linux/arch/powerpc/mm/hugetlbpage.c
<<
>>
Prefs
   1/*
   2 * PPC Huge TLB Page Support for Kernel.
   3 *
   4 * Copyright (C) 2003 David Gibson, IBM Corporation.
   5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
   6 *
   7 * Based on the IA-32 version:
   8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
   9 */
  10
  11#include <linux/mm.h>
  12#include <linux/io.h>
  13#include <linux/slab.h>
  14#include <linux/hugetlb.h>
  15#include <linux/export.h>
  16#include <linux/of_fdt.h>
  17#include <linux/memblock.h>
  18#include <linux/bootmem.h>
  19#include <linux/moduleparam.h>
  20#include <linux/swap.h>
  21#include <linux/swapops.h>
  22#include <asm/pgtable.h>
  23#include <asm/pgalloc.h>
  24#include <asm/tlb.h>
  25#include <asm/setup.h>
  26#include <asm/hugetlb.h>
  27#include <asm/pte-walk.h>
  28
  29
  30#ifdef CONFIG_HUGETLB_PAGE
  31
  32#define PAGE_SHIFT_64K  16
  33#define PAGE_SHIFT_512K 19
  34#define PAGE_SHIFT_8M   23
  35#define PAGE_SHIFT_16M  24
  36#define PAGE_SHIFT_16G  34
  37
  38bool hugetlb_disabled = false;
  39
  40unsigned int HPAGE_SHIFT;
  41EXPORT_SYMBOL(HPAGE_SHIFT);
  42
  43#define hugepd_none(hpd)        (hpd_val(hpd) == 0)
  44
  45pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
  46{
  47        /*
  48         * Only called for hugetlbfs pages, hence can ignore THP and the
  49         * irq disabled walk.
  50         */
  51        return __find_linux_pte(mm->pgd, addr, NULL, NULL);
  52}
  53
  54static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
  55                           unsigned long address, unsigned int pdshift,
  56                           unsigned int pshift, spinlock_t *ptl)
  57{
  58        struct kmem_cache *cachep;
  59        pte_t *new;
  60        int i;
  61        int num_hugepd;
  62
  63        if (pshift >= pdshift) {
  64                cachep = hugepte_cache;
  65                num_hugepd = 1 << (pshift - pdshift);
  66        } else {
  67                cachep = PGT_CACHE(pdshift - pshift);
  68                num_hugepd = 1;
  69        }
  70
  71        new = kmem_cache_zalloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
  72
  73        BUG_ON(pshift > HUGEPD_SHIFT_MASK);
  74        BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
  75
  76        if (! new)
  77                return -ENOMEM;
  78
  79        /*
  80         * Make sure other cpus find the hugepd set only after a
  81         * properly initialized page table is visible to them.
  82         * For more details look for comment in __pte_alloc().
  83         */
  84        smp_wmb();
  85
  86        spin_lock(ptl);
  87        /*
  88         * We have multiple higher-level entries that point to the same
  89         * actual pte location.  Fill in each as we go and backtrack on error.
  90         * We need all of these so the DTLB pgtable walk code can find the
  91         * right higher-level entry without knowing if it's a hugepage or not.
  92         */
  93        for (i = 0; i < num_hugepd; i++, hpdp++) {
  94                if (unlikely(!hugepd_none(*hpdp)))
  95                        break;
  96                else {
  97#ifdef CONFIG_PPC_BOOK3S_64
  98                        *hpdp = __hugepd(__pa(new) |
  99                                         (shift_to_mmu_psize(pshift) << 2));
 100#elif defined(CONFIG_PPC_8xx)
 101                        *hpdp = __hugepd(__pa(new) | _PMD_USER |
 102                                         (pshift == PAGE_SHIFT_8M ? _PMD_PAGE_8M :
 103                                          _PMD_PAGE_512K) | _PMD_PRESENT);
 104#else
 105                        /* We use the old format for PPC_FSL_BOOK3E */
 106                        *hpdp = __hugepd(((unsigned long)new & ~PD_HUGE) | pshift);
 107#endif
 108                }
 109        }
 110        /* If we bailed from the for loop early, an error occurred, clean up */
 111        if (i < num_hugepd) {
 112                for (i = i - 1 ; i >= 0; i--, hpdp--)
 113                        *hpdp = __hugepd(0);
 114                kmem_cache_free(cachep, new);
 115        }
 116        spin_unlock(ptl);
 117        return 0;
 118}
 119
 120/*
 121 * These macros define how to determine which level of the page table holds
 122 * the hpdp.
