linux/drivers/net/wireless/zd1211rw/zd_mac.c
<<
>>
Prefs
   1/* ZD1211 USB-WLAN driver for Linux
   2 *
   3 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
   4 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
   5 * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
   6 * Copyright (C) 2007-2008 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  21 */
  22
  23#include <linux/netdevice.h>
  24#include <linux/etherdevice.h>
  25#include <linux/slab.h>
  26#include <linux/usb.h>
  27#include <linux/jiffies.h>
  28#include <net/ieee80211_radiotap.h>
  29
  30#include "zd_def.h"
  31#include "zd_chip.h"
  32#include "zd_mac.h"
  33#include "zd_rf.h"
  34
  35struct zd_reg_alpha2_map {
  36        u32 reg;
  37        char alpha2[2];
  38};
  39
  40static struct zd_reg_alpha2_map reg_alpha2_map[] = {
  41        { ZD_REGDOMAIN_FCC, "US" },
  42        { ZD_REGDOMAIN_IC, "CA" },
  43        { ZD_REGDOMAIN_ETSI, "DE" }, /* Generic ETSI, use most restrictive */
  44        { ZD_REGDOMAIN_JAPAN, "JP" },
  45        { ZD_REGDOMAIN_JAPAN_2, "JP" },
  46        { ZD_REGDOMAIN_JAPAN_3, "JP" },
  47        { ZD_REGDOMAIN_SPAIN, "ES" },
  48        { ZD_REGDOMAIN_FRANCE, "FR" },
  49};
  50
  51/* This table contains the hardware specific values for the modulation rates. */
  52static const struct ieee80211_rate zd_rates[] = {
  53        { .bitrate = 10,
  54          .hw_value = ZD_CCK_RATE_1M, },
  55        { .bitrate = 20,
  56          .hw_value = ZD_CCK_RATE_2M,
  57          .hw_value_short = ZD_CCK_RATE_2M | ZD_CCK_PREA_SHORT,
  58          .flags = IEEE80211_RATE_SHORT_PREAMBLE },
  59        { .bitrate = 55,
  60          .hw_value = ZD_CCK_RATE_5_5M,
  61          .hw_value_short = ZD_CCK_RATE_5_5M | ZD_CCK_PREA_SHORT,
  62          .flags = IEEE80211_RATE_SHORT_PREAMBLE },
  63        { .bitrate = 110,
  64          .hw_value = ZD_CCK_RATE_11M,
  65          .hw_value_short = ZD_CCK_RATE_11M | ZD_CCK_PREA_SHORT,
  66          .flags = IEEE80211_RATE_SHORT_PREAMBLE },
  67        { .bitrate = 60,
  68          .hw_value = ZD_OFDM_RATE_6M,
  69          .flags = 0 },
  70        { .bitrate = 90,
  71          .hw_value = ZD_OFDM_RATE_9M,
  72          .flags = 0 },
  73        { .bitrate = 120,
  74          .hw_value = ZD_OFDM_RATE_12M,
  75          .flags = 0 },
  76        { .bitrate = 180,
  77          .hw_value = ZD_OFDM_RATE_18M,
  78          .flags = 0 },
  79        { .bitrate = 240,
  80          .hw_value = ZD_OFDM_RATE_24M,
  81          .flags = 0 },
  82        { .bitrate = 360,
  83          .hw_value = ZD_OFDM_RATE_36M,
  84          .flags = 0 },
  85        { .bitrate = 480,
  86          .hw_value = ZD_OFDM_RATE_48M,
  87          .flags = 0 },
  88        { .bitrate = 540,
  89          .hw_value = ZD_OFDM_RATE_54M,
  90          .flags = 0 },
  91};
  92
  93/*
  94 * Zydas retry rates table. Each line is listed in the same order as
  95 * in zd_rates[] and contains all the rate used when a packet is sent
  96 * starting with a given rates. Let's consider an example :
  97 *
  98 * "11 Mbits : 4, 3, 2, 1, 0" means :
  99 * - packet is sent using 4 different rates
 100 * - 1st rate is index 3 (ie 11 Mbits)
 101 * - 2nd rate is index 2 (ie 5.5 Mbits)
 102 * - 3rd rate is index 1 (ie 2 Mbits)
 103 * - 4th rate is index 0 (ie 1 Mbits)
 104 */
 105
 106static const struct tx_retry_rate zd_retry_rates[] = {
 107        { /*  1 Mbits */        1, { 0 }},
 108        { /*  2 Mbits */        2, { 1,  0 }},
 109        { /*  5.5 Mbits */      3, { 2,  1, 0 }},
 110        { /* 11 Mbits */        4, { 3,  2, 1, 0 }},
 111        { /*  6 Mbits */        5, { 4,  3, 2, 1, 0 }},
 112        { /*  9 Mbits */        6, { 5,  4, 3, 2, 1, 0}},
 113        { /* 12 Mbits */        5, { 6,  3, 2, 1, 0 }},
 114        { /* 18 Mbits */        6, { 7,  6, 3, 2, 1, 0 }},
 115        { /* 24 Mbits */        6, { 8,  6, 3, 2, 1, 0 }},
 116        { /* 36 Mbits */        7, { 9,  8, 6, 3, 2, 1, 0 }},
 117        { /* 48 Mbits */        8, {10,  9, 8, 6, 3, 2, 1, 0 }},
 118        { /* 54 Mbits */        9, {11, 10, 9, 8, 6, 3, 2, 1, 0 }}
 119};
 120
 121static const struct ieee80211_channel zd_channels[] = {
 122        { .center_freq = 2412, .hw_value = 1 },
 123        { .center_freq = 2417, .hw_value = 2 },
 124        { .center_freq = 2422, .hw_value = 3 },
 125        { .center_freq = 2427, .hw_value = 4 },
 126        { .center_freq = 2432, .hw_value = 5 },
 127        { .center_freq = 2437, .hw_value = 6 },
 128        { .center_freq = 2442, .hw_value = 7 },
 129        { .center_freq = 2447, .hw_value = 8 },
 130        { .center_freq = 2452, .hw_value = 9 },
 131        { .center_freq = 2457, .hw_value = 10 },
 132        { .center_freq = 2462, .hw_value = 11 },
 133        { .center_freq = 2467, .hw_value = 12 },
 134        { .center_freq = 2472, .hw_value = 13 },
 135        { .center_freq = 2484, .hw_value = 14 },
 136};
 137
 138static void housekeeping_init(struct zd_mac *mac);
 139static void housekeeping_enable(struct zd_mac *mac);
 140static void housekeeping_disable(struct zd_mac *mac);
 141static void beacon_init(struct zd_mac *mac);
 142static void beacon_enable(struct zd_mac *mac);
 143static void beacon_disable(struct zd_mac *mac);
 144static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble);
 145static int zd_mac_config_beacon(struct ieee80211_hw *hw,
 146                                struct sk_buff *beacon, bool in_intr);
 147
 148static int zd_reg2alpha2(u8 regdomain, char *alpha2)
 149{
 150        unsigned int i;
 151        struct zd_reg_alpha2_map *reg_map;
 152        for (i = 0; i < ARRAY_SIZE(reg_alpha2_map); i++) {
 153                reg_map = &reg_alpha2_map[i];
 154                if (regdomain == reg_map->reg) {
 155                        alpha2[0] = reg_map->alpha2[0];
 156                        alpha2[1] = reg_map->alpha2[1];
 157                        return 0;
 158                }
 159        }
 160        return 1;
