linux/drivers/regulator/core.c
<<
>>
Prefs
   1/*
   2 * core.c  --  Voltage/Current Regulator framework.
   3 *
   4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
   5 * Copyright 2008 SlimLogic Ltd.
   6 *
   7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
   8 *
   9 *  This program is free software; you can redistribute  it and/or modify it
  10 *  under  the terms of  the GNU General  Public License as published by the
  11 *  Free Software Foundation;  either version 2 of the  License, or (at your
  12 *  option) any later version.
  13 *
  14 */
  15
  16#include <linux/kernel.h>
  17#include <linux/init.h>
  18#include <linux/debugfs.h>
  19#include <linux/device.h>
  20#include <linux/slab.h>
  21#include <linux/async.h>
  22#include <linux/err.h>
  23#include <linux/mutex.h>
  24#include <linux/suspend.h>
  25#include <linux/delay.h>
  26#include <linux/gpio.h>
  27#include <linux/of.h>
  28#include <linux/regmap.h>
  29#include <linux/regulator/of_regulator.h>
  30#include <linux/regulator/consumer.h>
  31#include <linux/regulator/driver.h>
  32#include <linux/regulator/machine.h>
  33#include <linux/module.h>
  34
  35#define CREATE_TRACE_POINTS
  36#include <trace/events/regulator.h>
  37
  38#include "dummy.h"
  39
  40#define rdev_crit(rdev, fmt, ...)                                       \
  41        pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  42#define rdev_err(rdev, fmt, ...)                                        \
  43        pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  44#define rdev_warn(rdev, fmt, ...)                                       \
  45        pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  46#define rdev_info(rdev, fmt, ...)                                       \
  47        pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  48#define rdev_dbg(rdev, fmt, ...)                                        \
  49        pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  50
  51static DEFINE_MUTEX(regulator_list_mutex);
  52static LIST_HEAD(regulator_list);
  53static LIST_HEAD(regulator_map_list);
  54static LIST_HEAD(regulator_ena_gpio_list);
  55static bool has_full_constraints;
  56static bool board_wants_dummy_regulator;
  57
  58static struct dentry *debugfs_root;
  59
  60/*
  61 * struct regulator_map
  62 *
  63 * Used to provide symbolic supply names to devices.
  64 */
  65struct regulator_map {
  66        struct list_head list;
  67        const char *dev_name;   /* The dev_name() for the consumer */
  68        const char *supply;
  69        struct regulator_dev *regulator;
  70};
  71
  72/*
  73 * struct regulator_enable_gpio
  74 *
  75 * Management for shared enable GPIO pin
  76 */
  77struct regulator_enable_gpio {
  78        struct list_head list;
  79        int gpio;
  80        u32 enable_count;       /* a number of enabled shared GPIO */
  81        u32 request_count;      /* a number of requested shared GPIO */
  82        unsigned int ena_gpio_invert:1;
  83};
  84
  85/*
  86 * struct regulator
  87 *
  88 * One for each consumer device.
  89 */
  90struct regulator {
  91        struct device *dev;
  92        struct list_head list;
  93        unsigned int always_on:1;
  94        unsigned int bypass:1;
  95        int uA_load;
  96        int min_uV;
  97        int max_uV;
  98        char *supply_name;
  99        struct device_attribute dev_attr;
 100        struct regulator_dev *rdev;
 101        struct dentry *debugfs;
 102};
 103
 104static int _regulator_is_enabled(struct regulator_dev *rdev);
 105static int _regulator_disable(struct regulator_dev *rdev);
 106static int _regulator_get_voltage(struct regulator_dev *rdev);
 107static int _regulator_get_current_limit(struct regulator_dev *rdev);
 108static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
 109static void _notifier_call_chain(struct regulator_dev *rdev,
 110                                  unsigned long event, void *data);
 111static int _regulator_do_set_voltage(struct regulator_dev *rdev,
 112                                     int min_uV, int max_uV);
 113static struct regulator *create_regulator(struct regulator_dev *rdev,
 114                                          struct device *dev,
 115                                          const char *supply_name);
 116
 117static const char *rdev_get_name(struct regulator_dev *rdev)
 118{
 119        if (rdev->constraints && rdev->constraints->name)
 120                return rdev->constraints->name;
 121        else if (rdev->desc->name)
 122                return rdev->desc->name;
 123        else
 124                return "";
 125}
 126
 127/**
 128 * of_get_regulator - get a regulator device node based on supply name
 129 * @dev: Device pointer for the consumer (of regulator) device
 130 * @supply: regulator supply name
 131 *
 132 * Extract the regulator device node corresponding to the supply name.
 133 * returns the device node corresponding to the regulator if found, else
 134 * returns NULL.
 135 */
 136static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 137{
 138        struct device_node *regnode = NULL;
 139        char prop_name[32]; /* 32 is max size of property name */
 140
 141        dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 142
 143        snprintf(prop_name, 32, "%s-supply", supply);
 144        regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 145
 146        if (!regnode) {
 147                dev_dbg(dev, "Looking up %s property in node %s failed",
 148                                prop_name, dev->of_node->full_name);
 149                return NULL;
 150        }
 151        return regnode;
 152}
 153
 154static int _regulator_can_change_status(struct regulator_dev *rdev)
 155{
 156        if (!rdev->constraints)
 157                return 0;
 158
 159        if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
 160                return 1;
 161        else
 162                return 0;
 163}
 164
 165/* Platform voltage constraint check */
 166static int regulator_check_voltage(struct regulator_dev *rdev,
 167                                   int *min_uV, int *max_uV)
 168{
 169        BUG_ON(*min_uV > *max_uV);
 170
 171        if (!rdev->constraints) {
 172                rdev_err(rdev, "no constraints\n");
 173                return -ENODEV;
 174        }
 175        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
 176                rdev_err(rdev, "operation not allowed\n");
 177                return -EPERM;
 178        }
 179
 180        if (*max_uV > rdev->constraints->max_uV)
 181                *max_uV = rdev->constraints->max_uV;
 182        if (*min_uV < rdev->constraints->min_uV)
 183                *min_uV = rdev->constraints->min_uV;
 184
 185        if (*min_uV > *max_uV) {
 186                rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 187                         *min_uV, *max_uV);
 188                return -EINVAL;
 189        }
 190
 191        return 0;
 192}
 193
 194/* Make sure we select a voltage that suits the needs of all
 195 * regulator consumers
 196 */
 197static int regulator_check_consumers(struct regulator_dev *rdev,
 198                                     int *min_uV, int *max_uV)
 199{
 200        struct regulator *regulator;
 201
 202        list_for_each_entry(regulator, &rdev->consumer_list, list) {
 203                /*
 204                 * Assume consumers that didn't say anything are OK
 205                 * with anything in the constraint range.
 206                 */
 207                if (!regulator->min_uV && !regulator->max_uV)
 208                        continue;
 209
 210                if (*max_uV > regulator->max_uV)
 211                        *max_uV = regulator->max_uV;
 212                if (*min_uV < regulator->min_uV)
 213                        *min_uV = regulator->min_uV;
 214        }
 215
 216        if (*min_uV > *max_uV) {
 217                rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
 218                        *min_uV, *max_uV);
 219                return -EINVAL;
 220        }
 221
 222        return 0;
 223}
 224
 225/* current constraint check */
 226static int regulator_check_current_limit(struct regulator_dev *rdev,
 227                                        int *min_uA, int *max_uA)
 228{
 229        BUG_ON(*min_uA > *max_uA);
 230
 231        if (!rdev->constraints) {
 232                rdev_err(rdev, "no constraints\n");
 233                return -ENODEV;
 234        }
 235        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
 236                rdev_err(rdev, "operation not allowed\n");
 237                return -EPERM;
 238        }
 239
 240        if (*max_uA > rdev->constraints->max_uA)
 241                *max_uA = rdev->constraints->max_uA;
 242        if (*min_uA < rdev->constraints->min_uA)
 243                *min_uA = rdev->constraints->min_uA;
 244
 245        if (*min_uA > *max_uA) {
 246                rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 247                         *min_uA, *max_uA);
 248                return -EINVAL;
 249        }
 250
 251        return 0;
 252}
 253
 254/* operating mode constraint check */
 255static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
 256{
 257        switch (*mode) {
 258        case REGULATOR_MODE_FAST:
 259        case REGULATOR_MODE_NORMAL:
 260        case REGULATOR_MODE_IDLE:
 261        case REGULATOR_MODE_STANDBY:
 262                break;
 263        default:
 264                rdev_err(rdev, "invalid mode %x specified\n", *mode);
 265                return -EINVAL;
 266        }
 267
 268        if (!rdev->constraints) {
 269                rdev_err(rdev, "no constraints\n");
 270                return -ENODEV;
 271        }
 272        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
 273                rdev_err(rdev, "operation not allowed\n");
 274                return -EPERM;
 275        }
 276
 277        /* The modes are bitmasks, the most power hungry modes having
 278         * the lowest values. If the requested mode isn't supported
 279         * try higher modes. */
 280        while (*mode) {
 281                if (rdev->constraints->valid_modes_mask & *mode)
 282                        return 0;
 283                *mode /= 2;
 284        }
 285
 286        return -EINVAL;
 287}
 288
 289/* dynamic regulator mode switching constraint check */
 290static int regulator_check_drms(struct regulator_dev *rdev)
 291{
 292        if (!rdev->constraints) {
 293                rdev_err(rdev, "no constraints\n");
 294                return -ENODEV;
 295        }
 296        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
 297                rdev_err(rdev, "operation not allowed\n");
 298                return -EPERM;
 299        }
 300        return 0;
 301}
 302
 303static ssize_t regulator_uV_show(struct device *dev,
 304                                struct device_attribute *attr, char *buf)
 305{
 306        struct regulator_dev *rdev = dev_get_drvdata(dev);
 307        ssize_t ret;
 308
 309        mutex_lock(&rdev->mutex);
 310        ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
 311        mutex_unlock(&rdev->mutex);
 312
 313        return ret;
 314}
 315static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
 316
 317static ssize_t regulator_uA_show(struct device *dev,
 318                                struct device_attribute *attr, char *buf)
 319{
 320        struct regulator_dev *rdev = dev_get_drvdata(dev);
 321
 322        return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 323}
 324static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
 325
 326static ssize_t regulator_name_show(struct device *dev,
 327                             struct device_attribute *attr, char *buf)
 328{
 329        struct regulator_dev *rdev = dev_get_drvdata(dev);
 330
 331        return sprintf(buf, "%s\n", rdev_get_name(rdev));
 332}
 333
 334static ssize_t regulator_print_opmode(char *buf, int mode)
 335{
 336        switch (mode) {
 337        case REGULATOR_MODE_FAST:
 338                return sprintf(buf, "fast\n");
 339        case REGULATOR_MODE_NORMAL:
 340                return sprintf(buf, "normal\n");
 341        case REGULATOR_MODE_IDLE:
 342                return sprintf(buf, "idle\n");
 343        case REGULATOR_MODE_STANDBY:
 344                return sprintf(buf, "standby\n");
 345        }
 346        return sprintf(buf, "unknown\n");
 347}
 348
 349static ssize_t regulator_opmode_show(struct device *dev,
 350                                    struct device_attribute *attr, char *buf)
 351{
 352        struct regulator_dev *rdev = dev_get_drvdata(dev);
 353
 354        return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 355}
 356static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
 357
 358static ssize_t regulator_print_state(char *buf, int state)
 359{
 360        if (state > 0)
 361                return sprintf(buf, "enabled\n");
 362        else if (state == 0)
 363                return sprintf(buf, "disabled\n");
 364        else
 365                return sprintf(buf, "unknown\n");
 366}
 367
 368static ssize_t regulator_state_show(struct device *dev,
 369                                   struct device_attribute *attr, char *buf)
 370{
 371        struct regulator_dev *rdev = dev_get_drvdata(dev);
 372        ssize_t ret;
 373
 374        mutex_lock(&rdev->mutex);
 375        ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 376        mutex_unlock(&rdev->mutex);
 377
 378        return ret;
 379}
 380static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
 381
 382static ssize_t regulator_status_show(struct device *dev,
 383                                   struct device_attribute *attr, char *buf)
 384{
 385        struct regulator_dev *rdev = dev_get_drvdata(dev);
 386        int status;
 387        char *label;
 388
 389        status = rdev->desc->ops->get_status(rdev);
 390        if (status < 0)
 391                return status;
 392
 393        switch (status) {
 394        case REGULATOR_STATUS_OFF:
 395                label = "off";
 396                break;
 397        case REGULATOR_STATUS_ON:
 398                label = "on";
 399                break;
 400        case REGULATOR_STATUS_ERROR:
 401                label = "error";
 402                break;
 403        case REGULATOR_STATUS_FAST:
 404                label = "fast";
 405                break;
 406        case REGULATOR_STATUS_NORMAL:
 407                label = "normal";
 408                break;
 409        case REGULATOR_STATUS_IDLE:
 410                label = "idle";
 411                break;
 412        case REGULATOR_STATUS_STANDBY:
 413                label = "standby";
 414                break;
 415        case REGULATOR_STATUS_BYPASS:
 416                label = "bypass";
 417                break;
 418        case REGULATOR_STATUS_UNDEFINED:
 419                label = "undefined";
 420                break;
 421        default:
 422                return -ERANGE;
 423        }
 424
 425        return sprintf(buf, "%s\n", label);
 426}
 427static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
 428
 429static ssize_t regulator_min_uA_show(struct device *dev,
 430                                    struct device_attribute *attr, char *buf)
 431{
 432        struct regulator_dev *rdev = dev_get_drvdata(dev);
 433
 434        if (!rdev->constraints)
 435                return sprintf(buf, "constraint not defined\n");
 436
 437        return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 438}
 439static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
 440
 441static ssize_t regulator_max_uA_show(struct device *dev,
 442                                    struct device_attribute *attr, char *buf)
 443{
 444        struct regulator_dev *rdev = dev_get_drvdata(dev);
 445
 446        if (!rdev->constraints)
 447                return sprintf(buf, "constraint not defined\n");
 448
 449        return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 450}
 451static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
 452
 453static ssize_t regulator_min_uV_show(struct device *dev,
 454                                    struct device_attribute *attr, char *buf)
 455{
 456        struct regulator_dev *rdev = dev_get_drvdata(dev);
 457
 458        if (!rdev->constraints)
 459                return sprintf(buf, "constraint not defined\n");
 460
 461        return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 462}
 463static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
 464
 465static ssize_t regulator_max_uV_show(struct device *dev,
 466                                    struct device_attribute *attr, char *buf)
 467{
 468        struct regulator_dev *rdev = dev_get_drvdata(dev);
 469
 470        if (!rdev->constraints)
 471                return sprintf(buf, "constraint not defined\n");
 472
 473        return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 474}
 475static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
 476
 477static ssize_t regulator_total_uA_show(struct device *dev,
 478                                      struct device_attribute *attr, char *buf)
 479{
 480        struct regulator_dev *rdev = dev_get_drvdata(dev);
 481        struct regulator *regulator;
 482        int uA = 0;
 483
 484        mutex_lock(&rdev->mutex);
 485        list_for_each_entry(regulator, &rdev->consumer_list, list)
 486                uA += regulator->uA_load;
 487        mutex_unlock(&rdev->mutex);
 488        return sprintf(buf, "%d\n", uA);
 489}
 490static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
 491
 492static ssize_t regulator_num_users_show(struct device *dev,
 493                                      struct device_attribute *attr, char *buf)
 494{
 495        struct regulator_dev *rdev = dev_get_drvdata(dev);
 496        return sprintf(buf, "%d\n", rdev->use_count);
 497}
 498
 499static ssize_t regulator_type_show(struct device *dev,
 500                                  struct device_attribute *attr, char *buf)
 501{
 502        struct regulator_dev *rdev = dev_get_drvdata(dev);
 503
 504        switch (rdev->desc->type) {
 505        case REGULATOR_VOLTAGE:
 506                return sprintf(buf, "voltage\n");
 507        case REGULATOR_CURRENT:
 508                return sprintf(buf, "current\n");
 509        }
 510        return sprintf(buf, "unknown\n");
 511}
 512
 513static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
 514                                struct device_attribute *attr, char *buf)
 515{
 516        struct regulator_dev *rdev = dev_get_drvdata(dev);
 517
 518        return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 519}
 520static DEVICE_ATTR(suspend_mem_microvolts, 0444,
 521                regulator_suspend_mem_uV_show, NULL);
 522
 523static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
 524                                struct device_attribute *attr, char *buf)
 525{
 526        struct regulator_dev *rdev = dev_get_drvdata(dev);
 527
 528        return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 529}
 530static DEVICE_ATTR(suspend_disk_microvolts, 0444,
 531                regulator_suspend_disk_uV_show, NULL);
 532
 533static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
 534                                struct device_attribute *attr, char *buf)
 535{
 536        struct regulator_dev *rdev = dev_get_drvdata(dev);
 537
 538        return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 539}
 540static DEVICE_ATTR(suspend_standby_microvolts, 0444,
 541                regulator_suspend_standby_uV_show, NULL);
 542
 543static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
 544                                struct device_attribute *attr, char *buf)
 545{
 546        struct regulator_dev *rdev = dev_get_drvdata(dev);
 547
 548        return regulator_print_opmode(buf,
 549                rdev->constraints->state_mem.mode);
 550}
 551static DEVICE_ATTR(suspend_mem_mode, 0444,
 552                regulator_suspend_mem_mode_show, NULL);
 553
 554static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
 555                                struct device_attribute *attr, char *buf)
 556{
 557        struct regulator_dev *rdev = dev_get_drvdata(dev);
 558
 559        return regulator_print_opmode(buf,
 560                rdev->constraints->state_disk.mode);
 561}
 562static DEVICE_ATTR(suspend_disk_mode, 0444,
 563                regulator_suspend_disk_mode_show, NULL);
 564
 565static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
 566                                struct device_attribute *attr, char *buf)
 567{
 568        struct regulator_dev *rdev = dev_get_drvdata(dev);
 569
 570        return regulator_print_opmode(buf,
 571                rdev->constraints->state_standby.mode);
 572}
 573static DEVICE_ATTR(suspend_standby_mode, 0444,
 574                regulator_suspend_standby_mode_show, NULL);
 575
 576static ssize_t regulator_suspend_mem_state_show(struct device *dev,
 577                                   struct device_attribute *attr, char *buf)
 578{
 579        struct regulator_dev *rdev = dev_get_drvdata(dev);
 580
 581        return regulator_print_state(buf,
 582                        rdev->constraints->state_mem.enabled);
 583}
 584static DEVICE_ATTR(suspend_mem_state, 0444,
 585                regulator_suspend_mem_state_show, NULL);
 586
 587static ssize_t regulator_suspend_disk_state_show(struct device *dev,
 588                                   struct device_attribute *attr, char *buf)
 589{
 590        struct regulator_dev *rdev = dev_get_drvdata(dev);
 591
 592        return regulator_print_state(buf,
 593                        rdev->constraints->state_disk.enabled);
 594}
 595static DEVICE_ATTR(suspend_disk_state, 0444,
 596                regulator_suspend_disk_state_show, NULL);
 597
 598static ssize_t regulator_suspend_standby_state_show(struct device *dev,
 599                                   struct device_attribute *attr, char *buf)
 600{
 601        struct regulator_dev *rdev = dev_get_drvdata(dev);
 602
 603        return regulator_print_state(buf,
 604                        rdev->constraints->state_standby.enabled);
 605}
 606static DEVICE_ATTR(suspend_standby_state, 0444,
 607                regulator_suspend_standby_state_show, NULL);
 608
 609static ssize_t regulator_bypass_show(struct device *dev,
 610                                     struct device_attribute *attr, char *buf)
 611{
 612        struct regulator_dev *rdev = dev_get_drvdata(dev);
 613        const char *report;
 614        bool bypass;
 615        int ret;
 616
 617        ret = rdev->desc->ops->get_bypass(rdev, &bypass);
 618
 619        if (ret != 0)
 620                report = "unknown";
 621        else if (bypass)
 622                report = "enabled";
 623        else
 624                report = "disabled";
 625
 626        return sprintf(buf, "%s\n", report);
 627}
 628static DEVICE_ATTR(bypass, 0444,
 629                   regulator_bypass_show, NULL);
 630
 631/*
 632 * These are the only attributes are present for all regulators.