 123 */
 124#if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
 125#define HUGEPD_PGD_SHIFT PGDIR_SHIFT
 126#define HUGEPD_PUD_SHIFT PUD_SHIFT
 127#endif
 128
 129/*
 130 * At this point we do the placement change only for BOOK3S 64. This would
 131 * possibly work on other subarchs.
 132 */
 133pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
 134{
 135        pgd_t *pg;
 136        pud_t *pu;
 137        pmd_t *pm;
 138        hugepd_t *hpdp = NULL;
 139        unsigned pshift = __ffs(sz);
 140        unsigned pdshift = PGDIR_SHIFT;
 141        spinlock_t *ptl;
 142
 143        addr &= ~(sz-1);
 144        pg = pgd_offset(mm, addr);
 145
 146#ifdef CONFIG_PPC_BOOK3S_64
 147        if (pshift == PGDIR_SHIFT)
 148                /* 16GB huge page */
 149                return (pte_t *) pg;
 150        else if (pshift > PUD_SHIFT) {
 151                /*
 152                 * We need to use hugepd table
 153                 */
 154                ptl = &mm->page_table_lock;
 155                hpdp = (hugepd_t *)pg;
 156        } else {
 157                pdshift = PUD_SHIFT;
 158                pu = pud_alloc(mm, pg, addr);
 159                if (pshift == PUD_SHIFT)
 160                        return (pte_t *)pu;
 161                else if (pshift > PMD_SHIFT) {
 162                        ptl = pud_lockptr(mm, pu);
 163                        hpdp = (hugepd_t *)pu;
 164                } else {
 165                        pdshift = PMD_SHIFT;
 166                        pm = pmd_alloc(mm, pu, addr);
 167                        if (pshift == PMD_SHIFT)
 168                                /* 16MB hugepage */
 169                                return (pte_t *)pm;
 170                        else {
 171                                ptl = pmd_lockptr(mm, pm);
 172                                hpdp = (hugepd_t *)pm;
 173                        }
 174                }
 175        }
 176#else
 177        if (pshift >= HUGEPD_PGD_SHIFT) {
 178                ptl = &mm->page_table_lock;
 179                hpdp = (hugepd_t *)pg;
 180        } else {
 181                pdshift = PUD_SHIFT;
 182                pu = pud_alloc(mm, pg, addr);
 183                if (pshift >= HUGEPD_PUD_SHIFT) {
 184                        ptl = pud_lockptr(mm, pu);
 185                        hpdp = (hugepd_t *)pu;
 186                } else {
 187                        pdshift = PMD_SHIFT;
 188                        pm = pmd_alloc(mm, pu, addr);
 189                        ptl = pmd_lockptr(mm, pm);
 190                        hpdp = (hugepd_t *)pm;
 191                }
 192        }
 193#endif
 194        if (!hpdp)
 195                return NULL;
 196
 197        BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
 198
 199        if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr,
 200                                                  pdshift, pshift, ptl))
 201                return NULL;
 202
 203        return hugepte_offset(*hpdp, addr, pdshift);
 204}
 205
 206#ifdef CONFIG_PPC_BOOK3S_64
 207/*
 208 * Tracks gpages after the device tree is scanned and before the
 209 * huge_boot_pages list is ready on pseries.
