linux/arch/arm/vfp/vfpmodule.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/arm/vfp/vfpmodule.c
   3 *
   4 *  Copyright (C) 2004 ARM Limited.
   5 *  Written by Deep Blue Solutions Limited.
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/types.h>
  12#include <linux/cpu.h>
  13#include <linux/cpu_pm.h>
  14#include <linux/hardirq.h>
  15#include <linux/kernel.h>
  16#include <linux/notifier.h>
  17#include <linux/signal.h>
  18#include <linux/sched/signal.h>
  19#include <linux/smp.h>
  20#include <linux/init.h>
  21#include <linux/uaccess.h>
  22#include <linux/user.h>
  23#include <linux/export.h>
  24
  25#include <asm/cp15.h>
  26#include <asm/cputype.h>
  27#include <asm/system_info.h>
  28#include <asm/thread_notify.h>
  29#include <asm/vfp.h>
  30
  31#include "vfpinstr.h"
  32#include "vfp.h"
  33
  34/*
  35 * Our undef handlers (in entry.S)
  36 */
  37asmlinkage void vfp_testing_entry(void);
  38asmlinkage void vfp_support_entry(void);
  39asmlinkage void vfp_null_entry(void);
  40
  41asmlinkage void (*vfp_vector)(void) = vfp_null_entry;
  42
  43/*
  44 * Dual-use variable.
  45 * Used in startup: set to non-zero if VFP checks fail
  46 * After startup, holds VFP architecture
  47 */
  48unsigned int VFP_arch;
  49
  50/*
  51 * The pointer to the vfpstate structure of the thread which currently
  52 * owns the context held in the VFP hardware, or NULL if the hardware
  53 * context is invalid.
  54 *
  55 * For UP, this is sufficient to tell which thread owns the VFP context.
  56 * However, for SMP, we also need to check the CPU number stored in the
  57 * saved state too to catch migrations.
  58 */
  59union vfp_state *vfp_current_hw_state[NR_CPUS];
  60
  61/*
  62 * Is 'thread's most up to date state stored in this CPUs hardware?
  63 * Must be called from non-preemptible context.
  64 */
  65static bool vfp_state_in_hw(unsigned int cpu, struct thread_info *thread)
  66{
  67#ifdef CONFIG_SMP
  68        if (thread->vfpstate.hard.cpu != cpu)
  69                return false;
  70#endif
  71        return vfp_current_hw_state[cpu] == &thread->vfpstate;
  72}
  73
  74/*
  75 * Force a reload of the VFP context from the thread structure.  We do
  76 * this by ensuring that access to the VFP hardware is disabled, and
  77 * clear vfp_current_hw_state.  Must be called from non-preemptible context.
  78 */
  79static void vfp_force_reload(unsigned int cpu, struct thread_info *thread)
  80{
  81        if (vfp_state_in_hw(cpu, thread)) {
  82                fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
  83                vfp_current_hw_state[cpu] = NULL;
  84        }
  85#ifdef CONFIG_SMP
  86        thread->vfpstate.hard.cpu = NR_CPUS;
  87#endif
  88}
  89
  90/*
  91 * Per-thread VFP initialization.
  92 */
  93static void vfp_thread_flush(struct thread_info *thread)
  94{
  95        union vfp_state *vfp = &thread->vfpstate;
  96        unsigned int cpu;
  97
  98        /*
  99         * Disable VFP to ensure we initialize it first.  We must ensure
 100         * that the modification of vfp_current_hw_state[] and hardware
 101         * disable are done for the same CPU and without preemption.
 102         *
 103         * Do this first to ensure that preemption won't overwrite our
 104         * state saving should access to the VFP be enabled at this point.
