linux/arch/x86/kernel/traps.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
   4 *
   5 *  Pentium III FXSR, SSE support
   6 *      Gareth Hughes <gareth@valinux.com>, May 2000
   7 */
   8
   9/*
  10 * Handle hardware traps and faults.
  11 */
  12
  13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  14
  15#include <linux/context_tracking.h>
  16#include <linux/interrupt.h>
  17#include <linux/kallsyms.h>
  18#include <linux/spinlock.h>
  19#include <linux/kprobes.h>
  20#include <linux/uaccess.h>
  21#include <linux/kdebug.h>
  22#include <linux/kgdb.h>
  23#include <linux/kernel.h>
  24#include <linux/export.h>
  25#include <linux/ptrace.h>
  26#include <linux/uprobes.h>
  27#include <linux/string.h>
  28#include <linux/delay.h>
  29#include <linux/errno.h>
  30#include <linux/kexec.h>
  31#include <linux/sched.h>
  32#include <linux/sched/task_stack.h>
  33#include <linux/timer.h>
  34#include <linux/init.h>
  35#include <linux/bug.h>
  36#include <linux/nmi.h>
  37#include <linux/mm.h>
  38#include <linux/smp.h>
  39#include <linux/io.h>
  40
  41#if defined(CONFIG_EDAC)
  42#include <linux/edac.h>
  43#endif
  44
  45#include <asm/stacktrace.h>
  46#include <asm/processor.h>
  47#include <asm/debugreg.h>
  48#include <linux/atomic.h>
  49#include <asm/text-patching.h>
  50#include <asm/ftrace.h>
  51#include <asm/traps.h>
  52#include <asm/desc.h>
  53#include <asm/fpu/internal.h>
  54#include <asm/cpu_entry_area.h>
  55#include <asm/mce.h>
  56#include <asm/fixmap.h>
  57#include <asm/mach_traps.h>
  58#include <asm/alternative.h>
  59#include <asm/fpu/xstate.h>
  60#include <asm/trace/mpx.h>
  61#include <asm/mpx.h>
  62#include <asm/vm86.h>
  63#include <asm/umip.h>
  64
  65#ifdef CONFIG_X86_64
  66#include <asm/x86_init.h>
  67#include <asm/pgalloc.h>
  68#include <asm/proto.h>
  69#else
  70#include <asm/processor-flags.h>
  71#include <asm/setup.h>
  72#include <asm/proto.h>
  73#endif
  74
  75DECLARE_BITMAP(system_vectors, NR_VECTORS);
  76
  77static inline void cond_local_irq_enable(struct pt_regs *regs)
  78{
  79        if (regs->flags & X86_EFLAGS_IF)
  80                local_irq_enable();
  81}
  82
  83static inline void cond_local_irq_disable(struct pt_regs *regs)
  84{
  85        if (regs->flags & X86_EFLAGS_IF)
  86                local_irq_disable();
  87}
  88
  89/*
  90 * In IST context, we explicitly disable preemption.  This serves two
  91 * purposes: it makes it much less likely that we would accidentally
  92 * schedule in IST context and it will force a warning if we somehow
  93 * manage to schedule by accident.
  94 */
  95void ist_enter(struct pt_regs *regs)
  96{
  97        if (user_mode(regs)) {
  98                RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
  99        } else {
 100                /*
 101                 * We might have interrupted pretty much anything.  In
 102                 * fact, if we're a machine check, we can even interrupt
 103                 * NMI processing.  We don't want in_nmi() to return true,
 104                 * but we need to notify RCU.
 105                 */
 106                rcu_nmi_enter();
 107        }
 108
 109        preempt_disable();
 110
 111        /* This code is a bit fragile.  Test it. */
 112        RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work");
 113}
 114
 115void ist_exit(struct pt_regs *regs)
 116{
 117        preempt_enable_no_resched();
 118
 119        if (!user_mode(regs))
 120                rcu_nmi_exit();
 121}
 122
 123/**
 124 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
 125 * @regs:       regs passed to the IST exception handler
 126 *
 127 * IST exception handlers normally cannot schedule.  As a special
 128 * exception, if the exception interrupted userspace code (i.e.
