         */
2040        vector_reg = (vector >> 5) & 0x7F;
2041        vector_bit = vector & 0x1F;
2042        hw->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
2043}
2044
2045/**
2046 *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2047 *  @hw: pointer to hardware structure
2048 *  @netdev: pointer to net device structure
2049 *
2050 *  The given list replaces any existing list. Clears the MC addrs from receive
2051 *  address registers and the multicast table. Uses unused receive address
2052 *  registers for the first multicast addresses, and hashes the rest into the
2053 *  multicast table.
2054 **/
2055s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2056                                      struct net_device *netdev)
2057{
2058        struct netdev_hw_addr *ha;
2059        u32 i;
2060
2061        /*
2062         * Set the new number of MC addresses that we are being requested to
2063         * use.
2064         */
2065        hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2066        hw->addr_ctrl.mta_in_use = 0;
2067
2068        /* Clear mta_shadow */
2069        hw_dbg(hw, " Clearing MTA\n");
2070        memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2071
2072        /* Update mta shadow */
2073        netdev_for_each_mc_addr(ha, netdev) {
2074                hw_dbg(hw, " Adding the multicast addresses:\n");
2075                ixgbe_set_mta(hw, ha->addr);
2076        }
2077
2078        /* Enable mta */
2079        for (i = 0; i < hw->mac.mcft_size; i++)
2080                IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2081                                      hw->mac.mta_shadow[i]);
2082
2083        if (hw->addr_ctrl.mta_in_use > 0)
2084                IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2085                                IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2086
2087        hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2088        return 0;
2089}
2090
2091/**
2092 *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2093 *  @hw: pointer to hardware structure
2094 *
2095 *  Enables multicast address in RAR and the use of the multicast hash table.
2096 **/
2097s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2098{
2099        struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2100
2101        if (a->mta_in_use > 0)
2102                IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2103                                hw->mac.mc_filter_type);
2104
2105        return 0;
2106}
2107
2108/**
2109 *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2110 *  @hw: pointer to hardware structure
2111 *
2112 *  Disables multicast address in RAR and the use of the multicast hash table.
2113 **/
2114s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2115{
2116        struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2117
2118        if (a->mta_in_use > 0)
2119                IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2120
2121        return 0;
2122}
2123
2124/**
2125 *  ixgbe_fc_enable_generic - Enable flow control
2126 *  @hw: pointer to hardware structure
2127 *
2128 *  Enable flow control according to the current settings.
2129 **/
2130s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2131{
2132        u32 mflcn_reg, fccfg_reg;
2133        u32 reg;
2134        u32 fcrtl, fcrth;
2135        int i;
2136
2137        /* Validate the water mark configuration. */
2138        if (!hw->fc.pause_time)
2139                return IXGBE_ERR_INVALID_LINK_SETTINGS;
2140
2141        /* Low water mark of zero causes XOFF floods */
2142        for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2143                if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2144                    hw->fc.high_water[i]) {
2145                        if (!hw->fc.low_water[i] ||
2146                            hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2147                                hw_dbg(hw, "Invalid water mark configuration\n");
2148                                return IXGBE_ERR_INVALID_LINK_SETTINGS;
2149                        }
2150                }
2151        }
2152
2153        /* Negotiate the fc mode to use */
2154        hw->mac.ops.fc_autoneg(hw);
2155
2156        /* Disable any previous flow control settings */
2157        mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2158        mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2159
2160        fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2161        fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2162
2163        /*
2164         * The possible values of fc.current_mode are:
2165         * 0: Flow control is completely disabled
2166         * 1: Rx flow control is enabled (we can receive pause frames,
2167         *    but not send pause frames).
2168         * 2: Tx flow control is enabled (we can send pause frames but
2169         *    we do not support receiving pause frames).
2170         * 3: Both Rx and Tx flow control (symmetric) are enabled.
2171         * other: Invalid.
2172         */
2173        switch (hw->fc.current_mode) {
2174        case ixgbe_fc_none:
2175                /*
2176                 * Flow control is disabled by software override or autoneg.
2177                 * The code below will actually disable it in the HW.
2178                 */
2179                break;
2180        case ixgbe_fc_rx_pause:
2181                /*
2182                 * Rx Flow control is enabled and Tx Flow control is
2183                 * disabled by software override. Since there really
2184                 * isn't a way to advertise that we are capable of RX
2185                 * Pause ONLY, we will advertise that we support both
2186                 * symmetric and asymmetric Rx PAUSE.  Later, we will
2187                 * disable the adapter's ability to send PAUSE frames.
2188                 */
2189                mflcn_reg |= IXGBE_MFLCN_RFCE;
2190                break;
2191        case ixgbe_fc_tx_pause:
2192                /*
2193                 * Tx Flow control is enabled, and Rx Flow control is
2194                 * disabled by software override.
2195                 */
2196                fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2197                break;
2198        case ixgbe_fc_full:
2199                /* Flow control (both Rx and Tx) is enabled by SW override. */
2200                mflcn_reg |= IXGBE_MFLCN_RFCE;
2201                fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2202                break;
2203        default:
2204                hw_dbg(hw, "Flow control param set incorrectly\n");
2205                return IXGBE_ERR_CONFIG;
2206        }
2207
2208        /* Set 802.3x based flow control settings. */
2209        mflcn_reg |= IXGBE_MFLCN_DPF;
2210        IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2211        IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2212
2213        /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2214        for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2215                if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2216                    hw->fc.high_water[i]) {
2217                        fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2218                        IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2219                        fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2220                } else {
2221                        IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2222                        /*
2223                         * In order to prevent Tx hangs when the internal Tx
2224                         * switch is enabled we must set the high water mark
2225                         * to the Rx packet buffer size - 24KB.  This allows
2226                         * the Tx switch to function even under heavy Rx
2227                         * workloads.
2228                         */
2229                        fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2230                }
2231
2232                IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2233        }
2234
2235        /* Configure pause time (2 TCs per register) */
2236        reg = hw->fc.pause_time * 0x00010001;
2237        for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2238                IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2239
2240        IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2241
2242        return 0;
2243}
2244
2245/**
2246 *  ixgbe_negotiate_fc - Negotiate flow control
2247 *  @hw: pointer to hardware structure
2248 *  @adv_reg: flow control advertised settings
2249 *  @lp_reg: link partner's flow control settings
2250 *  @adv_sym: symmetric pause bit in advertisement
2251 *  @adv_asm: asymmetric pause bit in advertisement
2252 *  @lp_sym: symmetric pause bit in link partner advertisement
2253 *  @lp_asm: asymmetric pause bit in link partner advertisement
2254 *
2255 *  Find the intersection between advertised settings and link partner's
2256 *  advertised settings
2257 **/
2258s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2259                       u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2260{
2261        if ((!(adv_reg)) ||  (!(lp_reg)))
2262                return IXGBE_ERR_FC_NOT_NEGOTIATED;
2263
2264        if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2265                /*
2266                 * Now we need to check if the user selected Rx ONLY
2267                 * of pause frames.  In this case, we had to advertise
2268                 * FULL flow control because we could not advertise RX
2269                 * ONLY. Hence, we must now check to see if we need to
2270                 * turn OFF the TRANSMISSION of PAUSE frames.
2271                 */
2272                if (hw->fc.requested_mode == ixgbe_fc_full) {
2273                        hw->fc.current_mode = ixgbe_fc_full;
2274                        hw_dbg(hw, "Flow Control = FULL.\n");
2275                } else {
2276                        hw->fc.current_mode = ixgbe_fc_rx_pause;
2277                        hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2278                }
2279        } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2280                   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2281                hw->fc.current_mode = ixgbe_fc_tx_pause;
2282                hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2283        } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2284                   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2285                hw->fc.current_mode = ixgbe_fc_rx_pause;
2286                hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2287        } else {
2288                hw->fc.current_mode = ixgbe_fc_none;
2289                hw_dbg(hw, "Flow Control = NONE.\n");
2290        }
2291        return 0;
2292}
2293
2294/**
2295 *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2296 *  @hw: pointer to hardware structure
2297 *
2298 *  Enable flow control according on 1 gig fiber.
2299 **/
2300static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2301{
2302        u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2303        s32 ret_val;
2304
2305        /*
2306         * On multispeed fiber at 1g, bail out if
2307         * - link is up but AN did not complete, or if
2308         * - link is up and AN completed but timed out
2309         */
2310
2311        linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2312        if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2313            (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2314                return IXGBE_ERR_FC_NOT_NEGOTIATED;
2315
2316        pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2317        pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2318
2319        ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2320                               pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2321                               IXGBE_PCS1GANA_ASM_PAUSE,
2322                               IXGBE_PCS1GANA_SYM_PAUSE,
2323                               IXGBE_PCS1GANA_ASM_PAUSE);
2324
2325        return ret_val;
2326}
2327
2328/**
2329 *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2330 *  @hw: pointer to hardware structure
2331 *
2332 *  Enable flow control according to IEEE clause 37.