 161}
 162
 163static int zd_check_signal(struct ieee80211_hw *hw, int signal)
 164{
 165        struct zd_mac *mac = zd_hw_mac(hw);
 166
 167        dev_dbg_f_cond(zd_mac_dev(mac), signal < 0 || signal > 100,
 168                        "%s: signal value from device not in range 0..100, "
 169                        "but %d.\n", __func__, signal);
 170
 171        if (signal < 0)
 172                signal = 0;
 173        else if (signal > 100)
 174                signal = 100;
 175
 176        return signal;
 177}
 178
 179int zd_mac_preinit_hw(struct ieee80211_hw *hw)
 180{
 181        int r;
 182        u8 addr[ETH_ALEN];
 183        struct zd_mac *mac = zd_hw_mac(hw);
 184
 185        r = zd_chip_read_mac_addr_fw(&mac->chip, addr);
 186        if (r)
 187                return r;
 188
 189        SET_IEEE80211_PERM_ADDR(hw, addr);
 190
 191        return 0;
 192}
 193
 194int zd_mac_init_hw(struct ieee80211_hw *hw)
 195{
 196        int r;
 197        struct zd_mac *mac = zd_hw_mac(hw);
 198        struct zd_chip *chip = &mac->chip;
 199        char alpha2[2];
 200        u8 default_regdomain;
 201
 202        r = zd_chip_enable_int(chip);
 203        if (r)
 204                goto out;
 205        r = zd_chip_init_hw(chip);
 206        if (r)
 207                goto disable_int;
 208
 209        ZD_ASSERT(!irqs_disabled());
 210
 211        r = zd_read_regdomain(chip, &default_regdomain);
 212        if (r)
 213                goto disable_int;
 214        spin_lock_irq(&mac->lock);
 215        mac->regdomain = mac->default_regdomain = default_regdomain;
 216        spin_unlock_irq(&mac->lock);
 217
 218        /* We must inform the device that we are doing encryption/decryption in
 219         * software at the moment. */
 220        r = zd_set_encryption_type(chip, ENC_SNIFFER);
 221        if (r)
 222                goto disable_int;
 223
 224        r = zd_reg2alpha2(mac->regdomain, alpha2);
 225        if (r)
 226                goto disable_int;
 227
 228        r = regulatory_hint(hw->wiphy, alpha2);
 229disable_int:
 230        zd_chip_disable_int(chip);
 231out:
 232        return r;
 233}
 234
 235void zd_mac_clear(struct zd_mac *mac)
 236{
 237        flush_workqueue(zd_workqueue);
 238        zd_chip_clear(&mac->chip);
 239        ZD_ASSERT(!spin_is_locked(&mac->lock));
 240        ZD_MEMCLEAR(mac, sizeof(struct zd_mac));
 241}
 242
 243static int set_rx_filter(struct zd_mac *mac)
 244{
 245        unsigned long flags;
 246        u32 filter = STA_RX_FILTER;
 247
 248        spin_lock_irqsave(&mac->lock, flags);
 249        if (mac->pass_ctrl)
 250                filter |= RX_FILTER_CTRL;
 251        spin_unlock_irqrestore(&mac->lock, flags);
 252
 253        return zd_iowrite32(&mac->chip, CR_RX_FILTER, filter);
 254}
 255
 256static int set_mac_and_bssid(struct zd_mac *mac)
 257{
 258        int r;
 259
 260        if (!mac->vif)
 261                return -1;
 262
 263        r = zd_write_mac_addr(&mac->chip, mac->vif->addr);
 264        if (r)
 265                return r;
 266
 267        /* Vendor driver after setting MAC either sets BSSID for AP or
 268         * filter for other modes.
 269         */
 270        if (mac->type != NL80211_IFTYPE_AP)
 271                return set_rx_filter(mac);
 272        else
 273                return zd_write_bssid(&mac->chip, mac->vif->addr);
 274}
 275
 276static int set_mc_hash(struct zd_mac *mac)
 277{
 278        struct zd_mc_hash hash;
 279        zd_mc_clear(&hash);
 280        return zd_chip_set_multicast_hash(&mac->chip, &hash);
 281}
 282
 283int zd_op_start(struct ieee80211_hw *hw)
 284{
 285        struct zd_mac *mac = zd_hw_mac(hw);
 286        struct zd_chip *chip = &mac->chip;
 287        struct zd_usb *usb = &chip->usb;
 288        int r;
 289
 290        if (!usb->initialized) {
 291                r = zd_usb_init_hw(usb);
 292                if (r)
 293                        goto out;
 294        }
 295
 296        r = zd_chip_enable_int(chip);
 297        if (r < 0)
 298                goto out;
 299
 300        r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G);
 301        if (r < 0)
 302                goto disable_int;
 303        r = set_rx_filter(mac);
 304        if (r)
 305                goto disable_int;
 306        r = set_mc_hash(mac);
 307        if (r)
 308                goto disable_int;
 309
 310        /* Wait after setting the multicast hash table and powering on
 311         * the radio otherwise interface bring up will fail. This matches
 312         * what the vendor driver did.
 313         */
 314        msleep(10);
 315
 316        r = zd_chip_switch_radio_on(chip);
 317        if (r < 0) {
 318                dev_err(zd_chip_dev(chip),
 319                        "%s: failed to set radio on\n", __func__);
 320                goto disable_int;
 321        }
 322        r = zd_chip_enable_rxtx(chip);
 323        if (r < 0)
 324                goto disable_radio;
 325        r = zd_chip_enable_hwint(chip);
 326        if (r < 0)
 327                goto disable_rxtx;
 328
 329        housekeeping_enable(mac);
 330        beacon_enable(mac);
 331        set_bit(ZD_DEVICE_RUNNING, &mac->flags);
 332        return 0;
 333disable_rxtx:
 334        zd_chip_disable_rxtx(chip);
 335disable_radio:
 336        zd_chip_switch_radio_off(chip);
 337disable_int:
 338        zd_chip_disable_int(chip);
 339out:
 340        return r;
 341}
 342
 343void zd_op_stop(struct ieee80211_hw *hw)
 344{
 345        struct zd_mac *mac = zd_hw_mac(hw);
 346        struct zd_chip *chip = &mac->chip;
 347        struct sk_buff *skb;
 348        struct sk_buff_head *ack_wait_queue = &mac->ack_wait_queue;
 349
 350        clear_bit(ZD_DEVICE_RUNNING, &mac->flags);
 351
 352        /* The order here deliberately is a little different from the open()
 353         * method, since we need to make sure there is no opportunity for RX
 354         * frames to be processed by mac80211 after we have stopped it.