 105         */
 106        cpu = get_cpu();
 107        if (vfp_current_hw_state[cpu] == vfp)
 108                vfp_current_hw_state[cpu] = NULL;
 109        fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
 110        put_cpu();
 111
 112        memset(vfp, 0, sizeof(union vfp_state));
 113
 114        vfp->hard.fpexc = FPEXC_EN;
 115        vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
 116#ifdef CONFIG_SMP
 117        vfp->hard.cpu = NR_CPUS;
 118#endif
 119}
 120
 121static void vfp_thread_exit(struct thread_info *thread)
 122{
 123        /* release case: Per-thread VFP cleanup. */
 124        union vfp_state *vfp = &thread->vfpstate;
 125        unsigned int cpu = get_cpu();
 126
 127        if (vfp_current_hw_state[cpu] == vfp)
 128                vfp_current_hw_state[cpu] = NULL;
 129        put_cpu();
 130}
 131
 132static void vfp_thread_copy(struct thread_info *thread)
 133{
 134        struct thread_info *parent = current_thread_info();
 135
 136        vfp_sync_hwstate(parent);
 137        thread->vfpstate = parent->vfpstate;
 138#ifdef CONFIG_SMP
 139        thread->vfpstate.hard.cpu = NR_CPUS;
 140#endif
 141}
 142
 143/*
 144 * When this function is called with the following 'cmd's, the following
 145 * is true while this function is being run:
 146 *  THREAD_NOFTIFY_SWTICH:
 147 *   - the previously running thread will not be scheduled onto another CPU.
 148 *   - the next thread to be run (v) will not be running on another CPU.
 149 *   - thread->cpu is the local CPU number
 150 *   - not preemptible as we're called in the middle of a thread switch
 151 *  THREAD_NOTIFY_FLUSH:
 152 *   - the thread (v) will be running on the local CPU, so
 153 *      v === current_thread_info()
 154 *   - thread->cpu is the local CPU number at the time it is accessed,
 155 *      but may change at any time.
 156 *   - we could be preempted if tree preempt rcu is enabled, so
 157 *      it is unsafe to use thread->cpu.
 158 *  THREAD_NOTIFY_EXIT
 159 *   - we could be preempted if tree preempt rcu is enabled, so
 160 *      it is unsafe to use thread->cpu.
 161 */
 162static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
 163{
 164        struct thread_info *thread = v;
 165        u32 fpexc;
 166#ifdef CONFIG_SMP
 167        unsigned int cpu;
 168#endif
 169
 170        switch (cmd) {
 171        case THREAD_NOTIFY_SWITCH:
 172                fpexc = fmrx(FPEXC);
 173
 174#ifdef CONFIG_SMP
 175                cpu = thread->cpu;
 176
 177                /*
 178                 * On SMP, if VFP is enabled, save the old state in
 179                 * case the thread migrates to a different CPU. The
 180                 * restoring is done lazily.
 181                 */
 182                if ((fpexc & FPEXC_EN) && vfp_current_hw_state[cpu])
 183                        vfp_save_state(vfp_current_hw_state[cpu], fpexc);
 184#endif
 185
 186                /*
 187                 * Always disable VFP so we can lazily save/restore the
 188                 * old state.
 189                 */
 190                fmxr(FPEXC, fpexc & ~FPEXC_EN);
 191                break;
 192
 193        case THREAD_NOTIFY_FLUSH:
 194                vfp_thread_flush(thread);
 195                break;
 196
 197        case THREAD_NOTIFY_EXIT:
 198                vfp_thread_exit(thread);
 199                break;
 200
 201        case THREAD_NOTIFY_COPY:
 202                vfp_thread_copy(thread);
 203                break;
 204        }
 205
 206        return NOTIFY_DONE;
 207}
 208
 209static struct notifier_block vfp_notifier_block = {
 210        .notifier_call  = vfp_notifier,
 211};
 212
 213/*
 214 * Raise a SIGFPE for the current process.
 215 * sicode describes the signal being raised.
 216 */
 217static void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
 218{
 219        /*
 220         * This is the same as NWFPE, because it's not clear what
 221         * this is used for
 222         */
 223        current->thread.error_code = 0;
 224        current->thread.trap_no = 6;
 225
 226        send_sig_fault(SIGFPE, sicode,
 227                       (void __user *)(instruction_pointer(regs) - 4),
 228                       current);
 229}
 230
 231static void vfp_panic(char *reason, u32 inst)
 232{
 233        int i;
 234
 235        pr_err("VFP: Error: %s\n", reason);
 236        pr_err("VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
 237                fmrx(FPEXC), fmrx(FPSCR), inst);
 238        for (i = 0; i < 32; i += 2)
 239                pr_err("VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
 240                       i, vfp_get_float(i), i+1, vfp_get_float(i+1));
 241}
 242
 243/*
 244 * Process bitmask of exception conditions.
