linux/arch/m68k/mm/mcfmmu.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Based upon linux/arch/m68k/mm/sun3mmu.c
   4 * Based upon linux/arch/ppc/mm/mmu_context.c
   5 *
   6 * Implementations of mm routines specific to the Coldfire MMU.
   7 *
   8 * Copyright (c) 2008 Freescale Semiconductor, Inc.
   9 */
  10
  11#include <linux/kernel.h>
  12#include <linux/types.h>
  13#include <linux/mm.h>
  14#include <linux/init.h>
  15#include <linux/string.h>
  16#include <linux/bootmem.h>
  17
  18#include <asm/setup.h>
  19#include <asm/page.h>
  20#include <asm/pgtable.h>
  21#include <asm/mmu_context.h>
  22#include <asm/mcf_pgalloc.h>
  23#include <asm/tlbflush.h>
  24
  25#define KMAPAREA(x)     ((x >= VMALLOC_START) && (x < KMAP_END))
  26
  27mm_context_t next_mmu_context;
  28unsigned long context_map[LAST_CONTEXT / BITS_PER_LONG + 1];
  29atomic_t nr_free_contexts;
  30struct mm_struct *context_mm[LAST_CONTEXT+1];
  31unsigned long num_pages;
  32
  33/*
  34 * ColdFire paging_init derived from sun3.
  35 */
  36void __init paging_init(void)
  37{
  38        pgd_t *pg_dir;
  39        pte_t *pg_table;
  40        unsigned long address, size;
  41        unsigned long next_pgtable, bootmem_end;
  42        unsigned long zones_size[MAX_NR_ZONES];
  43        enum zone_type zone;
  44        int i;
  45
  46        empty_zero_page = (void *) alloc_bootmem_pages(PAGE_SIZE);
  47        memset((void *) empty_zero_page, 0, PAGE_SIZE);
  48
  49        pg_dir = swapper_pg_dir;
  50        memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
  51
  52        size = num_pages * sizeof(pte_t);
  53        size = (size + PAGE_SIZE) & ~(PAGE_SIZE-1);
  54        next_pgtable = (unsigned long) alloc_bootmem_pages(size);
  55
  56        bootmem_end = (next_pgtable + size + PAGE_SIZE) & PAGE_MASK;
  57        pg_dir += PAGE_OFFSET >> PGDIR_SHIFT;
  58
  59        address = PAGE_OFFSET;
  60        while (address < (unsigned long)high_memory) {
  61                pg_table = (pte_t *) next_pgtable;
  62                next_pgtable += PTRS_PER_PTE * sizeof(pte_t);
  63                pgd_val(*pg_dir) = (unsigned long) pg_table;
  64                pg_dir++;
  65
  66                /* now change pg_table to kernel virtual addresses */
  67                for (i = 0; i < PTRS_PER_PTE; ++i, ++pg_table) {
  68                        pte_t pte = pfn_pte(virt_to_pfn(address), PAGE_INIT);
  69                        if (address >= (unsigned long) high_memory)
  70                                pte_val(pte) = 0;
  71
  72                        set_pte(pg_table, pte);
  73                        address += PAGE_SIZE;
  74                }
  75        }
  76
  77        current->mm = NULL;
  78
  79        for (zone = 0; zone < MAX_NR_ZONES; zone++)
  80                zones_size[zone] = 0x0;
  81        zones_size[ZONE_DMA] = num_pages;
  82        free_area_init(zones_size);
  83}
  84
  85int cf_tlb_miss(struct pt_regs *regs, int write, int dtlb, int extension_word)
  86{
  87        unsigned long flags, mmuar, mmutr;
  88        struct mm_struct *mm;
  89        pgd_t *pgd;
  90        pmd_t *pmd;
  91        pte_t *pte;
  92        int asid;
  93
  94        local_irq_save(flags);
  95
  96        mmuar = (dtlb) ? mmu_read(MMUAR) :
  97                regs->pc + (extension_word * sizeof(long));
  98
  99        mm = (!user_mode(regs) && KMAPAREA(mmuar)) ? &init_mm : current->mm;
 100        if (!mm) {
 101                local_irq_restore(flags);
 102                return -1;
 103        }
 104
 105        pgd = pgd_offset(mm, mmuar);
 106        if (pgd_none(*pgd))  {
 107                local_irq_restore(flags);
 108                return -1;
 109        }
 110
 111        pmd = pmd_offset(pgd, mmuar);
 112        if (pmd_none(*pmd)) {
 113                local_irq_restore(flags);
 114                return -1;
 115        }
 116
 117        pte = (KMAPAREA(mmuar)) ? pte_offset_kernel(pmd, mmuar)
 118                                : pte_offset_map(pmd, mmuar);