 355         */
 356
 357        zd_chip_disable_rxtx(chip);
 358        beacon_disable(mac);
 359        housekeeping_disable(mac);
 360        flush_workqueue(zd_workqueue);
 361
 362        zd_chip_disable_hwint(chip);
 363        zd_chip_switch_radio_off(chip);
 364        zd_chip_disable_int(chip);
 365
 366
 367        while ((skb = skb_dequeue(ack_wait_queue)))
 368                dev_kfree_skb_any(skb);
 369}
 370
 371int zd_restore_settings(struct zd_mac *mac)
 372{
 373        struct sk_buff *beacon;
 374        struct zd_mc_hash multicast_hash;
 375        unsigned int short_preamble;
 376        int r, beacon_interval, beacon_period;
 377        u8 channel;
 378
 379        dev_dbg_f(zd_mac_dev(mac), "\n");
 380
 381        spin_lock_irq(&mac->lock);
 382        multicast_hash = mac->multicast_hash;
 383        short_preamble = mac->short_preamble;
 384        beacon_interval = mac->beacon.interval;
 385        beacon_period = mac->beacon.period;
 386        channel = mac->channel;
 387        spin_unlock_irq(&mac->lock);
 388
 389        r = set_mac_and_bssid(mac);
 390        if (r < 0) {
 391                dev_dbg_f(zd_mac_dev(mac), "set_mac_and_bssid failed, %d\n", r);
 392                return r;
 393        }
 394
 395        r = zd_chip_set_channel(&mac->chip, channel);
 396        if (r < 0) {
 397                dev_dbg_f(zd_mac_dev(mac), "zd_chip_set_channel failed, %d\n",
 398                          r);
 399                return r;
 400        }
 401
 402        set_rts_cts(mac, short_preamble);
 403
 404        r = zd_chip_set_multicast_hash(&mac->chip, &multicast_hash);
 405        if (r < 0) {
 406                dev_dbg_f(zd_mac_dev(mac),
 407                          "zd_chip_set_multicast_hash failed, %d\n", r);
 408                return r;
 409        }
 410
 411        if (mac->type == NL80211_IFTYPE_MESH_POINT ||
 412            mac->type == NL80211_IFTYPE_ADHOC ||
 413            mac->type == NL80211_IFTYPE_AP) {
 414                if (mac->vif != NULL) {
 415                        beacon = ieee80211_beacon_get(mac->hw, mac->vif);
 416                        if (beacon)
 417                                zd_mac_config_beacon(mac->hw, beacon, false);
 418                }
 419
 420                zd_set_beacon_interval(&mac->chip, beacon_interval,
 421                                        beacon_period, mac->type);
 422
 423                spin_lock_irq(&mac->lock);
 424                mac->beacon.last_update = jiffies;
 425                spin_unlock_irq(&mac->lock);
 426        }
 427
 428        return 0;
 429}
 430
 431/**
 432 * zd_mac_tx_status - reports tx status of a packet if required
 433 * @hw - a &struct ieee80211_hw pointer
 434 * @skb - a sk-buffer
 435 * @flags: extra flags to set in the TX status info
 436 * @ackssi: ACK signal strength
 437 * @success - True for successful transmission of the frame
 438 *
 439 * This information calls ieee80211_tx_status_irqsafe() if required by the
 440 * control information. It copies the control information into the status
 441 * information.
 442 *
 443 * If no status information has been requested, the skb is freed.
 444 */
 445static void zd_mac_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb,
 446                      int ackssi, struct tx_status *tx_status)
 447{
 448        struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
 449        int i;
 450        int success = 1, retry = 1;
 451        int first_idx;
 452        const struct tx_retry_rate *retries;
 453
 454        ieee80211_tx_info_clear_status(info);
 455
 456        if (tx_status) {
 457                success = !tx_status->failure;
 458                retry = tx_status->retry + success;
 459        }
 460
 461        if (success) {
 462                /* success */
 463                info->flags |= IEEE80211_TX_STAT_ACK;
 464        } else {
 465                /* failure */
 466                info->flags &= ~IEEE80211_TX_STAT_ACK;
 467        }
 468
 469        first_idx = info->status.rates[0].idx;
 470        ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
 471        retries = &zd_retry_rates[first_idx];
 472        ZD_ASSERT(1 <= retry && retry <= retries->count);
 473
 474        info->status.rates[0].idx = retries->rate[0];
 475        info->status.rates[0].count = 1; // (retry > 1 ? 2 : 1);
 476
 477        for (i=1; i<IEEE80211_TX_MAX_RATES-1 && i<retry; i++) {
 478                info->status.rates[i].idx = retries->rate[i];
 479                info->status.rates[i].count = 1; // ((i==retry-1) && success ? 1:2);
 480        }
 481        for (; i<IEEE80211_TX_MAX_RATES && i<retry; i++) {
 482                info->status.rates[i].idx = retries->rate[retry - 1];
 483                info->status.rates[i].count = 1; // (success ? 1:2);
 484        }
 485        if (i<IEEE80211_TX_MAX_RATES)
 486                info->status.rates[i].idx = -1; /* terminate */
 487
 488        info->status.ack_signal = zd_check_signal(hw, ackssi);
 489        ieee80211_tx_status_irqsafe(hw, skb);
 490}
 491
 492/**
 493 * zd_mac_tx_failed - callback for failed frames
 494 * @dev: the mac80211 wireless device
 495 *
 496 * This function is called if a frame couldn't be successfully
 497 * transferred. The first frame from the tx queue, will be selected and
 498 * reported as error to the upper layers.
 499 */
 500void zd_mac_tx_failed(struct urb *urb)
 501{
 502        struct ieee80211_hw * hw = zd_usb_to_hw(urb->context);
 503        struct zd_mac *mac = zd_hw_mac(hw);
 504        struct sk_buff_head *q = &mac->ack_wait_queue;
 505        struct sk_buff *skb;
 506        struct tx_status *tx_status = (struct tx_status *)urb->transfer_buffer;
 507        unsigned long flags;
 508        int success = !tx_status->failure;
 509        int retry = tx_status->retry + success;
 510        int found = 0;
 511        int i, position = 0;
 512
 513        q = &mac->ack_wait_queue;
 514        spin_lock_irqsave(&q->lock, flags);
 515
 516        skb_queue_walk(q, skb) {
 517                struct ieee80211_hdr *tx_hdr;
 518                struct ieee80211_tx_info *info;
 519                int first_idx, final_idx;
 520                const struct tx_retry_rate *retries;
 521                u8 final_rate;
 522
 523                position ++;
 524
 525                /* if the hardware reports a failure and we had a 802.11 ACK
 526                 * pending, then we skip the first skb when searching for a
 527                 * matching frame */
 528                if (tx_status->failure && mac->ack_pending &&
 529                    skb_queue_is_first(q, skb)) {
 530                        continue;
 531                }
 532
 533                tx_hdr = (struct ieee80211_hdr *)skb->data;
 534
 535                /* we skip all frames not matching the reported destination */
 536                if (unlikely(memcmp(tx_hdr->addr1, tx_status->mac, ETH_ALEN))) {
 537                        continue;
 538                }
 539
 540                /* we skip all frames not matching the reported final rate */
 541
 542                info = IEEE80211_SKB_CB(skb);
 543                first_idx = info->status.rates[0].idx;
 544                ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
 545                retries = &zd_retry_rates[first_idx];
 546                if (retry <= 0 || retry > retries->count)
 547                        continue;
 548
 549                final_idx = retries->rate[retry - 1];
 550                final_rate = zd_rates[final_idx].hw_value;
 551
 552                if (final_rate != tx_status->rate) {
 553                        continue;
 554                }
 555
 556                found = 1;
 557                break;
 558        }
 559
 560        if (found) {
 561                for (i=1; i<=position; i++) {
 562                        skb = __skb_dequeue(q);
 563                        zd_mac_tx_status(hw, skb,
 564                                         mac->ack_pending ? mac->ack_signal : 0,
 565                                         i == position ? tx_status : NULL);
 566                        mac->ack_pending = 0;
 567                }
 568        }
 569
 570        spin_unlock_irqrestore(&q->lock, flags);
 571}
 572
 573/**
 574 * zd_mac_tx_to_dev - callback for USB layer
 575 * @skb: a &sk_buff pointer
 576 * @error: error value, 0 if transmission successful
 577 *
 578 * Informs the MAC layer that the frame has successfully transferred to the
 579 * device. If an ACK is required and the transfer to the device has been
 580 * successful, the packets are put on the @ack_wait_queue with
 581 * the control set removed.
 582 */
 583void zd_mac_tx_to_dev(struct sk_buff *skb, int error)
 584{
 585        struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
 586        struct ieee80211_hw *hw = info->rate_driver_data[0];
 587        struct zd_mac *mac = zd_hw_mac(hw);
 588
 589        ieee80211_tx_info_clear_status(info);
 590
 591        skb_pull(skb, sizeof(struct zd_ctrlset));
 592        if (unlikely(error ||
 593            (info->flags & IEEE80211_TX_CTL_NO_ACK))) {
 594                /*
 595                 * FIXME : do we need to fill in anything ?