2333 **/
2334static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2335{
2336        u32 links2, anlp1_reg, autoc_reg, links;
2337        s32 ret_val;
2338
2339        /*
2340         * On backplane, bail out if
2341         * - backplane autoneg was not completed, or if
2342         * - we are 82599 and link partner is not AN enabled
2343         */
2344        links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2345        if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2346                return IXGBE_ERR_FC_NOT_NEGOTIATED;
2347
2348        if (hw->mac.type == ixgbe_mac_82599EB) {
2349                links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2350                if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2351                        return IXGBE_ERR_FC_NOT_NEGOTIATED;
2352        }
2353        /*
2354         * Read the 10g AN autoc and LP ability registers and resolve
2355         * local flow control settings accordingly
2356         */
2357        autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2358        anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2359
2360        ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2361                anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2362                IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2363
2364        return ret_val;
2365}
2366
2367/**
2368 *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2369 *  @hw: pointer to hardware structure
2370 *
2371 *  Enable flow control according to IEEE clause 37.
2372 **/
2373static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2374{
2375        u16 technology_ability_reg = 0;
2376        u16 lp_technology_ability_reg = 0;
2377
2378        hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2379                             MDIO_MMD_AN,
2380                             &technology_ability_reg);
2381        hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2382                             MDIO_MMD_AN,
2383                             &lp_technology_ability_reg);
2384
2385        return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2386                                  (u32)lp_technology_ability_reg,
2387                                  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2388                                  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2389}
2390
2391/**
2392 *  ixgbe_fc_autoneg - Configure flow control
2393 *  @hw: pointer to hardware structure
2394 *
2395 *  Compares our advertised flow control capabilities to those advertised by
2396 *  our link partner, and determines the proper flow control mode to use.
2397 **/
2398void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2399{
2400        s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2401        ixgbe_link_speed speed;
2402        bool link_up;
2403
2404        /*
2405         * AN should have completed when the cable was plugged in.
2406         * Look for reasons to bail out.  Bail out if:
2407         * - FC autoneg is disabled, or if
2408         * - link is not up.
2409         *
2410         * Since we're being called from an LSC, link is already known to be up.
2411         * So use link_up_wait_to_complete=false.
2412         */
2413        if (hw->fc.disable_fc_autoneg)
2414                goto out;
2415
2416        hw->mac.ops.check_link(hw, &speed, &link_up, false);
2417        if (!link_up)
2418                goto out;
2419
2420        switch (hw->phy.media_type) {
2421        /* Autoneg flow control on fiber adapters */
2422        case ixgbe_media_type_fiber:
2423                if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2424                        ret_val = ixgbe_fc_autoneg_fiber(hw);
2425                break;
2426
2427        /* Autoneg flow control on backplane adapters */
2428        case ixgbe_media_type_backplane:
2429                ret_val = ixgbe_fc_autoneg_backplane(hw);
2430                break;
2431
2432        /* Autoneg flow control on copper adapters */
2433        case ixgbe_media_type_copper:
2434                if (ixgbe_device_supports_autoneg_fc(hw))
2435                        ret_val = ixgbe_fc_autoneg_copper(hw);
2436                break;
2437
2438        default:
2439                break;
2440        }
2441
2442out:
2443        if (ret_val == 0) {
2444                hw->fc.fc_was_autonegged = true;
2445        } else {
2446                hw->fc.fc_was_autonegged = false;
2447                hw->fc.current_mode = hw->fc.requested_mode;
2448        }
2449}
2450
2451/**
2452 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2453 * @hw: pointer to hardware structure
2454 *
2455 * System-wide timeout range is encoded in PCIe Device Control2 register.
2456 *
2457 *  Add 10% to specified maximum and return the number of times to poll for
2458 *  completion timeout, in units of 100 microsec.  Never return less than
2459 *  800 = 80 millisec.
2460 **/
2461static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2462{
2463        s16 devctl2;
2464        u32 pollcnt;
2465
2466        devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2467        devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2468
2469        switch (devctl2) {
2470        case IXGBE_PCIDEVCTRL2_65_130ms:
2471                 pollcnt = 1300;         /* 130 millisec */
2472                break;
2473        case IXGBE_PCIDEVCTRL2_260_520ms:
2474                pollcnt = 5200;         /* 520 millisec */
2475                break;
2476        case IXGBE_PCIDEVCTRL2_1_2s:
2477                pollcnt = 20000;        /* 2 sec */
2478                break;
2479        case IXGBE_PCIDEVCTRL2_4_8s:
2480                pollcnt = 80000;        /* 8 sec */
2481                break;
2482        case IXGBE_PCIDEVCTRL2_17_34s:
2483                pollcnt = 34000;        /* 34 sec */
2484                break;
2485        case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
2486        case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
2487        case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
2488        case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
2489        default:
2490                pollcnt = 800;          /* 80 millisec minimum */
2491                break;
2492        }
2493
2494        /* add 10% to spec maximum */
2495        return (pollcnt * 11) / 10;
2496}
2497
2498/**
2499 *  ixgbe_disable_pcie_master - Disable PCI-express master access
2500 *  @hw: pointer to hardware structure
2501 *
2502 *  Disables PCI-Express master access and verifies there are no pending
2503 *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2504 *  bit hasn't caused the master requests to be disabled, else 0
2505 *  is returned signifying master requests disabled.
2506 **/
2507static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2508{
2509        u32 i, poll;
2510        u16 value;
2511
2512        /* Always set this bit to ensure any future transactions are blocked */
2513        IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2514
2515        /* Poll for bit to read as set */
2516        for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2517                if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
2518                        break;
2519                usleep_range(100, 120);
2520        }
2521        if (i >= IXGBE_PCI_MASTER_DISABLE_TIMEOUT) {
2522                hw_dbg(hw, "GIO disable did not set - requesting resets\n");
2523                goto gio_disable_fail;
2524        }
2525
2526        /* Exit if master requests are blocked */
2527        if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2528            ixgbe_removed(hw->hw_addr))
2529                return 0;
2530
2531        /* Poll for master request bit to clear */
2532        for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2533                udelay(100);
2534                if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2535                        return 0;
2536        }
2537
2538        /*
2539         * Two consecutive resets are required via CTRL.RST per datasheet
2540         * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2541         * of this need.  The first reset prevents new master requests from
2542         * being issued by our device.  We then must wait 1usec or more for any
2543         * remaining completions from the PCIe bus to trickle in, and then reset
2544         * again to clear out any effects they may have had on our device.
2545         */
2546        hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2547gio_disable_fail:
2548        hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2549
2550        if (hw->mac.type >= ixgbe_mac_X550)
2551                return 0;
2552
2553        /*
2554         * Before proceeding, make sure that the PCIe block does not have
2555         * transactions pending.
2556         */
2557        poll = ixgbe_pcie_timeout_poll(hw);
2558        for (i = 0; i < poll; i++) {
2559                udelay(100);
2560                value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2561                if (ixgbe_removed(hw->hw_addr))
2562                        return 0;
2563                if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2564                        return 0;
2565        }
2566
2567        hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2568        return IXGBE_ERR_MASTER_REQUESTS_PENDING;
2569}
2570
2571/**
2572 *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2573 *  @hw: pointer to hardware structure
2574 *  @mask: Mask to specify which semaphore to acquire
2575 *
2576 *  Acquires the SWFW semaphore through the GSSR register for the specified
2577 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2578 **/
2579s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2580{
2581        u32 gssr = 0;
2582        u32 swmask = mask;
2583        u32 fwmask = mask << 5;
2584        u32 timeout = 200;
2585        u32 i;
2586
2587        for (i = 0; i < timeout; i++) {
2588                /*
2589                 * SW NVM semaphore bit is used for access to all
2590                 * SW_FW_SYNC bits (not just NVM)
2591                 */
2592                if (ixgbe_get_eeprom_semaphore(hw))
2593                        return IXGBE_ERR_SWFW_SYNC;
2594
2595                gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2596                if (!(gssr & (fwmask | swmask))) {
2597                        gssr |= swmask;
2598                        IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2599                        ixgbe_release_eeprom_semaphore(hw);
2600                        return 0;
2601                } else {
2602                        /* Resource is currently in use by FW or SW */
2603                        ixgbe_release_eeprom_semaphore(hw);
2604                        usleep_range(5000, 10000);
2605                }
2606        }
2607
2608        /* If time expired clear the bits holding the lock and retry */
2609        if (gssr & (fwmask | swmask))
2610                ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2611
2612        usleep_range(5000, 10000);
2613        return IXGBE_ERR_SWFW_SYNC;
2614}
2615
2616/**
2617 *  ixgbe_release_swfw_sync - Release SWFW semaphore
2618 *  @hw: pointer to hardware structure
2619 *  @mask: Mask to specify which semaphore to release
2620 *
2621 *  Releases the SWFW semaphore through the GSSR register for the specified
2622 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2623 **/
2624void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2625{
2626        u32 gssr;
2627        u32 swmask = mask;
2628
2629        ixgbe_get_eeprom_semaphore(hw);
2630
2631        gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2632        gssr &= ~swmask;
2633        IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2634
2635        ixgbe_release_eeprom_semaphore(hw);
2636}
2637
2638/**
2639 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2640 * @hw: pointer to hardware structure
2641 * @reg_val: Value we read from AUTOC
2642 * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
2643 *          true in this the generic case.
