linux/fs/f2fs/segment.h
<<
>>
Prefs
   1/*
   2 * fs/f2fs/segment.h
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/blkdev.h>
  12
  13/* constant macro */
  14#define NULL_SEGNO                      ((unsigned int)(~0))
  15#define NULL_SECNO                      ((unsigned int)(~0))
  16
  17/* L: Logical segment # in volume, R: Relative segment # in main area */
  18#define GET_L2R_SEGNO(free_i, segno)    (segno - free_i->start_segno)
  19#define GET_R2L_SEGNO(free_i, segno)    (segno + free_i->start_segno)
  20
  21#define IS_DATASEG(t)                                                   \
  22        ((t == CURSEG_HOT_DATA) || (t == CURSEG_COLD_DATA) ||           \
  23        (t == CURSEG_WARM_DATA))
  24
  25#define IS_NODESEG(t)                                                   \
  26        ((t == CURSEG_HOT_NODE) || (t == CURSEG_COLD_NODE) ||           \
  27        (t == CURSEG_WARM_NODE))
  28
  29#define IS_CURSEG(sbi, seg)                                             \
  30        ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||      \
  31         (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||     \
  32         (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||     \
  33         (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||      \
  34         (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||     \
  35         (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
  36
  37#define IS_CURSEC(sbi, secno)                                           \
  38        ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /              \
  39          sbi->segs_per_sec) || \
  40         (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /             \
  41          sbi->segs_per_sec) || \
  42         (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /             \
  43          sbi->segs_per_sec) || \
  44         (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /              \
  45          sbi->segs_per_sec) || \
  46         (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /             \
  47          sbi->segs_per_sec) || \
  48         (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /             \
  49          sbi->segs_per_sec))   \
  50
  51#define START_BLOCK(sbi, segno)                                         \
  52        (SM_I(sbi)->seg0_blkaddr +                                      \
  53         (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
  54#define NEXT_FREE_BLKADDR(sbi, curseg)                                  \
  55        (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
  56
  57#define MAIN_BASE_BLOCK(sbi)    (SM_I(sbi)->main_blkaddr)
  58
  59#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)                             \
  60        ((blk_addr) - SM_I(sbi)->seg0_blkaddr)
  61#define GET_SEGNO_FROM_SEG0(sbi, blk_addr)                              \
  62        (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
  63#define GET_SEGNO(sbi, blk_addr)                                        \
  64        (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ?          \
  65        NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),                 \
  66                GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
  67#define GET_SECNO(sbi, segno)                                   \
  68        ((segno) / sbi->segs_per_sec)
  69#define GET_ZONENO_FROM_SEGNO(sbi, segno)                               \
  70        ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
  71
  72#define GET_SUM_BLOCK(sbi, segno)                               \
  73        ((sbi->sm_info->ssa_blkaddr) + segno)
  74
  75#define GET_SUM_TYPE(footer) ((footer)->entry_type)
  76#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
  77
  78#define SIT_ENTRY_OFFSET(sit_i, segno)                                  \
  79        (segno % sit_i->sents_per_block)
  80#define SIT_BLOCK_OFFSET(sit_i, segno)                                  \
  81        (segno / SIT_ENTRY_PER_BLOCK)
  82#define START_SEGNO(sit_i, segno)               \
  83        (SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK)
  84#define f2fs_bitmap_size(nr)                    \
  85        (BITS_TO_LONGS(nr) * sizeof(unsigned long))
  86#define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments)
  87#define TOTAL_SECS(sbi) (sbi->total_sections)
  88
  89#define SECTOR_FROM_BLOCK(sbi, blk_addr)                                \
  90        (blk_addr << ((sbi)->log_blocksize - F2FS_LOG_SECTOR_SIZE))
  91#define SECTOR_TO_BLOCK(sbi, sectors)                                   \
  92        (sectors >> ((sbi)->log_blocksize - F2FS_LOG_SECTOR_SIZE))
  93
  94/* during checkpoint, bio_private is used to synchronize the last bio */
  95struct bio_private {
  96        struct f2fs_sb_info *sbi;
  97        bool is_sync;
  98        void *wait;
  99};
 100
 101/*
 102 * indicate a block allocation direction: RIGHT and LEFT.
 103 * RIGHT means allocating new sections towards the end of volume.
 104 * LEFT means the opposite direction.
 105 */
 106enum {
 107        ALLOC_RIGHT = 0,
 108        ALLOC_LEFT
 109};
 110
 111/*
 112 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
 113 * LFS writes data sequentially with cleaning operations.