 596                 */
 597                ieee80211_tx_status_irqsafe(hw, skb);
 598        } else {
 599                struct sk_buff_head *q = &mac->ack_wait_queue;
 600
 601                skb_queue_tail(q, skb);
 602                while (skb_queue_len(q) > ZD_MAC_MAX_ACK_WAITERS) {
 603                        zd_mac_tx_status(hw, skb_dequeue(q),
 604                                         mac->ack_pending ? mac->ack_signal : 0,
 605                                         NULL);
 606                        mac->ack_pending = 0;
 607                }
 608        }
 609}
 610
 611static int zd_calc_tx_length_us(u8 *service, u8 zd_rate, u16 tx_length)
 612{
 613        /* ZD_PURE_RATE() must be used to remove the modulation type flag of
 614         * the zd-rate values.
 615         */
 616        static const u8 rate_divisor[] = {
 617                [ZD_PURE_RATE(ZD_CCK_RATE_1M)]   =  1,
 618                [ZD_PURE_RATE(ZD_CCK_RATE_2M)]   =  2,
 619                /* Bits must be doubled. */
 620                [ZD_PURE_RATE(ZD_CCK_RATE_5_5M)] = 11,
 621                [ZD_PURE_RATE(ZD_CCK_RATE_11M)]  = 11,
 622                [ZD_PURE_RATE(ZD_OFDM_RATE_6M)]  =  6,
 623                [ZD_PURE_RATE(ZD_OFDM_RATE_9M)]  =  9,
 624                [ZD_PURE_RATE(ZD_OFDM_RATE_12M)] = 12,
 625                [ZD_PURE_RATE(ZD_OFDM_RATE_18M)] = 18,
 626                [ZD_PURE_RATE(ZD_OFDM_RATE_24M)] = 24,
 627                [ZD_PURE_RATE(ZD_OFDM_RATE_36M)] = 36,
 628                [ZD_PURE_RATE(ZD_OFDM_RATE_48M)] = 48,
 629                [ZD_PURE_RATE(ZD_OFDM_RATE_54M)] = 54,
 630        };
 631
 632        u32 bits = (u32)tx_length * 8;
 633        u32 divisor;
 634
 635        divisor = rate_divisor[ZD_PURE_RATE(zd_rate)];
 636        if (divisor == 0)
 637                return -EINVAL;
 638
 639        switch (zd_rate) {
 640        case ZD_CCK_RATE_5_5M:
 641                bits = (2*bits) + 10; /* round up to the next integer */
 642                break;
 643        case ZD_CCK_RATE_11M:
 644                if (service) {
 645                        u32 t = bits % 11;
 646                        *service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION;
 647                        if (0 < t && t <= 3) {
 648                                *service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION;
 649                        }
 650                }
 651                bits += 10; /* round up to the next integer */
 652                break;
 653        }
 654
 655        return bits/divisor;
 656}
 657
 658static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs,
 659                           struct ieee80211_hdr *header,
 660                           struct ieee80211_tx_info *info)
 661{
 662        /*
 663         * CONTROL TODO:
 664         * - if backoff needed, enable bit 0
 665         * - if burst (backoff not needed) disable bit 0
 666         */
 667
 668        cs->control = 0;
 669
 670        /* First fragment */
 671        if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
 672                cs->control |= ZD_CS_NEED_RANDOM_BACKOFF;
 673
 674        /* No ACK expected (multicast, etc.) */
 675        if (info->flags & IEEE80211_TX_CTL_NO_ACK)
 676                cs->control |= ZD_CS_NO_ACK;
 677
 678        /* PS-POLL */
 679        if (ieee80211_is_pspoll(header->frame_control))
 680                cs->control |= ZD_CS_PS_POLL_FRAME;
 681
 682        if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
 683                cs->control |= ZD_CS_RTS;
 684
 685        if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
 686                cs->control |= ZD_CS_SELF_CTS;
 687
 688        /* FIXME: Management frame? */
 689}
 690
 691static bool zd_mac_match_cur_beacon(struct zd_mac *mac, struct sk_buff *beacon)
 692{
 693        if (!mac->beacon.cur_beacon)
 694                return false;
 695
 696        if (mac->beacon.cur_beacon->len != beacon->len)
 697                return false;
 698
 699        return !memcmp(beacon->data, mac->beacon.cur_beacon->data, beacon->len);
 700}
 701
 702static void zd_mac_free_cur_beacon_locked(struct zd_mac *mac)
 703{
 704        ZD_ASSERT(mutex_is_locked(&mac->chip.mutex));
 705
 706        kfree_skb(mac->beacon.cur_beacon);
 707        mac->beacon.cur_beacon = NULL;
 708}
 709
 710static void zd_mac_free_cur_beacon(struct zd_mac *mac)
 711{
 712        mutex_lock(&mac->chip.mutex);
 713        zd_mac_free_cur_beacon_locked(mac);
 714        mutex_unlock(&mac->chip.mutex);
 715}
 716
 717static int zd_mac_config_beacon(struct ieee80211_hw *hw, struct sk_buff *beacon,
 718                                bool in_intr)
 719{
 720        struct zd_mac *mac = zd_hw_mac(hw);
 721        int r, ret, num_cmds, req_pos = 0;
 722        u32 tmp, j = 0;
 723        /* 4 more bytes for tail CRC */
 724        u32 full_len = beacon->len + 4;
 725        unsigned long end_jiffies, message_jiffies;
 726        struct zd_ioreq32 *ioreqs;
 727
 728        mutex_lock(&mac->chip.mutex);
 729
 730        /* Check if hw already has this beacon. */
 731        if (zd_mac_match_cur_beacon(mac, beacon)) {
 732                r = 0;
 733                goto out_nofree;
 734        }
 735
 736        /* Alloc memory for full beacon write at once. */
 737        num_cmds = 1 + zd_chip_is_zd1211b(&mac->chip) + full_len;
 738        ioreqs = kmalloc(num_cmds * sizeof(struct zd_ioreq32), GFP_KERNEL);
 739        if (!ioreqs) {
 740                r = -ENOMEM;
 741                goto out_nofree;
 742        }
 743
 744        r = zd_iowrite32_locked(&mac->chip, 0, CR_BCN_FIFO_SEMAPHORE);
 745        if (r < 0)
 746                goto out;
 747        r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE);
 748        if (r < 0)
 749                goto release_sema;
 750        if (in_intr && tmp & 0x2) {
 751                r = -EBUSY;
 752                goto release_sema;
 753        }
 754
 755        end_jiffies = jiffies + HZ / 2; /*~500ms*/
 756        message_jiffies = jiffies + HZ / 10; /*~100ms*/
 757        while (tmp & 0x2) {
 758                r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE);
 759                if (r < 0)
 760                        goto release_sema;
 761                if (time_is_before_eq_jiffies(message_jiffies)) {
 762                        message_jiffies = jiffies + HZ / 10;
 763                        dev_err(zd_mac_dev(mac),
 764                                        "CR_BCN_FIFO_SEMAPHORE not ready\n");
 765                        if (time_is_before_eq_jiffies(end_jiffies))  {
 766                                dev_err(zd_mac_dev(mac),
 767                                                "Giving up beacon config.\n");
 768                                r = -ETIMEDOUT;
 769                                goto reset_device;
 770                        }
 771                }
 772                msleep(20);
 773        }
 774
 775        ioreqs[req_pos].addr = CR_BCN_FIFO;
 776        ioreqs[req_pos].value = full_len - 1;
 777        req_pos++;
 778        if (zd_chip_is_zd1211b(&mac->chip)) {
 779                ioreqs[req_pos].addr = CR_BCN_LENGTH;
 780                ioreqs[req_pos].value = full_len - 1;
 781                req_pos++;
 782        }
 783
 784        for (j = 0 ; j < beacon->len; j++) {
 785                ioreqs[req_pos].addr = CR_BCN_FIFO;
 786                ioreqs[req_pos].value = *((u8 *)(beacon->data + j));
 787                req_pos++;
 788        }
 789
 790        for (j = 0; j < 4; j++) {
 791                ioreqs[req_pos].addr = CR_BCN_FIFO;
 792                ioreqs[req_pos].value = 0x0;
 793                req_pos++;
 794        }
 795
 796        BUG_ON(req_pos != num_cmds);
 797
 798        r = zd_iowrite32a_locked(&mac->chip, ioreqs, num_cmds);
 799
 800release_sema:
 801        /*
 802         * Try very hard to release device beacon semaphore, as otherwise
 803         * device/driver can be left in unusable state.