2644 *
2645 * The default case requires no protection so just to the register read.
2646 **/
2647s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2648{
2649        *locked = false;
2650        *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2651        return 0;
2652}
2653
2654/**
2655 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2656 * @hw: pointer to hardware structure
2657 * @reg_val: value to write to AUTOC
2658 * @locked: bool to indicate whether the SW/FW lock was already taken by
2659 *          previous read.
2660 **/
2661s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2662{
2663        IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2664        return 0;
2665}
2666
2667/**
2668 *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2669 *  @hw: pointer to hardware structure
2670 *
2671 *  Stops the receive data path and waits for the HW to internally
2672 *  empty the Rx security block.
2673 **/
2674s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2675{
2676#define IXGBE_MAX_SECRX_POLL 40
2677        int i;
2678        int secrxreg;
2679
2680        secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2681        secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2682        IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2683        for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2684                secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2685                if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2686                        break;
2687                else
2688                        /* Use interrupt-safe sleep just in case */
2689                        udelay(1000);
2690        }
2691
2692        /* For informational purposes only */
2693        if (i >= IXGBE_MAX_SECRX_POLL)
2694                hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2695
2696        return 0;
2697
2698}
2699
2700/**
2701 *  ixgbe_enable_rx_buff - Enables the receive data path
2702 *  @hw: pointer to hardware structure
2703 *
2704 *  Enables the receive data path
2705 **/
2706s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2707{
2708        u32 secrxreg;
2709
2710        secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2711        secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2712        IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2713        IXGBE_WRITE_FLUSH(hw);
2714
2715        return 0;
2716}
2717
2718/**
2719 *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2720 *  @hw: pointer to hardware structure
2721 *  @regval: register value to write to RXCTRL
2722 *
2723 *  Enables the Rx DMA unit
2724 **/
2725s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2726{
2727        if (regval & IXGBE_RXCTRL_RXEN)
2728                hw->mac.ops.enable_rx(hw);
2729        else
2730                hw->mac.ops.disable_rx(hw);
2731
2732        return 0;
2733}
2734
2735/**
2736 *  ixgbe_blink_led_start_generic - Blink LED based on index.
2737 *  @hw: pointer to hardware structure
2738 *  @index: led number to blink
2739 **/
2740s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2741{
2742        ixgbe_link_speed speed = 0;
2743        bool link_up = false;
2744        u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2745        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2746        bool locked = false;
2747        s32 ret_val;
2748
2749        if (index > 3)
2750                return IXGBE_ERR_PARAM;
2751
2752        /*
2753         * Link must be up to auto-blink the LEDs;
2754         * Force it if link is down.
2755         */
2756        hw->mac.ops.check_link(hw, &speed, &link_up, false);
2757
2758        if (!link_up) {
2759                ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2760                if (ret_val)
2761                        return ret_val;
2762
2763                autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2764                autoc_reg |= IXGBE_AUTOC_FLU;
2765
2766                ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2767                if (ret_val)
2768                        return ret_val;
2769
2770                IXGBE_WRITE_FLUSH(hw);
2771
2772                usleep_range(10000, 20000);
2773        }
2774
2775        led_reg &= ~IXGBE_LED_MODE_MASK(index);
2776        led_reg |= IXGBE_LED_BLINK(index);
2777        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2778        IXGBE_WRITE_FLUSH(hw);
2779
2780        return 0;
2781}
2782
2783/**
2784 *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2785 *  @hw: pointer to hardware structure
2786 *  @index: led number to stop blinking
2787 **/
2788s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2789{
2790        u32 autoc_reg = 0;
2791        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2792        bool locked = false;
2793        s32 ret_val;
2794
2795        if (index > 3)
2796                return IXGBE_ERR_PARAM;
2797
2798        ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2799        if (ret_val)
2800                return ret_val;
2801
2802        autoc_reg &= ~IXGBE_AUTOC_FLU;
2803        autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2804
2805        ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2806        if (ret_val)
2807                return ret_val;
2808
2809        led_reg &= ~IXGBE_LED_MODE_MASK(index);
2810        led_reg &= ~IXGBE_LED_BLINK(index);
2811        led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2812        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2813        IXGBE_WRITE_FLUSH(hw);
2814
2815        return 0;
2816}
2817
2818/**
2819 *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2820 *  @hw: pointer to hardware structure
2821 *  @san_mac_offset: SAN MAC address offset
2822 *
2823 *  This function will read the EEPROM location for the SAN MAC address
2824 *  pointer, and returns the value at that location.  This is used in both
2825 *  get and set mac_addr routines.
2826 **/
2827static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2828                                        u16 *san_mac_offset)
2829{
2830        s32 ret_val;
2831
2832        /*
2833         * First read the EEPROM pointer to see if the MAC addresses are
2834         * available.
2835         */
2836        ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2837                                      san_mac_offset);
2838        if (ret_val)
2839                hw_err(hw, "eeprom read at offset %d failed\n",
2840                       IXGBE_SAN_MAC_ADDR_PTR);
2841
2842        return ret_val;
2843}
2844
2845/**
2846 *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2847 *  @hw: pointer to hardware structure
2848 *  @san_mac_addr: SAN MAC address
2849 *
2850 *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2851 *  per-port, so set_lan_id() must be called before reading the addresses.
2852 *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2853 *  upon for non-SFP connections, so we must call it here.
2854 **/
2855s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2856{
2857        u16 san_mac_data, san_mac_offset;
2858        u8 i;
2859        s32 ret_val;
2860
2861        /*
2862         * First read the EEPROM pointer to see if the MAC addresses are
2863         * available.  If they're not, no point in calling set_lan_id() here.
2864         */
2865        ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2866        if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2867
2868                goto san_mac_addr_clr;
2869
2870        /* make sure we know which port we need to program */
2871        hw->mac.ops.set_lan_id(hw);
2872        /* apply the port offset to the address offset */
2873        (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2874                         (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2875        for (i = 0; i < 3; i++) {
2876                ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2877                                              &san_mac_data);
2878                if (ret_val) {
2879                        hw_err(hw, "eeprom read at offset %d failed\n",
2880                               san_mac_offset);
2881                        goto san_mac_addr_clr;
2882                }
2883                san_mac_addr[i * 2] = (u8)(san_mac_data);
2884                san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2885                san_mac_offset++;
2886        }
2887        return 0;
2888
2889san_mac_addr_clr:
2890        /* No addresses available in this EEPROM.  It's not necessarily an
2891         * error though, so just wipe the local address and return.
2892         */
2893        for (i = 0; i < 6; i++)
2894                san_mac_addr[i] = 0xFF;
2895        return ret_val;
2896}
2897
2898/**
2899 *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2900 *  @hw: pointer to hardware structure
2901 *
2902 *  Read PCIe configuration space, and get the MSI-X vector count from
2903 *  the capabilities table.