 633 * Other attributes are a function of regulator functionality.
 634 */
 635static struct device_attribute regulator_dev_attrs[] = {
 636        __ATTR(name, 0444, regulator_name_show, NULL),
 637        __ATTR(num_users, 0444, regulator_num_users_show, NULL),
 638        __ATTR(type, 0444, regulator_type_show, NULL),
 639        __ATTR_NULL,
 640};
 641
 642static void regulator_dev_release(struct device *dev)
 643{
 644        struct regulator_dev *rdev = dev_get_drvdata(dev);
 645        kfree(rdev);
 646}
 647
 648static struct class regulator_class = {
 649        .name = "regulator",
 650        .dev_release = regulator_dev_release,
 651        .dev_attrs = regulator_dev_attrs,
 652};
 653
 654/* Calculate the new optimum regulator operating mode based on the new total
 655 * consumer load. All locks held by caller */
 656static void drms_uA_update(struct regulator_dev *rdev)
 657{
 658        struct regulator *sibling;
 659        int current_uA = 0, output_uV, input_uV, err;
 660        unsigned int mode;
 661
 662        err = regulator_check_drms(rdev);
 663        if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
 664            (!rdev->desc->ops->get_voltage &&
 665             !rdev->desc->ops->get_voltage_sel) ||
 666            !rdev->desc->ops->set_mode)
 667                return;
 668
 669        /* get output voltage */
 670        output_uV = _regulator_get_voltage(rdev);
 671        if (output_uV <= 0)
 672                return;
 673
 674        /* get input voltage */
 675        input_uV = 0;
 676        if (rdev->supply)
 677                input_uV = regulator_get_voltage(rdev->supply);
 678        if (input_uV <= 0)
 679                input_uV = rdev->constraints->input_uV;
 680        if (input_uV <= 0)
 681                return;
 682
 683        /* calc total requested load */
 684        list_for_each_entry(sibling, &rdev->consumer_list, list)
 685                current_uA += sibling->uA_load;
 686
 687        /* now get the optimum mode for our new total regulator load */
 688        mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 689                                                  output_uV, current_uA);
 690
 691        /* check the new mode is allowed */
 692        err = regulator_mode_constrain(rdev, &mode);
 693        if (err == 0)
 694                rdev->desc->ops->set_mode(rdev, mode);
 695}
 696
 697static int suspend_set_state(struct regulator_dev *rdev,
 698        struct regulator_state *rstate)
 699{
 700        int ret = 0;
 701
 702        /* If we have no suspend mode configration don't set anything;
 703         * only warn if the driver implements set_suspend_voltage or
 704         * set_suspend_mode callback.
 705         */
 706        if (!rstate->enabled && !rstate->disabled) {
 707                if (rdev->desc->ops->set_suspend_voltage ||
 708                    rdev->desc->ops->set_suspend_mode)
 709                        rdev_warn(rdev, "No configuration\n");
 710                return 0;
 711        }
 712
 713        if (rstate->enabled && rstate->disabled) {
 714                rdev_err(rdev, "invalid configuration\n");
 715                return -EINVAL;
 716        }
 717
 718        if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
 719                ret = rdev->desc->ops->set_suspend_enable(rdev);
 720        else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
 721                ret = rdev->desc->ops->set_suspend_disable(rdev);
 722        else /* OK if set_suspend_enable or set_suspend_disable is NULL */
 723                ret = 0;
 724
 725        if (ret < 0) {
 726                rdev_err(rdev, "failed to enabled/disable\n");
 727                return ret;
 728        }
 729
 730        if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
 731                ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
 732                if (ret < 0) {
 733                        rdev_err(rdev, "failed to set voltage\n");
 734                        return ret;
 735                }
 736        }
 737
 738        if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
 739                ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
 740                if (ret < 0) {
 741                        rdev_err(rdev, "failed to set mode\n");
 742                        return ret;
 743                }
 744        }
 745        return ret;
 746}
 747
 748/* locks held by caller */
 749static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
 750{
 751        if (!rdev->constraints)
 752                return -EINVAL;
 753
 754        switch (state) {
 755        case PM_SUSPEND_STANDBY:
 756                return suspend_set_state(rdev,
 757                        &rdev->constraints->state_standby);
 758        case PM_SUSPEND_MEM:
 759                return suspend_set_state(rdev,
 760                        &rdev->constraints->state_mem);
 761        case PM_SUSPEND_MAX:
 762                return suspend_set_state(rdev,
 763                        &rdev->constraints->state_disk);
 764        default:
 765                return -EINVAL;
 766        }
 767}
 768
 769static void print_constraints(struct regulator_dev *rdev)
 770{
 771        struct regulation_constraints *constraints = rdev->constraints;
 772        char buf[80] = "";
 773        int count = 0;
 774        int ret;
 775
 776        if (constraints->min_uV && constraints->max_uV) {
 777                if (constraints->min_uV == constraints->max_uV)
 778                        count += sprintf(buf + count, "%d mV ",
 779                                         constraints->min_uV / 1000);
 780                else
 781                        count += sprintf(buf + count, "%d <--> %d mV ",
 782                                         constraints->min_uV / 1000,
 783                                         constraints->max_uV / 1000);
 784        }
 785
 786        if (!constraints->min_uV ||
 787            constraints->min_uV != constraints->max_uV) {
 788                ret = _regulator_get_voltage(rdev);
 789                if (ret > 0)
 790                        count += sprintf(buf + count, "at %d mV ", ret / 1000);
 791        }
 792
 793        if (constraints->uV_offset)
 794                count += sprintf(buf, "%dmV offset ",
 795                                 constraints->uV_offset / 1000);
 796
 797        if (constraints->min_uA && constraints->max_uA) {
 798                if (constraints->min_uA == constraints->max_uA)
 799                        count += sprintf(buf + count, "%d mA ",
 800                                         constraints->min_uA / 1000);
 801                else
 802                        count += sprintf(buf + count, "%d <--> %d mA ",
 803                                         constraints->min_uA / 1000,
 804                                         constraints->max_uA / 1000);
 805        }
 806
 807        if (!constraints->min_uA ||
 808            constraints->min_uA != constraints->max_uA) {
 809                ret = _regulator_get_current_limit(rdev);
 810                if (ret > 0)
 811                        count += sprintf(buf + count, "at %d mA ", ret / 1000);
 812        }
 813
 814        if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
 815                count += sprintf(buf + count, "fast ");
 816        if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
 817                count += sprintf(buf + count, "normal ");
 818        if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
 819                count += sprintf(buf + count, "idle ");
 820        if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
 821                count += sprintf(buf + count, "standby");
 822
 823        if (!count)
 824                sprintf(buf, "no parameters");
 825
 826        rdev_info(rdev, "%s\n", buf);
 827
 828        if ((constraints->min_uV != constraints->max_uV) &&
 829            !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
 830                rdev_warn(rdev,
 831                          "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
 832}
 833
 834static int machine_constraints_voltage(struct regulator_dev *rdev,
 835        struct regulation_constraints *constraints)
 836{
 837        struct regulator_ops *ops = rdev->desc->ops;
 838        int ret;
 839
 840        /* do we need to apply the constraint voltage */
 841        if (rdev->constraints->apply_uV &&
 842            rdev->constraints->min_uV == rdev->constraints->max_uV) {
 843                ret = _regulator_do_set_voltage(rdev,
 844                                                rdev->constraints->min_uV,
 845                                                rdev->constraints->max_uV);
 846                if (ret < 0) {
 847                        rdev_err(rdev, "failed to apply %duV constraint\n",
 848                                 rdev->constraints->min_uV);
 849                        return ret;
 850                }
 851        }
 852
 853        /* constrain machine-level voltage specs to fit
 854         * the actual range supported by this regulator.
 855         */
 856        if (ops->list_voltage && rdev->desc->n_voltages) {
 857                int     count = rdev->desc->n_voltages;
 858                int     i;
 859                int     min_uV = INT_MAX;
 860                int     max_uV = INT_MIN;
 861                int     cmin = constraints->min_uV;
 862                int     cmax = constraints->max_uV;
 863
 864                /* it's safe to autoconfigure fixed-voltage supplies
 865                   and the constraints are used by list_voltage. */
 866                if (count == 1 && !cmin) {
 867                        cmin = 1;
 868                        cmax = INT_MAX;
 869                        constraints->min_uV = cmin;
 870                        constraints->max_uV = cmax;
 871                }
 872
 873                /* voltage constraints are optional */
 874                if ((cmin == 0) && (cmax == 0))
 875                        return 0;
 876
 877                /* else require explicit machine-level constraints */
 878                if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
 879                        rdev_err(rdev, "invalid voltage constraints\n");
 880                        return -EINVAL;
 881                }
 882
 883                /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
 884                for (i = 0; i < count; i++) {
 885                        int     value;
 886
 887                        value = ops->list_voltage(rdev, i);
 888                        if (value <= 0)
 889                                continue;
 890
 891                        /* maybe adjust [min_uV..max_uV] */
 892                        if (value >= cmin && value < min_uV)
 893                                min_uV = value;
 894                        if (value <= cmax && value > max_uV)
 895                                max_uV = value;
 896                }
 897
 898                /* final: [min_uV..max_uV] valid iff constraints valid */
 899                if (max_uV < min_uV) {
 900                        rdev_err(rdev,
 901                                 "unsupportable voltage constraints %u-%uuV\n",
 902                                 min_uV, max_uV);
 903                        return -EINVAL;
 904                }
 905
 906                /* use regulator's subset of machine constraints */
 907                if (constraints->min_uV < min_uV) {
 908                        rdev_dbg(rdev, "override min_uV, %d -> %d\n",
 909                                 constraints->min_uV, min_uV);
 910                        constraints->min_uV = min_uV;
 911                }
 912                if (constraints->max_uV > max_uV) {
 913                        rdev_dbg(rdev, "override max_uV, %d -> %d\n",
 914                                 constraints->max_uV, max_uV);
 915                        constraints->max_uV = max_uV;
 916                }
 917        }
 918
 919        return 0;
 920}
 921
 922/**
 923 * set_machine_constraints - sets regulator constraints
 924 * @rdev: regulator source
 925 * @constraints: constraints to apply
 926 *
 927 * Allows platform initialisation code to define and constrain
 928 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 929 * Constraints *must* be set by platform code in order for some
 930 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 931 * set_mode.
 932 */
 933static int set_machine_constraints(struct regulator_dev *rdev,
 934        const struct regulation_constraints *constraints)
 935{
 936        int ret = 0;
 937        struct regulator_ops *ops = rdev->desc->ops;
 938
 939        if (constraints)
 940                rdev->constraints = kmemdup(constraints, sizeof(*constraints),
 941                                            GFP_KERNEL);
 942        else
 943                rdev->constraints = kzalloc(sizeof(*constraints),
 944                                            GFP_KERNEL);
 945        if (!rdev->constraints)
 946                return -ENOMEM;
 947
 948        ret = machine_constraints_voltage(rdev, rdev->constraints);
 949        if (ret != 0)
 950                goto out;
 951
 952        /* do we need to setup our suspend state */
 953        if (rdev->constraints->initial_state) {
 954                ret = suspend_prepare(rdev, rdev->constraints->initial_state);
 955                if (ret < 0) {
 956                        rdev_err(rdev, "failed to set suspend state\n");
 957                        goto out;
 958                }
 959        }
 960
 961        if (rdev->constraints->initial_mode) {
 962                if (!ops->set_mode) {
 963                        rdev_err(rdev, "no set_mode operation\n");
 964                        ret = -EINVAL;
 965                        goto out;
 966                }
 967
 968                ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
 969                if (ret < 0) {
 970                        rdev_err(rdev, "failed to set initial mode: %d\n", ret);
 971                        goto out;
 972                }
 973        }
 974
 975        /* If the constraints say the regulator should be on at this point
 976         * and we have control then make sure it is enabled.
