linux/arch/sh/kernel/cpu/sh4a/perf_event.c
<<
>>
Prefs
   1/*
   2 * Performance events support for SH-4A performance counters
   3 *
   4 *  Copyright (C) 2009, 2010  Paul Mundt
   5 *
   6 * This file is subject to the terms and conditions of the GNU General Public
   7 * License.  See the file "COPYING" in the main directory of this archive
   8 * for more details.
   9 */
  10#include <linux/kernel.h>
  11#include <linux/init.h>
  12#include <linux/io.h>
  13#include <linux/irq.h>
  14#include <linux/perf_event.h>
  15#include <asm/processor.h>
  16
  17#define PPC_CCBR(idx)   (0xff200800 + (sizeof(u32) * idx))
  18#define PPC_PMCTR(idx)  (0xfc100000 + (sizeof(u32) * idx))
  19
  20#define CCBR_CIT_MASK   (0x7ff << 6)
  21#define CCBR_DUC        (1 << 3)
  22#define CCBR_CMDS       (1 << 1)
  23#define CCBR_PPCE       (1 << 0)
  24
  25#ifdef CONFIG_CPU_SHX3
  26/*
  27 * The PMCAT location for SH-X3 CPUs was quietly moved, while the CCBR
  28 * and PMCTR locations remains tentatively constant. This change remains
  29 * wholly undocumented, and was simply found through trial and error.
  30 *
  31 * Early cuts of SH-X3 still appear to use the SH-X/SH-X2 locations, and
  32 * it's unclear when this ceased to be the case. For now we always use
  33 * the new location (if future parts keep up with this trend then
  34 * scanning for them at runtime also remains a viable option.)
  35 *
  36 * The gap in the register space also suggests that there are other
  37 * undocumented counters, so this will need to be revisited at a later
  38 * point in time.
  39 */
  40#define PPC_PMCAT       0xfc100240
  41#else
  42#define PPC_PMCAT       0xfc100080
  43#endif
  44
  45#define PMCAT_OVF3      (1 << 27)
  46#define PMCAT_CNN3      (1 << 26)
  47#define PMCAT_CLR3      (1 << 25)
  48#define PMCAT_OVF2      (1 << 19)
  49#define PMCAT_CLR2      (1 << 17)
  50#define PMCAT_OVF1      (1 << 11)
  51#define PMCAT_CNN1      (1 << 10)
  52#define PMCAT_CLR1      (1 << 9)
  53#define PMCAT_OVF0      (1 << 3)
  54#define PMCAT_CLR0      (1 << 1)
  55
  56static struct sh_pmu sh4a_pmu;
  57
  58/*
  59 * Supported raw event codes:
  60 *
  61 *      Event Code      Description
  62 *      ----------      -----------
  63 *
  64 *      0x0000          number of elapsed cycles
  65 *      0x0200          number of elapsed cycles in privileged mode
  66 *      0x0280          number of elapsed cycles while SR.BL is asserted
  67 *      0x0202          instruction execution
  68 *      0x0203          instruction execution in parallel
  69 *      0x0204          number of unconditional branches
  70 *      0x0208          number of exceptions
  71 *      0x0209          number of interrupts
  72 *      0x0220          UTLB miss caused by instruction fetch
  73 *      0x0222          UTLB miss caused by operand access
  74 *      0x02a0          number of ITLB misses
  75 *      0x0028          number of accesses to instruction memories
  76 *      0x0029          number of accesses to instruction cache
  77 *      0x002a          instruction cache miss
  78 *      0x022e          number of access to instruction X/Y memory
  79 *      0x0030          number of reads to operand memories
  80 *      0x0038          number of writes to operand memories
  81 *      0x0031          number of operand cache read accesses
  82 *      0x0039          number of operand cache write accesses
  83 *      0x0032          operand cache read miss
  84 *      0x003a          operand cache write miss
  85 *      0x0236          number of reads to operand X/Y memory
  86 *      0x023e          number of writes to operand X/Y memory
  87 *      0x0237          number of reads to operand U memory
  88 *      0x023f          number of writes to operand U memory
  89 *      0x0337          number of U memory read buffer misses
  90 *      0x02b4          number of wait cycles due to operand read access
  91 *      0x02bc          number of wait cycles due to operand write access
  92 *      0x0033          number of wait cycles due to operand cache read miss
  93 *      0x003b          number of wait cycles due to operand cache write miss
  94 */
  95
  96/*
  97 * Special reserved bits used by hardware emulators, read values will
  98 * vary, but writes must always be 0.