2904 **/
2905u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2906{
2907        u16 msix_count;
2908        u16 max_msix_count;
2909        u16 pcie_offset;
2910
2911        switch (hw->mac.type) {
2912        case ixgbe_mac_82598EB:
2913                pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2914                max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2915                break;
2916        case ixgbe_mac_82599EB:
2917        case ixgbe_mac_X540:
2918        case ixgbe_mac_X550:
2919        case ixgbe_mac_X550EM_x:
2920        case ixgbe_mac_x550em_a:
2921                pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2922                max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2923                break;
2924        default:
2925                return 1;
2926        }
2927
2928        msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2929        if (ixgbe_removed(hw->hw_addr))
2930                msix_count = 0;
2931        msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2932
2933        /* MSI-X count is zero-based in HW */
2934        msix_count++;
2935
2936        if (msix_count > max_msix_count)
2937                msix_count = max_msix_count;
2938
2939        return msix_count;
2940}
2941
2942/**
2943 *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2944 *  @hw: pointer to hardware struct
2945 *  @rar: receive address register index to disassociate
2946 *  @vmdq: VMDq pool index to remove from the rar
2947 **/
2948s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2949{
2950        u32 mpsar_lo, mpsar_hi;
2951        u32 rar_entries = hw->mac.num_rar_entries;
2952
2953        /* Make sure we are using a valid rar index range */
2954        if (rar >= rar_entries) {
2955                hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2956                return IXGBE_ERR_INVALID_ARGUMENT;
2957        }
2958
2959        mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2960        mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2961
2962        if (ixgbe_removed(hw->hw_addr))
2963                return 0;
2964
2965        if (!mpsar_lo && !mpsar_hi)
2966                return 0;
2967
2968        if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2969                if (mpsar_lo) {
2970                        IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2971                        mpsar_lo = 0;
2972                }
2973                if (mpsar_hi) {
2974                        IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2975                        mpsar_hi = 0;
2976                }
2977        } else if (vmdq < 32) {
2978                mpsar_lo &= ~BIT(vmdq);
2979                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2980        } else {
2981                mpsar_hi &= ~BIT(vmdq - 32);
2982                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2983        }
2984
2985        /* was that the last pool using this rar? */
2986        if (mpsar_lo == 0 && mpsar_hi == 0 &&
2987            rar != 0 && rar != hw->mac.san_mac_rar_index)
2988                hw->mac.ops.clear_rar(hw, rar);
2989
2990        return 0;
2991}
2992
2993/**
2994 *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2995 *  @hw: pointer to hardware struct
2996 *  @rar: receive address register index to associate with a VMDq index
2997 *  @vmdq: VMDq pool index
2998 **/
2999s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3000{
3001        u32 mpsar;
3002        u32 rar_entries = hw->mac.num_rar_entries;
3003
3004        /* Make sure we are using a valid rar index range */
3005        if (rar >= rar_entries) {
3006                hw_dbg(hw, "RAR index %d is out of range.\n", rar);
3007                return IXGBE_ERR_INVALID_ARGUMENT;
3008        }
3009
3010        if (vmdq < 32) {
3011                mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3012                mpsar |= BIT(vmdq);
3013                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3014        } else {
3015                mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3016                mpsar |= BIT(vmdq - 32);
3017                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3018        }
3019        return 0;
3020}
3021
3022/**
3023 *  This function should only be involved in the IOV mode.
3024 *  In IOV mode, Default pool is next pool after the number of
3025 *  VFs advertized and not 0.
3026 *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3027 *
3028 *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3029 *  @hw: pointer to hardware struct
3030 *  @vmdq: VMDq pool index
3031 **/
3032s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3033{
3034        u32 rar = hw->mac.san_mac_rar_index;
3035
3036        if (vmdq < 32) {
3037                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), BIT(vmdq));
3038                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3039        } else {
3040                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3041                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), BIT(vmdq - 32));
3042        }
3043
3044        return 0;
3045}
3046
3047/**
3048 *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3049 *  @hw: pointer to hardware structure
3050 **/
3051s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3052{
3053        int i;
3054
3055        for (i = 0; i < 128; i++)
3056                IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3057
3058        return 0;
3059}
3060
3061/**
3062 *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3063 *  @hw: pointer to hardware structure
3064 *  @vlan: VLAN id to write to VLAN filter
3065 *  @vlvf_bypass: true to find vlanid only, false returns first empty slot if
3066 *                vlanid not found
3067 *
3068 *  return the VLVF index where this VLAN id should be placed
3069 *
3070 **/
3071static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3072{
3073        s32 regindex, first_empty_slot;
3074        u32 bits;
3075
3076        /* short cut the special case */
3077        if (vlan == 0)
3078                return 0;
3079
3080        /* if vlvf_bypass is set we don't want to use an empty slot, we
3081         * will simply bypass the VLVF if there are no entries present in the
3082         * VLVF that contain our VLAN
3083         */
3084        first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3085
3086        /* add VLAN enable bit for comparison */
3087        vlan |= IXGBE_VLVF_VIEN;
3088
3089        /* Search for the vlan id in the VLVF entries. Save off the first empty
3090         * slot found along the way.
3091         *
3092         * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3093         */
3094        for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3095                bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3096                if (bits == vlan)
3097                        return regindex;
3098                if (!first_empty_slot && !bits)
3099                        first_empty_slot = regindex;
3100        }
3101
3102        /* If we are here then we didn't find the VLAN.  Return first empty
3103         * slot we found during our search, else error.
3104         */
3105        if (!first_empty_slot)
3106                hw_dbg(hw, "No space in VLVF.\n");
3107
3108        return first_empty_slot ? : IXGBE_ERR_NO_SPACE;
3109}
3110
3111/**
3112 *  ixgbe_set_vfta_generic - Set VLAN filter table
3113 *  @hw: pointer to hardware structure
3114 *  @vlan: VLAN id to write to VLAN filter
3115 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3116 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3117 *  @vlvf_bypass: boolean flag indicating updating default pool is okay
3118 *
3119 *  Turn on/off specified VLAN in the VLAN filter table.
3120 **/
3121s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3122                           bool vlan_on, bool vlvf_bypass)
3123{
3124        u32 regidx, vfta_delta, vfta, bits;
3125        s32 vlvf_index;
3126
3127        if ((vlan > 4095) || (vind > 63))
3128                return IXGBE_ERR_PARAM;
3129
3130        /*
3131         * this is a 2 part operation - first the VFTA, then the
3132         * VLVF and VLVFB if VT Mode is set
3133         * We don't write the VFTA until we know the VLVF part succeeded.
3134         */
3135
3136        /* Part 1
3137         * The VFTA is a bitstring made up of 128 32-bit registers
3138         * that enable the particular VLAN id, much like the MTA:
3139         *    bits[11-5]: which register
3140         *    bits[4-0]:  which bit in the register
3141         */
3142        regidx = vlan / 32;
3143        vfta_delta = BIT(vlan % 32);
3144        vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3145
3146        /* vfta_delta represents the difference between the current value
3147         * of vfta and the value we want in the register.  Since the diff
3148         * is an XOR mask we can just update vfta using an XOR.
3149         */
3150        vfta_delta &= vlan_on ? ~vfta : vfta;
3151        vfta ^= vfta_delta;
3152
3153        /* Part 2
3154         * If VT Mode is set
3155         *   Either vlan_on
3156         *     make sure the vlan is in VLVF
3157         *     set the vind bit in the matching VLVFB
3158         *   Or !vlan_on
3159         *     clear the pool bit and possibly the vind
3160         */
3161        if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
3162                goto vfta_update;
3163
3164        vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
3165        if (vlvf_index < 0) {
3166                if (vlvf_bypass)
3167                        goto vfta_update;
3168                return vlvf_index;
3169        }
3170
3171        bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
3172
3173        /* set the pool bit */
3174        bits |= BIT(vind % 32);
3175        if (vlan_on)
3176                goto vlvf_update;
3177
3178        /* clear the pool bit */
3179        bits ^= BIT(vind % 32);
3180
3181        if (!bits &&
3182            !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
3183                /* Clear VFTA first, then disable VLVF.  Otherwise
3184                 * we run the risk of stray packets leaking into
3185                 * the PF via the default pool
3186                 */
3187                if (vfta_delta)
3188                        IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3189
3190                /* disable VLVF and clear remaining bit from pool */
3191                IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3192                IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
3193
3194                return 0;
3195        }
3196
3197        /* If there are still bits set in the VLVFB registers
3198         * for the VLAN ID indicated we need to see if the
3199         * caller is requesting that we clear the VFTA entry bit.
3200         * If the caller has requested that we clear the VFTA
3201         * entry bit but there are still pools/VFs using this VLAN
3202         * ID entry then ignore the request.  We're not worried
3203         * about the case where we're turning the VFTA VLAN ID
3204         * entry bit on, only when requested to turn it off as
3205         * there may be multiple pools and/or VFs using the
3206         * VLAN ID entry.  In that case we cannot clear the
3207         * VFTA bit until all pools/VFs using that VLAN ID have also
3208         * been cleared.  This will be indicated by "bits" being
3209         * zero.