 977         */
 978        if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
 979            ops->enable) {
 980                ret = ops->enable(rdev);
 981                if (ret < 0) {
 982                        rdev_err(rdev, "failed to enable\n");
 983                        goto out;
 984                }
 985        }
 986
 987        if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
 988                ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
 989                if (ret < 0) {
 990                        rdev_err(rdev, "failed to set ramp_delay\n");
 991                        goto out;
 992                }
 993        }
 994
 995        print_constraints(rdev);
 996        return 0;
 997out:
 998        kfree(rdev->constraints);
 999        rdev->constraints = NULL;
1000        return ret;
1001}
1002
1003/**
1004 * set_supply - set regulator supply regulator
1005 * @rdev: regulator name
1006 * @supply_rdev: supply regulator name
1007 *
1008 * Called by platform initialisation code to set the supply regulator for this
1009 * regulator. This ensures that a regulators supply will also be enabled by the
1010 * core if it's child is enabled.
1011 */
1012static int set_supply(struct regulator_dev *rdev,
1013                      struct regulator_dev *supply_rdev)
1014{
1015        int err;
1016
1017        rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1018
1019        rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1020        if (rdev->supply == NULL) {
1021                err = -ENOMEM;
1022                return err;
1023        }
1024        supply_rdev->open_count++;
1025
1026        return 0;
1027}
1028
1029/**
1030 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1031 * @rdev:         regulator source
1032 * @consumer_dev_name: dev_name() string for device supply applies to
1033 * @supply:       symbolic name for supply
1034 *
1035 * Allows platform initialisation code to map physical regulator
1036 * sources to symbolic names for supplies for use by devices.  Devices
1037 * should use these symbolic names to request regulators, avoiding the
1038 * need to provide board-specific regulator names as platform data.
1039 */
1040static int set_consumer_device_supply(struct regulator_dev *rdev,
1041                                      const char *consumer_dev_name,
1042                                      const char *supply)
1043{
1044        struct regulator_map *node;
1045        int has_dev;
1046
1047        if (supply == NULL)
1048                return -EINVAL;
1049
1050        if (consumer_dev_name != NULL)
1051                has_dev = 1;
1052        else
1053                has_dev = 0;
1054
1055        list_for_each_entry(node, &regulator_map_list, list) {
1056                if (node->dev_name && consumer_dev_name) {
1057                        if (strcmp(node->dev_name, consumer_dev_name) != 0)
1058                                continue;
1059                } else if (node->dev_name || consumer_dev_name) {
1060                        continue;
1061                }
1062
1063                if (strcmp(node->supply, supply) != 0)
1064                        continue;
1065
1066                pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1067                         consumer_dev_name,
1068                         dev_name(&node->regulator->dev),
1069                         node->regulator->desc->name,
1070                         supply,
1071                         dev_name(&rdev->dev), rdev_get_name(rdev));
1072                return -EBUSY;
1073        }
1074
1075        node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1076        if (node == NULL)
1077                return -ENOMEM;
1078
1079        node->regulator = rdev;
1080        node->supply = supply;
1081
1082        if (has_dev) {
1083                node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1084                if (node->dev_name == NULL) {
1085                        kfree(node);
1086                        return -ENOMEM;
1087                }
1088        }
1089
1090        list_add(&node->list, &regulator_map_list);
1091        return 0;
1092}
1093
1094static void unset_regulator_supplies(struct regulator_dev *rdev)
1095{
1096        struct regulator_map *node, *n;
1097
1098        list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1099                if (rdev == node->regulator) {
1100                        list_del(&node->list);
1101                        kfree(node->dev_name);
1102                        kfree(node);
1103                }
1104        }
1105}
1106
1107#define REG_STR_SIZE    64
1108
1109static struct regulator *create_regulator(struct regulator_dev *rdev,
1110                                          struct device *dev,
1111                                          const char *supply_name)
1112{
1113        struct regulator *regulator;
1114        char buf[REG_STR_SIZE];
1115        int err, size;
1116
1117        regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1118        if (regulator == NULL)
1119                return NULL;
1120
1121        mutex_lock(&rdev->mutex);
1122        regulator->rdev = rdev;
1123        list_add(&regulator->list, &rdev->consumer_list);
1124
1125        if (dev) {
1126                regulator->dev = dev;
1127
1128                /* Add a link to the device sysfs entry */
1129                size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1130                                 dev->kobj.name, supply_name);
1131                if (size >= REG_STR_SIZE)
1132                        goto overflow_err;
1133
1134                regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1135                if (regulator->supply_name == NULL)
1136                        goto overflow_err;
1137
1138                err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1139                                        buf);
1140                if (err) {
1141                        rdev_warn(rdev, "could not add device link %s err %d\n",
1142                                  dev->kobj.name, err);
1143                        /* non-fatal */
1144                }
1145        } else {
1146                regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1147                if (regulator->supply_name == NULL)
1148                        goto overflow_err;
1149        }
1150
1151        regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1152                                                rdev->debugfs);
1153        if (!regulator->debugfs) {
1154                rdev_warn(rdev, "Failed to create debugfs directory\n");
1155        } else {
1156                debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1157                                   &regulator->uA_load);
1158                debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1159                                   &regulator->min_uV);
1160                debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1161                                   &regulator->max_uV);
1162        }
1163
1164        /*
1165         * Check now if the regulator is an always on regulator - if
1166         * it is then we don't need to do nearly so much work for
1167         * enable/disable calls.
1168         */
1169        if (!_regulator_can_change_status(rdev) &&
1170            _regulator_is_enabled(rdev))
1171                regulator->always_on = true;
1172
1173        mutex_unlock(&rdev->mutex);
1174        return regulator;
1175overflow_err:
1176        list_del(&regulator->list);
1177        kfree(regulator);
1178        mutex_unlock(&rdev->mutex);
1179        return NULL;
1180}
1181
1182static int _regulator_get_enable_time(struct regulator_dev *rdev)
1183{
1184        if (!rdev->desc->ops->enable_time)
1185                return rdev->desc->enable_time;
1186        return rdev->desc->ops->enable_time(rdev);
1187}
1188
1189static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1190                                                  const char *supply,
1191                                                  int *ret)
1192{
1193        struct regulator_dev *r;
1194        struct device_node *node;
1195        struct regulator_map *map;
1196        const char *devname = NULL;
1197
1198        /* first do a dt based lookup */
1199        if (dev && dev->of_node) {
1200                node = of_get_regulator(dev, supply);
1201                if (node) {
1202                        list_for_each_entry(r, &regulator_list, list)
1203                                if (r->dev.parent &&
1204                                        node == r->dev.of_node)
1205                                        return r;
1206                } else {
1207                        /*
1208                         * If we couldn't even get the node then it's
1209                         * not just that the device didn't register
1210                         * yet, there's no node and we'll never
1211                         * succeed.
1212                         */
1213                        *ret = -ENODEV;
1214                }
1215        }
1216
1217        /* if not found, try doing it non-dt way */
1218        if (dev)
1219                devname = dev_name(dev);
1220
1221        list_for_each_entry(r, &regulator_list, list)
1222                if (strcmp(rdev_get_name(r), supply) == 0)
1223                        return r;
1224
1225        list_for_each_entry(map, &regulator_map_list, list) {
1226                /* If the mapping has a device set up it must match */
1227                if (map->dev_name &&
1228                    (!devname || strcmp(map->dev_name, devname)))
1229                        continue;
1230
1231                if (strcmp(map->supply, supply) == 0)
1232                        return map->regulator;
1233        }
1234
1235
1236        return NULL;
1237}
1238
1239/* Internal regulator request function */
1240static struct regulator *_regulator_get(struct device *dev, const char *id,
1241                                        int exclusive)
1242{
1243        struct regulator_dev *rdev;
1244        struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1245        const char *devname = NULL;
1246        int ret = 0;
1247
1248        if (id == NULL) {
1249                pr_err("get() with no identifier\n");
1250                return regulator;
1251        }
1252
1253        if (dev)
1254                devname = dev_name(dev);
1255
1256        mutex_lock(&regulator_list_mutex);
1257
1258        rdev = regulator_dev_lookup(dev, id, &ret);
1259        if (rdev)
1260                goto found;
1261
1262        /*
1263         * If we have return value from dev_lookup fail, we do not expect to
1264         * succeed, so, quit with appropriate error value
1265         */
1266        if (ret) {
1267                regulator = ERR_PTR(ret);
1268                goto out;
1269        }
1270
1271        if (board_wants_dummy_regulator) {
1272                rdev = dummy_regulator_rdev;
1273                goto found;
1274        }
1275
1276#ifdef CONFIG_REGULATOR_DUMMY
1277        if (!devname)
1278                devname = "deviceless";
1279
1280        /* If the board didn't flag that it was fully constrained then
1281         * substitute in a dummy regulator so consumers can continue.
1282         */
1283        if (!has_full_constraints) {
1284                pr_warn("%s supply %s not found, using dummy regulator\n",
1285                        devname, id);
1286                rdev = dummy_regulator_rdev;
1287                goto found;
1288        }
1289#endif
1290
1291        mutex_unlock(&regulator_list_mutex);
1292        return regulator;
1293
1294found:
1295        if (rdev->exclusive) {
1296                regulator = ERR_PTR(-EPERM);
1297                goto out;
1298        }
1299
1300        if (exclusive && rdev->open_count) {
1301                regulator = ERR_PTR(-EBUSY);
1302                goto out;
1303        }
1304
1305        if (!try_module_get(rdev->owner))
1306                goto out;
1307
1308        regulator = create_regulator(rdev, dev, id);
1309        if (regulator == NULL) {
1310                regulator = ERR_PTR(-ENOMEM);
1311                module_put(rdev->owner);
1312                goto out;
1313        }
1314
1315        rdev->open_count++;
1316        if (exclusive) {
1317                rdev->exclusive = 1;
1318
1319                ret = _regulator_is_enabled(rdev);
1320                if (ret > 0)
1321                        rdev->use_count = 1;
1322                else
1323                        rdev->use_count = 0;
1324        }
1325
1326out:
1327        mutex_unlock(&regulator_list_mutex);
1328
1329        return regulator;
1330}
1331
1332/**
1333 * regulator_get - lookup and obtain a reference to a regulator.
1334 * @dev: device for regulator "consumer"
1335 * @id: Supply name or regulator ID.
1336 *
1337 * Returns a struct regulator corresponding to the regulator producer,
1338 * or IS_ERR() condition containing errno.
1339 *
1340 * Use of supply names configured via regulator_set_device_supply() is
1341 * strongly encouraged.  It is recommended that the supply name used
1342 * should match the name used for the supply and/or the relevant
1343 * device pins in the datasheet.
1344 */
1345struct regulator *regulator_get(struct device *dev, const char *id)
1346{
1347        return _regulator_get(dev, id, 0);
1348}
1349EXPORT_SYMBOL_GPL(regulator_get);
1350
1351static void devm_regulator_release(struct device *dev, void *res)
1352{
1353        regulator_put(*(struct regulator **)res);
1354}
1355
1356/**
1357 * devm_regulator_get - Resource managed regulator_get()
1358 * @dev: device for regulator "consumer"
1359 * @id: Supply name or regulator ID.
1360 *
1361 * Managed regulator_get(). Regulators returned from this function are
1362 * automatically regulator_put() on driver detach. See regulator_get() for more
1363 * information.
1364 */
1365struct regulator *devm_regulator_get(struct device *dev, const char *id)
1366{
1367        struct regulator **ptr, *regulator;
1368
1369        ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1370        if (!ptr)
1371                return ERR_PTR(-ENOMEM);
1372
1373        regulator = regulator_get(dev, id);
1374        if (!IS_ERR(regulator)) {
1375                *ptr = regulator;
1376                devres_add(dev, ptr);
1377        } else {
1378                devres_free(ptr);
1379        }
1380
1381        return regulator;
1382}
1383EXPORT_SYMBOL_GPL(devm_regulator_get);
1384
1385/**
1386 * regulator_get_exclusive - obtain exclusive access to a regulator.
1387 * @dev: device for regulator "consumer"
1388 * @id: Supply name or regulator ID.
1389 *
1390 * Returns a struct regulator corresponding to the regulator producer,
1391 * or IS_ERR() condition containing errno.  Other consumers will be
1392 * unable to obtain this reference is held and the use count for the
1393 * regulator will be initialised to reflect the current state of the
1394 * regulator.
1395 *
1396 * This is intended for use by consumers which cannot tolerate shared
1397 * use of the regulator such as those which need to force the
1398 * regulator off for correct operation of the hardware they are
1399 * controlling.
1400 *
1401 * Use of supply names configured via regulator_set_device_supply() is
1402 * strongly encouraged.  It is recommended that the supply name used
1403 * should match the name used for the supply and/or the relevant
1404 * device pins in the datasheet.
1405 */
1406struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1407{
1408        return _regulator_get(dev, id, 1);
1409}
1410EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1411
1412/* Locks held by regulator_put() */
1413static void _regulator_put(struct regulator *regulator)
1414{
1415        struct regulator_dev *rdev;
1416
1417        if (regulator == NULL || IS_ERR(regulator))
1418                return;
1419
1420        rdev = regulator->rdev;
1421
1422        debugfs_remove_recursive(regulator->debugfs);
1423
1424        /* remove any sysfs entries */
1425        if (regulator->dev)
1426                sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1427        kfree(regulator->supply_name);
1428        list_del(&regulator->list);
1429        kfree(regulator);
1430
1431        rdev->open_count--;
1432        rdev->exclusive = 0;
1433
1434        module_put(rdev->owner);
1435}
1436
1437/**
1438 * regulator_put - "free" the regulator source
1439 * @regulator: regulator source
1440 *
1441 * Note: drivers must ensure that all regulator_enable calls made on this
1442 * regulator source are balanced by regulator_disable calls prior to calling
1443 * this function.
1444 */
1445void regulator_put(struct regulator *regulator)
1446{
1447        mutex_lock(&regulator_list_mutex);
1448        _regulator_put(regulator);
1449        mutex_unlock(&regulator_list_mutex);
1450}
1451EXPORT_SYMBOL_GPL(regulator_put);
1452
1453static int devm_regulator_match(struct device *dev, void *res, void *data)
1454{
1455        struct regulator **r = res;
1456        if (!r || !*r) {
1457                WARN_ON(!r || !*r);
1458                return 0;
1459        }
1460        return *r == data;
1461}
1462
1463/**
1464 * devm_regulator_put - Resource managed regulator_put()
1465 * @regulator: regulator to free
1466 *
1467 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1468 * this function will not need to be called and the resource management
1469 * code will ensure that the resource is freed.