 119        if (pte_none(*pte) || !pte_present(*pte)) {
 120                local_irq_restore(flags);
 121                return -1;
 122        }
 123
 124        if (write) {
 125                if (!pte_write(*pte)) {
 126                        local_irq_restore(flags);
 127                        return -1;
 128                }
 129                set_pte(pte, pte_mkdirty(*pte));
 130        }
 131
 132        set_pte(pte, pte_mkyoung(*pte));
 133        asid = mm->context & 0xff;
 134        if (!pte_dirty(*pte) && !KMAPAREA(mmuar))
 135                set_pte(pte, pte_wrprotect(*pte));
 136
 137        mmutr = (mmuar & PAGE_MASK) | (asid << MMUTR_IDN) | MMUTR_V;
 138        if ((mmuar < TASK_UNMAPPED_BASE) || (mmuar >= TASK_SIZE))
 139                mmutr |= (pte->pte & CF_PAGE_MMUTR_MASK) >> CF_PAGE_MMUTR_SHIFT;
 140        mmu_write(MMUTR, mmutr);
 141
 142        mmu_write(MMUDR, (pte_val(*pte) & PAGE_MASK) |
 143                ((pte->pte) & CF_PAGE_MMUDR_MASK) | MMUDR_SZ_8KB | MMUDR_X);
 144
 145        if (dtlb)
 146                mmu_write(MMUOR, MMUOR_ACC | MMUOR_UAA);
 147        else
 148                mmu_write(MMUOR, MMUOR_ITLB | MMUOR_ACC | MMUOR_UAA);
 149
 150        local_irq_restore(flags);
 151        return 0;
 152}
 153
 154void __init cf_bootmem_alloc(void)
 155{
 156        unsigned long start_pfn;
 157        unsigned long memstart;
 158
 159        /* _rambase and _ramend will be naturally page aligned */
 160        m68k_memory[0].addr = _rambase;
 161        m68k_memory[0].size = _ramend - _rambase;
 162
 163        /* compute total pages in system */
 164        num_pages = PFN_DOWN(_ramend - _rambase);
 165
 166        /* page numbers */
 167        memstart = PAGE_ALIGN(_ramstart);
 168        min_low_pfn = PFN_DOWN(_rambase);
 169        start_pfn = PFN_DOWN(memstart);
 170        max_pfn = max_low_pfn = PFN_DOWN(_ramend);
 171        high_memory = (void *)_ramend;
 172
 173        m68k_virt_to_node_shift = fls(_ramend - 1) - 6;
 174        module_fixup(NULL, __start_fixup, __stop_fixup);
 175
 176        /* setup bootmem data */
 177        m68k_setup_node(0);
 178        memstart += init_bootmem_node(NODE_DATA(0), start_pfn,
 179                min_low_pfn, max_low_pfn);
 180        free_bootmem_node(NODE_DATA(0), memstart, _ramend - memstart);
 181}
 182
 183/*
 184 * Initialize the context management stuff.
 185 * The following was taken from arch/ppc/mmu_context.c
 186 */
 187void __init cf_mmu_context_init(void)
 188{
 189        /*
 190         * Some processors have too few contexts to reserve one for
 191         * init_mm, and require using context 0 for a normal task.
 192         * Other processors reserve the use of context zero for the kernel.
 193         * This code assumes FIRST_CONTEXT < 32.
 194         */
 195        context_map[0] = (1 << FIRST_CONTEXT) - 1;
 196        next_mmu_context = FIRST_CONTEXT;
 197        atomic_set(&nr_free_contexts, LAST_CONTEXT - FIRST_CONTEXT + 1);
 198}
 199
 200/*
 201 * Steal a context from a task that has one at the moment.
 202 * This is only used on 8xx and 4xx and we presently assume that
 203 * they don't do SMP.  If they do then thicfpgalloc.hs will have to check
 204 * whether the MM we steal is in use.
 205 * We also assume that this is only used on systems that don't
 206 * use an MMU hash table - this is true for 8xx and 4xx.
 207 * This isn't an LRU system, it just frees up each context in
 208 * turn (sort-of pseudo-random replacement :).  This would be the
 209 * place to implement an LRU scheme if anyone was motivated to do it.
 210 *  -- paulus
 211 */
 212void steal_context(void)
 213{
 214        struct mm_struct *mm;
 215        /*
 216         * free up context `next_mmu_context'
 217         * if we shouldn't free context 0, don't...
 218         */
 219        if (next_mmu_context < FIRST_CONTEXT)
 220                next_mmu_context = FIRST_CONTEXT;
 221        mm = context_mm[next_mmu_context];
 222        flush_tlb_mm(mm);
 223        destroy_context(mm);
 224}
 225
 226