 245 */
 246static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
 247{
 248        int si_code = 0;
 249
 250        pr_debug("VFP: raising exceptions %08x\n", exceptions);
 251
 252        if (exceptions == VFP_EXCEPTION_ERROR) {
 253                vfp_panic("unhandled bounce", inst);
 254                vfp_raise_sigfpe(FPE_FLTINV, regs);
 255                return;
 256        }
 257
 258        /*
 259         * If any of the status flags are set, update the FPSCR.
 260         * Comparison instructions always return at least one of
 261         * these flags set.
 262         */
 263        if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
 264                fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
 265
 266        fpscr |= exceptions;
 267
 268        fmxr(FPSCR, fpscr);
 269
 270#define RAISE(stat,en,sig)                              \
 271        if (exceptions & stat && fpscr & en)            \
 272                si_code = sig;
 273
 274        /*
 275         * These are arranged in priority order, least to highest.
 276         */
 277        RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
 278        RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
 279        RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
 280        RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
 281        RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
 282
 283        if (si_code)
 284                vfp_raise_sigfpe(si_code, regs);
 285}
 286
 287/*
 288 * Emulate a VFP instruction.
 289 */
 290static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
 291{
 292        u32 exceptions = VFP_EXCEPTION_ERROR;
 293
 294        pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
 295
 296        if (INST_CPRTDO(inst)) {
 297                if (!INST_CPRT(inst)) {
 298                        /*
 299                         * CPDO
 300                         */
 301                        if (vfp_single(inst)) {
 302                                exceptions = vfp_single_cpdo(inst, fpscr);
 303                        } else {
 304                                exceptions = vfp_double_cpdo(inst, fpscr);
 305                        }
 306                } else {
 307                        /*
 308                         * A CPRT instruction can not appear in FPINST2, nor
 309                         * can it cause an exception.  Therefore, we do not
 310                         * have to emulate it.
 311                         */
 312                }
 313        } else {
 314                /*
 315                 * A CPDT instruction can not appear in FPINST2, nor can
 316                 * it cause an exception.  Therefore, we do not have to
 317                 * emulate it.
 318                 */
 319        }
 320        return exceptions & ~VFP_NAN_FLAG;
 321}
 322
 323/*
 324 * Package up a bounce condition.
 325 */
 326void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
 327{
 328        u32 fpscr, orig_fpscr, fpsid, exceptions;
 329
 330        pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
 331
 332        /*
 333         * At this point, FPEXC can have the following configuration:
 334         *
 335         *  EX DEX IXE
 336         *  0   1   x   - synchronous exception
 337         *  1   x   0   - asynchronous exception
 338         *  1   x   1   - sychronous on VFP subarch 1 and asynchronous on later
 339         *  0   0   1   - synchronous on VFP9 (non-standard subarch 1
 340         *                implementation), undefined otherwise
 341         *
 342         * Clear various bits and enable access to the VFP so we can
 343         * handle the bounce.
 344         */
 345        fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK));
 346
 347        fpsid = fmrx(FPSID);
 348        orig_fpscr = fpscr = fmrx(FPSCR);
 349
 350        /*
 351         * Check for the special VFP subarch 1 and FPSCR.IXE bit case
 352         */
 353        if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)
 354            && (fpscr & FPSCR_IXE)) {
 355                /*
 356                 * Synchronous exception, emulate the trigger instruction
 357                 */
 358                goto emulate;
 359        }
 360
 361        if (fpexc & FPEXC_EX) {
 362#ifndef CONFIG_CPU_FEROCEON
 363                /*
 364                 * Asynchronous exception. The instruction is read from FPINST
 365                 * and the interrupted instruction has to be restarted.