3210         */
3211        vfta_delta = 0;
3212
3213vlvf_update:
3214        /* record pool change and enable VLAN ID if not already enabled */
3215        IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
3216        IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3217
3218vfta_update:
3219        /* Update VFTA now that we are ready for traffic */
3220        if (vfta_delta)
3221                IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3222
3223        return 0;
3224}
3225
3226/**
3227 *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3228 *  @hw: pointer to hardware structure
3229 *
3230 *  Clears the VLAN filer table, and the VMDq index associated with the filter
3231 **/
3232s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3233{
3234        u32 offset;
3235
3236        for (offset = 0; offset < hw->mac.vft_size; offset++)
3237                IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3238
3239        for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3240                IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3241                IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3242                IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3243        }
3244
3245        return 0;
3246}
3247
3248/**
3249 *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
3250 *  @hw: pointer to hardware structure
3251 *
3252 *  Contains the logic to identify if we need to verify link for the
3253 *  crosstalk fix
3254 **/
3255static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
3256{
3257        /* Does FW say we need the fix */
3258        if (!hw->need_crosstalk_fix)
3259                return false;
3260
3261        /* Only consider SFP+ PHYs i.e. media type fiber */
3262        switch (hw->mac.ops.get_media_type(hw)) {
3263        case ixgbe_media_type_fiber:
3264        case ixgbe_media_type_fiber_qsfp:
3265                break;
3266        default:
3267                return false;
3268        }
3269
3270        return true;
3271}
3272
3273/**
3274 *  ixgbe_check_mac_link_generic - Determine link and speed status
3275 *  @hw: pointer to hardware structure
3276 *  @speed: pointer to link speed
3277 *  @link_up: true when link is up
3278 *  @link_up_wait_to_complete: bool used to wait for link up or not
3279 *
3280 *  Reads the links register to determine if link is up and the current speed
3281 **/
3282s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3283                                 bool *link_up, bool link_up_wait_to_complete)
3284{
3285        u32 links_reg, links_orig;
3286        u32 i;
3287
3288        /* If Crosstalk fix enabled do the sanity check of making sure
3289         * the SFP+ cage is full.
3290         */
3291        if (ixgbe_need_crosstalk_fix(hw)) {
3292                u32 sfp_cage_full;
3293
3294                switch (hw->mac.type) {
3295                case ixgbe_mac_82599EB:
3296                        sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3297                                        IXGBE_ESDP_SDP2;
3298                        break;
3299                case ixgbe_mac_X550EM_x:
3300                case ixgbe_mac_x550em_a:
3301                        sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3302                                        IXGBE_ESDP_SDP0;
3303                        break;
3304                default:
3305                        /* sanity check - No SFP+ devices here */
3306                        sfp_cage_full = false;
3307                        break;
3308                }
3309
3310                if (!sfp_cage_full) {
3311                        *link_up = false;
3312                        *speed = IXGBE_LINK_SPEED_UNKNOWN;
3313                        return 0;
3314                }
3315        }
3316
3317        /* clear the old state */
3318        links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3319
3320        links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3321
3322        if (links_orig != links_reg) {
3323                hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3324                       links_orig, links_reg);
3325        }
3326
3327        if (link_up_wait_to_complete) {
3328                for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3329                        if (links_reg & IXGBE_LINKS_UP) {
3330                                *link_up = true;
3331                                break;
3332                        } else {
3333                                *link_up = false;
3334                        }
3335                        msleep(100);
3336                        links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3337                }
3338        } else {
3339                if (links_reg & IXGBE_LINKS_UP)
3340                        *link_up = true;
3341                else
3342                        *link_up = false;
3343        }
3344
3345        switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3346        case IXGBE_LINKS_SPEED_10G_82599:
3347                if ((hw->mac.type >= ixgbe_mac_X550) &&
3348                    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3349                        *speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3350                else
3351                        *speed = IXGBE_LINK_SPEED_10GB_FULL;
3352                break;
3353        case IXGBE_LINKS_SPEED_1G_82599:
3354                *speed = IXGBE_LINK_SPEED_1GB_FULL;
3355                break;
3356        case IXGBE_LINKS_SPEED_100_82599:
3357                if ((hw->mac.type >= ixgbe_mac_X550) &&
3358                    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3359                        *speed = IXGBE_LINK_SPEED_5GB_FULL;
3360                else
3361                        *speed = IXGBE_LINK_SPEED_100_FULL;
3362                break;
3363        case IXGBE_LINKS_SPEED_10_X550EM_A:
3364                *speed = IXGBE_LINK_SPEED_UNKNOWN;
3365                if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
3366                    hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) {
3367                        *speed = IXGBE_LINK_SPEED_10_FULL;
3368                }
3369                break;
3370        default:
3371                *speed = IXGBE_LINK_SPEED_UNKNOWN;
3372        }
3373
3374        return 0;
3375}
3376
3377/**
3378 *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3379 *  the EEPROM
3380 *  @hw: pointer to hardware structure
3381 *  @wwnn_prefix: the alternative WWNN prefix
3382 *  @wwpn_prefix: the alternative WWPN prefix
3383 *
3384 *  This function will read the EEPROM from the alternative SAN MAC address
3385 *  block to check the support for the alternative WWNN/WWPN prefix support.
3386 **/
3387s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3388                                        u16 *wwpn_prefix)
3389{
3390        u16 offset, caps;
3391        u16 alt_san_mac_blk_offset;
3392
3393        /* clear output first */
3394        *wwnn_prefix = 0xFFFF;
3395        *wwpn_prefix = 0xFFFF;
3396
3397        /* check if alternative SAN MAC is supported */
3398        offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3399        if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3400                goto wwn_prefix_err;
3401
3402        if ((alt_san_mac_blk_offset == 0) ||
3403            (alt_san_mac_blk_offset == 0xFFFF))
3404                return 0;
3405
3406        /* check capability in alternative san mac address block */
3407        offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3408        if (hw->eeprom.ops.read(hw, offset, &caps))
3409                goto wwn_prefix_err;
3410        if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3411                return 0;
3412
3413        /* get the corresponding prefix for WWNN/WWPN */
3414        offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3415        if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3416                hw_err(hw, "eeprom read at offset %d failed\n", offset);
3417
3418        offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3419        if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3420                goto wwn_prefix_err;
3421
3422        return 0;
3423
3424wwn_prefix_err:
3425        hw_err(hw, "eeprom read at offset %d failed\n", offset);
3426        return 0;
3427}
3428
3429/**
3430 *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3431 *  @hw: pointer to hardware structure
3432 *  @enable: enable or disable switch for MAC anti-spoofing
3433 *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3434 *
3435 **/
3436void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3437{
3438        int vf_target_reg = vf >> 3;
3439        int vf_target_shift = vf % 8;
3440        u32 pfvfspoof;
3441
3442        if (hw->mac.type == ixgbe_mac_82598EB)
3443                return;
3444
3445        pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3446        if (enable)
3447                pfvfspoof |= BIT(vf_target_shift);
3448        else
3449                pfvfspoof &= ~BIT(vf_target_shift);
3450        IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3451}
3452
3453/**
3454 *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3455 *  @hw: pointer to hardware structure
3456 *  @enable: enable or disable switch for VLAN anti-spoofing
3457 *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3458 *
3459 **/
3460void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3461{
3462        int vf_target_reg = vf >> 3;
3463        int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3464        u32 pfvfspoof;
3465
3466        if (hw->mac.type == ixgbe_mac_82598EB)
3467                return;
3468
3469        pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3470        if (enable)
3471                pfvfspoof |= BIT(vf_target_shift);
3472        else
3473                pfvfspoof &= ~BIT(vf_target_shift);
3474        IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3475}
3476
3477/**
3478 *  ixgbe_get_device_caps_generic - Get additional device capabilities
3479 *  @hw: pointer to hardware structure
3480 *  @device_caps: the EEPROM word with the extra device capabilities
3481 *
3482 *  This function will read the EEPROM location for the device capabilities,
3483 *  and return the word through device_caps.
3484 **/
3485s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3486{
3487        hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3488
3489        return 0;
3490}
3491
3492/**
3493 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3494 * @hw: pointer to hardware structure
3495 * @num_pb: number of packet buffers to allocate
3496 * @headroom: reserve n KB of headroom
3497 * @strategy: packet buffer allocation strategy
3498 **/
3499void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3500                             int num_pb,
3501                             u32 headroom,
3502                             int strategy)
3503{
3504        u32 pbsize = hw->mac.rx_pb_size;
3505        int i = 0;
3506        u32 rxpktsize, txpktsize, txpbthresh;
3507
3508        /* Reserve headroom */
3509        pbsize -= headroom;
3510
3511        if (!num_pb)
3512                num_pb = 1;
3513
3514        /* Divide remaining packet buffer space amongst the number
3515         * of packet buffers requested using supplied strategy.