 114 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
 115 */
 116enum {
 117        LFS = 0,
 118        SSR
 119};
 120
 121/*
 122 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
 123 * GC_CB is based on cost-benefit algorithm.
 124 * GC_GREEDY is based on greedy algorithm.
 125 */
 126enum {
 127        GC_CB = 0,
 128        GC_GREEDY
 129};
 130
 131/*
 132 * BG_GC means the background cleaning job.
 133 * FG_GC means the on-demand cleaning job.
 134 */
 135enum {
 136        BG_GC = 0,
 137        FG_GC
 138};
 139
 140/* for a function parameter to select a victim segment */
 141struct victim_sel_policy {
 142        int alloc_mode;                 /* LFS or SSR */
 143        int gc_mode;                    /* GC_CB or GC_GREEDY */
 144        unsigned long *dirty_segmap;    /* dirty segment bitmap */
 145        unsigned int offset;            /* last scanned bitmap offset */
 146        unsigned int ofs_unit;          /* bitmap search unit */
 147        unsigned int min_cost;          /* minimum cost */
 148        unsigned int min_segno;         /* segment # having min. cost */
 149};
 150
 151struct seg_entry {
 152        unsigned short valid_blocks;    /* # of valid blocks */
 153        unsigned char *cur_valid_map;   /* validity bitmap of blocks */
 154        /*
 155         * # of valid blocks and the validity bitmap stored in the the last
 156         * checkpoint pack. This information is used by the SSR mode.
 157         */
 158        unsigned short ckpt_valid_blocks;
 159        unsigned char *ckpt_valid_map;
 160        unsigned char type;             /* segment type like CURSEG_XXX_TYPE */
 161        unsigned long long mtime;       /* modification time of the segment */
 162};
 163
 164struct sec_entry {
 165        unsigned int valid_blocks;      /* # of valid blocks in a section */
 166};
 167
 168struct segment_allocation {
 169        void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
 170};
 171
 172struct sit_info {
 173        const struct segment_allocation *s_ops;
 174
 175        block_t sit_base_addr;          /* start block address of SIT area */
 176        block_t sit_blocks;             /* # of blocks used by SIT area */
 177        block_t written_valid_blocks;   /* # of valid blocks in main area */
 178        char *sit_bitmap;               /* SIT bitmap pointer */
 179        unsigned int bitmap_size;       /* SIT bitmap size */
 180
 181        unsigned long *dirty_sentries_bitmap;   /* bitmap for dirty sentries */
 182        unsigned int dirty_sentries;            /* # of dirty sentries */
 183        unsigned int sents_per_block;           /* # of SIT entries per block */
 184        struct mutex sentry_lock;               /* to protect SIT cache */
 185        struct seg_entry *sentries;             /* SIT segment-level cache */
 186        struct sec_entry *sec_entries;          /* SIT section-level cache */
 187
 188        /* for cost-benefit algorithm in cleaning procedure */
 189        unsigned long long elapsed_time;        /* elapsed time after mount */
 190        unsigned long long mounted_time;        /* mount time */
 191        unsigned long long min_mtime;           /* min. modification time */
 192        unsigned long long max_mtime;           /* max. modification time */
 193};
 194
 195struct free_segmap_info {
 196        unsigned int start_segno;       /* start segment number logically */
 197        unsigned int free_segments;     /* # of free segments */
 198        unsigned int free_sections;     /* # of free sections */
 199        rwlock_t segmap_lock;           /* free segmap lock */
 200        unsigned long *free_segmap;     /* free segment bitmap */
 201        unsigned long *free_secmap;     /* free section bitmap */
 202};
 203
 204/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
 205enum dirty_type {
 206        DIRTY_HOT_DATA,         /* dirty segments assigned as hot data logs */
 207        DIRTY_WARM_DATA,        /* dirty segments assigned as warm data logs */
 208        DIRTY_COLD_DATA,        /* dirty segments assigned as cold data logs */
 209        DIRTY_HOT_NODE,         /* dirty segments assigned as hot node logs */
 210        DIRTY_WARM_NODE,        /* dirty segments assigned as warm node logs */
 211        DIRTY_COLD_NODE,        /* dirty segments assigned as cold node logs */
 212        DIRTY,                  /* to count # of dirty segments */
 213        PRE,                    /* to count # of entirely obsolete segments */
 214        NR_DIRTY_TYPE
 215};
 216
 217struct dirty_seglist_info {
 218        const struct victim_selection *v_ops;   /* victim selction operation */
 219        unsigned long *dirty_segmap[NR_DIRTY_TYPE];
 220        struct mutex seglist_lock;              /* lock for segment bitmaps */
 221        int nr_dirty[NR_DIRTY_TYPE];            /* # of dirty segments */
 222        unsigned long *victim_secmap;           /* background GC victims */