1470 */
1471void devm_regulator_put(struct regulator *regulator)
1472{
1473        int rc;
1474
1475        rc = devres_release(regulator->dev, devm_regulator_release,
1476                            devm_regulator_match, regulator);
1477        if (rc != 0)
1478                WARN_ON(rc);
1479}
1480EXPORT_SYMBOL_GPL(devm_regulator_put);
1481
1482/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1483static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1484                                const struct regulator_config *config)
1485{
1486        struct regulator_enable_gpio *pin;
1487        int ret;
1488
1489        list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1490                if (pin->gpio == config->ena_gpio) {
1491                        rdev_dbg(rdev, "GPIO %d is already used\n",
1492                                config->ena_gpio);
1493                        goto update_ena_gpio_to_rdev;
1494                }
1495        }
1496
1497        ret = gpio_request_one(config->ena_gpio,
1498                                GPIOF_DIR_OUT | config->ena_gpio_flags,
1499                                rdev_get_name(rdev));
1500        if (ret)
1501                return ret;
1502
1503        pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1504        if (pin == NULL) {
1505                gpio_free(config->ena_gpio);
1506                return -ENOMEM;
1507        }
1508
1509        pin->gpio = config->ena_gpio;
1510        pin->ena_gpio_invert = config->ena_gpio_invert;
1511        list_add(&pin->list, &regulator_ena_gpio_list);
1512
1513update_ena_gpio_to_rdev:
1514        pin->request_count++;
1515        rdev->ena_pin = pin;
1516        return 0;
1517}
1518
1519static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1520{
1521        struct regulator_enable_gpio *pin, *n;
1522
1523        if (!rdev->ena_pin)
1524                return;
1525
1526        /* Free the GPIO only in case of no use */
1527        list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1528                if (pin->gpio == rdev->ena_pin->gpio) {
1529                        if (pin->request_count <= 1) {
1530                                pin->request_count = 0;
1531                                gpio_free(pin->gpio);
1532                                list_del(&pin->list);
1533                                kfree(pin);
1534                        } else {
1535                                pin->request_count--;
1536                        }
1537                }
1538        }
1539}
1540
1541/**
1542 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1543 * @rdev: regulator_dev structure
1544 * @enable: enable GPIO at initial use?
1545 *
1546 * GPIO is enabled in case of initial use. (enable_count is 0)
1547 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1548 */
1549static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1550{
1551        struct regulator_enable_gpio *pin = rdev->ena_pin;
1552
1553        if (!pin)
1554                return -EINVAL;
1555
1556        if (enable) {
1557                /* Enable GPIO at initial use */
1558                if (pin->enable_count == 0)
1559                        gpio_set_value_cansleep(pin->gpio,
1560                                                !pin->ena_gpio_invert);
1561
1562                pin->enable_count++;
1563        } else {
1564                if (pin->enable_count > 1) {
1565                        pin->enable_count--;
1566                        return 0;
1567                }
1568
1569                /* Disable GPIO if not used */
1570                if (pin->enable_count <= 1) {
1571                        gpio_set_value_cansleep(pin->gpio,
1572                                                pin->ena_gpio_invert);
1573                        pin->enable_count = 0;
1574                }
1575        }
1576
1577        return 0;
1578}
1579
1580static int _regulator_do_enable(struct regulator_dev *rdev)
1581{
1582        int ret, delay;
1583
1584        /* Query before enabling in case configuration dependent.  */
1585        ret = _regulator_get_enable_time(rdev);
1586        if (ret >= 0) {
1587                delay = ret;
1588        } else {
1589                rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1590                delay = 0;
1591        }
1592
1593        trace_regulator_enable(rdev_get_name(rdev));
1594
1595        if (rdev->ena_pin) {
1596                ret = regulator_ena_gpio_ctrl(rdev, true);
1597                if (ret < 0)
1598                        return ret;
1599                rdev->ena_gpio_state = 1;
1600        } else if (rdev->desc->ops->enable) {
1601                ret = rdev->desc->ops->enable(rdev);
1602                if (ret < 0)
1603                        return ret;
1604        } else {
1605                return -EINVAL;
1606        }
1607
1608        /* Allow the regulator to ramp; it would be useful to extend
1609         * this for bulk operations so that the regulators can ramp
1610         * together.  */
1611        trace_regulator_enable_delay(rdev_get_name(rdev));
1612
1613        if (delay >= 1000) {
1614                mdelay(delay / 1000);
1615                udelay(delay % 1000);
1616        } else if (delay) {
1617                udelay(delay);
1618        }
1619
1620        trace_regulator_enable_complete(rdev_get_name(rdev));
1621
1622        return 0;
1623}
1624
1625/* locks held by regulator_enable() */
1626static int _regulator_enable(struct regulator_dev *rdev)
1627{
1628        int ret;
1629
1630        /* check voltage and requested load before enabling */
1631        if (rdev->constraints &&
1632            (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1633                drms_uA_update(rdev);
1634
1635        if (rdev->use_count == 0) {
1636                /* The regulator may on if it's not switchable or left on */
1637                ret = _regulator_is_enabled(rdev);
1638                if (ret == -EINVAL || ret == 0) {
1639                        if (!_regulator_can_change_status(rdev))
1640                                return -EPERM;
1641
1642                        ret = _regulator_do_enable(rdev);
1643                        if (ret < 0)
1644                                return ret;
1645
1646                } else if (ret < 0) {
1647                        rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1648                        return ret;
1649                }
1650                /* Fallthrough on positive return values - already enabled */
1651        }
1652
1653        rdev->use_count++;
1654
1655        return 0;
1656}
1657
1658/**
1659 * regulator_enable - enable regulator output
1660 * @regulator: regulator source
1661 *
1662 * Request that the regulator be enabled with the regulator output at
1663 * the predefined voltage or current value.  Calls to regulator_enable()
1664 * must be balanced with calls to regulator_disable().
1665 *
1666 * NOTE: the output value can be set by other drivers, boot loader or may be
1667 * hardwired in the regulator.
1668 */
1669int regulator_enable(struct regulator *regulator)
1670{
1671        struct regulator_dev *rdev = regulator->rdev;
1672        int ret = 0;
1673
1674        if (regulator->always_on)
1675                return 0;
1676
1677        if (rdev->supply) {
1678                ret = regulator_enable(rdev->supply);
1679                if (ret != 0)
1680                        return ret;
1681        }
1682
1683        mutex_lock(&rdev->mutex);
1684        ret = _regulator_enable(rdev);
1685        mutex_unlock(&rdev->mutex);
1686
1687        if (ret != 0 && rdev->supply)
1688                regulator_disable(rdev->supply);
1689
1690        return ret;
1691}
1692EXPORT_SYMBOL_GPL(regulator_enable);
1693
1694static int _regulator_do_disable(struct regulator_dev *rdev)
1695{
1696        int ret;
1697
1698        trace_regulator_disable(rdev_get_name(rdev));
1699
1700        if (rdev->ena_pin) {
1701                ret = regulator_ena_gpio_ctrl(rdev, false);
1702                if (ret < 0)
1703                        return ret;
1704                rdev->ena_gpio_state = 0;
1705
1706        } else if (rdev->desc->ops->disable) {
1707                ret = rdev->desc->ops->disable(rdev);
1708                if (ret != 0)
1709                        return ret;
1710        }
1711
1712        trace_regulator_disable_complete(rdev_get_name(rdev));
1713
1714        _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1715                             NULL);
1716        return 0;
1717}
1718
1719/* locks held by regulator_disable() */
1720static int _regulator_disable(struct regulator_dev *rdev)
1721{
1722        int ret = 0;
1723
1724        if (WARN(rdev->use_count <= 0,
1725                 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1726                return -EIO;
1727
1728        /* are we the last user and permitted to disable ? */
1729        if (rdev->use_count == 1 &&
1730            (rdev->constraints && !rdev->constraints->always_on)) {
1731
1732                /* we are last user */
1733                if (_regulator_can_change_status(rdev)) {
1734                        ret = _regulator_do_disable(rdev);
1735                        if (ret < 0) {
1736                                rdev_err(rdev, "failed to disable\n");
1737                                return ret;
1738                        }
1739                }
1740
1741                rdev->use_count = 0;
1742        } else if (rdev->use_count > 1) {
1743
1744                if (rdev->constraints &&
1745                        (rdev->constraints->valid_ops_mask &
1746                        REGULATOR_CHANGE_DRMS))
1747                        drms_uA_update(rdev);
1748
1749                rdev->use_count--;
1750        }
1751
1752        return ret;
1753}
1754
1755/**
1756 * regulator_disable - disable regulator output
1757 * @regulator: regulator source
1758 *
1759 * Disable the regulator output voltage or current.  Calls to
1760 * regulator_enable() must be balanced with calls to
1761 * regulator_disable().
1762 *
1763 * NOTE: this will only disable the regulator output if no other consumer
1764 * devices have it enabled, the regulator device supports disabling and
1765 * machine constraints permit this operation.
1766 */
1767int regulator_disable(struct regulator *regulator)
1768{
1769        struct regulator_dev *rdev = regulator->rdev;
1770        int ret = 0;
1771
1772        if (regulator->always_on)
1773                return 0;
1774
1775        mutex_lock(&rdev->mutex);
1776        ret = _regulator_disable(rdev);
1777        mutex_unlock(&rdev->mutex);
1778
1779        if (ret == 0 && rdev->supply)
1780                regulator_disable(rdev->supply);
1781
1782        return ret;
1783}
1784EXPORT_SYMBOL_GPL(regulator_disable);
1785
1786/* locks held by regulator_force_disable() */
1787static int _regulator_force_disable(struct regulator_dev *rdev)
1788{
1789        int ret = 0;
1790
1791        /* force disable */
1792        if (rdev->desc->ops->disable) {
1793                /* ah well, who wants to live forever... */
1794                ret = rdev->desc->ops->disable(rdev);
1795                if (ret < 0) {
1796                        rdev_err(rdev, "failed to force disable\n");
1797                        return ret;
1798                }
1799                /* notify other consumers that power has been forced off */
1800                _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1801                        REGULATOR_EVENT_DISABLE, NULL);
1802        }
1803
1804        return ret;
1805}
1806
1807/**
1808 * regulator_force_disable - force disable regulator output
1809 * @regulator: regulator source
1810 *
1811 * Forcibly disable the regulator output voltage or current.
1812 * NOTE: this *will* disable the regulator output even if other consumer
1813 * devices have it enabled. This should be used for situations when device
1814 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1815 */
1816int regulator_force_disable(struct regulator *regulator)
1817{
1818        struct regulator_dev *rdev = regulator->rdev;
1819        int ret;
1820
1821        mutex_lock(&rdev->mutex);
1822        regulator->uA_load = 0;
1823        ret = _regulator_force_disable(regulator->rdev);
1824        mutex_unlock(&rdev->mutex);
1825
1826        if (rdev->supply)
1827                while (rdev->open_count--)
1828                        regulator_disable(rdev->supply);
1829
1830        return ret;
1831}
1832EXPORT_SYMBOL_GPL(regulator_force_disable);
1833
1834static void regulator_disable_work(struct work_struct *work)
1835{
1836        struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1837                                                  disable_work.work);
1838        int count, i, ret;
1839
1840        mutex_lock(&rdev->mutex);
1841
1842        BUG_ON(!rdev->deferred_disables);
1843
1844        count = rdev->deferred_disables;
1845        rdev->deferred_disables = 0;
1846
1847        for (i = 0; i < count; i++) {
1848                ret = _regulator_disable(rdev);
1849                if (ret != 0)
1850                        rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1851        }
1852
1853        mutex_unlock(&rdev->mutex);
1854
1855        if (rdev->supply) {
1856                for (i = 0; i < count; i++) {
1857                        ret = regulator_disable(rdev->supply);
1858                        if (ret != 0) {
1859                                rdev_err(rdev,
1860                                         "Supply disable failed: %d\n", ret);
1861                        }
1862                }
1863        }
1864}
1865
1866/**
1867 * regulator_disable_deferred - disable regulator output with delay
1868 * @regulator: regulator source
1869 * @ms: miliseconds until the regulator is disabled
1870 *
1871 * Execute regulator_disable() on the regulator after a delay.  This
1872 * is intended for use with devices that require some time to quiesce.
1873 *
1874 * NOTE: this will only disable the regulator output if no other consumer
1875 * devices have it enabled, the regulator device supports disabling and
1876 * machine constraints permit this operation.
1877 */
1878int regulator_disable_deferred(struct regulator *regulator, int ms)
1879{
1880        struct regulator_dev *rdev = regulator->rdev;
1881        int ret;
1882
1883        if (regulator->always_on)
1884                return 0;
1885
1886        if (!ms)
1887                return regulator_disable(regulator);
1888
1889        mutex_lock(&rdev->mutex);
1890        rdev->deferred_disables++;
1891        mutex_unlock(&rdev->mutex);
1892
1893        ret = schedule_delayed_work(&rdev->disable_work,
1894                                    msecs_to_jiffies(ms));
1895        if (ret < 0)
1896                return ret;
1897        else
1898                return 0;
1899}
1900EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1901
1902/**
1903 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1904 *
1905 * @rdev: regulator to operate on
1906 *
1907 * Regulators that use regmap for their register I/O can set the
1908 * enable_reg and enable_mask fields in their descriptor and then use
1909 * this as their is_enabled operation, saving some code.
1910 */
1911int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1912{
1913        unsigned int val;
1914        int ret;
1915
1916        ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1917        if (ret != 0)
1918                return ret;
1919
1920        if (rdev->desc->enable_is_inverted)
1921                return (val & rdev->desc->enable_mask) == 0;
1922        else
1923                return (val & rdev->desc->enable_mask) != 0;
1924}
1925EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1926
1927/**
1928 * regulator_enable_regmap - standard enable() for regmap users
1929 *
1930 * @rdev: regulator to operate on
1931 *
1932 * Regulators that use regmap for their register I/O can set the
1933 * enable_reg and enable_mask fields in their descriptor and then use
1934 * this as their enable() operation, saving some code.
1935 */
1936int regulator_enable_regmap(struct regulator_dev *rdev)
1937{
1938        unsigned int val;
1939
1940        if (rdev->desc->enable_is_inverted)
1941                val = 0;
1942        else
1943                val = rdev->desc->enable_mask;
1944
1945        return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1946                                  rdev->desc->enable_mask, val);
1947}
1948EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1949
1950/**
1951 * regulator_disable_regmap - standard disable() for regmap users
1952 *
1953 * @rdev: regulator to operate on
1954 *
1955 * Regulators that use regmap for their register I/O can set the
1956 * enable_reg and enable_mask fields in their descriptor and then use
1957 * this as their disable() operation, saving some code.
1958 */
1959int regulator_disable_regmap(struct regulator_dev *rdev)
1960{
1961        unsigned int val;
1962
1963        if (rdev->desc->enable_is_inverted)
1964                val = rdev->desc->enable_mask;
1965        else
1966                val = 0;
1967
1968        return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1969                                  rdev->desc->enable_mask, val);
1970}
1971EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1972
1973static int _regulator_is_enabled(struct regulator_dev *rdev)
1974{
1975        /* A GPIO control always takes precedence */
1976        if (rdev->ena_pin)
1977                return rdev->ena_gpio_state;
1978
1979        /* If we don't know then assume that the regulator is always on */
1980        if (!rdev->desc->ops->is_enabled)
1981                return 1;
1982
1983        return rdev->desc->ops->is_enabled(rdev);
1984}
1985
1986/**
1987 * regulator_is_enabled - is the regulator output enabled
1988 * @regulator: regulator source
1989 *
1990 * Returns positive if the regulator driver backing the source/client
1991 * has requested that the device be enabled, zero if it hasn't, else a
1992 * negative errno code.
1993 *
1994 * Note that the device backing this regulator handle can have multiple
1995 * users, so it might be enabled even if regulator_enable() was never
1996 * called for this particular source.