3516         */
3517        switch (strategy) {
3518        case (PBA_STRATEGY_WEIGHTED):
3519                /* pba_80_48 strategy weight first half of packet buffer with
3520                 * 5/8 of the packet buffer space.
3521                 */
3522                rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3523                pbsize -= rxpktsize * (num_pb / 2);
3524                rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3525                for (; i < (num_pb / 2); i++)
3526                        IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3527                /* fall through - configure remaining packet buffers */
3528        case (PBA_STRATEGY_EQUAL):
3529                /* Divide the remaining Rx packet buffer evenly among the TCs */
3530                rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3531                for (; i < num_pb; i++)
3532                        IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3533                break;
3534        default:
3535                break;
3536        }
3537
3538        /*
3539         * Setup Tx packet buffer and threshold equally for all TCs
3540         * TXPBTHRESH register is set in K so divide by 1024 and subtract
3541         * 10 since the largest packet we support is just over 9K.
3542         */
3543        txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3544        txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3545        for (i = 0; i < num_pb; i++) {
3546                IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3547                IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3548        }
3549
3550        /* Clear unused TCs, if any, to zero buffer size*/
3551        for (; i < IXGBE_MAX_PB; i++) {
3552                IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3553                IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3554                IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3555        }
3556}
3557
3558/**
3559 *  ixgbe_calculate_checksum - Calculate checksum for buffer
3560 *  @buffer: pointer to EEPROM
3561 *  @length: size of EEPROM to calculate a checksum for
3562 *
3563 *  Calculates the checksum for some buffer on a specified length.  The
3564 *  checksum calculated is returned.
3565 **/
3566u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3567{
3568        u32 i;
3569        u8 sum = 0;
3570
3571        if (!buffer)
3572                return 0;
3573
3574        for (i = 0; i < length; i++)
3575                sum += buffer[i];
3576
3577        return (u8) (0 - sum);
3578}
3579
3580/**
3581 *  ixgbe_hic_unlocked - Issue command to manageability block unlocked
3582 *  @hw: pointer to the HW structure
3583 *  @buffer: command to write and where the return status will be placed
3584 *  @length: length of buffer, must be multiple of 4 bytes
3585 *  @timeout: time in ms to wait for command completion
3586 *
3587 *  Communicates with the manageability block. On success return 0
3588 *  else returns semaphore error when encountering an error acquiring
3589 *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3590 *
3591 *  This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
3592 *  by the caller.
3593 **/
3594s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
3595                       u32 timeout)
3596{
3597        u32 hicr, i, fwsts;
3598        u16 dword_len;
3599
3600        if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3601                hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3602                return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3603        }
3604
3605        /* Set bit 9 of FWSTS clearing FW reset indication */
3606        fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3607        IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3608
3609        /* Check that the host interface is enabled. */
3610        hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3611        if (!(hicr & IXGBE_HICR_EN)) {
3612                hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3613                return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3614        }
3615
3616        /* Calculate length in DWORDs. We must be DWORD aligned */
3617        if (length % sizeof(u32)) {
3618                hw_dbg(hw, "Buffer length failure, not aligned to dword");
3619                return IXGBE_ERR_INVALID_ARGUMENT;
3620        }
3621
3622        dword_len = length >> 2;
3623
3624        /* The device driver writes the relevant command block
3625         * into the ram area.
3626         */
3627        for (i = 0; i < dword_len; i++)
3628                IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3629                                      i, (__force u32)cpu_to_le32(buffer[i]));
3630
3631        /* Setting this bit tells the ARC that a new command is pending. */
3632        IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3633
3634        for (i = 0; i < timeout; i++) {
3635                hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3636                if (!(hicr & IXGBE_HICR_C))
3637                        break;
3638                usleep_range(1000, 2000);
3639        }
3640
3641        /* Check command successful completion. */
3642        if ((timeout && i == timeout) ||
3643            !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))
3644                return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3645
3646        return 0;
3647}
3648
3649/**
3650 *  ixgbe_host_interface_command - Issue command to manageability block
3651 *  @hw: pointer to the HW structure
3652 *  @buffer: contains the command to write and where the return status will
3653 *           be placed
3654 *  @length: length of buffer, must be multiple of 4 bytes
3655 *  @timeout: time in ms to wait for command completion
3656 *  @return_data: read and return data from the buffer (true) or not (false)
3657 *  Needed because FW structures are big endian and decoding of
3658 *  these fields can be 8 bit or 16 bit based on command. Decoding
3659 *  is not easily understood without making a table of commands.
3660 *  So we will leave this up to the caller to read back the data
3661 *  in these cases.
3662 *
3663 *  Communicates with the manageability block.  On success return 0
3664 *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3665 **/
3666s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, void *buffer,
3667                                 u32 length, u32 timeout,
3668                                 bool return_data)
3669{
3670        u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3671        union {
3672                struct ixgbe_hic_hdr hdr;
3673                u32 u32arr[1];
3674        } *bp = buffer;
3675        u16 buf_len, dword_len;
3676        s32 status;
3677        u32 bi;
3678
3679        if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3680                hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3681                return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3682        }
3683        /* Take management host interface semaphore */
3684        status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3685        if (status)
3686                return status;
3687
3688        status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
3689        if (status)
3690                goto rel_out;
3691
3692        if (!return_data)
3693                goto rel_out;
3694
3695        /* Calculate length in DWORDs */
3696        dword_len = hdr_size >> 2;
3697
3698        /* first pull in the header so we know the buffer length */
3699        for (bi = 0; bi < dword_len; bi++) {
3700                bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3701                le32_to_cpus(&bp->u32arr[bi]);
3702        }
3703
3704        /* If there is any thing in data position pull it in */
3705        buf_len = bp->hdr.buf_len;
3706        if (!buf_len)
3707                goto rel_out;
3708
3709        if (length < round_up(buf_len, 4) + hdr_size) {
3710                hw_dbg(hw, "Buffer not large enough for reply message.\n");
3711                status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3712                goto rel_out;
3713        }
3714
3715        /* Calculate length in DWORDs, add 3 for odd lengths */
3716        dword_len = (buf_len + 3) >> 2;
3717
3718        /* Pull in the rest of the buffer (bi is where we left off) */
3719        for (; bi <= dword_len; bi++) {
3720                bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3721                le32_to_cpus(&bp->u32arr[bi]);
3722        }
3723
3724rel_out:
3725        hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3726
3727        return status;
3728}
3729
3730/**
3731 *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3732 *  @hw: pointer to the HW structure
3733 *  @maj: driver version major number
3734 *  @min: driver version minor number
3735 *  @build: driver version build number
3736 *  @sub: driver version sub build number
3737 *  @len: length of driver_ver string
3738 *  @driver_ver: driver string
3739 *
3740 *  Sends driver version number to firmware through the manageability
3741 *  block.  On success return 0
3742 *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3743 *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3744 **/
3745s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3746                                 u8 build, u8 sub, __always_unused u16 len,
3747                                 __always_unused const char *driver_ver)
3748{
3749        struct ixgbe_hic_drv_info fw_cmd;
3750        int i;
3751        s32 ret_val;
3752
3753        fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3754        fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3755        fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3756        fw_cmd.port_num = hw->bus.func;
3757        fw_cmd.ver_maj = maj;
3758        fw_cmd.ver_min = min;
3759        fw_cmd.ver_build = build;
3760        fw_cmd.ver_sub = sub;
3761        fw_cmd.hdr.checksum = 0;
3762        fw_cmd.pad = 0;
3763        fw_cmd.pad2 = 0;
3764        fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3765                                (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3766
3767        for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3768                ret_val = ixgbe_host_interface_command(hw, &fw_cmd,
3769                                                       sizeof(fw_cmd),
3770                                                       IXGBE_HI_COMMAND_TIMEOUT,
3771                                                       true);
3772                if (ret_val != 0)
3773                        continue;
3774
3775                if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3776                    FW_CEM_RESP_STATUS_SUCCESS)
3777                        ret_val = 0;
3778                else
3779                        ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3780
3781                break;
3782        }
3783
3784        return ret_val;
3785}
3786
3787/**
3788 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3789 * @hw: pointer to the hardware structure
3790 *
3791 * The 82599 and x540 MACs can experience issues if TX work is still pending
3792 * when a reset occurs.  This function prevents this by flushing the PCIe
3793 * buffers on the system.
3794 **/
3795void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3796{
3797        u32 gcr_ext, hlreg0, i, poll;
3798        u16 value;
3799
3800        /*
3801         * If double reset is not requested then all transactions should
3802         * already be clear and as such there is no work to do
3803         */
3804        if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3805                return;
3806
3807        /*
3808         * Set loopback enable to prevent any transmits from being sent
3809         * should the link come up.  This assumes that the RXCTRL.RXEN bit
3810         * has already been cleared.