 129 * user_mode(regs) would return true) and the exception was not
 130 * a double fault, it can be safe to schedule.  ist_begin_non_atomic()
 131 * begins a non-atomic section within an ist_enter()/ist_exit() region.
 132 * Callers are responsible for enabling interrupts themselves inside
 133 * the non-atomic section, and callers must call ist_end_non_atomic()
 134 * before ist_exit().
 135 */
 136void ist_begin_non_atomic(struct pt_regs *regs)
 137{
 138        BUG_ON(!user_mode(regs));
 139
 140        /*
 141         * Sanity check: we need to be on the normal thread stack.  This
 142         * will catch asm bugs and any attempt to use ist_preempt_enable
 143         * from double_fault.
 144         */
 145        BUG_ON(!on_thread_stack());
 146
 147        preempt_enable_no_resched();
 148}
 149
 150/**
 151 * ist_end_non_atomic() - begin a non-atomic section in an IST exception
 152 *
 153 * Ends a non-atomic section started with ist_begin_non_atomic().
 154 */
 155void ist_end_non_atomic(void)
 156{
 157        preempt_disable();
 158}
 159
 160int is_valid_bugaddr(unsigned long addr)
 161{
 162        unsigned short ud;
 163
 164        if (addr < TASK_SIZE_MAX)
 165                return 0;
 166
 167        if (probe_kernel_address((unsigned short *)addr, ud))
 168                return 0;
 169
 170        return ud == INSN_UD0 || ud == INSN_UD2;
 171}
 172
 173int fixup_bug(struct pt_regs *regs, int trapnr)
 174{
 175        if (trapnr != X86_TRAP_UD)
 176                return 0;
 177
 178        switch (report_bug(regs->ip, regs)) {
 179        case BUG_TRAP_TYPE_NONE:
 180        case BUG_TRAP_TYPE_BUG:
 181                break;
 182
 183        case BUG_TRAP_TYPE_WARN:
 184                regs->ip += LEN_UD2;
 185                return 1;
 186        }
 187
 188        return 0;
 189}
 190
 191static nokprobe_inline int
 192do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
 193                  struct pt_regs *regs, long error_code)
 194{
 195        if (v8086_mode(regs)) {
 196                /*
 197                 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
 198                 * On nmi (interrupt 2), do_trap should not be called.
 199                 */
 200                if (trapnr < X86_TRAP_UD) {
 201                        if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
 202                                                error_code, trapnr))
 203                                return 0;
 204                }
 205        } else if (!user_mode(regs)) {
 206                if (fixup_exception(regs, trapnr))
 207                        return 0;
 208
 209                tsk->thread.error_code = error_code;
 210                tsk->thread.trap_nr = trapnr;
 211                die(str, regs, error_code);
 212        }
 213
 214        /*
 215         * We want error_code and trap_nr set for userspace faults and
 216         * kernelspace faults which result in die(), but not
 217         * kernelspace faults which are fixed up.  die() gives the
 218         * process no chance to handle the signal and notice the
 219         * kernel fault information, so that won't result in polluting
 220         * the information about previously queued, but not yet
 221         * delivered, faults.  See also do_general_protection below.
 222         */
 223        tsk->thread.error_code = error_code;
 224        tsk->thread.trap_nr = trapnr;
 225
 226        return -1;
 227}
 228
 229static void show_signal(struct task_struct *tsk, int signr,
 230                        const char *type, const char *desc,
 231                        struct pt_regs *regs, long error_code)
 232{
 233        if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
 234            printk_ratelimit()) {
 235                pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
 236                        tsk->comm, task_pid_nr(tsk), type, desc,
 237                        regs->ip, regs->sp, error_code);
 238                print_vma_addr(KERN_CONT " in ", regs->ip);
 239                pr_cont("\n");
 240        }
 241}
 242
 243static void
 244do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
 245        long error_code, int sicode, void __user *addr)
 246{
 247        struct task_struct *tsk = current;
 248
 249
 250        if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
 251                return;
 252
 253        show_signal(tsk, signr, "trap ", str, regs, error_code);
 254
 255        if (!sicode)
 256                force_sig(signr, tsk);
 257        else
 258                force_sig_fault(signr, sicode, addr, tsk);
 259}
 260NOKPROBE_SYMBOL(do_trap);
 261
 262static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
 263        unsigned long trapnr, int signr, int sicode, void __user *addr)
 264{
 265        RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 266
 267        /*
 268         * WARN*()s end up here; fix them up before we call the
 269         * notifier chain.