 210 */
 211#define MAX_NUMBER_GPAGES       1024
 212__initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
 213__initdata static unsigned nr_gpages;
 214
 215/*
 216 * Build list of addresses of gigantic pages.  This function is used in early
 217 * boot before the buddy allocator is setup.
 218 */
 219void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
 220{
 221        if (!addr)
 222                return;
 223        while (number_of_pages > 0) {
 224                gpage_freearray[nr_gpages] = addr;
 225                nr_gpages++;
 226                number_of_pages--;
 227                addr += page_size;
 228        }
 229}
 230
 231int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
 232{
 233        struct huge_bootmem_page *m;
 234        if (nr_gpages == 0)
 235                return 0;
 236        m = phys_to_virt(gpage_freearray[--nr_gpages]);
 237        gpage_freearray[nr_gpages] = 0;
 238        list_add(&m->list, &huge_boot_pages);
 239        m->hstate = hstate;
 240        return 1;
 241}
 242#endif
 243
 244
 245int __init alloc_bootmem_huge_page(struct hstate *h)
 246{
 247
 248#ifdef CONFIG_PPC_BOOK3S_64
 249        if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
 250                return pseries_alloc_bootmem_huge_page(h);
 251#endif
 252        return __alloc_bootmem_huge_page(h);
 253}
 254
 255#if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
 256#define HUGEPD_FREELIST_SIZE \
 257        ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
 258
 259struct hugepd_freelist {
 260        struct rcu_head rcu;
 261        unsigned int index;
 262        void *ptes[0];
 263};
 264
 265static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
 266
 267static void hugepd_free_rcu_callback(struct rcu_head *head)
 268{
 269        struct hugepd_freelist *batch =
 270                container_of(head, struct hugepd_freelist, rcu);
 271        unsigned int i;
 272
 273        for (i = 0; i < batch->index; i++)
 274                kmem_cache_free(hugepte_cache, batch->ptes[i]);
 275
 276        free_page((unsigned long)batch);
 277}
 278
 279static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
 280{
 281        struct hugepd_freelist **batchp;
 282
 283        batchp = &get_cpu_var(hugepd_freelist_cur);
 284
 285        if (atomic_read(&tlb->mm->mm_users) < 2 ||
 286            mm_is_thread_local(tlb->mm)) {
 287                kmem_cache_free(hugepte_cache, hugepte);
 288                put_cpu_var(hugepd_freelist_cur);
 289                return;
 290        }
 291
 292        if (*batchp == NULL) {
 293                *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
 294                (*batchp)->index = 0;
 295        }
 296
 297        (*batchp)->ptes[(*batchp)->index++] = hugepte;
 298        if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
 299                call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
 300                *batchp = NULL;
 301        }
 302        put_cpu_var(hugepd_freelist_cur);
 303}
 304#else
 305static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
 306#endif
 307
 308static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
 309                              unsigned long start, unsigned long end,
 310                              unsigned long floor, unsigned long ceiling)
 311{
 312        pte_t *hugepte = hugepd_page(*hpdp);
 313        int i;
 314
 315        unsigned long pdmask = ~((1UL << pdshift) - 1);
 316        unsigned int num_hugepd = 1;
 317        unsigned int shift = hugepd_shift(*hpdp);
 318
 319        /* Note: On fsl the hpdp may be the first of several */
 320        if (shift > pdshift)
 321                num_hugepd = 1 << (shift - pdshift);
 322
 323        start &= pdmask;
 324        if (start < floor)
 325                return;
 326        if (ceiling) {
 327                ceiling &= pdmask;
 328                if (! ceiling)
 329                        return;
 330        }
 331        if (end - 1 > ceiling - 1)
 332                return;
 333
 334        for (i = 0; i < num_hugepd; i++, hpdp++)
 335                *hpdp = __hugepd(0);
 336
 337        if (shift >= pdshift)
 338                hugepd_free(tlb, hugepte);
 339        else
 340                pgtable_free_tlb(tlb, hugepte,
 341                                 get_hugepd_cache_index(pdshift - shift));
 342}
 343
 344static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 345                                   unsigned long addr, unsigned long end,
 346                                   unsigned long floor, unsigned long ceiling)
 347{
 348        pmd_t *pmd;
 349        unsigned long next;
 350        unsigned long start;
 351
 352        start = addr;
 353        do {
 354                unsigned long more;
 355
 356                pmd = pmd_offset(pud, addr);
 357                next = pmd_addr_end(addr, end);
 358                if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
 359                        /*
 360                         * if it is not hugepd pointer, we should already find
 361                         * it cleared.