 366                 */
 367                trigger = fmrx(FPINST);
 368                regs->ARM_pc -= 4;
 369#endif
 370        } else if (!(fpexc & FPEXC_DEX)) {
 371                /*
 372                 * Illegal combination of bits. It can be caused by an
 373                 * unallocated VFP instruction but with FPSCR.IXE set and not
 374                 * on VFP subarch 1.
 375                 */
 376                 vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);
 377                goto exit;
 378        }
 379
 380        /*
 381         * Modify fpscr to indicate the number of iterations remaining.
 382         * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
 383         * whether FPEXC.VECITR or FPSCR.LEN is used.
 384         */
 385        if (fpexc & (FPEXC_EX | FPEXC_VV)) {
 386                u32 len;
 387
 388                len = fpexc + (1 << FPEXC_LENGTH_BIT);
 389
 390                fpscr &= ~FPSCR_LENGTH_MASK;
 391                fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
 392        }
 393
 394        /*
 395         * Handle the first FP instruction.  We used to take note of the
 396         * FPEXC bounce reason, but this appears to be unreliable.
 397         * Emulate the bounced instruction instead.
 398         */
 399        exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
 400        if (exceptions)
 401                vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
 402
 403        /*
 404         * If there isn't a second FP instruction, exit now. Note that
 405         * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
 406         */
 407        if ((fpexc & (FPEXC_EX | FPEXC_FP2V)) != (FPEXC_EX | FPEXC_FP2V))
 408                goto exit;
 409
 410        /*
 411         * The barrier() here prevents fpinst2 being read
 412         * before the condition above.
 413         */
 414        barrier();
 415        trigger = fmrx(FPINST2);
 416
 417 emulate:
 418        exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
 419        if (exceptions)
 420                vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
 421 exit:
 422        preempt_enable();
 423}
 424
 425static void vfp_enable(void *unused)
 426{
 427        u32 access;
 428
 429        BUG_ON(preemptible());
 430        access = get_copro_access();
 431
 432        /*
 433         * Enable full access to VFP (cp10 and cp11)
 434         */
 435        set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
 436}
 437
 438/* Called by platforms on which we want to disable VFP because it may not be
 439 * present on all CPUs within a SMP complex. Needs to be called prior to
 440 * vfp_init().
 441 */
 442void vfp_disable(void)
 443{
 444        if (VFP_arch) {
 445                pr_debug("%s: should be called prior to vfp_init\n", __func__);
 446                return;
 447        }
 448        VFP_arch = 1;
 449}
 450
 451#ifdef CONFIG_CPU_PM
 452static int vfp_pm_suspend(void)
 453{
 454        struct thread_info *ti = current_thread_info();
 455        u32 fpexc = fmrx(FPEXC);
 456
 457        /* if vfp is on, then save state for resumption */
 458        if (fpexc & FPEXC_EN) {
 459                pr_debug("%s: saving vfp state\n", __func__);
 460                vfp_save_state(&ti->vfpstate, fpexc);
 461
 462                /* disable, just in case */
 463                fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
 464        } else if (vfp_current_hw_state[ti->cpu]) {
 465#ifndef CONFIG_SMP
 466                fmxr(FPEXC, fpexc | FPEXC_EN);
 467                vfp_save_state(vfp_current_hw_state[ti->cpu], fpexc);
 468                fmxr(FPEXC, fpexc);
 469#endif
 470        }
 471
 472        /* clear any information we had about last context state */
 473        vfp_current_hw_state[ti->cpu] = NULL;
 474
 475        return 0;
 476}
 477
 478static void vfp_pm_resume(void)
 479{
 480        /* ensure we have access to the vfp */
 481        vfp_enable(NULL);
 482
 483        /* and disable it to ensure the next usage restores the state */
 484        fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
 485}
 486
 487static int vfp_cpu_pm_notifier(struct notifier_block *self, unsigned long cmd,
 488        void *v)
 489{
 490        switch (cmd) {
 491        case CPU_PM_ENTER:
 492                vfp_pm_suspend();
 493                break;
 494        case CPU_PM_ENTER_FAILED:
 495        case CPU_PM_EXIT:
 496                vfp_pm_resume();
 497                break;
 498        }
 499        return NOTIFY_OK;
 500}
 501
 502static struct notifier_block vfp_cpu_pm_notifier_block = {
 503        .notifier_call = vfp_cpu_pm_notifier,
 504};
 505
 506static void vfp_pm_init(void)
 507{
 508        cpu_pm_register_notifier(&vfp_cpu_pm_notifier_block);
 509}
 510
 511#else
 512static inline void vfp_pm_init(void) { }
 513#endif /* CONFIG_CPU_PM */
 514
 515/*
 516 * Ensure that the VFP state stored in 'thread->vfpstate' is up to date
 517 * with the hardware state.