 270         */
 271        if (!user_mode(regs) && fixup_bug(regs, trapnr))
 272                return;
 273
 274        if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
 275                        NOTIFY_STOP) {
 276                cond_local_irq_enable(regs);
 277                do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
 278        }
 279}
 280
 281#define IP ((void __user *)uprobe_get_trap_addr(regs))
 282#define DO_ERROR(trapnr, signr, sicode, addr, str, name)                   \
 283dotraplinkage void do_##name(struct pt_regs *regs, long error_code)        \
 284{                                                                          \
 285        do_error_trap(regs, error_code, str, trapnr, signr, sicode, addr); \
 286}
 287
 288DO_ERROR(X86_TRAP_DE,     SIGFPE,  FPE_INTDIV,   IP, "divide error",        divide_error)
 289DO_ERROR(X86_TRAP_OF,     SIGSEGV,          0, NULL, "overflow",            overflow)
 290DO_ERROR(X86_TRAP_UD,     SIGILL,  ILL_ILLOPN,   IP, "invalid opcode",      invalid_op)
 291DO_ERROR(X86_TRAP_OLD_MF, SIGFPE,           0, NULL, "coprocessor segment overrun", coprocessor_segment_overrun)
 292DO_ERROR(X86_TRAP_TS,     SIGSEGV,          0, NULL, "invalid TSS",         invalid_TSS)
 293DO_ERROR(X86_TRAP_NP,     SIGBUS,           0, NULL, "segment not present", segment_not_present)
 294DO_ERROR(X86_TRAP_SS,     SIGBUS,           0, NULL, "stack segment",       stack_segment)
 295DO_ERROR(X86_TRAP_AC,     SIGBUS,  BUS_ADRALN, NULL, "alignment check",     alignment_check)
 296#undef IP
 297
 298#ifdef CONFIG_VMAP_STACK
 299__visible void __noreturn handle_stack_overflow(const char *message,
 300                                                struct pt_regs *regs,
 301                                                unsigned long fault_address)
 302{
 303        printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
 304                 (void *)fault_address, current->stack,
 305                 (char *)current->stack + THREAD_SIZE - 1);
 306        die(message, regs, 0);
 307
 308        /* Be absolutely certain we don't return. */
 309        panic(message);
 310}
 311#endif
 312
 313#ifdef CONFIG_X86_64
 314/* Runs on IST stack */
 315dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
 316{
 317        static const char str[] = "double fault";
 318        struct task_struct *tsk = current;
 319#ifdef CONFIG_VMAP_STACK
 320        unsigned long cr2;
 321#endif
 322
 323#ifdef CONFIG_X86_ESPFIX64
 324        extern unsigned char native_irq_return_iret[];
 325
 326        /*
 327         * If IRET takes a non-IST fault on the espfix64 stack, then we
 328         * end up promoting it to a doublefault.  In that case, take
 329         * advantage of the fact that we're not using the normal (TSS.sp0)
 330         * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
 331         * and then modify our own IRET frame so that, when we return,
 332         * we land directly at the #GP(0) vector with the stack already
 333         * set up according to its expectations.
 334         *
 335         * The net result is that our #GP handler will think that we
 336         * entered from usermode with the bad user context.
 337         *
 338         * No need for ist_enter here because we don't use RCU.
 339         */
 340        if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
 341                regs->cs == __KERNEL_CS &&
 342                regs->ip == (unsigned long)native_irq_return_iret)
 343        {
 344                struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
 345
 346                /*
 347                 * regs->sp points to the failing IRET frame on the
 348                 * ESPFIX64 stack.  Copy it to the entry stack.  This fills
 349                 * in gpregs->ss through gpregs->ip.