  99 */
 100#define PMCAT_EMU_CLR_MASK      ((1 << 24) | (1 << 16) | (1 << 8) | (1 << 0))
 101
 102static const int sh4a_general_events[] = {
 103        [PERF_COUNT_HW_CPU_CYCLES]              = 0x0000,
 104        [PERF_COUNT_HW_INSTRUCTIONS]            = 0x0202,
 105        [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x0029,       /* I-cache */
 106        [PERF_COUNT_HW_CACHE_MISSES]            = 0x002a,       /* I-cache */
 107        [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x0204,
 108        [PERF_COUNT_HW_BRANCH_MISSES]           = -1,
 109        [PERF_COUNT_HW_BUS_CYCLES]              = -1,
 110};
 111
 112#define C(x)    PERF_COUNT_HW_CACHE_##x
 113
 114static const int sh4a_cache_events
 115                        [PERF_COUNT_HW_CACHE_MAX]
 116                        [PERF_COUNT_HW_CACHE_OP_MAX]
 117                        [PERF_COUNT_HW_CACHE_RESULT_MAX] =
 118{
 119        [ C(L1D) ] = {
 120                [ C(OP_READ) ] = {
 121                        [ C(RESULT_ACCESS) ] = 0x0031,
 122                        [ C(RESULT_MISS)   ] = 0x0032,
 123                },
 124                [ C(OP_WRITE) ] = {
 125                        [ C(RESULT_ACCESS) ] = 0x0039,
 126                        [ C(RESULT_MISS)   ] = 0x003a,
 127                },
 128                [ C(OP_PREFETCH) ] = {
 129                        [ C(RESULT_ACCESS) ] = 0,
 130                        [ C(RESULT_MISS)   ] = 0,
 131                },
 132        },
 133
 134        [ C(L1I) ] = {
 135                [ C(OP_READ) ] = {
 136                        [ C(RESULT_ACCESS) ] = 0x0029,
 137                        [ C(RESULT_MISS)   ] = 0x002a,
 138                },
 139                [ C(OP_WRITE) ] = {
 140                        [ C(RESULT_ACCESS) ] = -1,
 141                        [ C(RESULT_MISS)   ] = -1,
 142                },
 143                [ C(OP_PREFETCH) ] = {
 144                        [ C(RESULT_ACCESS) ] = 0,
 145                        [ C(RESULT_MISS)   ] = 0,
 146                },
 147        },
 148
 149        [ C(LL) ] = {
 150                [ C(OP_READ) ] = {
 151                        [ C(RESULT_ACCESS) ] = 0x0030,
 152                        [ C(RESULT_MISS)   ] = 0,
 153                },
 154                [ C(OP_WRITE) ] = {
 155                        [ C(RESULT_ACCESS) ] = 0x0038,
 156                        [ C(RESULT_MISS)   ] = 0,
 157                },
 158                [ C(OP_PREFETCH) ] = {
 159                        [ C(RESULT_ACCESS) ] = 0,
 160                        [ C(RESULT_MISS)   ] = 0,
 161                },
 162        },
 163
 164        [ C(DTLB) ] = {
 165                [ C(OP_READ) ] = {
 166                        [ C(RESULT_ACCESS) ] = 0x0222,
 167                        [ C(RESULT_MISS)   ] = 0x0220,
 168                },
 169                [ C(OP_WRITE) ] = {
 170                        [ C(RESULT_ACCESS) ] = 0,
 171                        [ C(RESULT_MISS)   ] = 0,
 172                },
 173                [ C(OP_PREFETCH) ] = {
 174                        [ C(RESULT_ACCESS) ] = 0,
 175                        [ C(RESULT_MISS)   ] = 0,
 176                },
 177        },
 178
 179        [ C(ITLB) ] = {
 180                [ C(OP_READ) ] = {
 181                        [ C(RESULT_ACCESS) ] = 0,
 182                        [ C(RESULT_MISS)   ] = 0x02a0,
 183                },
 184                [ C(OP_WRITE) ] = {
 185                        [ C(RESULT_ACCESS) ] = -1,
 186                        [ C(RESULT_MISS)   ] = -1,
 187                },
 188                [ C(OP_PREFETCH) ] = {
 189                        [ C(RESULT_ACCESS) ] = -1,