 518 */
 519void vfp_sync_hwstate(struct thread_info *thread)
 520{
 521        unsigned int cpu = get_cpu();
 522
 523        if (vfp_state_in_hw(cpu, thread)) {
 524                u32 fpexc = fmrx(FPEXC);
 525
 526                /*
 527                 * Save the last VFP state on this CPU.
 528                 */
 529                fmxr(FPEXC, fpexc | FPEXC_EN);
 530                vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN);
 531                fmxr(FPEXC, fpexc);
 532        }
 533
 534        put_cpu();
 535}
 536
 537/* Ensure that the thread reloads the hardware VFP state on the next use. */
 538void vfp_flush_hwstate(struct thread_info *thread)
 539{
 540        unsigned int cpu = get_cpu();
 541
 542        vfp_force_reload(cpu, thread);
 543
 544        put_cpu();
 545}
 546
 547/*
 548 * Save the current VFP state into the provided structures and prepare
 549 * for entry into a new function (signal handler).
 550 */
 551int vfp_preserve_user_clear_hwstate(struct user_vfp __user *ufp,
 552                                    struct user_vfp_exc __user *ufp_exc)
 553{
 554        struct thread_info *thread = current_thread_info();
 555        struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
 556        int err = 0;
 557
 558        /* Ensure that the saved hwstate is up-to-date. */
 559        vfp_sync_hwstate(thread);
 560
 561        /*
 562         * Copy the floating point registers. There can be unused
 563         * registers see asm/hwcap.h for details.
 564         */
 565        err |= __copy_to_user(&ufp->fpregs, &hwstate->fpregs,
 566                              sizeof(hwstate->fpregs));
 567        /*
 568         * Copy the status and control register.
 569         */
 570        __put_user_error(hwstate->fpscr, &ufp->fpscr, err);
 571
 572        /*
 573         * Copy the exception registers.
 574         */
 575        __put_user_error(hwstate->fpexc, &ufp_exc->fpexc, err);
 576        __put_user_error(hwstate->fpinst, &ufp_exc->fpinst, err);
 577        __put_user_error(hwstate->fpinst2, &ufp_exc->fpinst2, err);
 578
 579        if (err)
 580                return -EFAULT;
 581
 582        /* Ensure that VFP is disabled. */
 583        vfp_flush_hwstate(thread);
 584
 585        /*
 586         * As per the PCS, clear the length and stride bits for function
 587         * entry.
 588         */
 589        hwstate->fpscr &= ~(FPSCR_LENGTH_MASK | FPSCR_STRIDE_MASK);
 590        return 0;
 591}
 592
 593/* Sanitise and restore the current VFP state from the provided structures. */
 594int vfp_restore_user_hwstate(struct user_vfp __user *ufp,
 595                             struct user_vfp_exc __user *ufp_exc)
 596{
 597        struct thread_info *thread = current_thread_info();
 598        struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
 599        unsigned long fpexc;
 600        int err = 0;
 601
 602        /* Disable VFP to avoid corrupting the new thread state. */
 603        vfp_flush_hwstate(thread);
 604
 605        /*
 606         * Copy the floating point registers. There can be unused
 607         * registers see asm/hwcap.h for details.
 608         */
 609        err |= __copy_from_user(&hwstate->fpregs, &ufp->fpregs,
 610                                sizeof(hwstate->fpregs));
 611        /*
 612         * Copy the status and control register.
