linux/arch/x86/kvm/mmu.c
<<
>>
Prefs
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * This module enables machines with Intel VT-x extensions to run virtual
   5 * machines without emulation or binary translation.
   6 *
   7 * MMU support
   8 *
   9 * Copyright (C) 2006 Qumranet, Inc.
  10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11 *
  12 * Authors:
  13 *   Yaniv Kamay  <yaniv@qumranet.com>
  14 *   Avi Kivity   <avi@qumranet.com>
  15 *
  16 * This work is licensed under the terms of the GNU GPL, version 2.  See
  17 * the COPYING file in the top-level directory.
  18 *
  19 */
  20
  21#include "irq.h"
  22#include "mmu.h"
  23#include "x86.h"
  24#include "kvm_cache_regs.h"
  25#include "cpuid.h"
  26
  27#include <linux/kvm_host.h>
  28#include <linux/types.h>
  29#include <linux/string.h>
  30#include <linux/mm.h>
  31#include <linux/highmem.h>
  32#include <linux/moduleparam.h>
  33#include <linux/export.h>
  34#include <linux/swap.h>
  35#include <linux/hugetlb.h>
  36#include <linux/compiler.h>
  37#include <linux/srcu.h>
  38#include <linux/slab.h>
  39#include <linux/sched/signal.h>
  40#include <linux/uaccess.h>
  41#include <linux/hash.h>
  42#include <linux/kern_levels.h>
  43
  44#include <asm/page.h>
  45#include <asm/pat.h>
  46#include <asm/cmpxchg.h>
  47#include <asm/io.h>
  48#include <asm/vmx.h>
  49#include <asm/kvm_page_track.h>
  50#include "trace.h"
  51
  52/*
  53 * When setting this variable to true it enables Two-Dimensional-Paging
  54 * where the hardware walks 2 page tables:
  55 * 1. the guest-virtual to guest-physical
  56 * 2. while doing 1. it walks guest-physical to host-physical
  57 * If the hardware supports that we don't need to do shadow paging.
  58 */
  59bool tdp_enabled = false;
  60
  61enum {
  62        AUDIT_PRE_PAGE_FAULT,
  63        AUDIT_POST_PAGE_FAULT,
  64        AUDIT_PRE_PTE_WRITE,
  65        AUDIT_POST_PTE_WRITE,
  66        AUDIT_PRE_SYNC,
  67        AUDIT_POST_SYNC
  68};
  69
  70#undef MMU_DEBUG
  71
  72#ifdef MMU_DEBUG
  73static bool dbg = 0;
  74module_param(dbg, bool, 0644);
  75
  76#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  77#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  78#define MMU_WARN_ON(x) WARN_ON(x)
  79#else
  80#define pgprintk(x...) do { } while (0)
  81#define rmap_printk(x...) do { } while (0)
  82#define MMU_WARN_ON(x) do { } while (0)
  83#endif
  84
  85#define PTE_PREFETCH_NUM                8
  86
  87#define PT_FIRST_AVAIL_BITS_SHIFT 10
  88#define PT64_SECOND_AVAIL_BITS_SHIFT 52
  89
  90#define PT64_LEVEL_BITS 9
  91
  92#define PT64_LEVEL_SHIFT(level) \
  93                (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  94
  95#define PT64_INDEX(address, level)\
  96        (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  97
  98
  99#define PT32_LEVEL_BITS 10
 100
 101#define PT32_LEVEL_SHIFT(level) \
 102                (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
 103
 104#define PT32_LVL_OFFSET_MASK(level) \
 105        (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
 106                                                * PT32_LEVEL_BITS))) - 1))
 107
 108#define PT32_INDEX(address, level)\
 109        (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
 110
 111
 112#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
 113#define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
 114#else
 115#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
 116#endif
 117#define PT64_LVL_ADDR_MASK(level) \
 118        (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
 119                                                * PT64_LEVEL_BITS))) - 1))
 120#define PT64_LVL_OFFSET_MASK(level) \
 121        (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
 122                                                * PT64_LEVEL_BITS))) - 1))
 123
 124#define PT32_BASE_ADDR_MASK PAGE_MASK
 125#define PT32_DIR_BASE_ADDR_MASK \
 126        (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
 127#define PT32_LVL_ADDR_MASK(level) \
 128        (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
 129                                            * PT32_LEVEL_BITS))) - 1))
 130
 131#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
 132                        | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
 133
 134#define ACC_EXEC_MASK    1
 135#define ACC_WRITE_MASK   PT_WRITABLE_MASK
 136#define ACC_USER_MASK    PT_USER_MASK
 137#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
 138
 139/* The mask for the R/X bits in EPT PTEs */
 140#define PT64_EPT_READABLE_MASK                  0x1ull
 141#define PT64_EPT_EXECUTABLE_MASK                0x4ull
 142
 143#include <trace/events/kvm.h>
 144
 145#define CREATE_TRACE_POINTS
 146#include "mmutrace.h"
 147
 148#define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
 149#define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
 150
 151#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
 152
 153/* make pte_list_desc fit well in cache line */
 154#define PTE_LIST_EXT 3
 155
 156/*
 157 * Return values of handle_mmio_page_fault and mmu.page_fault:
 158 * RET_PF_RETRY: let CPU fault again on the address.