1997 */
1998int regulator_is_enabled(struct regulator *regulator)
1999{
2000        int ret;
2001
2002        if (regulator->always_on)
2003                return 1;
2004
2005        mutex_lock(&regulator->rdev->mutex);
2006        ret = _regulator_is_enabled(regulator->rdev);
2007        mutex_unlock(&regulator->rdev->mutex);
2008
2009        return ret;
2010}
2011EXPORT_SYMBOL_GPL(regulator_is_enabled);
2012
2013/**
2014 * regulator_can_change_voltage - check if regulator can change voltage
2015 * @regulator: regulator source
2016 *
2017 * Returns positive if the regulator driver backing the source/client
2018 * can change its voltage, false otherwise. Usefull for detecting fixed
2019 * or dummy regulators and disabling voltage change logic in the client
2020 * driver.
2021 */
2022int regulator_can_change_voltage(struct regulator *regulator)
2023{
2024        struct regulator_dev    *rdev = regulator->rdev;
2025
2026        if (rdev->constraints &&
2027            (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2028                if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2029                        return 1;
2030
2031                if (rdev->desc->continuous_voltage_range &&
2032                    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2033                    rdev->constraints->min_uV != rdev->constraints->max_uV)
2034                        return 1;
2035        }
2036
2037        return 0;
2038}
2039EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2040
2041/**
2042 * regulator_count_voltages - count regulator_list_voltage() selectors
2043 * @regulator: regulator source
2044 *
2045 * Returns number of selectors, or negative errno.  Selectors are
2046 * numbered starting at zero, and typically correspond to bitfields
2047 * in hardware registers.
2048 */
2049int regulator_count_voltages(struct regulator *regulator)
2050{
2051        struct regulator_dev    *rdev = regulator->rdev;
2052
2053        return rdev->desc->n_voltages ? : -EINVAL;
2054}
2055EXPORT_SYMBOL_GPL(regulator_count_voltages);
2056
2057/**
2058 * regulator_list_voltage_linear - List voltages with simple calculation
2059 *
2060 * @rdev: Regulator device
2061 * @selector: Selector to convert into a voltage
2062 *
2063 * Regulators with a simple linear mapping between voltages and
2064 * selectors can set min_uV and uV_step in the regulator descriptor
2065 * and then use this function as their list_voltage() operation,
2066 */
2067int regulator_list_voltage_linear(struct regulator_dev *rdev,
2068                                  unsigned int selector)
2069{
2070        if (selector >= rdev->desc->n_voltages)
2071                return -EINVAL;
2072        if (selector < rdev->desc->linear_min_sel)
2073                return 0;
2074
2075        selector -= rdev->desc->linear_min_sel;
2076
2077        return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
2078}
2079EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
2080
2081/**
2082 * regulator_list_voltage_table - List voltages with table based mapping
2083 *
2084 * @rdev: Regulator device
2085 * @selector: Selector to convert into a voltage
2086 *
2087 * Regulators with table based mapping between voltages and
2088 * selectors can set volt_table in the regulator descriptor
2089 * and then use this function as their list_voltage() operation.
2090 */
2091int regulator_list_voltage_table(struct regulator_dev *rdev,
2092                                 unsigned int selector)
2093{
2094        if (!rdev->desc->volt_table) {
2095                BUG_ON(!rdev->desc->volt_table);
2096                return -EINVAL;
2097        }
2098
2099        if (selector >= rdev->desc->n_voltages)
2100                return -EINVAL;
2101
2102        return rdev->desc->volt_table[selector];
2103}
2104EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
2105
2106/**
2107 * regulator_list_voltage - enumerate supported voltages
2108 * @regulator: regulator source
2109 * @selector: identify voltage to list
2110 * Context: can sleep
2111 *
2112 * Returns a voltage that can be passed to @regulator_set_voltage(),
2113 * zero if this selector code can't be used on this system, or a
2114 * negative errno.
2115 */
2116int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2117{
2118        struct regulator_dev    *rdev = regulator->rdev;
2119        struct regulator_ops    *ops = rdev->desc->ops;
2120        int                     ret;
2121
2122        if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2123                return -EINVAL;
2124
2125        mutex_lock(&rdev->mutex);
2126        ret = ops->list_voltage(rdev, selector);
2127        mutex_unlock(&rdev->mutex);
2128
2129        if (ret > 0) {
2130                if (ret < rdev->constraints->min_uV)
2131                        ret = 0;
2132                else if (ret > rdev->constraints->max_uV)
2133                        ret = 0;
2134        }
2135
2136        return ret;
2137}
2138EXPORT_SYMBOL_GPL(regulator_list_voltage);
2139
2140/**
2141 * regulator_is_supported_voltage - check if a voltage range can be supported
2142 *
2143 * @regulator: Regulator to check.
2144 * @min_uV: Minimum required voltage in uV.
2145 * @max_uV: Maximum required voltage in uV.
2146 *
2147 * Returns a boolean or a negative error code.
2148 */
2149int regulator_is_supported_voltage(struct regulator *regulator,
2150                                   int min_uV, int max_uV)
2151{
2152        struct regulator_dev *rdev = regulator->rdev;
2153        int i, voltages, ret;
2154
2155        /* If we can't change voltage check the current voltage */
2156        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2157                ret = regulator_get_voltage(regulator);
2158                if (ret >= 0)
2159                        return (min_uV <= ret && ret <= max_uV);
2160                else
2161                        return ret;
2162        }
2163
2164        /* Any voltage within constrains range is fine? */
2165        if (rdev->desc->continuous_voltage_range)
2166                return min_uV >= rdev->constraints->min_uV &&
2167                                max_uV <= rdev->constraints->max_uV;
2168
2169        ret = regulator_count_voltages(regulator);
2170        if (ret < 0)
2171                return ret;
2172        voltages = ret;
2173
2174        for (i = 0; i < voltages; i++) {
2175                ret = regulator_list_voltage(regulator, i);
2176
2177                if (ret >= min_uV && ret <= max_uV)
2178                        return 1;
2179        }
2180
2181        return 0;
2182}
2183EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2184
2185/**
2186 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
2187 *
2188 * @rdev: regulator to operate on
2189 *
2190 * Regulators that use regmap for their register I/O can set the
2191 * vsel_reg and vsel_mask fields in their descriptor and then use this
2192 * as their get_voltage_vsel operation, saving some code.
2193 */
2194int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
2195{
2196        unsigned int val;
2197        int ret;
2198
2199        ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
2200        if (ret != 0)
2201                return ret;
2202
2203        val &= rdev->desc->vsel_mask;
2204        val >>= ffs(rdev->desc->vsel_mask) - 1;
2205
2206        return val;
2207}
2208EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
2209
2210/**
2211 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
2212 *
2213 * @rdev: regulator to operate on
2214 * @sel: Selector to set
2215 *
2216 * Regulators that use regmap for their register I/O can set the
2217 * vsel_reg and vsel_mask fields in their descriptor and then use this
2218 * as their set_voltage_vsel operation, saving some code.
2219 */
2220int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2221{
2222        int ret;
2223
2224        sel <<= ffs(rdev->desc->vsel_mask) - 1;
2225
2226        ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2227                                  rdev->desc->vsel_mask, sel);
2228        if (ret)
2229                return ret;
2230
2231        if (rdev->desc->apply_bit)
2232                ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
2233                                         rdev->desc->apply_bit,
2234                                         rdev->desc->apply_bit);
2235        return ret;
2236}
2237EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2238
2239/**
2240 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2241 *
2242 * @rdev: Regulator to operate on
2243 * @min_uV: Lower bound for voltage
2244 * @max_uV: Upper bound for voltage
2245 *
2246 * Drivers implementing set_voltage_sel() and list_voltage() can use
2247 * this as their map_voltage() operation.  It will find a suitable
2248 * voltage by calling list_voltage() until it gets something in bounds
2249 * for the requested voltages.
2250 */
2251int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2252                                  int min_uV, int max_uV)
2253{
2254        int best_val = INT_MAX;
2255        int selector = 0;
2256        int i, ret;
2257
2258        /* Find the smallest voltage that falls within the specified
2259         * range.
2260         */
2261        for (i = 0; i < rdev->desc->n_voltages; i++) {
2262                ret = rdev->desc->ops->list_voltage(rdev, i);
2263                if (ret < 0)
2264                        continue;
2265
2266                if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2267                        best_val = ret;
2268                        selector = i;
2269                }
2270        }
2271
2272        if (best_val != INT_MAX)
2273                return selector;
2274        else
2275                return -EINVAL;
2276}
2277EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2278
2279/**
2280 * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
2281 *
2282 * @rdev: Regulator to operate on
2283 * @min_uV: Lower bound for voltage
2284 * @max_uV: Upper bound for voltage
2285 *
2286 * Drivers that have ascendant voltage list can use this as their
2287 * map_voltage() operation.
2288 */
2289int regulator_map_voltage_ascend(struct regulator_dev *rdev,
2290                                 int min_uV, int max_uV)
2291{
2292        int i, ret;
2293
2294        for (i = 0; i < rdev->desc->n_voltages; i++) {
2295                ret = rdev->desc->ops->list_voltage(rdev, i);
2296                if (ret < 0)
2297                        continue;
2298
2299                if (ret > max_uV)
2300                        break;
2301
2302                if (ret >= min_uV && ret <= max_uV)
2303                        return i;
2304        }
2305
2306        return -EINVAL;
2307}
2308EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
2309
2310/**
2311 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2312 *
2313 * @rdev: Regulator to operate on
2314 * @min_uV: Lower bound for voltage
2315 * @max_uV: Upper bound for voltage
2316 *
2317 * Drivers providing min_uV and uV_step in their regulator_desc can
2318 * use this as their map_voltage() operation.
2319 */
2320int regulator_map_voltage_linear(struct regulator_dev *rdev,
2321                                 int min_uV, int max_uV)
2322{
2323        int ret, voltage;
2324
2325        /* Allow uV_step to be 0 for fixed voltage */
2326        if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2327                if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2328                        return 0;
2329                else
2330                        return -EINVAL;
2331        }
2332
2333        if (!rdev->desc->uV_step) {
2334                BUG_ON(!rdev->desc->uV_step);
2335                return -EINVAL;
2336        }
2337
2338        if (min_uV < rdev->desc->min_uV)
2339                min_uV = rdev->desc->min_uV;
2340
2341        ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2342        if (ret < 0)
2343                return ret;
2344
2345        ret += rdev->desc->linear_min_sel;
2346
2347        /* Map back into a voltage to verify we're still in bounds */
2348        voltage = rdev->desc->ops->list_voltage(rdev, ret);
2349        if (voltage < min_uV || voltage > max_uV)
2350                return -EINVAL;
2351
2352        return ret;
2353}
2354EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2355
2356static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2357                                     int min_uV, int max_uV)
2358{
2359        int ret;
2360        int delay = 0;
2361        int best_val = 0;
2362        unsigned int selector;
2363        int old_selector = -1;
2364
2365        trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2366
2367        min_uV += rdev->constraints->uV_offset;
2368        max_uV += rdev->constraints->uV_offset;
2369
2370        /*
2371         * If we can't obtain the old selector there is not enough
2372         * info to call set_voltage_time_sel().
2373         */
2374        if (_regulator_is_enabled(rdev) &&
2375            rdev->desc->ops->set_voltage_time_sel &&
2376            rdev->desc->ops->get_voltage_sel) {
2377                old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2378                if (old_selector < 0)
2379                        return old_selector;
2380        }
2381
2382        if (rdev->desc->ops->set_voltage) {
2383                ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2384                                                   &selector);
2385
2386                if (ret >= 0) {
2387                        if (rdev->desc->ops->list_voltage)
2388                                best_val = rdev->desc->ops->list_voltage(rdev,
2389                                                                         selector);
2390                        else
2391                                best_val = _regulator_get_voltage(rdev);
2392                }
2393
2394        } else if (rdev->desc->ops->set_voltage_sel) {
2395                if (rdev->desc->ops->map_voltage) {
2396                        ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2397                                                           max_uV);
2398                } else {
2399                        if (rdev->desc->ops->list_voltage ==
2400                            regulator_list_voltage_linear)
2401                                ret = regulator_map_voltage_linear(rdev,
2402                                                                min_uV, max_uV);
2403                        else
2404                                ret = regulator_map_voltage_iterate(rdev,
2405                                                                min_uV, max_uV);
2406                }
2407
2408                if (ret >= 0) {
2409                        best_val = rdev->desc->ops->list_voltage(rdev, ret);
2410                        if (min_uV <= best_val && max_uV >= best_val) {
2411                                selector = ret;
2412                                if (old_selector == selector)
2413                                        ret = 0;
2414                                else
2415                                        ret = rdev->desc->ops->set_voltage_sel(
2416                                                                rdev, ret);
2417                        } else {
2418                                ret = -EINVAL;
2419                        }
2420                }
2421        } else {
2422                ret = -EINVAL;
2423        }
2424
2425        /* Call set_voltage_time_sel if successfully obtained old_selector */
2426        if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2427            old_selector != selector && rdev->desc->ops->set_voltage_time_sel) {
2428
2429                delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2430                                                old_selector, selector);
2431                if (delay < 0) {
2432                        rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2433                                  delay);
2434                        delay = 0;
2435                }
2436
2437                /* Insert any necessary delays */
2438                if (delay >= 1000) {
2439                        mdelay(delay / 1000);
2440                        udelay(delay % 1000);
2441                } else if (delay) {
2442                        udelay(delay);
2443                }
2444        }
2445
2446        if (ret == 0 && best_val >= 0) {
2447                unsigned long data = best_val;
2448
2449                _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2450                                     (void *)data);
2451        }
2452
2453        trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2454
2455        return ret;
2456}
2457
2458/**
2459 * regulator_set_voltage - set regulator output voltage
2460 * @regulator: regulator source
2461 * @min_uV: Minimum required voltage in uV
2462 * @max_uV: Maximum acceptable voltage in uV
2463 *
2464 * Sets a voltage regulator to the desired output voltage. This can be set
2465 * during any regulator state. IOW, regulator can be disabled or enabled.
2466 *
2467 * If the regulator is enabled then the voltage will change to the new value
2468 * immediately otherwise if the regulator is disabled the regulator will
2469 * output at the new voltage when enabled.
2470 *
2471 * NOTE: If the regulator is shared between several devices then the lowest
2472 * request voltage that meets the system constraints will be used.
2473 * Regulator system constraints must be set for this regulator before
2474 * calling this function otherwise this call will fail.
2475 */
2476int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2477{
2478        struct regulator_dev *rdev = regulator->rdev;
2479        int ret = 0;
2480        int old_min_uV, old_max_uV;
2481
2482        mutex_lock(&rdev->mutex);
2483
2484        /* If we're setting the same range as last time the change
2485         * should be a noop (some cpufreq implementations use the same
2486         * voltage for multiple frequencies, for example).
2487         */
2488        if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2489                goto out;
2490
2491        /* sanity check */
2492        if (!rdev->desc->ops->set_voltage &&
2493            !rdev->desc->ops->set_voltage_sel) {
2494                ret = -EINVAL;
2495                goto out;
2496        }
2497
2498        /* constraints check */
2499        ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2500        if (ret < 0)
2501                goto out;
2502        
2503        /* restore original values in case of error */
2504        old_min_uV = regulator->min_uV;
2505        old_max_uV = regulator->max_uV;
2506        regulator->min_uV = min_uV;
2507        regulator->max_uV = max_uV;
2508
2509        ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2510        if (ret < 0)
2511                goto out2;
2512
2513        ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2514        if (ret < 0)
2515                goto out2;
2516        
2517out:
2518        mutex_unlock(&rdev->mutex);
2519        return ret;
2520out2:
2521        regulator->min_uV = old_min_uV;
2522        regulator->max_uV = old_max_uV;
2523        mutex_unlock(&rdev->mutex);
2524        return ret;
2525}
2526EXPORT_SYMBOL_GPL(regulator_set_voltage);
2527
2528/**
2529 * regulator_set_voltage_time - get raise/fall time
2530 * @regulator: regulator source
2531 * @old_uV: starting voltage in microvolts
2532 * @new_uV: target voltage in microvolts
2533 *
2534 * Provided with the starting and ending voltage, this function attempts to
2535 * calculate the time in microseconds required to rise or fall to this new
2536 * voltage.