 362                         */
 363                        WARN_ON(!pmd_none_or_clear_bad(pmd));
 364                        continue;
 365                }
 366                /*
 367                 * Increment next by the size of the huge mapping since
 368                 * there may be more than one entry at this level for a
 369                 * single hugepage, but all of them point to
 370                 * the same kmem cache that holds the hugepte.
 371                 */
 372                more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
 373                if (more > next)
 374                        next = more;
 375
 376                free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
 377                                  addr, next, floor, ceiling);
 378        } while (addr = next, addr != end);
 379
 380        start &= PUD_MASK;
 381        if (start < floor)
 382                return;
 383        if (ceiling) {
 384                ceiling &= PUD_MASK;
 385                if (!ceiling)
 386                        return;
 387        }
 388        if (end - 1 > ceiling - 1)
 389                return;
 390
 391        pmd = pmd_offset(pud, start);
 392        pud_clear(pud);
 393        pmd_free_tlb(tlb, pmd, start);
 394        mm_dec_nr_pmds(tlb->mm);
 395}
 396
 397static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
 398                                   unsigned long addr, unsigned long end,
 399                                   unsigned long floor, unsigned long ceiling)
 400{
 401        pud_t *pud;
 402        unsigned long next;
 403        unsigned long start;
 404
 405        start = addr;
 406        do {
 407                pud = pud_offset(pgd, addr);
 408                next = pud_addr_end(addr, end);
 409                if (!is_hugepd(__hugepd(pud_val(*pud)))) {
 410                        if (pud_none_or_clear_bad(pud))
 411                                continue;
 412                        hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
 413                                               ceiling);
 414                } else {
 415                        unsigned long more;
 416                        /*
 417                         * Increment next by the size of the huge mapping since
 418                         * there may be more than one entry at this level for a
 419                         * single hugepage, but all of them point to
 420                         * the same kmem cache that holds the hugepte.
 421                         */
 422                        more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
 423                        if (more > next)
 424                                next = more;
 425
 426                        free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
 427                                          addr, next, floor, ceiling);
 428                }
 429        } while (addr = next, addr != end);
 430
 431        start &= PGDIR_MASK;
 432        if (start < floor)
 433                return;
 434        if (ceiling) {
 435                ceiling &= PGDIR_MASK;
 436                if (!ceiling)
 437                        return;
 438        }
 439        if (end - 1 > ceiling - 1)
 440                return;
 441
 442        pud = pud_offset(pgd, start);
 443        pgd_clear(pgd);
 444        pud_free_tlb(tlb, pud, start);
 445        mm_dec_nr_puds(tlb->mm);
 446}
 447
 448/*
 449 * This function frees user-level page tables of a process.
 450 */
 451void hugetlb_free_pgd_range(struct mmu_gather *tlb,
 452                            unsigned long addr, unsigned long end,
 453                            unsigned long floor, unsigned long ceiling)
 454{
 455        pgd_t *pgd;
 456        unsigned long next;
 457
 458        /*
 459         * Because there are a number of different possible pagetable
 460         * layouts for hugepage ranges, we limit knowledge of how
 461         * things should be laid out to the allocation path
 462         * (huge_pte_alloc(), above).  Everything else works out the
 463         * structure as it goes from information in the hugepd
 464         * pointers.  That means that we can't here use the
 465         * optimization used in the normal page free_pgd_range(), of
 466         * checking whether we're actually covering a large enough
 467         * range to have to do anything at the top level of the walk
 468         * instead of at the bottom.