 159 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
 160 *
 161 * For handle_mmio_page_fault only:
 162 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
 163 */
 164enum {
 165        RET_PF_RETRY = 0,
 166        RET_PF_EMULATE = 1,
 167        RET_PF_INVALID = 2,
 168};
 169
 170struct pte_list_desc {
 171        u64 *sptes[PTE_LIST_EXT];
 172        struct pte_list_desc *more;
 173};
 174
 175struct kvm_shadow_walk_iterator {
 176        u64 addr;
 177        hpa_t shadow_addr;
 178        u64 *sptep;
 179        int level;
 180        unsigned index;
 181};
 182
 183static const union kvm_mmu_page_role mmu_base_role_mask = {
 184        .cr0_wp = 1,
 185        .gpte_is_8_bytes = 1,
 186        .nxe = 1,
 187        .smep_andnot_wp = 1,
 188        .smap_andnot_wp = 1,
 189        .smm = 1,
 190        .guest_mode = 1,
 191        .ad_disabled = 1,
 192};
 193
 194#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
 195        for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
 196                                         (_root), (_addr));                \
 197             shadow_walk_okay(&(_walker));                                 \
 198             shadow_walk_next(&(_walker)))
 199
 200#define for_each_shadow_entry(_vcpu, _addr, _walker)            \
 201        for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
 202             shadow_walk_okay(&(_walker));                      \
 203             shadow_walk_next(&(_walker)))
 204
 205#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
 206        for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
 207             shadow_walk_okay(&(_walker)) &&                            \
 208                ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
 209             __shadow_walk_next(&(_walker), spte))
 210
 211static struct kmem_cache *pte_list_desc_cache;
 212static struct kmem_cache *mmu_page_header_cache;
 213static struct percpu_counter kvm_total_used_mmu_pages;
 214
 215static u64 __read_mostly shadow_nx_mask;
 216static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
 217static u64 __read_mostly shadow_user_mask;
 218static u64 __read_mostly shadow_accessed_mask;
 219static u64 __read_mostly shadow_dirty_mask;
 220static u64 __read_mostly shadow_mmio_mask;
 221static u64 __read_mostly shadow_mmio_value;
 222static u64 __read_mostly shadow_present_mask;
 223static u64 __read_mostly shadow_me_mask;
 224
 225/*
 226 * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
 227 * Non-present SPTEs with shadow_acc_track_value set are in place for access
 228 * tracking.
 229 */
 230static u64 __read_mostly shadow_acc_track_mask;
 231static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
 232
 233/*
 234 * The mask/shift to use for saving the original R/X bits when marking the PTE
 235 * as not-present for access tracking purposes. We do not save the W bit as the
 236 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
 237 * restored only when a write is attempted to the page.
 238 */
 239static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
 240                                                    PT64_EPT_EXECUTABLE_MASK;
 241static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
 242
 243/*
 244 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
 245 * to guard against L1TF attacks.
 246 */
 247static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
 248
 249/*
 250 * The number of high-order 1 bits to use in the mask above.
 251 */
 252static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
 253
 254/*
 255 * In some cases, we need to preserve the GFN of a non-present or reserved
 256 * SPTE when we usurp the upper five bits of the physical address space to
 257 * defend against L1TF, e.g. for MMIO SPTEs.  To preserve the GFN, we'll
 258 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
 259 * left into the reserved bits, i.e. the GFN in the SPTE will be split into
 260 * high and low parts.  This mask covers the lower bits of the GFN.