3811         */
3812        hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3813        IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3814
3815        /* wait for a last completion before clearing buffers */
3816        IXGBE_WRITE_FLUSH(hw);
3817        usleep_range(3000, 6000);
3818
3819        /* Before proceeding, make sure that the PCIe block does not have
3820         * transactions pending.
3821         */
3822        poll = ixgbe_pcie_timeout_poll(hw);
3823        for (i = 0; i < poll; i++) {
3824                usleep_range(100, 200);
3825                value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3826                if (ixgbe_removed(hw->hw_addr))
3827                        break;
3828                if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3829                        break;
3830        }
3831
3832        /* initiate cleaning flow for buffers in the PCIe transaction layer */
3833        gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3834        IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3835                        gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3836
3837        /* Flush all writes and allow 20usec for all transactions to clear */
3838        IXGBE_WRITE_FLUSH(hw);
3839        udelay(20);
3840
3841        /* restore previous register values */
3842        IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3843        IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3844}
3845
3846static const u8 ixgbe_emc_temp_data[4] = {
3847        IXGBE_EMC_INTERNAL_DATA,
3848        IXGBE_EMC_DIODE1_DATA,
3849        IXGBE_EMC_DIODE2_DATA,
3850        IXGBE_EMC_DIODE3_DATA
3851};
3852static const u8 ixgbe_emc_therm_limit[4] = {
3853        IXGBE_EMC_INTERNAL_THERM_LIMIT,
3854        IXGBE_EMC_DIODE1_THERM_LIMIT,
3855        IXGBE_EMC_DIODE2_THERM_LIMIT,
3856        IXGBE_EMC_DIODE3_THERM_LIMIT
3857};
3858
3859/**
3860 *  ixgbe_get_ets_data - Extracts the ETS bit data
3861 *  @hw: pointer to hardware structure
3862 *  @ets_cfg: extected ETS data
3863 *  @ets_offset: offset of ETS data
3864 *
3865 *  Returns error code.
3866 **/
3867static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3868                              u16 *ets_offset)
3869{
3870        s32 status;
3871
3872        status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3873        if (status)
3874                return status;
3875
3876        if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3877                return IXGBE_NOT_IMPLEMENTED;
3878
3879        status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3880        if (status)
3881                return status;
3882
3883        if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3884                return IXGBE_NOT_IMPLEMENTED;
3885
3886        return 0;
3887}
3888
3889/**
3890 *  ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3891 *  @hw: pointer to hardware structure
3892 *
3893 *  Returns the thermal sensor data structure
3894 **/
3895s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3896{
3897        s32 status;
3898        u16 ets_offset;
3899        u16 ets_cfg;
3900        u16 ets_sensor;
3901        u8  num_sensors;
3902        u8  i;
3903        struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3904
3905        /* Only support thermal sensors attached to physical port 0 */
3906        if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3907                return IXGBE_NOT_IMPLEMENTED;
3908
3909        status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3910        if (status)
3911                return status;
3912
3913        num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3914        if (num_sensors > IXGBE_MAX_SENSORS)
3915                num_sensors = IXGBE_MAX_SENSORS;
3916
3917        for (i = 0; i < num_sensors; i++) {
3918                u8  sensor_index;
3919                u8  sensor_location;
3920
3921                status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3922                                             &ets_sensor);
3923                if (status)
3924                        return status;
3925
3926                sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3927                                IXGBE_ETS_DATA_INDEX_SHIFT);
3928                sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3929                                   IXGBE_ETS_DATA_LOC_SHIFT);
3930
3931                if (sensor_location != 0) {
3932                        status = hw->phy.ops.read_i2c_byte(hw,
3933                                        ixgbe_emc_temp_data[sensor_index],
3934                                        IXGBE_I2C_THERMAL_SENSOR_ADDR,
3935                                        &data->sensor[i].temp);
3936                        if (status)
3937                                return status;
3938                }
3939        }
3940
3941        return 0;
3942}
3943
3944/**
3945 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3946 * @hw: pointer to hardware structure
3947 *
3948 * Inits the thermal sensor thresholds according to the NVM map
3949 * and save off the threshold and location values into mac.thermal_sensor_data
3950 **/
3951s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3952{
3953        s32 status;
3954        u16 ets_offset;
3955        u16 ets_cfg;
3956        u16 ets_sensor;
3957        u8  low_thresh_delta;
3958        u8  num_sensors;
3959        u8  therm_limit;
3960        u8  i;
3961        struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3962
3963        memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3964
3965        /* Only support thermal sensors attached to physical port 0 */
3966        if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3967                return IXGBE_NOT_IMPLEMENTED;
3968
3969        status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3970        if (status)
3971                return status;
3972
3973        low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3974                             IXGBE_ETS_LTHRES_DELTA_SHIFT);
3975        num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3976        if (num_sensors > IXGBE_MAX_SENSORS)
3977                num_sensors = IXGBE_MAX_SENSORS;
3978
3979        for (i = 0; i < num_sensors; i++) {
3980                u8  sensor_index;
3981                u8  sensor_location;
3982
3983                if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
3984                        hw_err(hw, "eeprom read at offset %d failed\n",
3985                               ets_offset + 1 + i);
3986                        continue;
3987                }
3988                sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3989                                IXGBE_ETS_DATA_INDEX_SHIFT);
3990                sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3991                                   IXGBE_ETS_DATA_LOC_SHIFT);
3992                therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
3993
3994                hw->phy.ops.write_i2c_byte(hw,
3995                        ixgbe_emc_therm_limit[sensor_index],
3996                        IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
3997
3998                if (sensor_location == 0)
3999                        continue;
4000
4001                data->sensor[i].location = sensor_location;
4002                data->sensor[i].caution_thresh = therm_limit;
4003                data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
4004        }
4005
4006        return 0;
4007}
4008
4009/**
4010 *  ixgbe_get_orom_version - Return option ROM from EEPROM
4011 *
4012 *  @hw: pointer to hardware structure
4013 *  @nvm_ver: pointer to output structure
4014 *
4015 *  if valid option ROM version, nvm_ver->or_valid set to true
4016 *  else nvm_ver->or_valid is false.
4017 **/
4018void ixgbe_get_orom_version(struct ixgbe_hw *hw,
4019                            struct ixgbe_nvm_version *nvm_ver)
4020{
4021        u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
4022
4023        nvm_ver->or_valid = false;
4024        /* Option Rom may or may not be present.  Start with pointer */
4025        hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
4026
4027        /* make sure offset is valid */
4028        if (offset == 0x0 || offset == NVM_INVALID_PTR)
4029                return;
4030
4031        hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
4032        hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
4033
4034        /* option rom exists and is valid */
4035        if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
4036            eeprom_cfg_blkl == NVM_VER_INVALID ||
4037            eeprom_cfg_blkh == NVM_VER_INVALID)
4038                return;
4039
4040        nvm_ver->or_valid = true;
4041        nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
4042        nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
4043                            (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
4044        nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
4045}
4046
4047/**
4048 *  ixgbe_get_oem_prod_version Etrack ID from EEPROM
4049 *
4050 *  @hw: pointer to hardware structure
4051 *  @nvm_ver: pointer to output structure
4052 *
4053 *  if valid OEM product version, nvm_ver->oem_valid set to true
4054 *  else nvm_ver->oem_valid is false.
4055 **/
4056void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
4057                                struct ixgbe_nvm_version *nvm_ver)
4058{
4059        u16 rel_num, prod_ver, mod_len, cap, offset;
4060
4061        nvm_ver->oem_valid = false;
4062        hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
4063
4064        /* Return is offset to OEM Product Version block is invalid */
4065        if (offset == 0x0 || offset == NVM_INVALID_PTR)
4066                return;
4067
4068        /* Read product version block */
4069        hw->eeprom.ops.read(hw, offset, &mod_len);
4070        hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
4071
4072        /* Return if OEM product version block is invalid */
4073        if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
4074            (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
4075                return;
4076
4077        hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
4078        hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
4079
4080        /* Return if version is invalid */
4081        if ((rel_num | prod_ver) == 0x0 ||
4082            rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
4083                return;
4084
4085        nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
4086        nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
4087        nvm_ver->oem_release = rel_num;
4088        nvm_ver->oem_valid = true;
4089}
4090
4091/**
4092 *  ixgbe_get_etk_id - Return Etrack ID from EEPROM
4093 *
4094 *  @hw: pointer to hardware structure
4095 *  @nvm_ver: pointer to output structure
4096 *
4097 *  word read errors will return 0xFFFF
4098 **/
4099void ixgbe_get_etk_id(struct ixgbe_hw *hw,
4100                      struct ixgbe_nvm_version *nvm_ver)
4101{
4102        u16 etk_id_l, etk_id_h;
4103
4104        if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
4105                etk_id_l = NVM_VER_INVALID;
4106        if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
4107                etk_id_h = NVM_VER_INVALID;
4108
4109        /* The word order for the version format is determined by high order
4110         * word bit 15.