2537 */
2538int regulator_set_voltage_time(struct regulator *regulator,
2539                               int old_uV, int new_uV)
2540{
2541        struct regulator_dev    *rdev = regulator->rdev;
2542        struct regulator_ops    *ops = rdev->desc->ops;
2543        int old_sel = -1;
2544        int new_sel = -1;
2545        int voltage;
2546        int i;
2547
2548        /* Currently requires operations to do this */
2549        if (!ops->list_voltage || !ops->set_voltage_time_sel
2550            || !rdev->desc->n_voltages)
2551                return -EINVAL;
2552
2553        for (i = 0; i < rdev->desc->n_voltages; i++) {
2554                /* We only look for exact voltage matches here */
2555                voltage = regulator_list_voltage(regulator, i);
2556                if (voltage < 0)
2557                        return -EINVAL;
2558                if (voltage == 0)
2559                        continue;
2560                if (voltage == old_uV)
2561                        old_sel = i;
2562                if (voltage == new_uV)
2563                        new_sel = i;
2564        }
2565
2566        if (old_sel < 0 || new_sel < 0)
2567                return -EINVAL;
2568
2569        return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2570}
2571EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2572
2573/**
2574 * regulator_set_voltage_time_sel - get raise/fall time
2575 * @rdev: regulator source device
2576 * @old_selector: selector for starting voltage
2577 * @new_selector: selector for target voltage
2578 *
2579 * Provided with the starting and target voltage selectors, this function
2580 * returns time in microseconds required to rise or fall to this new voltage
2581 *
2582 * Drivers providing ramp_delay in regulation_constraints can use this as their
2583 * set_voltage_time_sel() operation.
2584 */
2585int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2586                                   unsigned int old_selector,
2587                                   unsigned int new_selector)
2588{
2589        unsigned int ramp_delay = 0;
2590        int old_volt, new_volt;
2591
2592        if (rdev->constraints->ramp_delay)
2593                ramp_delay = rdev->constraints->ramp_delay;
2594        else if (rdev->desc->ramp_delay)
2595                ramp_delay = rdev->desc->ramp_delay;
2596
2597        if (ramp_delay == 0) {
2598                rdev_warn(rdev, "ramp_delay not set\n");
2599                return 0;
2600        }
2601
2602        /* sanity check */
2603        if (!rdev->desc->ops->list_voltage)
2604                return -EINVAL;
2605
2606        old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2607        new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2608
2609        return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2610}
2611EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2612
2613/**
2614 * regulator_sync_voltage - re-apply last regulator output voltage
2615 * @regulator: regulator source
2616 *
2617 * Re-apply the last configured voltage.  This is intended to be used
2618 * where some external control source the consumer is cooperating with
2619 * has caused the configured voltage to change.
2620 */
2621int regulator_sync_voltage(struct regulator *regulator)
2622{
2623        struct regulator_dev *rdev = regulator->rdev;
2624        int ret, min_uV, max_uV;
2625
2626        mutex_lock(&rdev->mutex);
2627
2628        if (!rdev->desc->ops->set_voltage &&
2629            !rdev->desc->ops->set_voltage_sel) {
2630                ret = -EINVAL;
2631                goto out;
2632        }
2633
2634        /* This is only going to work if we've had a voltage configured. */
2635        if (!regulator->min_uV && !regulator->max_uV) {
2636                ret = -EINVAL;
2637                goto out;
2638        }
2639
2640        min_uV = regulator->min_uV;
2641        max_uV = regulator->max_uV;
2642
2643        /* This should be a paranoia check... */
2644        ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2645        if (ret < 0)
2646                goto out;
2647
2648        ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2649        if (ret < 0)
2650                goto out;
2651
2652        ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2653
2654out:
2655        mutex_unlock(&rdev->mutex);
2656        return ret;
2657}
2658EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2659
2660static int _regulator_get_voltage(struct regulator_dev *rdev)
2661{
2662        int sel, ret;
2663
2664        if (rdev->desc->ops->get_voltage_sel) {
2665                sel = rdev->desc->ops->get_voltage_sel(rdev);
2666                if (sel < 0)
2667                        return sel;
2668                ret = rdev->desc->ops->list_voltage(rdev, sel);
2669        } else if (rdev->desc->ops->get_voltage) {
2670                ret = rdev->desc->ops->get_voltage(rdev);
2671        } else if (rdev->desc->ops->list_voltage) {
2672                ret = rdev->desc->ops->list_voltage(rdev, 0);
2673        } else {
2674                return -EINVAL;
2675        }
2676
2677        if (ret < 0)
2678                return ret;
2679        return ret - rdev->constraints->uV_offset;
2680}
2681
2682/**
2683 * regulator_get_voltage - get regulator output voltage
2684 * @regulator: regulator source
2685 *
2686 * This returns the current regulator voltage in uV.
2687 *
2688 * NOTE: If the regulator is disabled it will return the voltage value. This
2689 * function should not be used to determine regulator state.
2690 */
2691int regulator_get_voltage(struct regulator *regulator)
2692{
2693        int ret;
2694
2695        mutex_lock(&regulator->rdev->mutex);
2696
2697        ret = _regulator_get_voltage(regulator->rdev);
2698
2699        mutex_unlock(&regulator->rdev->mutex);
2700
2701        return ret;
2702}
2703EXPORT_SYMBOL_GPL(regulator_get_voltage);
2704
2705/**
2706 * regulator_set_current_limit - set regulator output current limit
2707 * @regulator: regulator source
2708 * @min_uA: Minimum supported current in uA
2709 * @max_uA: Maximum supported current in uA
2710 *
2711 * Sets current sink to the desired output current. This can be set during
2712 * any regulator state. IOW, regulator can be disabled or enabled.
2713 *
2714 * If the regulator is enabled then the current will change to the new value
2715 * immediately otherwise if the regulator is disabled the regulator will
2716 * output at the new current when enabled.
2717 *
2718 * NOTE: Regulator system constraints must be set for this regulator before
2719 * calling this function otherwise this call will fail.
2720 */
2721int regulator_set_current_limit(struct regulator *regulator,
2722                               int min_uA, int max_uA)
2723{
2724        struct regulator_dev *rdev = regulator->rdev;
2725        int ret;
2726
2727        mutex_lock(&rdev->mutex);
2728
2729        /* sanity check */
2730        if (!rdev->desc->ops->set_current_limit) {
2731                ret = -EINVAL;
2732                goto out;
2733        }
2734
2735        /* constraints check */
2736        ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2737        if (ret < 0)
2738                goto out;
2739
2740        ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2741out:
2742        mutex_unlock(&rdev->mutex);
2743        return ret;
2744}
2745EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2746
2747static int _regulator_get_current_limit(struct regulator_dev *rdev)
2748{
2749        int ret;
2750
2751        mutex_lock(&rdev->mutex);
2752
2753        /* sanity check */
2754        if (!rdev->desc->ops->get_current_limit) {
2755                ret = -EINVAL;
2756                goto out;
2757        }
2758
2759        ret = rdev->desc->ops->get_current_limit(rdev);
2760out:
2761        mutex_unlock(&rdev->mutex);
2762        return ret;
2763}
2764
2765/**
2766 * regulator_get_current_limit - get regulator output current
2767 * @regulator: regulator source
2768 *
2769 * This returns the current supplied by the specified current sink in uA.
2770 *
2771 * NOTE: If the regulator is disabled it will return the current value. This
2772 * function should not be used to determine regulator state.
2773 */
2774int regulator_get_current_limit(struct regulator *regulator)
2775{
2776        return _regulator_get_current_limit(regulator->rdev);
2777}
2778EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2779
2780/**
2781 * regulator_set_mode - set regulator operating mode
2782 * @regulator: regulator source
2783 * @mode: operating mode - one of the REGULATOR_MODE constants
2784 *
2785 * Set regulator operating mode to increase regulator efficiency or improve
2786 * regulation performance.
2787 *
2788 * NOTE: Regulator system constraints must be set for this regulator before
2789 * calling this function otherwise this call will fail.
2790 */
2791int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2792{
2793        struct regulator_dev *rdev = regulator->rdev;
2794        int ret;
2795        int regulator_curr_mode;
2796
2797        mutex_lock(&rdev->mutex);
2798
2799        /* sanity check */
2800        if (!rdev->desc->ops->set_mode) {
2801                ret = -EINVAL;
2802                goto out;
2803        }
2804
2805        /* return if the same mode is requested */
2806        if (rdev->desc->ops->get_mode) {
2807                regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2808                if (regulator_curr_mode == mode) {
2809                        ret = 0;
2810                        goto out;
2811                }
2812        }
2813
2814        /* constraints check */
2815        ret = regulator_mode_constrain(rdev, &mode);
2816        if (ret < 0)
2817                goto out;
2818
2819        ret = rdev->desc->ops->set_mode(rdev, mode);
2820out:
2821        mutex_unlock(&rdev->mutex);
2822        return ret;
2823}
2824EXPORT_SYMBOL_GPL(regulator_set_mode);
2825
2826static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2827{
2828        int ret;
2829
2830        mutex_lock(&rdev->mutex);
2831
2832        /* sanity check */
2833        if (!rdev->desc->ops->get_mode) {
2834                ret = -EINVAL;
2835                goto out;
2836        }
2837
2838        ret = rdev->desc->ops->get_mode(rdev);
2839out:
2840        mutex_unlock(&rdev->mutex);
2841        return ret;
2842}
2843
2844/**
2845 * regulator_get_mode - get regulator operating mode
2846 * @regulator: regulator source
2847 *
2848 * Get the current regulator operating mode.
2849 */
2850unsigned int regulator_get_mode(struct regulator *regulator)
2851{
2852        return _regulator_get_mode(regulator->rdev);
2853}
2854EXPORT_SYMBOL_GPL(regulator_get_mode);
2855
2856/**
2857 * regulator_set_optimum_mode - set regulator optimum operating mode
2858 * @regulator: regulator source
2859 * @uA_load: load current
2860 *
2861 * Notifies the regulator core of a new device load. This is then used by
2862 * DRMS (if enabled by constraints) to set the most efficient regulator
2863 * operating mode for the new regulator loading.
2864 *
2865 * Consumer devices notify their supply regulator of the maximum power
2866 * they will require (can be taken from device datasheet in the power
2867 * consumption tables) when they change operational status and hence power
2868 * state. Examples of operational state changes that can affect power
2869 * consumption are :-
2870 *
2871 *    o Device is opened / closed.
2872 *    o Device I/O is about to begin or has just finished.
2873 *    o Device is idling in between work.
2874 *
2875 * This information is also exported via sysfs to userspace.
2876 *
2877 * DRMS will sum the total requested load on the regulator and change
2878 * to the most efficient operating mode if platform constraints allow.
2879 *
2880 * Returns the new regulator mode or error.
2881 */
2882int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2883{
2884        struct regulator_dev *rdev = regulator->rdev;
2885        struct regulator *consumer;
2886        int ret, output_uV, input_uV = 0, total_uA_load = 0;
2887        unsigned int mode;
2888
2889        if (rdev->supply)
2890                input_uV = regulator_get_voltage(rdev->supply);
2891
2892        mutex_lock(&rdev->mutex);
2893
2894        /*
2895         * first check to see if we can set modes at all, otherwise just
2896         * tell the consumer everything is OK.
2897         */
2898        regulator->uA_load = uA_load;
2899        ret = regulator_check_drms(rdev);
2900        if (ret < 0) {
2901                ret = 0;
2902                goto out;
2903        }
2904
2905        if (!rdev->desc->ops->get_optimum_mode)
2906                goto out;
2907
2908        /*
2909         * we can actually do this so any errors are indicators of
2910         * potential real failure.
2911         */
2912        ret = -EINVAL;
2913
2914        if (!rdev->desc->ops->set_mode)
2915                goto out;
2916
2917        /* get output voltage */
2918        output_uV = _regulator_get_voltage(rdev);
2919        if (output_uV <= 0) {
2920                rdev_err(rdev, "invalid output voltage found\n");
2921                goto out;
2922        }
2923
2924        /* No supply? Use constraint voltage */
2925        if (input_uV <= 0)
2926                input_uV = rdev->constraints->input_uV;
2927        if (input_uV <= 0) {
2928                rdev_err(rdev, "invalid input voltage found\n");
2929                goto out;
2930        }
2931
2932        /* calc total requested load for this regulator */
2933        list_for_each_entry(consumer, &rdev->consumer_list, list)
2934                total_uA_load += consumer->uA_load;
2935
2936        mode = rdev->desc->ops->get_optimum_mode(rdev,
2937                                                 input_uV, output_uV,
2938                                                 total_uA_load);
2939        ret = regulator_mode_constrain(rdev, &mode);
2940        if (ret < 0) {
2941                rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2942                         total_uA_load, input_uV, output_uV);
2943                goto out;
2944        }
2945
2946        ret = rdev->desc->ops->set_mode(rdev, mode);
2947        if (ret < 0) {
2948                rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2949                goto out;
2950        }
2951        ret = mode;
2952out:
2953        mutex_unlock(&rdev->mutex);
2954        return ret;
2955}
2956EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2957
2958/**
2959 * regulator_set_bypass_regmap - Default set_bypass() using regmap
2960 *
2961 * @rdev: device to operate on.
2962 * @enable: state to set.
2963 */
2964int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
2965{
2966        unsigned int val;
2967
2968        if (enable)
2969                val = rdev->desc->bypass_mask;
2970        else
2971                val = 0;
2972
2973        return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
2974                                  rdev->desc->bypass_mask, val);
2975}
2976EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
2977
2978/**
2979 * regulator_get_bypass_regmap - Default get_bypass() using regmap
2980 *
2981 * @rdev: device to operate on.
2982 * @enable: current state.
2983 */
2984int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
2985{
2986        unsigned int val;
2987        int ret;
2988
2989        ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
2990        if (ret != 0)
2991                return ret;
2992
2993        *enable = val & rdev->desc->bypass_mask;
2994
2995        return 0;
2996}
2997EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
2998
2999/**
3000 * regulator_allow_bypass - allow the regulator to go into bypass mode
3001 *
3002 * @regulator: Regulator to configure
3003 * @enable: enable or disable bypass mode
3004 *
3005 * Allow the regulator to go into bypass mode if all other consumers
3006 * for the regulator also enable bypass mode and the machine
3007 * constraints allow this.  Bypass mode means that the regulator is
3008 * simply passing the input directly to the output with no regulation.
3009 */
3010int regulator_allow_bypass(struct regulator *regulator, bool enable)
3011{
3012        struct regulator_dev *rdev = regulator->rdev;
3013        int ret = 0;
3014
3015        if (!rdev->desc->ops->set_bypass)
3016                return 0;
3017
3018        if (rdev->constraints &&
3019            !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3020                return 0;
3021
3022        mutex_lock(&rdev->mutex);
3023
3024        if (enable && !regulator->bypass) {
3025                rdev->bypass_count++;
3026
3027                if (rdev->bypass_count == rdev->open_count) {
3028                        ret = rdev->desc->ops->set_bypass(rdev, enable);
3029                        if (ret != 0)
3030                                rdev->bypass_count--;
3031                }
3032
3033        } else if (!enable && regulator->bypass) {
3034                rdev->bypass_count--;
3035
3036                if (rdev->bypass_count != rdev->open_count) {
3037                        ret = rdev->desc->ops->set_bypass(rdev, enable);
3038                        if (ret != 0)
3039                                rdev->bypass_count++;
3040                }
3041        }
3042
3043        if (ret == 0)
3044                regulator->bypass = enable;
3045
3046        mutex_unlock(&rdev->mutex);
3047
3048        return ret;
3049}
3050EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3051
3052/**
3053 * regulator_register_notifier - register regulator event notifier
3054 * @regulator: regulator source
3055 * @nb: notifier block
3056 *
3057 * Register notifier block to receive regulator events.