 350                 *
 351                 */
 352                memmove(&gpregs->ip, (void *)regs->sp, 5*8);
 353                gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */
 354
 355                /*
 356                 * Adjust our frame so that we return straight to the #GP
 357                 * vector with the expected RSP value.  This is safe because
 358                 * we won't enable interupts or schedule before we invoke
 359                 * general_protection, so nothing will clobber the stack
 360                 * frame we just set up.
 361                 *
 362                 * We will enter general_protection with kernel GSBASE,
 363                 * which is what the stub expects, given that the faulting
 364                 * RIP will be the IRET instruction.
 365                 */
 366                regs->ip = (unsigned long)general_protection;
 367                regs->sp = (unsigned long)&gpregs->orig_ax;
 368
 369                return;
 370        }
 371#endif
 372
 373        ist_enter(regs);
 374        notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
 375
 376        tsk->thread.error_code = error_code;
 377        tsk->thread.trap_nr = X86_TRAP_DF;
 378
 379#ifdef CONFIG_VMAP_STACK
 380        /*
 381         * If we overflow the stack into a guard page, the CPU will fail
 382         * to deliver #PF and will send #DF instead.  Similarly, if we
 383         * take any non-IST exception while too close to the bottom of
 384         * the stack, the processor will get a page fault while
 385         * delivering the exception and will generate a double fault.
 386         *
 387         * According to the SDM (footnote in 6.15 under "Interrupt 14 -
 388         * Page-Fault Exception (#PF):
 389         *
 390         *   Processors update CR2 whenever a page fault is detected. If a
 391         *   second page fault occurs while an earlier page fault is being
 392         *   delivered, the faulting linear address of the second fault will
 393         *   overwrite the contents of CR2 (replacing the previous
 394         *   address). These updates to CR2 occur even if the page fault
 395         *   results in a double fault or occurs during the delivery of a
 396         *   double fault.
 397         *
 398         * The logic below has a small possibility of incorrectly diagnosing
 399         * some errors as stack overflows.  For example, if the IDT or GDT
 400         * gets corrupted such that #GP delivery fails due to a bad descriptor
 401         * causing #GP and we hit this condition while CR2 coincidentally
 402         * points to the stack guard page, we'll think we overflowed the
 403         * stack.  Given that we're going to panic one way or another
 404         * if this happens, this isn't necessarily worth fixing.
 405         *
 406         * If necessary, we could improve the test by only diagnosing
 407         * a stack overflow if the saved RSP points within 47 bytes of
 408         * the bottom of the stack: if RSP == tsk_stack + 48 and we
 409         * take an exception, the stack is already aligned and there
 410         * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
 411         * possible error code, so a stack overflow would *not* double
 412         * fault.  With any less space left, exception delivery could
 413         * fail, and, as a practical matter, we've overflowed the
 414         * stack even if the actual trigger for the double fault was
 415         * something else.
 416         */
 417        cr2 = read_cr2();
 418        if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE)
 419                handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2);
 420#endif
 421
 422#ifdef CONFIG_DOUBLEFAULT
 423        df_debug(regs, error_code);
 424#endif
 425        /*
 426         * This is always a kernel trap and never fixable (and thus must
 427         * never return).
 428         */
 429        for (;;)
 430                die(str, regs, error_code);
 431}
 432#endif
 433
 434dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
 435{
 436        const struct mpx_bndcsr *bndcsr;
 437
 438        RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 439        if (notify_die(DIE_TRAP, "bounds", regs, error_code,
 440                        X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
 441                return;
 442        cond_local_irq_enable(regs);
 443
 444        if (!user_mode(regs))
 445                die("bounds", regs, error_code);
 446
 447        if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
 448                /* The exception is not from Intel MPX */
 449                goto exit_trap;
 450        }
 451
 452        /*
 453         * We need to look at BNDSTATUS to resolve this exception.