 261 */
 262static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
 263
 264
 265static void mmu_spte_set(u64 *sptep, u64 spte);
 266static union kvm_mmu_page_role
 267kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
 268
 269
 270static inline bool kvm_available_flush_tlb_with_range(void)
 271{
 272        return kvm_x86_ops->tlb_remote_flush_with_range;
 273}
 274
 275static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
 276                struct kvm_tlb_range *range)
 277{
 278        int ret = -ENOTSUPP;
 279
 280        if (range && kvm_x86_ops->tlb_remote_flush_with_range)
 281                ret = kvm_x86_ops->tlb_remote_flush_with_range(kvm, range);
 282
 283        if (ret)
 284                kvm_flush_remote_tlbs(kvm);
 285}
 286
 287static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
 288                u64 start_gfn, u64 pages)
 289{
 290        struct kvm_tlb_range range;
 291
 292        range.start_gfn = start_gfn;
 293        range.pages = pages;
 294
 295        kvm_flush_remote_tlbs_with_range(kvm, &range);
 296}
 297
 298void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
 299{
 300        BUG_ON((mmio_mask & mmio_value) != mmio_value);
 301        shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
 302        shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
 303}
 304EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
 305
 306static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
 307{
 308        return sp->role.ad_disabled;
 309}
 310
 311static inline bool spte_ad_enabled(u64 spte)
 312{
 313        MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
 314        return !(spte & shadow_acc_track_value);
 315}
 316
 317static inline u64 spte_shadow_accessed_mask(u64 spte)
 318{
 319        MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
 320        return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
 321}
 322
 323static inline u64 spte_shadow_dirty_mask(u64 spte)
 324{
 325        MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
 326        return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
 327}
 328
 329static inline bool is_access_track_spte(u64 spte)
 330{
 331        return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
 332}
 333
 334/*
 335 * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
 336 * the memslots generation and is derived as follows:
 337 *
 338 * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
 339 * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
 340 *
 341 * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
 342 * the MMIO generation number, as doing so would require stealing a bit from
 343 * the "real" generation number and thus effectively halve the maximum number
 344 * of MMIO generations that can be handled before encountering a wrap (which
 345 * requires a full MMU zap).  The flag is instead explicitly queried when
 346 * checking for MMIO spte cache hits.
 347 */
 348#define MMIO_SPTE_GEN_MASK              GENMASK_ULL(18, 0)
 349
 350#define MMIO_SPTE_GEN_LOW_START         3
 351#define MMIO_SPTE_GEN_LOW_END           11
 352#define MMIO_SPTE_GEN_LOW_MASK          GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
 353                                                    MMIO_SPTE_GEN_LOW_START)
 354
 355#define MMIO_SPTE_GEN_HIGH_START        52
 356#define MMIO_SPTE_GEN_HIGH_END          61
 357#define MMIO_SPTE_GEN_HIGH_MASK         GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
 358                                                    MMIO_SPTE_GEN_HIGH_START)
 359static u64 generation_mmio_spte_mask(u64 gen)
 360{
 361        u64 mask;
 362
 363        WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
 364
 365        mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
 366        mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
 367        return mask;
 368}
 369
 370static u64 get_mmio_spte_generation(u64 spte)
 371{
 372        u64 gen;
 373
 374        spte &= ~shadow_mmio_mask;