 223};
 224
 225/* victim selection function for cleaning and SSR */
 226struct victim_selection {
 227        int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
 228                                                        int, int, char);
 229};
 230
 231/* for active log information */
 232struct curseg_info {
 233        struct mutex curseg_mutex;              /* lock for consistency */
 234        struct f2fs_summary_block *sum_blk;     /* cached summary block */
 235        unsigned char alloc_type;               /* current allocation type */
 236        unsigned int segno;                     /* current segment number */
 237        unsigned short next_blkoff;             /* next block offset to write */
 238        unsigned int zone;                      /* current zone number */
 239        unsigned int next_segno;                /* preallocated segment */
 240};
 241
 242/*
 243 * inline functions
 244 */
 245static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
 246{
 247        return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
 248}
 249
 250static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
 251                                                unsigned int segno)
 252{
 253        struct sit_info *sit_i = SIT_I(sbi);
 254        return &sit_i->sentries[segno];
 255}
 256
 257static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
 258                                                unsigned int segno)
 259{
 260        struct sit_info *sit_i = SIT_I(sbi);
 261        return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
 262}
 263
 264static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
 265                                unsigned int segno, int section)
 266{
 267        /*
 268         * In order to get # of valid blocks in a section instantly from many
 269         * segments, f2fs manages two counting structures separately.
 270         */
 271        if (section > 1)
 272                return get_sec_entry(sbi, segno)->valid_blocks;
 273        else
 274                return get_seg_entry(sbi, segno)->valid_blocks;
 275}
 276
 277static inline void seg_info_from_raw_sit(struct seg_entry *se,
 278                                        struct f2fs_sit_entry *rs)
 279{
 280        se->valid_blocks = GET_SIT_VBLOCKS(rs);
 281        se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
 282        memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
 283        memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
 284        se->type = GET_SIT_TYPE(rs);
 285        se->mtime = le64_to_cpu(rs->mtime);
 286}
 287
 288static inline void seg_info_to_raw_sit(struct seg_entry *se,
 289                                        struct f2fs_sit_entry *rs)
 290{
 291        unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
 292                                        se->valid_blocks;
 293        rs->vblocks = cpu_to_le16(raw_vblocks);
 294        memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
 295        memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
 296        se->ckpt_valid_blocks = se->valid_blocks;
 297        rs->mtime = cpu_to_le64(se->mtime);
 298}
 299
 300static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
 301                unsigned int max, unsigned int segno)
 302{
 303        unsigned int ret;
 304        read_lock(&free_i->segmap_lock);
 305        ret = find_next_bit(free_i->free_segmap, max, segno);
 306        read_unlock(&free_i->segmap_lock);
 307        return ret;
 308}
 309
 310static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
 311{
 312        struct free_segmap_info *free_i = FREE_I(sbi);
 313        unsigned int secno = segno / sbi->segs_per_sec;
 314        unsigned int start_segno = secno * sbi->segs_per_sec;
 315        unsigned int next;
 316
 317        write_lock(&free_i->segmap_lock);
 318        clear_bit(segno, free_i->free_segmap);
 319        free_i->free_segments++;
 320
 321        next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno);
 322        if (next >= start_segno + sbi->segs_per_sec) {
 323                clear_bit(secno, free_i->free_secmap);
 324                free_i->free_sections++;
 325        }
 326        write_unlock(&free_i->segmap_lock);
 327}
 328
 329static inline void __set_inuse(struct f2fs_sb_info *sbi,
 330                unsigned int segno)
 331{
 332        struct free_segmap_info *free_i = FREE_I(sbi);
 333        unsigned int secno = segno / sbi->segs_per_sec;
 334        set_bit(segno, free_i->free_segmap);
 335        free_i->free_segments--;
 336        if (!test_and_set_bit(secno, free_i->free_secmap))
 337                free_i->free_sections--;
 338}
 339
 340static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
 341                unsigned int segno)
 342{
 343        struct free_segmap_info *free_i = FREE_I(sbi);
 344        unsigned int secno = segno / sbi->segs_per_sec;