 469         *
 470         * To make sense of this, you should probably go read the big
 471         * block comment at the top of the normal free_pgd_range(),
 472         * too.
 473         */
 474
 475        do {
 476                next = pgd_addr_end(addr, end);
 477                pgd = pgd_offset(tlb->mm, addr);
 478                if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
 479                        if (pgd_none_or_clear_bad(pgd))
 480                                continue;
 481                        hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
 482                } else {
 483                        unsigned long more;
 484                        /*
 485                         * Increment next by the size of the huge mapping since
 486                         * there may be more than one entry at the pgd level
 487                         * for a single hugepage, but all of them point to the
 488                         * same kmem cache that holds the hugepte.
 489                         */
 490                        more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
 491                        if (more > next)
 492                                next = more;
 493
 494                        free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
 495                                          addr, next, floor, ceiling);
 496                }
 497        } while (addr = next, addr != end);
 498}
 499
 500struct page *follow_huge_pd(struct vm_area_struct *vma,
 501                            unsigned long address, hugepd_t hpd,
 502                            int flags, int pdshift)
 503{
 504        pte_t *ptep;
 505        spinlock_t *ptl;
 506        struct page *page = NULL;
 507        unsigned long mask;
 508        int shift = hugepd_shift(hpd);
 509        struct mm_struct *mm = vma->vm_mm;
 510
 511retry:
 512        /*
 513         * hugepage directory entries are protected by mm->page_table_lock
 514         * Use this instead of huge_pte_lockptr
 515         */
 516        ptl = &mm->page_table_lock;
 517        spin_lock(ptl);
 518
 519        ptep = hugepte_offset(hpd, address, pdshift);
 520        if (pte_present(*ptep)) {
 521                mask = (1UL << shift) - 1;
 522                page = pte_page(*ptep);
 523                page += ((address & mask) >> PAGE_SHIFT);
 524                if (flags & FOLL_GET)
 525                        get_page(page);
 526        } else {
 527                if (is_hugetlb_entry_migration(*ptep)) {
 528                        spin_unlock(ptl);
 529                        __migration_entry_wait(mm, ptep, ptl);
 530                        goto retry;
 531                }
 532        }
 533        spin_unlock(ptl);
 534        return page;
 535}
 536
 537static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
 538                                      unsigned long sz)
 539{
 540        unsigned long __boundary = (addr + sz) & ~(sz-1);
 541        return (__boundary - 1 < end - 1) ? __boundary : end;
 542}
 543
 544int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
 545                unsigned long end, int write, struct page **pages, int *nr)
 546{
 547        pte_t *ptep;
 548        unsigned long sz = 1UL << hugepd_shift(hugepd);
 549        unsigned long next;
 550
 551        ptep = hugepte_offset(hugepd, addr, pdshift);
 552        do {
 553                next = hugepte_addr_end(addr, end, sz);
 554                if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
 555                        return 0;
 556        } while (ptep++, addr = next, addr != end);
 557
 558        return 1;
 559}
 560
 561#ifdef CONFIG_PPC_MM_SLICES
 562unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
 563                                        unsigned long len, unsigned long pgoff,
 564                                        unsigned long flags)
 565{
 566        struct hstate *hstate = hstate_file(file);
 567        int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
 568
 569#ifdef CONFIG_PPC_RADIX_MMU
 570        if (radix_enabled())
 571                return radix__hugetlb_get_unmapped_area(file, addr, len,
 572                                                       pgoff, flags);
 573#endif
 574        return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
 575}
 576#endif
 577
 578unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 579{