 375
 376        gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
 377        gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
 378        return gen;
 379}
 380
 381static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
 382                           unsigned access)
 383{
 384        u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
 385        u64 mask = generation_mmio_spte_mask(gen);
 386        u64 gpa = gfn << PAGE_SHIFT;
 387
 388        access &= ACC_WRITE_MASK | ACC_USER_MASK;
 389        mask |= shadow_mmio_value | access;
 390        mask |= gpa | shadow_nonpresent_or_rsvd_mask;
 391        mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
 392                << shadow_nonpresent_or_rsvd_mask_len;
 393
 394        page_header(__pa(sptep))->mmio_cached = true;
 395
 396        trace_mark_mmio_spte(sptep, gfn, access, gen);
 397        mmu_spte_set(sptep, mask);
 398}
 399
 400static bool is_mmio_spte(u64 spte)
 401{
 402        return (spte & shadow_mmio_mask) == shadow_mmio_value;
 403}
 404
 405static gfn_t get_mmio_spte_gfn(u64 spte)
 406{
 407        u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
 408
 409        gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
 410               & shadow_nonpresent_or_rsvd_mask;
 411
 412        return gpa >> PAGE_SHIFT;
 413}
 414
 415static unsigned get_mmio_spte_access(u64 spte)
 416{
 417        u64 mask = generation_mmio_spte_mask(MMIO_SPTE_GEN_MASK) | shadow_mmio_mask;
 418        return (spte & ~mask) & ~PAGE_MASK;
 419}
 420
 421static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
 422                          kvm_pfn_t pfn, unsigned access)
 423{
 424        if (unlikely(is_noslot_pfn(pfn))) {
 425                mark_mmio_spte(vcpu, sptep, gfn, access);
 426                return true;
 427        }
 428
 429        return false;
 430}
 431
 432static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
 433{
 434        u64 kvm_gen, spte_gen, gen;
 435
 436        gen = kvm_vcpu_memslots(vcpu)->generation;
 437        if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
 438                return false;
 439
 440        kvm_gen = gen & MMIO_SPTE_GEN_MASK;
 441        spte_gen = get_mmio_spte_generation(spte);
 442
 443        trace_check_mmio_spte(spte, kvm_gen, spte_gen);
 444        return likely(kvm_gen == spte_gen);
 445}
 446
 447/*
 448 * Sets the shadow PTE masks used by the MMU.
 449 *
 450 * Assumptions:
 451 *  - Setting either @accessed_mask or @dirty_mask requires setting both
 452 *  - At least one of @accessed_mask or @acc_track_mask must be set
 453 */
 454void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
 455                u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
 456                u64 acc_track_mask, u64 me_mask)
 457{
 458        BUG_ON(!dirty_mask != !accessed_mask);
 459        BUG_ON(!accessed_mask && !acc_track_mask);
 460        BUG_ON(acc_track_mask & shadow_acc_track_value);
 461
 462        shadow_user_mask = user_mask;
 463        shadow_accessed_mask = accessed_mask;
 464        shadow_dirty_mask = dirty_mask;
 465        shadow_nx_mask = nx_mask;
 466        shadow_x_mask = x_mask;
 467        shadow_present_mask = p_mask;
 468        shadow_acc_track_mask = acc_track_mask;
 469        shadow_me_mask = me_mask;
 470}
 471EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
 472
 473static void kvm_mmu_reset_all_pte_masks(void)
 474{
 475        u8 low_phys_bits;
 476
 477        shadow_user_mask = 0;
 478        shadow_accessed_mask = 0;
 479        shadow_dirty_mask = 0;
 480        shadow_nx_mask = 0;
 481        shadow_x_mask = 0;
 482        shadow_mmio_mask = 0;
 483        shadow_present_mask = 0;
 484        shadow_acc_track_mask = 0;
 485
 486        /* 
 487         * If the CPU has 46 or less physical address bits, then set an
 488         * appropriate mask to guard against L1TF attacks. Otherwise, it is
 489         * assumed that the CPU is not vulnerable to L1TF.