 804         */
 805        end_jiffies = jiffies + HZ / 2; /*~500ms*/
 806        ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE);
 807        while (ret < 0) {
 808                if (in_intr || time_is_before_eq_jiffies(end_jiffies)) {
 809                        ret = -ETIMEDOUT;
 810                        break;
 811                }
 812
 813                msleep(20);
 814                ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE);
 815        }
 816
 817        if (ret < 0)
 818                dev_err(zd_mac_dev(mac), "Could not release "
 819                                         "CR_BCN_FIFO_SEMAPHORE!\n");
 820        if (r < 0 || ret < 0) {
 821                if (r >= 0)
 822                        r = ret;
 823
 824                /* We don't know if beacon was written successfully or not,
 825                 * so clear current. */
 826                zd_mac_free_cur_beacon_locked(mac);
 827
 828                goto out;
 829        }
 830
 831        /* Beacon has now been written successfully, update current. */
 832        zd_mac_free_cur_beacon_locked(mac);
 833        mac->beacon.cur_beacon = beacon;
 834        beacon = NULL;
 835
 836        /* 802.11b/g 2.4G CCK 1Mb
 837         * 802.11a, not yet implemented, uses different values (see GPL vendor
 838         * driver)
 839         */
 840        r = zd_iowrite32_locked(&mac->chip, 0x00000400 | (full_len << 19),
 841                                CR_BCN_PLCP_CFG);
 842out:
 843        kfree(ioreqs);
 844out_nofree:
 845        kfree_skb(beacon);
 846        mutex_unlock(&mac->chip.mutex);
 847
 848        return r;
 849
 850reset_device:
 851        zd_mac_free_cur_beacon_locked(mac);
 852        kfree_skb(beacon);
 853
 854        mutex_unlock(&mac->chip.mutex);
 855        kfree(ioreqs);
 856
 857        /* semaphore stuck, reset device to avoid fw freeze later */
 858        dev_warn(zd_mac_dev(mac), "CR_BCN_FIFO_SEMAPHORE stuck, "
 859                                  "resetting device...");
 860        usb_queue_reset_device(mac->chip.usb.intf);
 861
 862        return r;
 863}
 864
 865static int fill_ctrlset(struct zd_mac *mac,
 866                        struct sk_buff *skb)
 867{
 868        int r;
 869        struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
 870        unsigned int frag_len = skb->len + FCS_LEN;
 871        unsigned int packet_length;
 872        struct ieee80211_rate *txrate;
 873        struct zd_ctrlset *cs = (struct zd_ctrlset *)
 874                skb_push(skb, sizeof(struct zd_ctrlset));
 875        struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
 876
 877        ZD_ASSERT(frag_len <= 0xffff);
 878
 879        /*
 880         * Firmware computes the duration itself (for all frames except PSPoll)
 881         * and needs the field set to 0 at input, otherwise firmware messes up
 882         * duration_id and sets bits 14 and 15 on.
 883         */
 884        if (!ieee80211_is_pspoll(hdr->frame_control))
 885                hdr->duration_id = 0;
 886
 887        txrate = ieee80211_get_tx_rate(mac->hw, info);
 888
 889        cs->modulation = txrate->hw_value;
 890        if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
 891                cs->modulation = txrate->hw_value_short;
 892
 893        cs->tx_length = cpu_to_le16(frag_len);
 894
 895        cs_set_control(mac, cs, hdr, info);
 896
 897        packet_length = frag_len + sizeof(struct zd_ctrlset) + 10;
 898        ZD_ASSERT(packet_length <= 0xffff);
 899        /* ZD1211B: Computing the length difference this way, gives us
 900         * flexibility to compute the packet length.
 901         */
 902        cs->packet_length = cpu_to_le16(zd_chip_is_zd1211b(&mac->chip) ?
 903                        packet_length - frag_len : packet_length);
 904
 905        /*
 906         * CURRENT LENGTH:
 907         * - transmit frame length in microseconds
 908         * - seems to be derived from frame length
 909         * - see Cal_Us_Service() in zdinlinef.h
 910         * - if macp->bTxBurstEnable is enabled, then multiply by 4
 911         *  - bTxBurstEnable is never set in the vendor driver
 912         *
 913         * SERVICE:
 914         * - "for PLCP configuration"
 915         * - always 0 except in some situations at 802.11b 11M
 916         * - see line 53 of zdinlinef.h
 917         */
 918        cs->service = 0;
 919        r = zd_calc_tx_length_us(&cs->service, ZD_RATE(cs->modulation),
 920                                 le16_to_cpu(cs->tx_length));
 921        if (r < 0)
 922                return r;
 923        cs->current_length = cpu_to_le16(r);
 924        cs->next_frame_length = 0;
 925
 926        return 0;
 927}
 928
 929/**
 930 * zd_op_tx - transmits a network frame to the device
 931 *
 932 * @dev: mac80211 hardware device
 933 * @skb: socket buffer
 934 * @control: the control structure
 935 *
 936 * This function transmit an IEEE 802.11 network frame to the device. The
 937 * control block of the skbuff will be initialized. If necessary the incoming
 938 * mac80211 queues will be stopped.
 939 */
 940static void zd_op_tx(struct ieee80211_hw *hw,
 941                     struct ieee80211_tx_control *control,
 942                     struct sk_buff *skb)
 943{
 944        struct zd_mac *mac = zd_hw_mac(hw);
 945        struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
 946        int r;
 947
 948        r = fill_ctrlset(mac, skb);
 949        if (r)
 950                goto fail;
 951
 952        info->rate_driver_data[0] = hw;
 953
 954        r = zd_usb_tx(&mac->chip.usb, skb);
 955        if (r)
 956                goto fail;
 957        return;
 958
 959fail:
 960        dev_kfree_skb(skb);
 961}
 962
 963/**
 964 * filter_ack - filters incoming packets for acknowledgements
 965 * @dev: the mac80211 device
 966 * @rx_hdr: received header
 967 * @stats: the status for the received packet
 968 *
 969 * This functions looks for ACK packets and tries to match them with the
 970 * frames in the tx queue. If a match is found the frame will be dequeued and
 971 * the upper layers is informed about the successful transmission. If
 972 * mac80211 queues have been stopped and the number of frames still to be
 973 * transmitted is low the queues will be opened again.
 974 *
 975 * Returns 1 if the frame was an ACK, 0 if it was ignored.