 613         */
 614        __get_user_error(hwstate->fpscr, &ufp->fpscr, err);
 615
 616        /*
 617         * Sanitise and restore the exception registers.
 618         */
 619        __get_user_error(fpexc, &ufp_exc->fpexc, err);
 620
 621        /* Ensure the VFP is enabled. */
 622        fpexc |= FPEXC_EN;
 623
 624        /* Ensure FPINST2 is invalid and the exception flag is cleared. */
 625        fpexc &= ~(FPEXC_EX | FPEXC_FP2V);
 626        hwstate->fpexc = fpexc;
 627
 628        __get_user_error(hwstate->fpinst, &ufp_exc->fpinst, err);
 629        __get_user_error(hwstate->fpinst2, &ufp_exc->fpinst2, err);
 630
 631        return err ? -EFAULT : 0;
 632}
 633
 634/*
 635 * VFP hardware can lose all context when a CPU goes offline.
 636 * As we will be running in SMP mode with CPU hotplug, we will save the
 637 * hardware state at every thread switch.  We clear our held state when
 638 * a CPU has been killed, indicating that the VFP hardware doesn't contain
 639 * a threads VFP state.  When a CPU starts up, we re-enable access to the
 640 * VFP hardware. The callbacks below are called on the CPU which
 641 * is being offlined/onlined.
 642 */
 643static int vfp_dying_cpu(unsigned int cpu)
 644{
 645        vfp_current_hw_state[cpu] = NULL;
 646        return 0;
 647}
 648
 649static int vfp_starting_cpu(unsigned int unused)
 650{
 651        vfp_enable(NULL);
 652        return 0;
 653}
 654
 655void vfp_kmode_exception(void)
 656{
 657        /*
 658         * If we reach this point, a floating point exception has been raised
 659         * while running in kernel mode. If the NEON/VFP unit was enabled at the
 660         * time, it means a VFP instruction has been issued that requires
 661         * software assistance to complete, something which is not currently
 662         * supported in kernel mode.
 663         * If the NEON/VFP unit was disabled, and the location pointed to below
 664         * is properly preceded by a call to kernel_neon_begin(), something has
 665         * caused the task to be scheduled out and back in again. In this case,
 666         * rebuilding and running with CONFIG_DEBUG_ATOMIC_SLEEP enabled should
 667         * be helpful in localizing the problem.
 668         */
 669        if (fmrx(FPEXC) & FPEXC_EN)
 670                pr_crit("BUG: unsupported FP instruction in kernel mode\n");
 671        else
 672                pr_crit("BUG: FP instruction issued in kernel mode with FP unit disabled\n");
 673}
 674
 675#ifdef CONFIG_KERNEL_MODE_NEON
 676
 677/*
 678 * Kernel-side NEON support functions
 679 */
 680void kernel_neon_begin(void)
 681{
 682        struct thread_info *thread = current_thread_info();
 683        unsigned int cpu;
 684        u32 fpexc;
 685
 686        /*
 687         * Kernel mode NEON is only allowed outside of interrupt context
 688         * with preemption disabled. This will make sure that the kernel
 689         * mode NEON register contents never need to be preserved.
 690         */
 691        BUG_ON(in_interrupt());
 692        cpu = get_cpu();
 693
 694        fpexc = fmrx(FPEXC) | FPEXC_EN;
 695        fmxr(FPEXC, fpexc);
 696
 697        /*
 698         * Save the userland NEON/VFP state. Under UP,
 699         * the owner could be a task other than 'current'
 700         */
 701        if (vfp_state_in_hw(cpu, thread))
 702                vfp_save_state(&thread->vfpstate, fpexc);
 703#ifndef CONFIG_SMP
 704        else if (vfp_current_hw_state[cpu] != NULL)
 705                vfp_save_state(vfp_current_hw_state[cpu], fpexc);
 706#endif
 707        vfp_current_hw_state[cpu] = NULL;
 708}
 709EXPORT_SYMBOL(kernel_neon_begin);
 710
 711void kernel_neon_end(void)
 712{
 713        /* Disable the NEON/VFP unit. */
 714        fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
 715        put_cpu();
 716}
 717EXPORT_SYMBOL(kernel_neon_end);
 718
 719#endif /* CONFIG_KERNEL_MODE_NEON */
 720
 721/*
 722 * VFP support code initialisation.