 490         */
 491        low_phys_bits = boot_cpu_data.x86_phys_bits;
 492        if (boot_cpu_data.x86_phys_bits <
 493            52 - shadow_nonpresent_or_rsvd_mask_len) {
 494                shadow_nonpresent_or_rsvd_mask =
 495                        rsvd_bits(boot_cpu_data.x86_phys_bits -
 496                                  shadow_nonpresent_or_rsvd_mask_len,
 497                                  boot_cpu_data.x86_phys_bits - 1);
 498                low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
 499        }
 500        shadow_nonpresent_or_rsvd_lower_gfn_mask =
 501                GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
 502}
 503
 504static int is_cpuid_PSE36(void)
 505{
 506        return 1;
 507}
 508
 509static int is_nx(struct kvm_vcpu *vcpu)
 510{
 511        return vcpu->arch.efer & EFER_NX;
 512}
 513
 514static int is_shadow_present_pte(u64 pte)
 515{
 516        return (pte != 0) && !is_mmio_spte(pte);
 517}
 518
 519static int is_large_pte(u64 pte)
 520{
 521        return pte & PT_PAGE_SIZE_MASK;
 522}
 523
 524static int is_last_spte(u64 pte, int level)
 525{
 526        if (level == PT_PAGE_TABLE_LEVEL)
 527                return 1;
 528        if (is_large_pte(pte))
 529                return 1;
 530        return 0;
 531}
 532
 533static bool is_executable_pte(u64 spte)
 534{
 535        return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
 536}
 537
 538static kvm_pfn_t spte_to_pfn(u64 pte)
 539{
 540        return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
 541}
 542
 543static gfn_t pse36_gfn_delta(u32 gpte)
 544{
 545        int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
 546
 547        return (gpte & PT32_DIR_PSE36_MASK) << shift;
 548}
 549
 550#ifdef CONFIG_X86_64
 551static void __set_spte(u64 *sptep, u64 spte)
 552{
 553        WRITE_ONCE(*sptep, spte);
 554}
 555
 556static void __update_clear_spte_fast(u64 *sptep, u64 spte)
 557{
 558        WRITE_ONCE(*sptep, spte);
 559}
 560
 561static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
 562{
 563        return xchg(sptep, spte);
 564}
 565
 566static u64 __get_spte_lockless(u64 *sptep)
 567{
 568        return READ_ONCE(*sptep);
 569}
 570#else
 571union split_spte {
 572        struct {
 573                u32 spte_low;
 574                u32 spte_high;
 575        };
 576        u64 spte;
 577};
 578
 579static void count_spte_clear(u64 *sptep, u64 spte)
 580{
 581        struct kvm_mmu_page *sp =  page_header(__pa(sptep));
 582
 583        if (is_shadow_present_pte(spte))
 584                return;
 585
 586        /* Ensure the spte is completely set before we increase the count */
 587        smp_wmb();
 588        sp->clear_spte_count++;
 589}
 590
 591static void __set_spte(u64 *sptep, u64 spte)
 592{
 593        union split_spte *ssptep, sspte;
 594
 595        ssptep = (union split_spte *)sptep;
 596        sspte = (union split_spte)spte;
 597
 598        ssptep->spte_high = sspte.spte_high;
 599
 600        /*
 601         * If we map the spte from nonpresent to present, We should store
 602         * the high bits firstly, then set present bit, so cpu can not
 603         * fetch this spte while we are setting the spte.
 604         */
 605        smp_wmb();
 606
 607        WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
 608}
 609
 610static void __update_clear_spte_fast(u64 *sptep, u64 spte)
 611{
 612        union split_spte *ssptep, sspte;
 613
 614        ssptep = (union split_spte *)sptep;
 615        sspte = (union split_spte)spte;
 616
 617        WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
 618
 619        /*
 620         * If we map the spte from present to nonpresent, we should clear
 621         * present bit firstly to avoid vcpu fetch the old high bits.
 622         */
 623        smp_wmb();
 624
 625        ssptep->spte_high = sspte.spte_high;
 626        count_spte_clear(sptep, spte);
 627}
 628
 629static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
 630{
 631        union split_spte *ssptep, sspte, orig;
 632
 633        ssptep = (union split_spte *)sptep;
 634        sspte = (union split_spte)spte;
 635
 636        /* xchg acts as a barrier before the setting of the high bits */
 637        orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
 638        orig.spte_high = ssptep->spte_high;
 639        ssptep->spte_high = sspte.spte_high;
 640        count_spte_clear(sptep, spte);
 641
 642        return orig.spte;
 643}
 644
 645/*
 646 * The idea using the light way get the spte on x86_32 guest is from
 647 * gup_get_pte(arch/x86/mm/gup.c).
 648 *
 649 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 650 * coalesces them and we are running out of the MMU lock.  Therefore
 651 * we need to protect against in-progress updates of the spte.
 652 *
 653 * Reading the spte while an update is in progress may get the old value
 654 * for the high part of the spte.  The race is fine for a present->non-present
 655 * change (because the high part of the spte is ignored for non-present spte),
 656 * but for a present->present change we must reread the spte.
 657 *
 658 * All such changes are done in two steps (present->non-present and
 659 * non-present->present), hence it is enough to count the number of
 660 * present->non-present updates: if it changed while reading the spte,
 661 * we might have hit the race.  This is done using clear_spte_count.