 976 */
 977static int filter_ack(struct ieee80211_hw *hw, struct ieee80211_hdr *rx_hdr,
 978                      struct ieee80211_rx_status *stats)
 979{
 980        struct zd_mac *mac = zd_hw_mac(hw);
 981        struct sk_buff *skb;
 982        struct sk_buff_head *q;
 983        unsigned long flags;
 984        int found = 0;
 985        int i, position = 0;
 986
 987        if (!ieee80211_is_ack(rx_hdr->frame_control))
 988                return 0;
 989
 990        q = &mac->ack_wait_queue;
 991        spin_lock_irqsave(&q->lock, flags);
 992        skb_queue_walk(q, skb) {
 993                struct ieee80211_hdr *tx_hdr;
 994
 995                position ++;
 996
 997                if (mac->ack_pending && skb_queue_is_first(q, skb))
 998                    continue;
 999
1000                tx_hdr = (struct ieee80211_hdr *)skb->data;
1001                if (likely(!memcmp(tx_hdr->addr2, rx_hdr->addr1, ETH_ALEN)))
1002                {
1003                        found = 1;
1004                        break;
1005                }
1006        }
1007
1008        if (found) {
1009                for (i=1; i<position; i++) {
1010                        skb = __skb_dequeue(q);
1011                        zd_mac_tx_status(hw, skb,
1012                                         mac->ack_pending ? mac->ack_signal : 0,
1013                                         NULL);
1014                        mac->ack_pending = 0;
1015                }
1016
1017                mac->ack_pending = 1;
1018                mac->ack_signal = stats->signal;
1019
1020                /* Prevent pending tx-packet on AP-mode */
1021                if (mac->type == NL80211_IFTYPE_AP) {
1022                        skb = __skb_dequeue(q);
1023                        zd_mac_tx_status(hw, skb, mac->ack_signal, NULL);
1024                        mac->ack_pending = 0;
1025                }
1026        }
1027
1028        spin_unlock_irqrestore(&q->lock, flags);
1029        return 1;
1030}
1031
1032int zd_mac_rx(struct ieee80211_hw *hw, const u8 *buffer, unsigned int length)
1033{
1034        struct zd_mac *mac = zd_hw_mac(hw);
1035        struct ieee80211_rx_status stats;
1036        const struct rx_status *status;
1037        struct sk_buff *skb;
1038        int bad_frame = 0;
1039        __le16 fc;
1040        int need_padding;
1041        int i;
1042        u8 rate;
1043
1044        if (length < ZD_PLCP_HEADER_SIZE + 10 /* IEEE80211_1ADDR_LEN */ +
1045                     FCS_LEN + sizeof(struct rx_status))
1046                return -EINVAL;
1047
1048        memset(&stats, 0, sizeof(stats));
1049
1050        /* Note about pass_failed_fcs and pass_ctrl access below:
1051         * mac locking intentionally omitted here, as this is the only unlocked
1052         * reader and the only writer is configure_filter. Plus, if there were
1053         * any races accessing these variables, it wouldn't really matter.
1054         * If mac80211 ever provides a way for us to access filter flags
1055         * from outside configure_filter, we could improve on this. Also, this
1056         * situation may change once we implement some kind of DMA-into-skb
1057         * RX path. */
1058
1059        /* Caller has to ensure that length >= sizeof(struct rx_status). */
1060        status = (struct rx_status *)
1061                (buffer + (length - sizeof(struct rx_status)));
1062        if (status->frame_status & ZD_RX_ERROR) {
1063                if (mac->pass_failed_fcs &&
1064                                (status->frame_status & ZD_RX_CRC32_ERROR)) {
1065                        stats.flag |= RX_FLAG_FAILED_FCS_CRC;
1066                        bad_frame = 1;
1067                } else {
1068                        return -EINVAL;
1069                }
1070        }
1071
1072        stats.freq = zd_channels[_zd_chip_get_channel(&mac->chip) - 1].center_freq;
1073        stats.band = IEEE80211_BAND_2GHZ;
1074        stats.signal = zd_check_signal(hw, status->signal_strength);
1075
1076        rate = zd_rx_rate(buffer, status);
1077
1078        /* todo: return index in the big switches in zd_rx_rate instead */
1079        for (i = 0; i < mac->band.n_bitrates; i++)
1080                if (rate == mac->band.bitrates[i].hw_value)
1081                        stats.rate_idx = i;
1082
1083        length -= ZD_PLCP_HEADER_SIZE + sizeof(struct rx_status);
1084        buffer += ZD_PLCP_HEADER_SIZE;
1085
1086        /* Except for bad frames, filter each frame to see if it is an ACK, in
1087         * which case our internal TX tracking is updated. Normally we then
1088         * bail here as there's no need to pass ACKs on up to the stack, but
1089         * there is also the case where the stack has requested us to pass
1090         * control frames on up (pass_ctrl) which we must consider. */
1091        if (!bad_frame &&
1092                        filter_ack(hw, (struct ieee80211_hdr *)buffer, &stats)
1093                        && !mac->pass_ctrl)
1094                return 0;
1095
1096        fc = get_unaligned((__le16*)buffer);
1097        need_padding = ieee80211_is_data_qos(fc) ^ ieee80211_has_a4(fc);
1098
1099        skb = dev_alloc_skb(length + (need_padding ? 2 : 0));
1100        if (skb == NULL)
1101                return -ENOMEM;
1102        if (need_padding) {
1103                /* Make sure the payload data is 4 byte aligned. */
1104                skb_reserve(skb, 2);
1105        }
1106
1107        /* FIXME : could we avoid this big memcpy ? */
1108        memcpy(skb_put(skb, length), buffer, length);
1109
1110        memcpy(IEEE80211_SKB_RXCB(skb), &stats, sizeof(stats));
1111        ieee80211_rx_irqsafe(hw, skb);
1112        return 0;
1113}
1114
1115static int zd_op_add_interface(struct ieee80211_hw *hw,
1116                                struct ieee80211_vif *vif)
1117{
1118        struct zd_mac *mac = zd_hw_mac(hw);
1119
1120        /* using NL80211_IFTYPE_UNSPECIFIED to indicate no mode selected */
1121        if (mac->type != NL80211_IFTYPE_UNSPECIFIED)
1122                return -EOPNOTSUPP;
1123
1124        switch (vif->type) {
1125        case NL80211_IFTYPE_MONITOR:
1126        case NL80211_IFTYPE_MESH_POINT:
1127        case NL80211_IFTYPE_STATION:
1128        case NL80211_IFTYPE_ADHOC:
1129        case NL80211_IFTYPE_AP:
1130                mac->type = vif->type;
1131                break;
1132        default:
1133                return -EOPNOTSUPP;
1134        }
1135
1136        mac->vif = vif;
1137
1138        return set_mac_and_bssid(mac);
1139}
1140
1141static void zd_op_remove_interface(struct ieee80211_hw *hw,
1142                                    struct ieee80211_vif *vif)
1143{
1144        struct zd_mac *mac = zd_hw_mac(hw);
1145        mac->type = NL80211_IFTYPE_UNSPECIFIED;
1146        mac->vif = NULL;
1147        zd_set_beacon_interval(&mac->chip, 0, 0, NL80211_IFTYPE_UNSPECIFIED);
1148        zd_write_mac_addr(&mac->chip, NULL);
1149
1150        zd_mac_free_cur_beacon(mac);
1151}
1152
1153static int zd_op_config(struct ieee80211_hw *hw, u32 changed)
1154{
1155        struct zd_mac *mac = zd_hw_mac(hw);
1156        struct ieee80211_conf *conf = &hw->conf;
1157
1158        spin_lock_irq(&mac->lock);
1159        mac->channel = conf->chandef.chan->hw_value;
1160        spin_unlock_irq(&mac->lock);
1161
1162        return zd_chip_set_channel(&mac->chip, conf->chandef.chan->hw_value);
1163}
1164
1165static void zd_beacon_done(struct zd_mac *mac)
1166{
1167        struct sk_buff *skb, *beacon;
1168
1169        if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1170                return;
1171        if (!mac->vif || mac->vif->type != NL80211_IFTYPE_AP)
1172                return;
1173
1174        /*
1175         * Send out buffered broad- and multicast frames.