 723 */
 724static int __init vfp_init(void)
 725{
 726        unsigned int vfpsid;
 727        unsigned int cpu_arch = cpu_architecture();
 728
 729        /*
 730         * Enable the access to the VFP on all online CPUs so the
 731         * following test on FPSID will succeed.
 732         */
 733        if (cpu_arch >= CPU_ARCH_ARMv6)
 734                on_each_cpu(vfp_enable, NULL, 1);
 735
 736        /*
 737         * First check that there is a VFP that we can use.
 738         * The handler is already setup to just log calls, so
 739         * we just need to read the VFPSID register.
 740         */
 741        vfp_vector = vfp_testing_entry;
 742        barrier();
 743        vfpsid = fmrx(FPSID);
 744        barrier();
 745        vfp_vector = vfp_null_entry;
 746
 747        pr_info("VFP support v0.3: ");
 748        if (VFP_arch) {
 749                pr_cont("not present\n");
 750                return 0;
 751        /* Extract the architecture on CPUID scheme */
 752        } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
 753                VFP_arch = vfpsid & FPSID_CPUID_ARCH_MASK;
 754                VFP_arch >>= FPSID_ARCH_BIT;
 755                /*
 756                 * Check for the presence of the Advanced SIMD
 757                 * load/store instructions, integer and single
 758                 * precision floating point operations. Only check
 759                 * for NEON if the hardware has the MVFR registers.
 760                 */
 761                if (IS_ENABLED(CONFIG_NEON) &&
 762                   (fmrx(MVFR1) & 0x000fff00) == 0x00011100)
 763                        elf_hwcap |= HWCAP_NEON;
 764
 765                if (IS_ENABLED(CONFIG_VFPv3)) {
 766                        u32 mvfr0 = fmrx(MVFR0);
 767                        if (((mvfr0 & MVFR0_DP_MASK) >> MVFR0_DP_BIT) == 0x2 ||
 768                            ((mvfr0 & MVFR0_SP_MASK) >> MVFR0_SP_BIT) == 0x2) {
 769                                elf_hwcap |= HWCAP_VFPv3;
 770                                /*
 771                                 * Check for VFPv3 D16 and VFPv4 D16.  CPUs in
 772                                 * this configuration only have 16 x 64bit
 773                                 * registers.
 774                                 */
 775                                if ((mvfr0 & MVFR0_A_SIMD_MASK) == 1)
 776                                        /* also v4-D16 */
 777                                        elf_hwcap |= HWCAP_VFPv3D16;
 778                                else
 779                                        elf_hwcap |= HWCAP_VFPD32;
 780                        }
 781
 782                        if ((fmrx(MVFR1) & 0xf0000000) == 0x10000000)
 783                                elf_hwcap |= HWCAP_VFPv4;
 784                }
 785        /* Extract the architecture version on pre-cpuid scheme */
 786        } else {
 787                if (vfpsid & FPSID_NODOUBLE) {
 788                        pr_cont("no double precision support\n");
 789                        return 0;
 790                }
 791
 792                VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT;
 793        }
 794
 795        cpuhp_setup_state_nocalls(CPUHP_AP_ARM_VFP_STARTING,
 796                                  "arm/vfp:starting", vfp_starting_cpu,
 797                                  vfp_dying_cpu);
 798
 799        vfp_vector = vfp_support_entry;
 800
 801        thread_register_notifier(&vfp_notifier_block);
 802        vfp_pm_init();
 803
 804        /*
 805         * We detected VFP, and the support code is
 806         * in place; report VFP support to userspace.
 807         */
 808        elf_hwcap |= HWCAP_VFP;
 809
 810        pr_cont("implementor %02x architecture %d part %02x variant %x rev %x\n",
 811                (vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
 812                VFP_arch,
 813                (vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
 814                (vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
 815                (vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
 816
 817        return 0;
 818}
 819
 820core_initcall(vfp_init);
 821