 580#ifdef CONFIG_PPC_MM_SLICES
 581        /* With radix we don't use slice, so derive it from vma*/
 582        if (!radix_enabled()) {
 583                unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
 584
 585                return 1UL << mmu_psize_to_shift(psize);
 586        }
 587#endif
 588        return vma_kernel_pagesize(vma);
 589}
 590
 591static inline bool is_power_of_4(unsigned long x)
 592{
 593        if (is_power_of_2(x))
 594                return (__ilog2(x) % 2) ? false : true;
 595        return false;
 596}
 597
 598static int __init add_huge_page_size(unsigned long long size)
 599{
 600        int shift = __ffs(size);
 601        int mmu_psize;
 602
 603        /* Check that it is a page size supported by the hardware and
 604         * that it fits within pagetable and slice limits. */
 605        if (size <= PAGE_SIZE)
 606                return -EINVAL;
 607#if defined(CONFIG_PPC_FSL_BOOK3E)
 608        if (!is_power_of_4(size))
 609                return -EINVAL;
 610#elif !defined(CONFIG_PPC_8xx)
 611        if (!is_power_of_2(size) || (shift > SLICE_HIGH_SHIFT))
 612                return -EINVAL;
 613#endif
 614
 615        if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
 616                return -EINVAL;
 617
 618#ifdef CONFIG_PPC_BOOK3S_64
 619        /*
 620         * We need to make sure that for different page sizes reported by
 621         * firmware we only add hugetlb support for page sizes that can be
 622         * supported by linux page table layout.
 623         * For now we have
 624         * Radix: 2M and 1G
 625         * Hash: 16M and 16G
 626         */
 627        if (radix_enabled()) {
 628                if (mmu_psize != MMU_PAGE_2M && mmu_psize != MMU_PAGE_1G)
 629                        return -EINVAL;
 630        } else {
 631                if (mmu_psize != MMU_PAGE_16M && mmu_psize != MMU_PAGE_16G)
 632                        return -EINVAL;
 633        }
 634#endif
 635
 636        BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
 637
 638        /* Return if huge page size has already been setup */
 639        if (size_to_hstate(size))
 640                return 0;
 641
 642        hugetlb_add_hstate(shift - PAGE_SHIFT);
 643
 644        return 0;
 645}
 646
 647static int __init hugepage_setup_sz(char *str)
 648{
 649        unsigned long long size;
 650
 651        size = memparse(str, &str);
 652
 653        if (add_huge_page_size(size) != 0) {
 654                hugetlb_bad_size();
 655                pr_err("Invalid huge page size specified(%llu)\n", size);
 656        }
 657
 658        return 1;
 659}
 660__setup("hugepagesz=", hugepage_setup_sz);
 661
 662struct kmem_cache *hugepte_cache;
 663static int __init hugetlbpage_init(void)
 664{
 665        int psize;
 666
 667        if (hugetlb_disabled) {
 668                pr_info("HugeTLB support is disabled!\n");
 669                return 0;
 670        }
 671
 672#if !defined(CONFIG_PPC_FSL_BOOK3E) && !defined(CONFIG_PPC_8xx)
 673        if (!radix_enabled() && !mmu_has_feature(MMU_FTR_16M_PAGE))
 674                return -ENODEV;
 675#endif
 676        for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
 677                unsigned shift;
 678                unsigned pdshift;
 679
 680                if (!mmu_psize_defs[psize].shift)
 681                        continue;
 682
 683                shift = mmu_psize_to_shift(psize);
 684
 685#ifdef CONFIG_PPC_BOOK3S_64
 686                if (shift > PGDIR_SHIFT)
 687                        continue;
 688                else if (shift > PUD_SHIFT)
 689                        pdshift = PGDIR_SHIFT;
 690                else if (shift > PMD_SHIFT)
 691                        pdshift = PUD_SHIFT;
 692                else
 693                        pdshift = PMD_SHIFT;
 694#else
 695                if (shift < HUGEPD_PUD_SHIFT)
 696                        pdshift = PMD_SHIFT;
 697                else if (shift < HUGEPD_PGD_SHIFT)
 698                        pdshift = PUD_SHIFT;
 699                else
 700                        pdshift = PGDIR_SHIFT;
 701#endif
 702
 703                if (add_huge_page_size(1ULL << shift) < 0)
 704                        continue;
 705                /*
 706                 * if we have pdshift and shift value same, we don't
 707                 * use pgt cache for hugepd.