1176         */
1177        while (!ieee80211_queue_stopped(mac->hw, 0)) {
1178                skb = ieee80211_get_buffered_bc(mac->hw, mac->vif);
1179                if (!skb)
1180                        break;
1181                zd_op_tx(mac->hw, NULL, skb);
1182        }
1183
1184        /*
1185         * Fetch next beacon so that tim_count is updated.
1186         */
1187        beacon = ieee80211_beacon_get(mac->hw, mac->vif);
1188        if (beacon)
1189                zd_mac_config_beacon(mac->hw, beacon, true);
1190
1191        spin_lock_irq(&mac->lock);
1192        mac->beacon.last_update = jiffies;
1193        spin_unlock_irq(&mac->lock);
1194}
1195
1196static void zd_process_intr(struct work_struct *work)
1197{
1198        u16 int_status;
1199        unsigned long flags;
1200        struct zd_mac *mac = container_of(work, struct zd_mac, process_intr);
1201
1202        spin_lock_irqsave(&mac->lock, flags);
1203        int_status = le16_to_cpu(*(__le16 *)(mac->intr_buffer + 4));
1204        spin_unlock_irqrestore(&mac->lock, flags);
1205
1206        if (int_status & INT_CFG_NEXT_BCN) {
1207                /*dev_dbg_f_limit(zd_mac_dev(mac), "INT_CFG_NEXT_BCN\n");*/
1208                zd_beacon_done(mac);
1209        } else {
1210                dev_dbg_f(zd_mac_dev(mac), "Unsupported interrupt\n");
1211        }
1212
1213        zd_chip_enable_hwint(&mac->chip);
1214}
1215
1216
1217static u64 zd_op_prepare_multicast(struct ieee80211_hw *hw,
1218                                   struct netdev_hw_addr_list *mc_list)
1219{
1220        struct zd_mac *mac = zd_hw_mac(hw);
1221        struct zd_mc_hash hash;
1222        struct netdev_hw_addr *ha;
1223
1224        zd_mc_clear(&hash);
1225
1226        netdev_hw_addr_list_for_each(ha, mc_list) {
1227                dev_dbg_f(zd_mac_dev(mac), "mc addr %pM\n", ha->addr);
1228                zd_mc_add_addr(&hash, ha->addr);
1229        }
1230
1231        return hash.low | ((u64)hash.high << 32);
1232}
1233
1234#define SUPPORTED_FIF_FLAGS \
1235        (FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \
1236        FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC)
1237static void zd_op_configure_filter(struct ieee80211_hw *hw,
1238                        unsigned int changed_flags,
1239                        unsigned int *new_flags,
1240                        u64 multicast)
1241{
1242        struct zd_mc_hash hash = {
1243                .low = multicast,
1244                .high = multicast >> 32,
1245        };
1246        struct zd_mac *mac = zd_hw_mac(hw);
1247        unsigned long flags;
1248        int r;
1249
1250        /* Only deal with supported flags */
1251        changed_flags &= SUPPORTED_FIF_FLAGS;
1252        *new_flags &= SUPPORTED_FIF_FLAGS;
1253
1254        /*
1255         * If multicast parameter (as returned by zd_op_prepare_multicast)
1256         * has changed, no bit in changed_flags is set. To handle this
1257         * situation, we do not return if changed_flags is 0. If we do so,
1258         * we will have some issue with IPv6 which uses multicast for link
1259         * layer address resolution.
1260         */
1261        if (*new_flags & (FIF_PROMISC_IN_BSS | FIF_ALLMULTI))
1262                zd_mc_add_all(&hash);
1263
1264        spin_lock_irqsave(&mac->lock, flags);
1265        mac->pass_failed_fcs = !!(*new_flags & FIF_FCSFAIL);
1266        mac->pass_ctrl = !!(*new_flags & FIF_CONTROL);
1267        mac->multicast_hash = hash;
1268        spin_unlock_irqrestore(&mac->lock, flags);
1269
1270        zd_chip_set_multicast_hash(&mac->chip, &hash);
1271
1272        if (changed_flags & FIF_CONTROL) {
1273                r = set_rx_filter(mac);
1274                if (r)
1275                        dev_err(zd_mac_dev(mac), "set_rx_filter error %d\n", r);
1276        }
1277
1278        /* no handling required for FIF_OTHER_BSS as we don't currently
1279         * do BSSID filtering */
1280        /* FIXME: in future it would be nice to enable the probe response
1281         * filter (so that the driver doesn't see them) until
1282         * FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd
1283         * have to schedule work to enable prbresp reception, which might
1284         * happen too late. For now we'll just listen and forward them all the
1285         * time. */
1286}
1287
1288static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble)
1289{
1290        mutex_lock(&mac->chip.mutex);
1291        zd_chip_set_rts_cts_rate_locked(&mac->chip, short_preamble);
1292        mutex_unlock(&mac->chip.mutex);
1293}
1294
1295static void zd_op_bss_info_changed(struct ieee80211_hw *hw,
1296                                   struct ieee80211_vif *vif,
1297                                   struct ieee80211_bss_conf *bss_conf,
1298                                   u32 changes)
1299{
1300        struct zd_mac *mac = zd_hw_mac(hw);
1301        int associated;
1302
1303        dev_dbg_f(zd_mac_dev(mac), "changes: %x\n", changes);
1304
1305        if (mac->type == NL80211_IFTYPE_MESH_POINT ||
1306            mac->type == NL80211_IFTYPE_ADHOC ||
1307            mac->type == NL80211_IFTYPE_AP) {
1308                associated = true;
1309                if (changes & BSS_CHANGED_BEACON) {
1310                        struct sk_buff *beacon = ieee80211_beacon_get(hw, vif);
1311
1312                        if (beacon) {
1313                                zd_chip_disable_hwint(&mac->chip);
1314                                zd_mac_config_beacon(hw, beacon, false);
1315                                zd_chip_enable_hwint(&mac->chip);
1316                        }
1317                }
1318
1319                if (changes & BSS_CHANGED_BEACON_ENABLED) {
1320                        u16 interval = 0;
1321                        u8 period = 0;
1322
1323                        if (bss_conf->enable_beacon) {
1324                                period = bss_conf->dtim_period;
1325                                interval = bss_conf->beacon_int;
1326                        }
1327
1328                        spin_lock_irq(&mac->lock);
1329                        mac->beacon.period = period;
1330                        mac->beacon.interval = interval;
1331                        mac->beacon.last_update = jiffies;
1332                        spin_unlock_irq(&mac->lock);
1333
1334                        zd_set_beacon_interval(&mac->chip, interval, period,
1335                                               mac->type);
1336                }
1337        } else
1338                associated = is_valid_ether_addr(bss_conf->bssid);
1339
1340        spin_lock_irq(&mac->lock);
1341        mac->associated = associated;
1342        spin_unlock_irq(&mac->lock);
1343
1344        /* TODO: do hardware bssid filtering */
1345
1346        if (changes & BSS_CHANGED_ERP_PREAMBLE) {
1347                spin_lock_irq(&mac->lock);
1348                mac->short_preamble = bss_conf->use_short_preamble;
1349                spin_unlock_irq(&mac->lock);
1350
1351                set_rts_cts(mac, bss_conf->use_short_preamble);
1352        }
1353}
1354
1355static u64 zd_op_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1356{