4111         */
4112        if ((etk_id_h & NVM_ETK_VALID) == 0) {
4113                nvm_ver->etk_id = etk_id_h;
4114                nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
4115        } else {
4116                nvm_ver->etk_id = etk_id_l;
4117                nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
4118        }
4119}
4120
4121void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4122{
4123        u32 rxctrl;
4124
4125        rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4126        if (rxctrl & IXGBE_RXCTRL_RXEN) {
4127                if (hw->mac.type != ixgbe_mac_82598EB) {
4128                        u32 pfdtxgswc;
4129
4130                        pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4131                        if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4132                                pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4133                                IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4134                                hw->mac.set_lben = true;
4135                        } else {
4136                                hw->mac.set_lben = false;
4137                        }
4138                }
4139                rxctrl &= ~IXGBE_RXCTRL_RXEN;
4140                IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4141        }
4142}
4143
4144void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4145{
4146        u32 rxctrl;
4147
4148        rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4149        IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4150
4151        if (hw->mac.type != ixgbe_mac_82598EB) {
4152                if (hw->mac.set_lben) {
4153                        u32 pfdtxgswc;
4154
4155                        pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4156                        pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4157                        IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4158                        hw->mac.set_lben = false;
4159                }
4160        }
4161}
4162
4163/** ixgbe_mng_present - returns true when management capability is present
4164 * @hw: pointer to hardware structure
4165 **/
4166bool ixgbe_mng_present(struct ixgbe_hw *hw)
4167{
4168        u32 fwsm;
4169
4170        if (hw->mac.type < ixgbe_mac_82599EB)
4171                return false;
4172
4173        fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
4174
4175        return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
4176}
4177
4178/**
4179 *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4180 *  @hw: pointer to hardware structure
4181 *  @speed: new link speed
4182 *  @autoneg_wait_to_complete: true when waiting for completion is needed
4183 *
4184 *  Set the link speed in the MAC and/or PHY register and restarts link.
4185 */
4186s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4187                                          ixgbe_link_speed speed,
4188                                          bool autoneg_wait_to_complete)
4189{
4190        ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4191        ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4192        s32 status = 0;
4193        u32 speedcnt = 0;
4194        u32 i = 0;
4195        bool autoneg, link_up = false;
4196
4197        /* Mask off requested but non-supported speeds */
4198        status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
4199        if (status)
4200                return status;
4201
4202        speed &= link_speed;
4203
4204        /* Try each speed one by one, highest priority first.  We do this in
4205         * software because 10Gb fiber doesn't support speed autonegotiation.
4206         */
4207        if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4208                speedcnt++;
4209                highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4210
4211                /* Set the module link speed */
4212                switch (hw->phy.media_type) {
4213                case ixgbe_media_type_fiber:
4214                        hw->mac.ops.set_rate_select_speed(hw,
4215                                                    IXGBE_LINK_SPEED_10GB_FULL);
4216                        break;
4217                case ixgbe_media_type_fiber_qsfp:
4218                        /* QSFP module automatically detects MAC link speed */
4219                        break;
4220                default:
4221                        hw_dbg(hw, "Unexpected media type\n");
4222                        break;
4223                }
4224
4225                /* Allow module to change analog characteristics (1G->10G) */
4226                msleep(40);
4227
4228                status = hw->mac.ops.setup_mac_link(hw,
4229                                                    IXGBE_LINK_SPEED_10GB_FULL,
4230                                                    autoneg_wait_to_complete);
4231                if (status)
4232                        return status;
4233
4234                /* Flap the Tx laser if it has not already been done */
4235                if (hw->mac.ops.flap_tx_laser)
4236                        hw->mac.ops.flap_tx_laser(hw);
4237
4238                /* Wait for the controller to acquire link.  Per IEEE 802.3ap,
4239                 * Section 73.10.2, we may have to wait up to 500ms if KR is
4240                 * attempted.  82599 uses the same timing for 10g SFI.
4241                 */
4242                for (i = 0; i < 5; i++) {
4243                        /* Wait for the link partner to also set speed */
4244                        msleep(100);
4245
4246                        /* If we have link, just jump out */
4247                        status = hw->mac.ops.check_link(hw, &link_speed,
4248                                                        &link_up, false);
4249                        if (status)
4250                                return status;
4251
4252                        if (link_up)
4253                                goto out;
4254                }
4255        }
4256
4257        if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4258                speedcnt++;
4259                if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4260                        highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4261
4262                /* Set the module link speed */
4263                switch (hw->phy.media_type) {
4264                case ixgbe_media_type_fiber:
4265                        hw->mac.ops.set_rate_select_speed(hw,
4266                                                     IXGBE_LINK_SPEED_1GB_FULL);
4267                        break;
4268                case ixgbe_media_type_fiber_qsfp:
4269                        /* QSFP module automatically detects link speed */
4270                        break;
4271                default:
4272                        hw_dbg(hw, "Unexpected media type\n");
4273                        break;
4274                }
4275
4276                /* Allow module to change analog characteristics (10G->1G) */
4277                msleep(40);
4278
4279                status = hw->mac.ops.setup_mac_link(hw,
4280                                                    IXGBE_LINK_SPEED_1GB_FULL,
4281                                                    autoneg_wait_to_complete);
4282                if (status)
4283                        return status;
4284
4285                /* Flap the Tx laser if it has not already been done */
4286                if (hw->mac.ops.flap_tx_laser)
4287                        hw->mac.ops.flap_tx_laser(hw);
4288
4289                /* Wait for the link partner to also set speed */
4290                msleep(100);
4291
4292                /* If we have link, just jump out */
4293                status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4294                                                false);
4295                if (status)
4296                        return status;
4297
4298                if (link_up)
4299                        goto out;
4300        }
4301
4302        /* We didn't get link.  Configure back to the highest speed we tried,
4303         * (if there was more than one).  We call ourselves back with just the
4304         * single highest speed that the user requested.
4305         */
4306        if (speedcnt > 1)
4307                status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4308                                                      highest_link_speed,
4309                                                      autoneg_wait_to_complete);
4310
4311out:
4312        /* Set autoneg_advertised value based on input link speed */
4313        hw->phy.autoneg_advertised = 0;
4314
4315        if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4316                hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4317
4318        if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4319                hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4320
4321        return status;
4322}
4323
4324/**
4325 *  ixgbe_set_soft_rate_select_speed - Set module link speed
4326 *  @hw: pointer to hardware structure
4327 *  @speed: link speed to set
4328 *
4329 *  Set module link speed via the soft rate select.
4330 */
4331void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4332                                      ixgbe_link_speed speed)
4333{
4334        s32 status;
4335        u8 rs, eeprom_data;
4336
4337        switch (speed) {
4338        case IXGBE_LINK_SPEED_10GB_FULL:
4339                /* one bit mask same as setting on */
4340                rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4341                break;
4342        case IXGBE_LINK_SPEED_1GB_FULL:
4343                rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4344                break;
4345        default:
4346                hw_dbg(hw, "Invalid fixed module speed\n");
4347                return;
4348        }
4349
4350        /* Set RS0 */
4351        status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4352                                           IXGBE_I2C_EEPROM_DEV_ADDR2,
4353                                           &eeprom_data);
4354        if (status) {
4355                hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
4356                return;
4357        }
4358
4359        eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4360
4361        status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4362                                            IXGBE_I2C_EEPROM_DEV_ADDR2,
4363                                            eeprom_data);
4364        if (status) {
4365                hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
4366                return;
4367        }
4368
4369        /* Set RS1 */
4370        status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4371                                           IXGBE_I2C_EEPROM_DEV_ADDR2,
4372                                           &eeprom_data);
4373        if (status) {
4374                hw_dbg(hw, "Failed to read Rx Rate Select RS1\n");
4375                return;
4376        }
4377
4378        eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4379
4380        status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4381                                            IXGBE_I2C_EEPROM_DEV_ADDR2,
4382                                            eeprom_data);
4383        if (status) {
4384                hw_dbg(hw, "Failed to write Rx Rate Select RS1\n");
4385                return;
4386        }
4387}
4388