 708                 */
 709                if (pdshift > shift)
 710                        pgtable_cache_add(pdshift - shift, NULL);
 711#if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
 712                else if (!hugepte_cache) {
 713                        /*
 714                         * Create a kmem cache for hugeptes.  The bottom bits in
 715                         * the pte have size information encoded in them, so
 716                         * align them to allow this
 717                         */
 718                        hugepte_cache = kmem_cache_create("hugepte-cache",
 719                                                          sizeof(pte_t),
 720                                                          HUGEPD_SHIFT_MASK + 1,
 721                                                          0, NULL);
 722                        if (hugepte_cache == NULL)
 723                                panic("%s: Unable to create kmem cache "
 724                                      "for hugeptes\n", __func__);
 725
 726                }
 727#endif
 728        }
 729
 730#if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
 731        /* Default hpage size = 4M on FSL_BOOK3E and 512k on 8xx */
 732        if (mmu_psize_defs[MMU_PAGE_4M].shift)
 733                HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
 734        else if (mmu_psize_defs[MMU_PAGE_512K].shift)
 735                HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_512K].shift;
 736#else
 737        /* Set default large page size. Currently, we pick 16M or 1M
 738         * depending on what is available
 739         */
 740        if (mmu_psize_defs[MMU_PAGE_16M].shift)
 741                HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
 742        else if (mmu_psize_defs[MMU_PAGE_1M].shift)
 743                HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
 744        else if (mmu_psize_defs[MMU_PAGE_2M].shift)
 745                HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_2M].shift;
 746#endif
 747        return 0;
 748}
 749
 750arch_initcall(hugetlbpage_init);
 751
 752void flush_dcache_icache_hugepage(struct page *page)
 753{
 754        int i;
 755        void *start;
 756
 757        BUG_ON(!PageCompound(page));
 758
 759        for (i = 0; i < (1UL << compound_order(page)); i++) {
 760                if (!PageHighMem(page)) {
 761                        __flush_dcache_icache(page_address(page+i));
 762                } else {
 763                        start = kmap_atomic(page+i);
 764                        __flush_dcache_icache(start);
 765                        kunmap_atomic(start);
 766                }
 767        }
 768}
 769
 770#endif /* CONFIG_HUGETLB_PAGE */
 771
 772/*
 773 * We have 4 cases for pgds and pmds:
 774 * (1) invalid (all zeroes)
 775 * (2) pointer to next table, as normal; bottom 6 bits == 0
 776 * (3) leaf pte for huge page _PAGE_PTE set
 777 * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
 778 *
 779 * So long as we atomically load page table pointers we are safe against teardown,
 780 * we can follow the address down to the the page and take a ref on it.
 781 * This function need to be called with interrupts disabled. We use this variant
 782 * when we have MSR[EE] = 0 but the paca->irq_soft_mask = IRQS_ENABLED
 783 */
 784pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea,
 785                        bool *is_thp, unsigned *hpage_shift)
 786{
 787        pgd_t pgd, *pgdp;
 788        pud_t pud, *pudp;
 789        pmd_t pmd, *pmdp;
 790        pte_t *ret_pte;
 791        hugepd_t *hpdp = NULL;
 792        unsigned pdshift = PGDIR_SHIFT;
 793
 794        if (hpage_shift)
 795                *hpage_shift = 0;
 796
 797        if (is_thp)
 798                *is_thp = false;
 799
 800        pgdp = pgdir + pgd_index(ea);
 801        pgd  = READ_ONCE(*pgdp);
 802        /*
 803         * Always operate on the local stack value. This make sure the
 804         * value don't get updated by a parallel THP split/collapse,
 805         * page fault or a page unmap. The return pte_t * is still not
 806         * stable. So should be checked there for above conditions.