 190                        [ C(RESULT_MISS)   ] = -1,
 191                },
 192        },
 193
 194        [ C(BPU) ] = {
 195                [ C(OP_READ) ] = {
 196                        [ C(RESULT_ACCESS) ] = -1,
 197                        [ C(RESULT_MISS)   ] = -1,
 198                },
 199                [ C(OP_WRITE) ] = {
 200                        [ C(RESULT_ACCESS) ] = -1,
 201                        [ C(RESULT_MISS)   ] = -1,
 202                },
 203                [ C(OP_PREFETCH) ] = {
 204                        [ C(RESULT_ACCESS) ] = -1,
 205                        [ C(RESULT_MISS)   ] = -1,
 206                },
 207        },
 208
 209        [ C(NODE) ] = {
 210                [ C(OP_READ) ] = {
 211                        [ C(RESULT_ACCESS) ] = -1,
 212                        [ C(RESULT_MISS)   ] = -1,
 213                },
 214                [ C(OP_WRITE) ] = {
 215                        [ C(RESULT_ACCESS) ] = -1,
 216                        [ C(RESULT_MISS)   ] = -1,
 217                },
 218                [ C(OP_PREFETCH) ] = {
 219                        [ C(RESULT_ACCESS) ] = -1,
 220                        [ C(RESULT_MISS)   ] = -1,
 221                },
 222        },
 223};
 224
 225static int sh4a_event_map(int event)
 226{
 227        return sh4a_general_events[event];
 228}
 229
 230static u64 sh4a_pmu_read(int idx)
 231{
 232        return __raw_readl(PPC_PMCTR(idx));
 233}
 234
 235static void sh4a_pmu_disable(struct hw_perf_event *hwc, int idx)
 236{
 237        unsigned int tmp;
 238
 239        tmp = __raw_readl(PPC_CCBR(idx));
 240        tmp &= ~(CCBR_CIT_MASK | CCBR_DUC);
 241        __raw_writel(tmp, PPC_CCBR(idx));
 242}
 243
 244static void sh4a_pmu_enable(struct hw_perf_event *hwc, int idx)
 245{
 246        unsigned int tmp;
 247
 248        tmp = __raw_readl(PPC_PMCAT);
 249        tmp &= ~PMCAT_EMU_CLR_MASK;
 250        tmp |= idx ? PMCAT_CLR1 : PMCAT_CLR0;
 251        __raw_writel(tmp, PPC_PMCAT);
 252
 253        tmp = __raw_readl(PPC_CCBR(idx));
 254        tmp |= (hwc->config << 6) | CCBR_CMDS | CCBR_PPCE;
 255        __raw_writel(tmp, PPC_CCBR(idx));
 256
 257        __raw_writel(__raw_readl(PPC_CCBR(idx)) | CCBR_DUC, PPC_CCBR(idx));
 258}
 259
 260static void sh4a_pmu_disable_all(void)
 261{
 262        int i;
 263
 264        for (i = 0; i < sh4a_pmu.num_events; i++)
 265                __raw_writel(__raw_readl(PPC_CCBR(i)) & ~CCBR_DUC, PPC_CCBR(i));
 266}
 267
 268static void sh4a_pmu_enable_all(void)
 269{
 270        int i;
 271
 272        for (i = 0; i < sh4a_pmu.num_events; i++)
 273                __raw_writel(__raw_readl(PPC_CCBR(i)) | CCBR_DUC, PPC_CCBR(i));
 274}
 275
 276static struct sh_pmu sh4a_pmu = {
 277        .name           = "sh4a",
 278        .num_events     = 2,
 279        .event_map      = sh4a_event_map,
 280        .max_events     = ARRAY_SIZE(sh4a_general_events),
 281        .raw_event_mask = 0x3ff,
 282        .cache_events   = &sh4a_cache_events,
 283        .read           = sh4a_pmu_read,
 284        .disable        = sh4a_pmu_disable,
 285        .enable         = sh4a_pmu_enable,
 286        .disable_all    = sh4a_pmu_disable_all,
 287        .enable_all     = sh4a_pmu_enable_all,
 288};
 289
 290static int __init sh4a_pmu_init(void)
 291{
 292        /*
 293         * Make sure this CPU actually has perf counters.
 294         */
 295        if (!(boot_cpu_data.flags & CPU_HAS_PERF_COUNTER)) {
 296                pr_notice("HW perf events unsupported, software events only.\n");
 297                return -ENODEV;
 298        }
 299
 300        return register_sh_pmu(&sh4a_pmu);
 301}
 302early_initcall(sh4a_pmu_init);
 303