 662 */
 663static u64 __get_spte_lockless(u64 *sptep)
 664{
 665        struct kvm_mmu_page *sp =  page_header(__pa(sptep));
 666        union split_spte spte, *orig = (union split_spte *)sptep;
 667        int count;
 668
 669retry:
 670        count = sp->clear_spte_count;
 671        smp_rmb();
 672
 673        spte.spte_low = orig->spte_low;
 674        smp_rmb();
 675
 676        spte.spte_high = orig->spte_high;
 677        smp_rmb();
 678
 679        if (unlikely(spte.spte_low != orig->spte_low ||
 680              count != sp->clear_spte_count))
 681                goto retry;
 682
 683        return spte.spte;
 684}
 685#endif
 686
 687static bool spte_can_locklessly_be_made_writable(u64 spte)
 688{
 689        return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
 690                (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
 691}
 692
 693static bool spte_has_volatile_bits(u64 spte)
 694{
 695        if (!is_shadow_present_pte(spte))
 696                return false;
 697
 698        /*
 699         * Always atomically update spte if it can be updated
 700         * out of mmu-lock, it can ensure dirty bit is not lost,
 701         * also, it can help us to get a stable is_writable_pte()
 702         * to ensure tlb flush is not missed.
 703         */
 704        if (spte_can_locklessly_be_made_writable(spte) ||
 705            is_access_track_spte(spte))
 706                return true;
 707
 708        if (spte_ad_enabled(spte)) {
 709                if ((spte & shadow_accessed_mask) == 0 ||
 710                    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
 711                        return true;
 712        }
 713
 714        return false;
 715}
 716
 717static bool is_accessed_spte(u64 spte)
 718{
 719        u64 accessed_mask = spte_shadow_accessed_mask(spte);
 720
 721        return accessed_mask ? spte & accessed_mask
 722                             : !is_access_track_spte(spte);
 723}
 724
 725static bool is_dirty_spte(u64 spte)
 726{
 727        u64 dirty_mask = spte_shadow_dirty_mask(spte);
 728
 729        return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
 730}
 731
 732/* Rules for using mmu_spte_set:
 733 * Set the sptep from nonpresent to present.
 734 * Note: the sptep being assigned *must* be either not present
 735 * or in a state where the hardware will not attempt to update
 736 * the spte.
 737 */
 738static void mmu_spte_set(u64 *sptep, u64 new_spte)
 739{
 740        WARN_ON(is_shadow_present_pte(*sptep));
 741        __set_spte(sptep, new_spte);
 742}
 743
 744/*
 745 * Update the SPTE (excluding the PFN), but do not track changes in its
 746 * accessed/dirty status.
 747 */
 748static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
 749{
 750        u64 old_spte = *sptep;
 751
 752        WARN_ON(!is_shadow_present_pte(new_spte));
 753
 754        if (!is_shadow_present_pte(old_spte)) {
 755                mmu_spte_set(sptep, new_spte);
 756                return old_spte;
 757        }
 758
 759        if (!spte_has_volatile_bits(old_spte))
 760                __update_clear_spte_fast(sptep, new_spte);
 761        else
 762                old_spte = __update_clear_spte_slow(sptep, new_spte);
 763
 764        WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
 765
 766        return old_spte;
 767}
 768
 769/* Rules for using mmu_spte_update:
 770 * Update the state bits, it means the mapped pfn is not changed.
 771 *
 772 * Whenever we overwrite a writable spte with a read-only one we
 773 * should flush remote TLBs. Otherwise rmap_write_protect
 774 * will find a read-only spte, even though the writable spte
 775 * might be cached on a CPU's TLB, the return value indicates this
 776 * case.
 777 *
 778 * Returns true if the TLB needs to be flushed
 779 */
 780static bool mmu_spte_update(u64 *sptep, u64 new_spte)
 781{
 782        bool flush = false;
 783        u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
 784
 785        if (!is_shadow_present_pte(old_spte))
 786                return false;
 787
 788        /*
 789         * For the spte updated out of mmu-lock is safe, since
 790         * we always atomically update it, see the comments in
 791         * spte_has_volatile_bits().
 792         */
 793        if (spte_can_locklessly_be_made_writable(old_spte) &&
 794              !is_writable_pte(new_spte))
 795                flush = true;
 796
 797        /*
 798         * Flush TLB when accessed/dirty states are changed in the page tables,
 799         * to guarantee consistency between TLB and page tables.