 454         * A NULL here might mean that it is in its 'init state',
 455         * which is all zeros which indicates MPX was not
 456         * responsible for the exception.
 457         */
 458        bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
 459        if (!bndcsr)
 460                goto exit_trap;
 461
 462        trace_bounds_exception_mpx(bndcsr);
 463        /*
 464         * The error code field of the BNDSTATUS register communicates status
 465         * information of a bound range exception #BR or operation involving
 466         * bound directory.
 467         */
 468        switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
 469        case 2: /* Bound directory has invalid entry. */
 470                if (mpx_handle_bd_fault())
 471                        goto exit_trap;
 472                break; /* Success, it was handled */
 473        case 1: /* Bound violation. */
 474        {
 475                struct task_struct *tsk = current;
 476                struct mpx_fault_info mpx;
 477
 478                if (mpx_fault_info(&mpx, regs)) {
 479                        /*
 480                         * We failed to decode the MPX instruction.  Act as if
 481                         * the exception was not caused by MPX.
 482                         */
 483                        goto exit_trap;
 484                }
 485                /*
 486                 * Success, we decoded the instruction and retrieved
 487                 * an 'mpx' containing the address being accessed
 488                 * which caused the exception.  This information
 489                 * allows and application to possibly handle the
 490                 * #BR exception itself.
 491                 */
 492                if (!do_trap_no_signal(tsk, X86_TRAP_BR, "bounds", regs,
 493                                       error_code))
 494                        break;
 495
 496                show_signal(tsk, SIGSEGV, "trap ", "bounds", regs, error_code);
 497
 498                force_sig_bnderr(mpx.addr, mpx.lower, mpx.upper);
 499                break;
 500        }
 501        case 0: /* No exception caused by Intel MPX operations. */
 502                goto exit_trap;
 503        default:
 504                die("bounds", regs, error_code);
 505        }
 506
 507        return;
 508
 509exit_trap:
 510        /*
 511         * This path out is for all the cases where we could not
 512         * handle the exception in some way (like allocating a
 513         * table or telling userspace about it.  We will also end
 514         * up here if the kernel has MPX turned off at compile
 515         * time..
 516         */
 517        do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, 0, NULL);
 518}
 519
 520dotraplinkage void
 521do_general_protection(struct pt_regs *regs, long error_code)
 522{
 523        const char *desc = "general protection fault";
 524        struct task_struct *tsk;
 525
 526        RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 527        cond_local_irq_enable(regs);
 528
 529        if (static_cpu_has(X86_FEATURE_UMIP)) {
 530                if (user_mode(regs) && fixup_umip_exception(regs))
 531                        return;
 532        }
 533
 534        if (v8086_mode(regs)) {
 535                local_irq_enable();
 536                handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
 537                return;
 538        }
 539
 540        tsk = current;
 541        if (!user_mode(regs)) {
 542                if (fixup_exception(regs, X86_TRAP_GP))
 543                        return;
 544
 545                tsk->thread.error_code = error_code;
 546                tsk->thread.trap_nr = X86_TRAP_GP;
 547                if (notify_die(DIE_GPF, desc, regs, error_code,
 548                               X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
 549                        die(desc, regs, error_code);
 550                return;
 551        }
 552
 553        tsk->thread.error_code = error_code;
 554        tsk->thread.trap_nr = X86_TRAP_GP;
 555
 556        show_signal(tsk, SIGSEGV, "", desc, regs, error_code);
 557
 558        force_sig(SIGSEGV, tsk);
 559}
 560NOKPROBE_SYMBOL(do_general_protection);
 561
 562dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
 563{
 564#ifdef CONFIG_DYNAMIC_FTRACE
 565        /*
 566         * ftrace must be first, everything else may cause a recursive crash.
 567         * See note by declaration of modifying_ftrace_code in ftrace.c
 568         */
 569        if (unlikely(atomic_read(&modifying_ftrace_code)) &&
 570            ftrace_int3_handler(regs))
 571                return;
 572#endif
 573        if (poke_int3_handler(regs))
 574                return;
 575
 576        /*
 577         * Use ist_enter despite the fact that we don't use an IST stack.