3058 */
3059int regulator_register_notifier(struct regulator *regulator,
3060                              struct notifier_block *nb)
3061{
3062        return blocking_notifier_chain_register(&regulator->rdev->notifier,
3063                                                nb);
3064}
3065EXPORT_SYMBOL_GPL(regulator_register_notifier);
3066
3067/**
3068 * regulator_unregister_notifier - unregister regulator event notifier
3069 * @regulator: regulator source
3070 * @nb: notifier block
3071 *
3072 * Unregister regulator event notifier block.
3073 */
3074int regulator_unregister_notifier(struct regulator *regulator,
3075                                struct notifier_block *nb)
3076{
3077        return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3078                                                  nb);
3079}
3080EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3081
3082/* notify regulator consumers and downstream regulator consumers.
3083 * Note mutex must be held by caller.
3084 */
3085static void _notifier_call_chain(struct regulator_dev *rdev,
3086                                  unsigned long event, void *data)
3087{
3088        /* call rdev chain first */
3089        blocking_notifier_call_chain(&rdev->notifier, event, data);
3090}
3091
3092/**
3093 * regulator_bulk_get - get multiple regulator consumers
3094 *
3095 * @dev:           Device to supply
3096 * @num_consumers: Number of consumers to register
3097 * @consumers:     Configuration of consumers; clients are stored here.
3098 *
3099 * @return 0 on success, an errno on failure.
3100 *
3101 * This helper function allows drivers to get several regulator
3102 * consumers in one operation.  If any of the regulators cannot be
3103 * acquired then any regulators that were allocated will be freed
3104 * before returning to the caller.
3105 */
3106int regulator_bulk_get(struct device *dev, int num_consumers,
3107                       struct regulator_bulk_data *consumers)
3108{
3109        int i;
3110        int ret;
3111
3112        for (i = 0; i < num_consumers; i++)
3113                consumers[i].consumer = NULL;
3114
3115        for (i = 0; i < num_consumers; i++) {
3116                consumers[i].consumer = regulator_get(dev,
3117                                                      consumers[i].supply);
3118                if (IS_ERR(consumers[i].consumer)) {
3119                        ret = PTR_ERR(consumers[i].consumer);
3120                        dev_err(dev, "Failed to get supply '%s': %d\n",
3121                                consumers[i].supply, ret);
3122                        consumers[i].consumer = NULL;
3123                        goto err;
3124                }
3125        }
3126
3127        return 0;
3128
3129err:
3130        while (--i >= 0)
3131                regulator_put(consumers[i].consumer);
3132
3133        return ret;
3134}
3135EXPORT_SYMBOL_GPL(regulator_bulk_get);
3136
3137/**
3138 * devm_regulator_bulk_get - managed get multiple regulator consumers
3139 *
3140 * @dev:           Device to supply
3141 * @num_consumers: Number of consumers to register
3142 * @consumers:     Configuration of consumers; clients are stored here.
3143 *
3144 * @return 0 on success, an errno on failure.
3145 *
3146 * This helper function allows drivers to get several regulator
3147 * consumers in one operation with management, the regulators will
3148 * automatically be freed when the device is unbound.  If any of the
3149 * regulators cannot be acquired then any regulators that were
3150 * allocated will be freed before returning to the caller.
3151 */
3152int devm_regulator_bulk_get(struct device *dev, int num_consumers,
3153                            struct regulator_bulk_data *consumers)
3154{
3155        int i;
3156        int ret;
3157
3158        for (i = 0; i < num_consumers; i++)
3159                consumers[i].consumer = NULL;
3160
3161        for (i = 0; i < num_consumers; i++) {
3162                consumers[i].consumer = devm_regulator_get(dev,
3163                                                           consumers[i].supply);
3164                if (IS_ERR(consumers[i].consumer)) {
3165                        ret = PTR_ERR(consumers[i].consumer);
3166                        dev_err(dev, "Failed to get supply '%s': %d\n",
3167                                consumers[i].supply, ret);
3168                        consumers[i].consumer = NULL;
3169                        goto err;
3170                }
3171        }
3172
3173        return 0;
3174
3175err:
3176        for (i = 0; i < num_consumers && consumers[i].consumer; i++)
3177                devm_regulator_put(consumers[i].consumer);
3178
3179        return ret;
3180}
3181EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
3182
3183static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3184{
3185        struct regulator_bulk_data *bulk = data;
3186
3187        bulk->ret = regulator_enable(bulk->consumer);
3188}
3189
3190/**
3191 * regulator_bulk_enable - enable multiple regulator consumers
3192 *
3193 * @num_consumers: Number of consumers
3194 * @consumers:     Consumer data; clients are stored here.
3195 * @return         0 on success, an errno on failure
3196 *
3197 * This convenience API allows consumers to enable multiple regulator
3198 * clients in a single API call.  If any consumers cannot be enabled
3199 * then any others that were enabled will be disabled again prior to
3200 * return.
3201 */
3202int regulator_bulk_enable(int num_consumers,
3203                          struct regulator_bulk_data *consumers)
3204{
3205        ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3206        int i;
3207        int ret = 0;
3208
3209        for (i = 0; i < num_consumers; i++) {
3210                if (consumers[i].consumer->always_on)
3211                        consumers[i].ret = 0;
3212                else
3213                        async_schedule_domain(regulator_bulk_enable_async,
3214                                              &consumers[i], &async_domain);
3215        }
3216
3217        async_synchronize_full_domain(&async_domain);
3218
3219        /* If any consumer failed we need to unwind any that succeeded */
3220        for (i = 0; i < num_consumers; i++) {
3221                if (consumers[i].ret != 0) {
3222                        ret = consumers[i].ret;
3223                        goto err;
3224                }
3225        }
3226
3227        return 0;
3228
3229err:
3230        for (i = 0; i < num_consumers; i++) {
3231                if (consumers[i].ret < 0)
3232                        pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3233                               consumers[i].ret);
3234                else
3235                        regulator_disable(consumers[i].consumer);
3236        }
3237
3238        return ret;
3239}
3240EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3241
3242/**
3243 * regulator_bulk_disable - disable multiple regulator consumers
3244 *
3245 * @num_consumers: Number of consumers
3246 * @consumers:     Consumer data; clients are stored here.
3247 * @return         0 on success, an errno on failure
3248 *
3249 * This convenience API allows consumers to disable multiple regulator
3250 * clients in a single API call.  If any consumers cannot be disabled
3251 * then any others that were disabled will be enabled again prior to
3252 * return.
3253 */
3254int regulator_bulk_disable(int num_consumers,
3255                           struct regulator_bulk_data *consumers)
3256{
3257        int i;
3258        int ret, r;
3259
3260        for (i = num_consumers - 1; i >= 0; --i) {
3261                ret = regulator_disable(consumers[i].consumer);
3262                if (ret != 0)
3263                        goto err;
3264        }
3265
3266        return 0;
3267
3268err:
3269        pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3270        for (++i; i < num_consumers; ++i) {
3271                r = regulator_enable(consumers[i].consumer);
3272                if (r != 0)
3273                        pr_err("Failed to reename %s: %d\n",
3274                               consumers[i].supply, r);
3275        }
3276
3277        return ret;
3278}
3279EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3280
3281/**
3282 * regulator_bulk_force_disable - force disable multiple regulator consumers
3283 *
3284 * @num_consumers: Number of consumers
3285 * @consumers:     Consumer data; clients are stored here.
3286 * @return         0 on success, an errno on failure
3287 *
3288 * This convenience API allows consumers to forcibly disable multiple regulator
3289 * clients in a single API call.
3290 * NOTE: This should be used for situations when device damage will
3291 * likely occur if the regulators are not disabled (e.g. over temp).
3292 * Although regulator_force_disable function call for some consumers can
3293 * return error numbers, the function is called for all consumers.
3294 */
3295int regulator_bulk_force_disable(int num_consumers,
3296                           struct regulator_bulk_data *consumers)
3297{
3298        int i;
3299        int ret;
3300
3301        for (i = 0; i < num_consumers; i++)
3302                consumers[i].ret =
3303                            regulator_force_disable(consumers[i].consumer);
3304
3305        for (i = 0; i < num_consumers; i++) {
3306                if (consumers[i].ret != 0) {
3307                        ret = consumers[i].ret;
3308                        goto out;
3309                }
3310        }
3311
3312        return 0;
3313out:
3314        return ret;
3315}
3316EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3317
3318/**
3319 * regulator_bulk_free - free multiple regulator consumers
3320 *
3321 * @num_consumers: Number of consumers
3322 * @consumers:     Consumer data; clients are stored here.
3323 *
3324 * This convenience API allows consumers to free multiple regulator
3325 * clients in a single API call.
3326 */
3327void regulator_bulk_free(int num_consumers,
3328                         struct regulator_bulk_data *consumers)
3329{
3330        int i;
3331
3332        for (i = 0; i < num_consumers; i++) {
3333                regulator_put(consumers[i].consumer);
3334                consumers[i].consumer = NULL;
3335        }
3336}
3337EXPORT_SYMBOL_GPL(regulator_bulk_free);
3338
3339/**
3340 * regulator_notifier_call_chain - call regulator event notifier
3341 * @rdev: regulator source
3342 * @event: notifier block
3343 * @data: callback-specific data.
3344 *
3345 * Called by regulator drivers to notify clients a regulator event has
3346 * occurred. We also notify regulator clients downstream.
3347 * Note lock must be held by caller.
3348 */
3349int regulator_notifier_call_chain(struct regulator_dev *rdev,
3350                                  unsigned long event, void *data)
3351{
3352        _notifier_call_chain(rdev, event, data);
3353        return NOTIFY_DONE;
3354
3355}
3356EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3357
3358/**
3359 * regulator_mode_to_status - convert a regulator mode into a status
3360 *
3361 * @mode: Mode to convert
3362 *
3363 * Convert a regulator mode into a status.
3364 */
3365int regulator_mode_to_status(unsigned int mode)
3366{
3367        switch (mode) {
3368        case REGULATOR_MODE_FAST:
3369                return REGULATOR_STATUS_FAST;
3370        case REGULATOR_MODE_NORMAL:
3371                return REGULATOR_STATUS_NORMAL;
3372        case REGULATOR_MODE_IDLE:
3373                return REGULATOR_STATUS_IDLE;
3374        case REGULATOR_MODE_STANDBY:
3375                return REGULATOR_STATUS_STANDBY;
3376        default:
3377                return REGULATOR_STATUS_UNDEFINED;
3378        }
3379}
3380EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3381
3382/*
3383 * To avoid cluttering sysfs (and memory) with useless state, only
3384 * create attributes that can be meaningfully displayed.
3385 */
3386static int add_regulator_attributes(struct regulator_dev *rdev)
3387{
3388        struct device           *dev = &rdev->dev;
3389        struct regulator_ops    *ops = rdev->desc->ops;
3390        int                     status = 0;
3391
3392        /* some attributes need specific methods to be displayed */
3393        if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3394            (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3395            (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3396                status = device_create_file(dev, &dev_attr_microvolts);
3397                if (status < 0)
3398                        return status;
3399        }
3400        if (ops->get_current_limit) {
3401                status = device_create_file(dev, &dev_attr_microamps);
3402                if (status < 0)
3403                        return status;
3404        }
3405        if (ops->get_mode) {
3406                status = device_create_file(dev, &dev_attr_opmode);
3407                if (status < 0)
3408                        return status;
3409        }
3410        if (rdev->ena_pin || ops->is_enabled) {
3411                status = device_create_file(dev, &dev_attr_state);
3412                if (status < 0)
3413                        return status;
3414        }
3415        if (ops->get_status) {
3416                status = device_create_file(dev, &dev_attr_status);
3417                if (status < 0)
3418                        return status;
3419        }
3420        if (ops->get_bypass) {
3421                status = device_create_file(dev, &dev_attr_bypass);
3422                if (status < 0)
3423                        return status;
3424        }
3425
3426        /* some attributes are type-specific */
3427        if (rdev->desc->type == REGULATOR_CURRENT) {
3428                status = device_create_file(dev, &dev_attr_requested_microamps);
3429                if (status < 0)
3430                        return status;
3431        }
3432
3433        /* all the other attributes exist to support constraints;
3434         * don't show them if there are no constraints, or if the
3435         * relevant supporting methods are missing.
3436         */
3437        if (!rdev->constraints)
3438                return status;
3439
3440        /* constraints need specific supporting methods */
3441        if (ops->set_voltage || ops->set_voltage_sel) {
3442                status = device_create_file(dev, &dev_attr_min_microvolts);
3443                if (status < 0)
3444                        return status;
3445                status = device_create_file(dev, &dev_attr_max_microvolts);
3446                if (status < 0)
3447                        return status;
3448        }
3449        if (ops->set_current_limit) {
3450                status = device_create_file(dev, &dev_attr_min_microamps);
3451                if (status < 0)
3452                        return status;
3453                status = device_create_file(dev, &dev_attr_max_microamps);
3454                if (status < 0)
3455                        return status;
3456        }
3457
3458        status = device_create_file(dev, &dev_attr_suspend_standby_state);
3459        if (status < 0)
3460                return status;
3461        status = device_create_file(dev, &dev_attr_suspend_mem_state);
3462        if (status < 0)
3463                return status;
3464        status = device_create_file(dev, &dev_attr_suspend_disk_state);
3465        if (status < 0)
3466                return status;
3467
3468        if (ops->set_suspend_voltage) {
3469                status = device_create_file(dev,
3470                                &dev_attr_suspend_standby_microvolts);
3471                if (status < 0)
3472                        return status;
3473                status = device_create_file(dev,
3474                                &dev_attr_suspend_mem_microvolts);
3475                if (status < 0)
3476                        return status;
3477                status = device_create_file(dev,
3478                                &dev_attr_suspend_disk_microvolts);
3479                if (status < 0)
3480                        return status;
3481        }
3482
3483        if (ops->set_suspend_mode) {
3484                status = device_create_file(dev,
3485                                &dev_attr_suspend_standby_mode);
3486                if (status < 0)
3487                        return status;
3488                status = device_create_file(dev,
3489                                &dev_attr_suspend_mem_mode);
3490                if (status < 0)
3491                        return status;
3492                status = device_create_file(dev,
3493                                &dev_attr_suspend_disk_mode);
3494                if (status < 0)
3495                        return status;
3496        }
3497
3498        return status;
3499}
3500
3501static void rdev_init_debugfs(struct regulator_dev *rdev)
3502{
3503        rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3504        if (!rdev->debugfs) {
3505                rdev_warn(rdev, "Failed to create debugfs directory\n");
3506                return;
3507        }
3508
3509        debugfs_create_u32("use_count", 0444, rdev->debugfs,
3510                           &rdev->use_count);
3511        debugfs_create_u32("open_count", 0444, rdev->debugfs,
3512                           &rdev->open_count);
3513        debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3514                           &rdev->bypass_count);
3515}
3516
3517/**
3518 * regulator_register - register regulator
3519 * @regulator_desc: regulator to register
3520 * @config: runtime configuration for regulator
3521 *
3522 * Called by regulator drivers to register a regulator.
3523 * Returns a valid pointer to struct regulator_dev on success
3524 * or an ERR_PTR() on error.