 345        unsigned int start_segno = secno * sbi->segs_per_sec;
 346        unsigned int next;
 347
 348        write_lock(&free_i->segmap_lock);
 349        if (test_and_clear_bit(segno, free_i->free_segmap)) {
 350                free_i->free_segments++;
 351
 352                next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi),
 353                                                                start_segno);
 354                if (next >= start_segno + sbi->segs_per_sec) {
 355                        if (test_and_clear_bit(secno, free_i->free_secmap))
 356                                free_i->free_sections++;
 357                }
 358        }
 359        write_unlock(&free_i->segmap_lock);
 360}
 361
 362static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
 363                unsigned int segno)
 364{
 365        struct free_segmap_info *free_i = FREE_I(sbi);
 366        unsigned int secno = segno / sbi->segs_per_sec;
 367        write_lock(&free_i->segmap_lock);
 368        if (!test_and_set_bit(segno, free_i->free_segmap)) {
 369                free_i->free_segments--;
 370                if (!test_and_set_bit(secno, free_i->free_secmap))
 371                        free_i->free_sections--;
 372        }
 373        write_unlock(&free_i->segmap_lock);
 374}
 375
 376static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
 377                void *dst_addr)
 378{
 379        struct sit_info *sit_i = SIT_I(sbi);
 380        memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
 381}
 382
 383static inline block_t written_block_count(struct f2fs_sb_info *sbi)
 384{
 385        struct sit_info *sit_i = SIT_I(sbi);
 386        block_t vblocks;
 387
 388        mutex_lock(&sit_i->sentry_lock);
 389        vblocks = sit_i->written_valid_blocks;
 390        mutex_unlock(&sit_i->sentry_lock);
 391
 392        return vblocks;
 393}
 394
 395static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
 396{
 397        struct free_segmap_info *free_i = FREE_I(sbi);
 398        unsigned int free_segs;
 399
 400        read_lock(&free_i->segmap_lock);
 401        free_segs = free_i->free_segments;
 402        read_unlock(&free_i->segmap_lock);
 403
 404        return free_segs;
 405}
 406
 407static inline int reserved_segments(struct f2fs_sb_info *sbi)
 408{
 409        return SM_I(sbi)->reserved_segments;
 410}
 411
 412static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
 413{
 414        struct free_segmap_info *free_i = FREE_I(sbi);
 415        unsigned int free_secs;
 416
 417        read_lock(&free_i->segmap_lock);
 418        free_secs = free_i->free_sections;
 419        read_unlock(&free_i->segmap_lock);
 420
 421        return free_secs;
 422}
 423
 424static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
 425{
 426        return DIRTY_I(sbi)->nr_dirty[PRE];
 427}
 428
 429static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
 430{
 431        return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
 432                DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
 433                DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
 434                DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
 435                DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
 436                DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
 437}
 438
 439static inline int overprovision_segments(struct f2fs_sb_info *sbi)
 440{
 441        return SM_I(sbi)->ovp_segments;
 442}
 443
 444static inline int overprovision_sections(struct f2fs_sb_info *sbi)
 445{
 446        return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
 447}
 448
 449static inline int reserved_sections(struct f2fs_sb_info *sbi)
 450{
 451        return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
 452}
 453
 454static inline bool need_SSR(struct f2fs_sb_info *sbi)
 455{
 456        return (free_sections(sbi) < overprovision_sections(sbi));
 457}
 458
 459static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
 460{
 461        int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
 462        int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
 463
 464        if (sbi->por_doing)
 465                return false;
 466
 467        return ((free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
 468                                                reserved_sections(sbi)));
 469}
 470
 471static inline int utilization(struct f2fs_sb_info *sbi)
 472{
 473        return div_u64(valid_user_blocks(sbi) * 100, sbi->user_block_count);
 474}
 475
 476/*
 477 * Sometimes f2fs may be better to drop out-of-place update policy.
 478 * So, if fs utilization is over MIN_IPU_UTIL, then f2fs tries to write
 479 * data in the original place likewise other traditional file systems.
 480 * But, currently set 100 in percentage, which means it is disabled.
 481 * See below need_inplace_update().