 807         */
 808        if (pgd_none(pgd))
 809                return NULL;
 810        else if (pgd_huge(pgd)) {
 811                ret_pte = (pte_t *) pgdp;
 812                goto out;
 813        } else if (is_hugepd(__hugepd(pgd_val(pgd))))
 814                hpdp = (hugepd_t *)&pgd;
 815        else {
 816                /*
 817                 * Even if we end up with an unmap, the pgtable will not
 818                 * be freed, because we do an rcu free and here we are
 819                 * irq disabled
 820                 */
 821                pdshift = PUD_SHIFT;
 822                pudp = pud_offset(&pgd, ea);
 823                pud  = READ_ONCE(*pudp);
 824
 825                if (pud_none(pud))
 826                        return NULL;
 827                else if (pud_huge(pud)) {
 828                        ret_pte = (pte_t *) pudp;
 829                        goto out;
 830                } else if (is_hugepd(__hugepd(pud_val(pud))))
 831                        hpdp = (hugepd_t *)&pud;
 832                else {
 833                        pdshift = PMD_SHIFT;
 834                        pmdp = pmd_offset(&pud, ea);
 835                        pmd  = READ_ONCE(*pmdp);
 836                        /*
 837                         * A hugepage collapse is captured by pmd_none, because
 838                         * it mark the pmd none and do a hpte invalidate.
 839                         */
 840                        if (pmd_none(pmd))
 841                                return NULL;
 842
 843                        if (pmd_trans_huge(pmd) || pmd_devmap(pmd)) {
 844                                if (is_thp)
 845                                        *is_thp = true;
 846                                ret_pte = (pte_t *) pmdp;
 847                                goto out;
 848                        }
 849
 850                        if (pmd_huge(pmd)) {
 851                                ret_pte = (pte_t *) pmdp;
 852                                goto out;
 853                        } else if (is_hugepd(__hugepd(pmd_val(pmd))))
 854                                hpdp = (hugepd_t *)&pmd;
 855                        else
 856                                return pte_offset_kernel(&pmd, ea);
 857                }
 858        }
 859        if (!hpdp)
 860                return NULL;
 861
 862        ret_pte = hugepte_offset(*hpdp, ea, pdshift);
 863        pdshift = hugepd_shift(*hpdp);
 864out:
 865        if (hpage_shift)
 866                *hpage_shift = pdshift;
 867        return ret_pte;
 868}
 869EXPORT_SYMBOL_GPL(__find_linux_pte);
 870
 871int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
 872                unsigned long end, int write, struct page **pages, int *nr)
 873{
 874        unsigned long pte_end;
 875        struct page *head, *page;
 876        pte_t pte;
 877        int refs;
 878
 879        pte_end = (addr + sz) & ~(sz-1);
 880        if (pte_end < end)
 881                end = pte_end;
 882
 883        pte = READ_ONCE(*ptep);
 884
 885        if (!pte_access_permitted(pte, write))
 886                return 0;
 887
 888        /* hugepages are never "special" */
 889        VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
 890
 891        refs = 0;
 892        head = pte_page(pte);
 893
 894        page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
 895        do {
 896                VM_BUG_ON(compound_head(page) != head);
 897                pages[*nr] = page;
 898                (*nr)++;
 899                page++;
 900                refs++;
 901        } while (addr += PAGE_SIZE, addr != end);
 902
 903        if (!page_cache_add_speculative(head, refs)) {
 904                *nr -= refs;
 905                return 0;
 906        }
 907
 908        if (unlikely(pte_val(pte) != pte_val(*ptep))) {
 909                /* Could be optimized better */
 910                *nr -= refs;
 911                while (refs--)
 912                        put_page(head);
 913                return 0;
 914        }
 915
 916        return 1;
 917}
 918