3525 */
3526struct regulator_dev *
3527regulator_register(const struct regulator_desc *regulator_desc,
3528                   const struct regulator_config *config)
3529{
3530        const struct regulation_constraints *constraints = NULL;
3531        const struct regulator_init_data *init_data;
3532        static atomic_t regulator_no = ATOMIC_INIT(0);
3533        struct regulator_dev *rdev;
3534        struct device *dev;
3535        int ret, i;
3536        const char *supply = NULL;
3537
3538        if (regulator_desc == NULL || config == NULL)
3539                return ERR_PTR(-EINVAL);
3540
3541        dev = config->dev;
3542        WARN_ON(!dev);
3543
3544        if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3545                return ERR_PTR(-EINVAL);
3546
3547        if (regulator_desc->type != REGULATOR_VOLTAGE &&
3548            regulator_desc->type != REGULATOR_CURRENT)
3549                return ERR_PTR(-EINVAL);
3550
3551        /* Only one of each should be implemented */
3552        WARN_ON(regulator_desc->ops->get_voltage &&
3553                regulator_desc->ops->get_voltage_sel);
3554        WARN_ON(regulator_desc->ops->set_voltage &&
3555                regulator_desc->ops->set_voltage_sel);
3556
3557        /* If we're using selectors we must implement list_voltage. */
3558        if (regulator_desc->ops->get_voltage_sel &&
3559            !regulator_desc->ops->list_voltage) {
3560                return ERR_PTR(-EINVAL);
3561        }
3562        if (regulator_desc->ops->set_voltage_sel &&
3563            !regulator_desc->ops->list_voltage) {
3564                return ERR_PTR(-EINVAL);
3565        }
3566
3567        init_data = config->init_data;
3568
3569        rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3570        if (rdev == NULL)
3571                return ERR_PTR(-ENOMEM);
3572
3573        mutex_lock(&regulator_list_mutex);
3574
3575        mutex_init(&rdev->mutex);
3576        rdev->reg_data = config->driver_data;
3577        rdev->owner = regulator_desc->owner;
3578        rdev->desc = regulator_desc;
3579        if (config->regmap)
3580                rdev->regmap = config->regmap;
3581        else if (dev_get_regmap(dev, NULL))
3582                rdev->regmap = dev_get_regmap(dev, NULL);
3583        else if (dev->parent)
3584                rdev->regmap = dev_get_regmap(dev->parent, NULL);
3585        INIT_LIST_HEAD(&rdev->consumer_list);
3586        INIT_LIST_HEAD(&rdev->list);
3587        BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3588        INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3589
3590        /* preform any regulator specific init */
3591        if (init_data && init_data->regulator_init) {
3592                ret = init_data->regulator_init(rdev->reg_data);
3593                if (ret < 0)
3594                        goto clean;
3595        }
3596
3597        /* register with sysfs */
3598        rdev->dev.class = &regulator_class;
3599        rdev->dev.of_node = config->of_node;
3600        rdev->dev.parent = dev;
3601        dev_set_name(&rdev->dev, "regulator.%d",
3602                     atomic_inc_return(&regulator_no) - 1);
3603        ret = device_register(&rdev->dev);
3604        if (ret != 0) {
3605                put_device(&rdev->dev);
3606                goto clean;
3607        }
3608
3609        dev_set_drvdata(&rdev->dev, rdev);
3610
3611        if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3612                ret = regulator_ena_gpio_request(rdev, config);
3613                if (ret != 0) {
3614                        rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3615                                 config->ena_gpio, ret);
3616                        goto wash;
3617                }
3618
3619                if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3620                        rdev->ena_gpio_state = 1;
3621
3622                if (config->ena_gpio_invert)
3623                        rdev->ena_gpio_state = !rdev->ena_gpio_state;
3624        }
3625
3626        /* set regulator constraints */
3627        if (init_data)
3628                constraints = &init_data->constraints;
3629
3630        ret = set_machine_constraints(rdev, constraints);
3631        if (ret < 0)
3632                goto scrub;
3633
3634        /* add attributes supported by this regulator */
3635        ret = add_regulator_attributes(rdev);
3636        if (ret < 0)
3637                goto scrub;
3638
3639        if (init_data && init_data->supply_regulator)
3640                supply = init_data->supply_regulator;
3641        else if (regulator_desc->supply_name)
3642                supply = regulator_desc->supply_name;
3643
3644        if (supply) {
3645                struct regulator_dev *r;
3646
3647                r = regulator_dev_lookup(dev, supply, &ret);
3648
3649                if (ret == -ENODEV) {
3650                        /*
3651                         * No supply was specified for this regulator and
3652                         * there will never be one.
3653                         */
3654                        ret = 0;
3655                        goto add_dev;
3656                } else if (!r) {
3657                        dev_err(dev, "Failed to find supply %s\n", supply);
3658                        ret = -EPROBE_DEFER;
3659                        goto scrub;
3660                }
3661
3662                ret = set_supply(rdev, r);
3663                if (ret < 0)
3664                        goto scrub;
3665
3666                /* Enable supply if rail is enabled */
3667                if (_regulator_is_enabled(rdev)) {
3668                        ret = regulator_enable(rdev->supply);
3669                        if (ret < 0)
3670                                goto scrub;
3671                }
3672        }
3673
3674add_dev:
3675        /* add consumers devices */
3676        if (init_data) {
3677                for (i = 0; i < init_data->num_consumer_supplies; i++) {
3678                        ret = set_consumer_device_supply(rdev,
3679                                init_data->consumer_supplies[i].dev_name,
3680                                init_data->consumer_supplies[i].supply);
3681                        if (ret < 0) {
3682                                dev_err(dev, "Failed to set supply %s\n",
3683                                        init_data->consumer_supplies[i].supply);
3684                                goto unset_supplies;
3685                        }
3686                }
3687        }
3688
3689        list_add(&rdev->list, &regulator_list);
3690
3691        rdev_init_debugfs(rdev);
3692out:
3693        mutex_unlock(&regulator_list_mutex);
3694        return rdev;
3695
3696unset_supplies:
3697        unset_regulator_supplies(rdev);
3698
3699scrub:
3700        if (rdev->supply)
3701                _regulator_put(rdev->supply);
3702        regulator_ena_gpio_free(rdev);
3703        kfree(rdev->constraints);
3704wash:
3705        device_unregister(&rdev->dev);
3706        /* device core frees rdev */
3707        rdev = ERR_PTR(ret);
3708        goto out;
3709
3710clean:
3711        kfree(rdev);
3712        rdev = ERR_PTR(ret);
3713        goto out;
3714}
3715EXPORT_SYMBOL_GPL(regulator_register);
3716
3717/**
3718 * regulator_unregister - unregister regulator
3719 * @rdev: regulator to unregister
3720 *
3721 * Called by regulator drivers to unregister a regulator.
3722 */
3723void regulator_unregister(struct regulator_dev *rdev)
3724{
3725        if (rdev == NULL)
3726                return;
3727
3728        if (rdev->supply)
3729                regulator_put(rdev->supply);
3730        mutex_lock(&regulator_list_mutex);
3731        debugfs_remove_recursive(rdev->debugfs);
3732        flush_work(&rdev->disable_work.work);
3733        WARN_ON(rdev->open_count);
3734        unset_regulator_supplies(rdev);
3735        list_del(&rdev->list);
3736        kfree(rdev->constraints);
3737        regulator_ena_gpio_free(rdev);
3738        device_unregister(&rdev->dev);
3739        mutex_unlock(&regulator_list_mutex);
3740}
3741EXPORT_SYMBOL_GPL(regulator_unregister);
3742
3743/**
3744 * regulator_suspend_prepare - prepare regulators for system wide suspend
3745 * @state: system suspend state
3746 *
3747 * Configure each regulator with it's suspend operating parameters for state.
3748 * This will usually be called by machine suspend code prior to supending.
3749 */
3750int regulator_suspend_prepare(suspend_state_t state)
3751{
3752        struct regulator_dev *rdev;
3753        int ret = 0;
3754
3755        /* ON is handled by regulator active state */
3756        if (state == PM_SUSPEND_ON)
3757                return -EINVAL;
3758
3759        mutex_lock(&regulator_list_mutex);
3760        list_for_each_entry(rdev, &regulator_list, list) {
3761
3762                mutex_lock(&rdev->mutex);
3763                ret = suspend_prepare(rdev, state);
3764                mutex_unlock(&rdev->mutex);
3765
3766                if (ret < 0) {
3767                        rdev_err(rdev, "failed to prepare\n");
3768                        goto out;
3769                }
3770        }
3771out:
3772        mutex_unlock(&regulator_list_mutex);
3773        return ret;
3774}
3775EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3776
3777/**
3778 * regulator_suspend_finish - resume regulators from system wide suspend
3779 *
3780 * Turn on regulators that might be turned off by regulator_suspend_prepare
3781 * and that should be turned on according to the regulators properties.
3782 */
3783int regulator_suspend_finish(void)
3784{
3785        struct regulator_dev *rdev;
3786        int ret = 0, error;
3787
3788        mutex_lock(&regulator_list_mutex);
3789        list_for_each_entry(rdev, &regulator_list, list) {
3790                struct regulator_ops *ops = rdev->desc->ops;
3791
3792                mutex_lock(&rdev->mutex);
3793                if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3794                                ops->enable) {
3795                        error = ops->enable(rdev);
3796                        if (error)
3797                                ret = error;
3798                } else {
3799                        if (!has_full_constraints)
3800                                goto unlock;
3801                        if (!ops->disable)
3802                                goto unlock;
3803                        if (!_regulator_is_enabled(rdev))
3804                                goto unlock;
3805
3806                        error = ops->disable(rdev);
3807                        if (error)
3808                                ret = error;
3809                }
3810unlock:
3811                mutex_unlock(&rdev->mutex);
3812        }
3813        mutex_unlock(&regulator_list_mutex);
3814        return ret;
3815}
3816EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3817
3818/**
3819 * regulator_has_full_constraints - the system has fully specified constraints
3820 *
3821 * Calling this function will cause the regulator API to disable all
3822 * regulators which have a zero use count and don't have an always_on
3823 * constraint in a late_initcall.
3824 *
3825 * The intention is that this will become the default behaviour in a
3826 * future kernel release so users are encouraged to use this facility
3827 * now.
3828 */
3829void regulator_has_full_constraints(void)
3830{
3831        has_full_constraints = 1;
3832}
3833EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3834
3835/**
3836 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3837 *
3838 * Calling this function will cause the regulator API to provide a
3839 * dummy regulator to consumers if no physical regulator is found,
3840 * allowing most consumers to proceed as though a regulator were
3841 * configured.  This allows systems such as those with software
3842 * controllable regulators for the CPU core only to be brought up more
3843 * readily.
3844 */
3845void regulator_use_dummy_regulator(void)
3846{
3847        board_wants_dummy_regulator = true;
3848}
3849EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3850
3851/**
3852 * rdev_get_drvdata - get rdev regulator driver data
3853 * @rdev: regulator
3854 *
3855 * Get rdev regulator driver private data. This call can be used in the
3856 * regulator driver context.
3857 */
3858void *rdev_get_drvdata(struct regulator_dev *rdev)
3859{
3860        return rdev->reg_data;
3861}
3862EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3863
3864/**
3865 * regulator_get_drvdata - get regulator driver data
3866 * @regulator: regulator
3867 *
3868 * Get regulator driver private data. This call can be used in the consumer
3869 * driver context when non API regulator specific functions need to be called.
3870 */
3871void *regulator_get_drvdata(struct regulator *regulator)
3872{
3873        return regulator->rdev->reg_data;
3874}
3875EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3876
3877/**
3878 * regulator_set_drvdata - set regulator driver data
3879 * @regulator: regulator
3880 * @data: data
3881 */
3882void regulator_set_drvdata(struct regulator *regulator, void *data)
3883{
3884        regulator->rdev->reg_data = data;
3885}
3886EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3887
3888/**
3889 * regulator_get_id - get regulator ID
3890 * @rdev: regulator
3891 */
3892int rdev_get_id(struct regulator_dev *rdev)
3893{
3894        return rdev->desc->id;
3895}
3896EXPORT_SYMBOL_GPL(rdev_get_id);
3897
3898struct device *rdev_get_dev(struct regulator_dev *rdev)
3899{
3900        return &rdev->dev;
3901}
3902EXPORT_SYMBOL_GPL(rdev_get_dev);
3903
3904void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3905{
3906        return reg_init_data->driver_data;
3907}
3908EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3909
3910#ifdef CONFIG_DEBUG_FS
3911static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3912                                    size_t count, loff_t *ppos)
3913{
3914        char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3915        ssize_t len, ret = 0;
3916        struct regulator_map *map;
3917
3918        if (!buf)
3919                return -ENOMEM;
3920
3921        list_for_each_entry(map, &regulator_map_list, list) {
3922                len = snprintf(buf + ret, PAGE_SIZE - ret,
3923                               "%s -> %s.%s\n",
3924                               rdev_get_name(map->regulator), map->dev_name,
3925                               map->supply);
3926                if (len >= 0)
3927                        ret += len;
3928                if (ret > PAGE_SIZE) {
3929                        ret = PAGE_SIZE;
3930                        break;
3931                }
3932        }
3933
3934        ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3935
3936        kfree(buf);
3937
3938        return ret;
3939}
3940#endif
3941
3942static const struct file_operations supply_map_fops = {
3943#ifdef CONFIG_DEBUG_FS
3944        .read = supply_map_read_file,
3945        .llseek = default_llseek,
3946#endif
3947};
3948
3949static int __init regulator_init(void)
3950{
3951        int ret;
3952
3953        ret = class_register(&regulator_class);
3954
3955        debugfs_root = debugfs_create_dir("regulator", NULL);
3956        if (!debugfs_root)
3957                pr_warn("regulator: Failed to create debugfs directory\n");
3958
3959        debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3960                            &supply_map_fops);
3961
3962        regulator_dummy_init();
3963
3964        return ret;
3965}
3966
3967/* init early to allow our consumers to complete system booting */
3968core_initcall(regulator_init);
3969
3970static int __init regulator_init_complete(void)
3971{
3972        struct regulator_dev *rdev;
3973        struct regulator_ops *ops;
3974        struct regulation_constraints *c;
3975        int enabled, ret;
3976
3977        /*
3978         * Since DT doesn't provide an idiomatic mechanism for
3979         * enabling full constraints and since it's much more natural
3980         * with DT to provide them just assume that a DT enabled
3981         * system has full constraints.
3982         */
3983        if (of_have_populated_dt())
3984                has_full_constraints = true;
3985
3986        mutex_lock(&regulator_list_mutex);
3987
3988        /* If we have a full configuration then disable any regulators
3989         * which are not in use or always_on.  This will become the
3990         * default behaviour in the future.
3991         */
3992        list_for_each_entry(rdev, &regulator_list, list) {
3993                ops = rdev->desc->ops;
3994                c = rdev->constraints;
3995
3996                if (!ops->disable || (c && c->always_on))
3997                        continue;
3998
3999                mutex_lock(&rdev->mutex);
4000
4001                if (rdev->use_count)
4002                        goto unlock;
4003
4004                /* If we can't read the status assume it's on. */
4005                if (ops->is_enabled)
4006                        enabled = ops->is_enabled(rdev);
4007                else
4008                        enabled = 1;
4009
4010                if (!enabled)
4011                        goto unlock;
4012
4013                if (has_full_constraints) {
4014                        /* We log since this may kill the system if it
4015                         * goes wrong. */
4016                        rdev_info(rdev, "disabling\n");
4017                        ret = ops->disable(rdev);
4018                        if (ret != 0) {
4019                                rdev_err(rdev, "couldn't disable: %d\n", ret);
4020                        }
4021                } else {
4022                        /* The intention is that in future we will
4023                         * assume that full constraints are provided
4024                         * so warn even if we aren't going to do
4025                         * anything here.
4026                         */
4027                        rdev_warn(rdev, "incomplete constraints, leaving on\n");
4028                }
4029
4030unlock:
4031                mutex_unlock(&rdev->mutex);
4032        }
4033
4034        mutex_unlock(&regulator_list_mutex);
4035
4036        return 0;
4037}
4038late_initcall(regulator_init_complete);
4039