 578         * We can be called from a kprobe in non-CONTEXT_KERNEL kernel
 579         * mode or even during context tracking state changes.
 580         *
 581         * This means that we can't schedule.  That's okay.
 582         */
 583        ist_enter(regs);
 584        RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 585#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
 586        if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
 587                                SIGTRAP) == NOTIFY_STOP)
 588                goto exit;
 589#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
 590
 591#ifdef CONFIG_KPROBES
 592        if (kprobe_int3_handler(regs))
 593                goto exit;
 594#endif
 595
 596        if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
 597                        SIGTRAP) == NOTIFY_STOP)
 598                goto exit;
 599
 600        cond_local_irq_enable(regs);
 601        do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, 0, NULL);
 602        cond_local_irq_disable(regs);
 603
 604exit:
 605        ist_exit(regs);
 606}
 607NOKPROBE_SYMBOL(do_int3);
 608
 609#ifdef CONFIG_X86_64
 610/*
 611 * Help handler running on a per-cpu (IST or entry trampoline) stack
 612 * to switch to the normal thread stack if the interrupted code was in
 613 * user mode. The actual stack switch is done in entry_64.S
 614 */
 615asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
 616{
 617        struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
 618        if (regs != eregs)
 619                *regs = *eregs;
 620        return regs;
 621}
 622NOKPROBE_SYMBOL(sync_regs);
 623
 624struct bad_iret_stack {
 625        void *error_entry_ret;
 626        struct pt_regs regs;
 627};
 628
 629asmlinkage __visible notrace
 630struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
 631{
 632        /*
 633         * This is called from entry_64.S early in handling a fault
 634         * caused by a bad iret to user mode.  To handle the fault
 635         * correctly, we want to move our stack frame to where it would
 636         * be had we entered directly on the entry stack (rather than
 637         * just below the IRET frame) and we want to pretend that the
 638         * exception came from the IRET target.
 639         */
 640        struct bad_iret_stack *new_stack =
 641                (struct bad_iret_stack *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
 642
 643        /* Copy the IRET target to the new stack. */
 644        memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
 645
 646        /* Copy the remainder of the stack from the current stack. */
 647        memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
 648
 649        BUG_ON(!user_mode(&new_stack->regs));
 650        return new_stack;
 651}
 652NOKPROBE_SYMBOL(fixup_bad_iret);
 653#endif
 654
 655static bool is_sysenter_singlestep(struct pt_regs *regs)
 656{
 657        /*
 658         * We don't try for precision here.  If we're anywhere in the region of
 659         * code that can be single-stepped in the SYSENTER entry path, then
 660         * assume that this is a useless single-step trap due to SYSENTER
 661         * being invoked with TF set.  (We don't know in advance exactly
 662         * which instructions will be hit because BTF could plausibly
 663         * be set.)
 664         */
 665#ifdef CONFIG_X86_32
 666        return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
 667                (unsigned long)__end_SYSENTER_singlestep_region -
 668                (unsigned long)__begin_SYSENTER_singlestep_region;
 669#elif defined(CONFIG_IA32_EMULATION)
 670        return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
 671                (unsigned long)__end_entry_SYSENTER_compat -
 672                (unsigned long)entry_SYSENTER_compat;
 673#else
 674        return false;
 675#endif
 676}
 677
 678/*
 679 * Our handling of the processor debug registers is non-trivial.
 680 * We do not clear them on entry and exit from the kernel. Therefore
 681 * it is possible to get a watchpoint trap here from inside the kernel.
 682 * However, the code in ./ptrace.c has ensured that the user can
 683 * only set watchpoints on userspace addresses. Therefore the in-kernel
 684 * watchpoint trap can only occur in code which is reading/writing
 685 * from user space. Such code must not hold kernel locks (since it
 686 * can equally take a page fault), therefore it is safe to call
 687 * force_sig_info even though that claims and releases locks.
 688 *
 689 * Code in ./signal.c ensures that the debug control register
 690 * is restored before we deliver any signal, and therefore that
 691 * user code runs with the correct debug control register even though
 692 * we clear it here.