 482 */
 483#define MIN_IPU_UTIL            100
 484static inline bool need_inplace_update(struct inode *inode)
 485{
 486        struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
 487        if (S_ISDIR(inode->i_mode))
 488                return false;
 489        if (need_SSR(sbi) && utilization(sbi) > MIN_IPU_UTIL)
 490                return true;
 491        return false;
 492}
 493
 494static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
 495                int type)
 496{
 497        struct curseg_info *curseg = CURSEG_I(sbi, type);
 498        return curseg->segno;
 499}
 500
 501static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
 502                int type)
 503{
 504        struct curseg_info *curseg = CURSEG_I(sbi, type);
 505        return curseg->alloc_type;
 506}
 507
 508static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
 509{
 510        struct curseg_info *curseg = CURSEG_I(sbi, type);
 511        return curseg->next_blkoff;
 512}
 513
 514static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
 515{
 516        unsigned int end_segno = SM_I(sbi)->segment_count - 1;
 517        BUG_ON(segno > end_segno);
 518}
 519
 520/*
 521 * This function is used for only debugging.
 522 * NOTE: In future, we have to remove this function.
 523 */
 524static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
 525{
 526        struct f2fs_sm_info *sm_info = SM_I(sbi);
 527        block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg;
 528        block_t start_addr = sm_info->seg0_blkaddr;
 529        block_t end_addr = start_addr + total_blks - 1;
 530        BUG_ON(blk_addr < start_addr);
 531        BUG_ON(blk_addr > end_addr);
 532}
 533
 534/*
 535 * Summary block is always treated as invalid block
 536 */
 537static inline void check_block_count(struct f2fs_sb_info *sbi,
 538                int segno, struct f2fs_sit_entry *raw_sit)
 539{
 540        struct f2fs_sm_info *sm_info = SM_I(sbi);
 541        unsigned int end_segno = sm_info->segment_count - 1;
 542        int valid_blocks = 0;
 543        int i;
 544
 545        /* check segment usage */
 546        BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
 547
 548        /* check boundary of a given segment number */
 549        BUG_ON(segno > end_segno);
 550
 551        /* check bitmap with valid block count */
 552        for (i = 0; i < sbi->blocks_per_seg; i++)
 553                if (f2fs_test_bit(i, raw_sit->valid_map))
 554                        valid_blocks++;
 555        BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
 556}
 557
 558static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
 559                                                unsigned int start)
 560{
 561        struct sit_info *sit_i = SIT_I(sbi);
 562        unsigned int offset = SIT_BLOCK_OFFSET(sit_i, start);
 563        block_t blk_addr = sit_i->sit_base_addr + offset;
 564
 565        check_seg_range(sbi, start);
 566
 567        /* calculate sit block address */
 568        if (f2fs_test_bit(offset, sit_i->sit_bitmap))
 569                blk_addr += sit_i->sit_blocks;
 570
 571        return blk_addr;
 572}
 573
 574static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
 575                                                pgoff_t block_addr)
 576{
 577        struct sit_info *sit_i = SIT_I(sbi);
 578        block_addr -= sit_i->sit_base_addr;
 579        if (block_addr < sit_i->sit_blocks)
 580                block_addr += sit_i->sit_blocks;
 581        else
 582                block_addr -= sit_i->sit_blocks;
 583
 584        return block_addr + sit_i->sit_base_addr;
 585}
 586
 587static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
 588{
 589        unsigned int block_off = SIT_BLOCK_OFFSET(sit_i, start);
 590
 591        if (f2fs_test_bit(block_off, sit_i->sit_bitmap))
 592                f2fs_clear_bit(block_off, sit_i->sit_bitmap);
 593        else
 594                f2fs_set_bit(block_off, sit_i->sit_bitmap);
 595}
 596
 597static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
 598{
 599        struct sit_info *sit_i = SIT_I(sbi);
 600        return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
 601                                                sit_i->mounted_time;
 602}
 603
 604static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
 605                        unsigned int ofs_in_node, unsigned char version)
 606{
 607        sum->nid = cpu_to_le32(nid);
 608        sum->ofs_in_node = cpu_to_le16(ofs_in_node);
 609        sum->version = version;
 610}
 611
 612static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
 613{
 614        return __start_cp_addr(sbi) +
 615                le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
 616}
 617
 618static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
 619{
 620        return __start_cp_addr(sbi) +
 621                le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
 622                                - (base + 1) + type;
 623}
 624
 625static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
 626{
 627        if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
 628                return true;
 629        return false;
 630}
 631
 632static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
 633{
 634        struct block_device *bdev = sbi->sb->s_bdev;
 635        struct request_queue *q = bdev_get_queue(bdev);
 636        return SECTOR_TO_BLOCK(sbi, queue_max_sectors(q));
 637}
 638