1357        struct zd_mac *mac = zd_hw_mac(hw);
1358        return zd_chip_get_tsf(&mac->chip);
1359}
1360
1361static const struct ieee80211_ops zd_ops = {
1362        .tx                     = zd_op_tx,
1363        .start                  = zd_op_start,
1364        .stop                   = zd_op_stop,
1365        .add_interface          = zd_op_add_interface,
1366        .remove_interface       = zd_op_remove_interface,
1367        .config                 = zd_op_config,
1368        .prepare_multicast      = zd_op_prepare_multicast,
1369        .configure_filter       = zd_op_configure_filter,
1370        .bss_info_changed       = zd_op_bss_info_changed,
1371        .get_tsf                = zd_op_get_tsf,
1372};
1373
1374struct ieee80211_hw *zd_mac_alloc_hw(struct usb_interface *intf)
1375{
1376        struct zd_mac *mac;
1377        struct ieee80211_hw *hw;
1378
1379        hw = ieee80211_alloc_hw(sizeof(struct zd_mac), &zd_ops);
1380        if (!hw) {
1381                dev_dbg_f(&intf->dev, "out of memory\n");
1382                return NULL;
1383        }
1384
1385        mac = zd_hw_mac(hw);
1386
1387        memset(mac, 0, sizeof(*mac));
1388        spin_lock_init(&mac->lock);
1389        mac->hw = hw;
1390
1391        mac->type = NL80211_IFTYPE_UNSPECIFIED;
1392
1393        memcpy(mac->channels, zd_channels, sizeof(zd_channels));
1394        memcpy(mac->rates, zd_rates, sizeof(zd_rates));
1395        mac->band.n_bitrates = ARRAY_SIZE(zd_rates);
1396        mac->band.bitrates = mac->rates;
1397        mac->band.n_channels = ARRAY_SIZE(zd_channels);
1398        mac->band.channels = mac->channels;
1399
1400        hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &mac->band;
1401
1402        hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1403                    IEEE80211_HW_SIGNAL_UNSPEC |
1404                    IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1405                    IEEE80211_HW_MFP_CAPABLE;
1406
1407        hw->wiphy->interface_modes =
1408                BIT(NL80211_IFTYPE_MESH_POINT) |
1409                BIT(NL80211_IFTYPE_STATION) |
1410                BIT(NL80211_IFTYPE_ADHOC) |
1411                BIT(NL80211_IFTYPE_AP);
1412
1413        hw->max_signal = 100;
1414        hw->queues = 1;
1415        hw->extra_tx_headroom = sizeof(struct zd_ctrlset);
1416
1417        /*
1418         * Tell mac80211 that we support multi rate retries
1419         */
1420        hw->max_rates = IEEE80211_TX_MAX_RATES;
1421        hw->max_rate_tries = 18;        /* 9 rates * 2 retries/rate */
1422
1423        skb_queue_head_init(&mac->ack_wait_queue);
1424        mac->ack_pending = 0;
1425
1426        zd_chip_init(&mac->chip, hw, intf);
1427        housekeeping_init(mac);
1428        beacon_init(mac);
1429        INIT_WORK(&mac->process_intr, zd_process_intr);
1430
1431        SET_IEEE80211_DEV(hw, &intf->dev);
1432        return hw;
1433}
1434
1435#define BEACON_WATCHDOG_DELAY round_jiffies_relative(HZ)
1436
1437static void beacon_watchdog_handler(struct work_struct *work)
1438{
1439        struct zd_mac *mac =
1440                container_of(work, struct zd_mac, beacon.watchdog_work.work);
1441        struct sk_buff *beacon;
1442        unsigned long timeout;
1443        int interval, period;
1444
1445        if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1446                goto rearm;
1447        if (mac->type != NL80211_IFTYPE_AP || !mac->vif)
1448                goto rearm;
1449
1450        spin_lock_irq(&mac->lock);
1451        interval = mac->beacon.interval;
1452        period = mac->beacon.period;
1453        timeout = mac->beacon.last_update +
1454                        msecs_to_jiffies(interval * 1024 / 1000) * 3;
1455        spin_unlock_irq(&mac->lock);
1456
1457        if (interval > 0 && time_is_before_jiffies(timeout)) {
1458                dev_dbg_f(zd_mac_dev(mac), "beacon interrupt stalled, "
1459                                           "restarting. "
1460                                           "(interval: %d, dtim: %d)\n",
1461                                           interval, period);
1462
1463                zd_chip_disable_hwint(&mac->chip);
1464
1465                beacon = ieee80211_beacon_get(mac->hw, mac->vif);
1466                if (beacon) {
1467                        zd_mac_free_cur_beacon(mac);
1468
1469                        zd_mac_config_beacon(mac->hw, beacon, false);
1470                }
1471
1472                zd_set_beacon_interval(&mac->chip, interval, period, mac->type);
1473
1474                zd_chip_enable_hwint(&mac->chip);
1475
1476                spin_lock_irq(&mac->lock);
1477                mac->beacon.last_update = jiffies;
1478                spin_unlock_irq(&mac->lock);
1479        }
1480
1481rearm:
1482        queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work,
1483                           BEACON_WATCHDOG_DELAY);
1484}
1485
1486static void beacon_init(struct zd_mac *mac)
1487{
1488        INIT_DELAYED_WORK(&mac->beacon.watchdog_work, beacon_watchdog_handler);
1489}
1490
1491static void beacon_enable(struct zd_mac *mac)
1492{
1493        dev_dbg_f(zd_mac_dev(mac), "\n");
1494
1495        mac->beacon.last_update = jiffies;
1496        queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work,
1497                           BEACON_WATCHDOG_DELAY);
1498}
1499
1500static void beacon_disable(struct zd_mac *mac)
1501{
1502        dev_dbg_f(zd_mac_dev(mac), "\n");
1503        cancel_delayed_work_sync(&mac->beacon.watchdog_work);
1504
1505        zd_mac_free_cur_beacon(mac);
1506}
1507
1508#define LINK_LED_WORK_DELAY HZ
1509
1510static void link_led_handler(struct work_struct *work)
1511{
1512        struct zd_mac *mac =
1513                container_of(work, struct zd_mac, housekeeping.link_led_work.work);
1514        struct zd_chip *chip = &mac->chip;
1515        int is_associated;
1516        int r;
1517
1518        if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1519                goto requeue;
1520
1521        spin_lock_irq(&mac->lock);
1522        is_associated = mac->associated;
1523        spin_unlock_irq(&mac->lock);
1524
1525        r = zd_chip_control_leds(chip,
1526                                 is_associated ? ZD_LED_ASSOCIATED : ZD_LED_SCANNING);
1527        if (r)
1528                dev_dbg_f(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r);
1529
1530requeue:
1531        queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1532                           LINK_LED_WORK_DELAY);
1533}
1534
1535static void housekeeping_init(struct zd_mac *mac)
1536{
1537        INIT_DELAYED_WORK(&mac->housekeeping.link_led_work, link_led_handler);
1538}
1539
1540static void housekeeping_enable(struct zd_mac *mac)
1541{
1542        dev_dbg_f(zd_mac_dev(mac), "\n");
1543        queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1544                           0);
1545}
1546
1547static void housekeeping_disable(struct zd_mac *mac)
1548{
1549        dev_dbg_f(zd_mac_dev(mac), "\n");
1550        cancel_delayed_work_sync(&mac->housekeeping.link_led_work);
1551        zd_chip_control_leds(&mac->chip, ZD_LED_OFF);
1552}
1553