 693 *
 694 * Being careful here means that we don't have to be as careful in a
 695 * lot of more complicated places (task switching can be a bit lazy
 696 * about restoring all the debug state, and ptrace doesn't have to
 697 * find every occurrence of the TF bit that could be saved away even
 698 * by user code)
 699 *
 700 * May run on IST stack.
 701 */
 702dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
 703{
 704        struct task_struct *tsk = current;
 705        int user_icebp = 0;
 706        unsigned long dr6;
 707        int si_code;
 708
 709        ist_enter(regs);
 710
 711        get_debugreg(dr6, 6);
 712        /*
 713         * The Intel SDM says:
 714         *
 715         *   Certain debug exceptions may clear bits 0-3. The remaining
 716         *   contents of the DR6 register are never cleared by the
 717         *   processor. To avoid confusion in identifying debug
 718         *   exceptions, debug handlers should clear the register before
 719         *   returning to the interrupted task.
 720         *
 721         * Keep it simple: clear DR6 immediately.
 722         */
 723        set_debugreg(0, 6);
 724
 725        /* Filter out all the reserved bits which are preset to 1 */
 726        dr6 &= ~DR6_RESERVED;
 727
 728        /*
 729         * The SDM says "The processor clears the BTF flag when it
 730         * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
 731         * TIF_BLOCKSTEP in sync with the hardware BTF flag.
 732         */
 733        clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
 734
 735        if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) &&
 736                     is_sysenter_singlestep(regs))) {
 737                dr6 &= ~DR_STEP;
 738                if (!dr6)
 739                        goto exit;
 740                /*
 741                 * else we might have gotten a single-step trap and hit a
 742                 * watchpoint at the same time, in which case we should fall
 743                 * through and handle the watchpoint.
 744                 */
 745        }
 746
 747        /*
 748         * If dr6 has no reason to give us about the origin of this trap,
 749         * then it's very likely the result of an icebp/int01 trap.
 750         * User wants a sigtrap for that.
 751         */
 752        if (!dr6 && user_mode(regs))
 753                user_icebp = 1;
 754
 755        /* Store the virtualized DR6 value */
 756        tsk->thread.debugreg6 = dr6;
 757
 758#ifdef CONFIG_KPROBES
 759        if (kprobe_debug_handler(regs))
 760                goto exit;
 761#endif
 762
 763        if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
 764                                                        SIGTRAP) == NOTIFY_STOP)
 765                goto exit;
 766
 767        /*
 768         * Let others (NMI) know that the debug stack is in use
 769         * as we may switch to the interrupt stack.
 770         */
 771        debug_stack_usage_inc();
 772
 773        /* It's safe to allow irq's after DR6 has been saved */
 774        cond_local_irq_enable(regs);
 775
 776        if (v8086_mode(regs)) {
 777                handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
 778                                        X86_TRAP_DB);
 779                cond_local_irq_disable(regs);
 780                debug_stack_usage_dec();
 781                goto exit;
 782        }
 783
 784        if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
 785                /*
 786                 * Historical junk that used to handle SYSENTER single-stepping.
 787                 * This should be unreachable now.  If we survive for a while
 788                 * without anyone hitting this warning, we'll turn this into
 789                 * an oops.
 790                 */
 791                tsk->thread.debugreg6 &= ~DR_STEP;
 792                set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
 793                regs->flags &= ~X86_EFLAGS_TF;
 794        }
 795        si_code = get_si_code(tsk->thread.debugreg6);
 796        if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
 797                send_sigtrap(tsk, regs, error_code, si_code);
 798        cond_local_irq_disable(regs);
 799        debug_stack_usage_dec();
 800
 801exit:
 802        ist_exit(regs);
 803}
 804NOKPROBE_SYMBOL(do_debug);
 805
 806/*
 807 * Note that we play around with the 'TS' bit in an attempt to get
 808 * the correct behaviour even in the presence of the asynchronous
 809 * IRQ13 behaviour
 810 */
 811static void math_error(struct pt_regs *regs, int error_code, int trapnr)
 812{
 813        struct task_struct *task = current;
 814        struct fpu *fpu = &task->thread.fpu;
 815        int si_code;
 816        char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
 817                                                "simd exception";
 818
 819        cond_local_irq_enable(regs);
 820
 821        if (!user_mode(regs)) {
 822                if (fixup_exception(regs, trapnr))
 823                        return;
 824
 825                task->thread.error_code = error_code;
 826                task->thread.trap_nr = trapnr;
 827
 828                if (notify_die(DIE_TRAP, str, regs, error_code,
 829                                        trapnr, SIGFPE) != NOTIFY_STOP)
 830                        die(str, regs, error_code);
 831                return;
 832        }
 833
 834        /*
 835         * Save the info for the exception handler and clear the error.
 836         */
 837        fpu__save(fpu);
 838
 839        task->thread.trap_nr    = trapnr;
 840        task->thread.error_code = error_code;
 841
 842        si_code = fpu__exception_code(fpu, trapnr);
 843        /* Retry when we get spurious exceptions: */
 844        if (!si_code)
 845                return;
 846
 847        force_sig_fault(SIGFPE, si_code,
 848                        (void __user *)uprobe_get_trap_addr(regs), task);
 849}
 850
 851dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
 852{
 853        RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 854        math_error(regs, error_code, X86_TRAP_MF);
 855}
 856
 857dotraplinkage void
 858do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
 859{
 860        RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 861        math_error(regs, error_code, X86_TRAP_XF);
 862}
 863
 864dotraplinkage void
 865do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
 866{
 867        cond_local_irq_enable(regs);
 868}
 869
 870dotraplinkage void
 871do_device_not_available(struct pt_regs *regs, long error_code)
 872{
 873        unsigned long cr0;
 874
 875        RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 876
 877#ifdef CONFIG_MATH_EMULATION
 878        if (!boot_cpu_has(X86_FEATURE_FPU) && (read_cr0() & X86_CR0_EM)) {
 879                struct math_emu_info info = { };
 880
 881                cond_local_irq_enable(regs);
 882
 883                info.regs = regs;
 884                math_emulate(&info);
 885                return;
 886        }
 887#endif
 888
 889        /* This should not happen. */
 890        cr0 = read_cr0();
 891        if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
 892                /* Try to fix it up and carry on. */
 893                write_cr0(cr0 & ~X86_CR0_TS);
 894        } else {
 895                /*
 896                 * Something terrible happened, and we're better off trying
 897                 * to kill the task than getting stuck in a never-ending
 898                 * loop of #NM faults.
 899                 */
 900                die("unexpected #NM exception", regs, error_code);
 901        }
 902}
 903NOKPROBE_SYMBOL(do_device_not_available);
 904
 905#ifdef CONFIG_X86_32
 906dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
 907{
 908        RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 909        local_irq_enable();
 910
 911        if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
 912                        X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
 913                do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
 914                        ILL_BADSTK, (void __user *)NULL);
 915        }
 916}
 917#endif
 918
 919void __init trap_init(void)
 920{
 921        /* Init cpu_entry_area before IST entries are set up */
 922        setup_cpu_entry_areas();
 923
 924        idt_setup_traps();
 925
 926        /*
 927         * Set the IDT descriptor to a fixed read-only location, so that the
 928         * "sidt" instruction will not leak the location of the kernel, and
 929         * to defend the IDT against arbitrary memory write vulnerabilities.
 930         * It will be reloaded in cpu_init() */
 931        cea_set_pte(CPU_ENTRY_AREA_RO_IDT_VADDR, __pa_symbol(idt_table),
 932                    PAGE_KERNEL_RO);
 933        idt_descr.address = CPU_ENTRY_AREA_RO_IDT;
 934
 935        /*
 936         * Should be a barrier for any external CPU state:
 937         */
 938        cpu_init();
 939
 940        idt_setup_ist_traps();
 941
 942        x86_init.irqs.trap_init();
 943
 944        idt_setup_debugidt_traps();
 945}
 946