 800         */
 801
 802        if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
 803                flush = true;
 804                kvm_set_pfn_accessed(spte_to_pfn(old_spte));
 805        }
 806
 807        if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
 808                flush = true;
 809                kvm_set_pfn_dirty(spte_to_pfn(old_spte));
 810        }
 811
 812        return flush;
 813}
 814
 815/*
 816 * Rules for using mmu_spte_clear_track_bits:
 817 * It sets the sptep from present to nonpresent, and track the
 818 * state bits, it is used to clear the last level sptep.
 819 * Returns non-zero if the PTE was previously valid.
 820 */
 821static int mmu_spte_clear_track_bits(u64 *sptep)
 822{
 823        kvm_pfn_t pfn;
 824        u64 old_spte = *sptep;
 825
 826        if (!spte_has_volatile_bits(old_spte))
 827                __update_clear_spte_fast(sptep, 0ull);
 828        else
 829                old_spte = __update_clear_spte_slow(sptep, 0ull);
 830
 831        if (!is_shadow_present_pte(old_spte))
 832                return 0;
 833
 834        pfn = spte_to_pfn(old_spte);
 835
 836        /*
 837         * KVM does not hold the refcount of the page used by
 838         * kvm mmu, before reclaiming the page, we should
 839         * unmap it from mmu first.
 840         */
 841        WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
 842
 843        if (is_accessed_spte(old_spte))
 844                kvm_set_pfn_accessed(pfn);
 845
 846        if (is_dirty_spte(old_spte))
 847                kvm_set_pfn_dirty(pfn);
 848
 849        return 1;
 850}
 851
 852/*
 853 * Rules for using mmu_spte_clear_no_track:
 854 * Directly clear spte without caring the state bits of sptep,
 855 * it is used to set the upper level spte.
 856 */
 857static void mmu_spte_clear_no_track(u64 *sptep)
 858{
 859        __update_clear_spte_fast(sptep, 0ull);
 860}
 861
 862static u64 mmu_spte_get_lockless(u64 *sptep)
 863{
 864        return __get_spte_lockless(sptep);
 865}
 866
 867static u64 mark_spte_for_access_track(u64 spte)
 868{
 869        if (spte_ad_enabled(spte))
 870                return spte & ~shadow_accessed_mask;
 871
 872        if (is_access_track_spte(spte))
 873                return spte;
 874
 875        /*
 876         * Making an Access Tracking PTE will result in removal of write access
 877         * from the PTE. So, verify that we will be able to restore the write
 878         * access in the fast page fault path later on.
 879         */
 880        WARN_ONCE((spte & PT_WRITABLE_MASK) &&
 881                  !spte_can_locklessly_be_made_writable(spte),
 882                  "kvm: Writable SPTE is not locklessly dirty-trackable\n");
 883
 884        WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
 885                          shadow_acc_track_saved_bits_shift),
 886                  "kvm: Access Tracking saved bit locations are not zero\n");
 887
 888        spte |= (spte & shadow_acc_track_saved_bits_mask) <<
 889                shadow_acc_track_saved_bits_shift;
 890        spte &= ~shadow_acc_track_mask;
 891
 892        return spte;
 893}
 894
 895/* Restore an acc-track PTE back to a regular PTE */
 896static u64 restore_acc_track_spte(u64 spte)
 897{
 898        u64 new_spte = spte;
 899        u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
 900                         & shadow_acc_track_saved_bits_mask;
 901
 902        WARN_ON_ONCE(spte_ad_enabled(spte));
 903        WARN_ON_ONCE(!is_access_track_spte(spte));
 904
 905        new_spte &= ~shadow_acc_track_mask;
 906        new_spte &= ~(shadow_acc_track_saved_bits_mask <<
 907                      shadow_acc_track_saved_bits_shift);
 908        new_spte |= saved_bits;
 909
 910        return new_spte;
 911}
 912
 913/* Returns the Accessed status of the PTE and resets it at the same time. */
 914static bool mmu_spte_age(u64 *sptep)
 915{
 916        u64 spte = mmu_spte_get_lockless(sptep);
 917
 918        if (!is_accessed_spte(spte))
 919                return false;
 920
 921        if (spte_ad_enabled(spte)) {
 922                clear_bit((ffs(shadow_accessed_mask) - 1),
 923                          (unsigned long *)sptep);
 924        } else {
 925                /*
 926                 * Capture the dirty status of the page, so that it doesn't get
 927                 * lost when the SPTE is marked for access tracking.
 928                 */
 929                if (is_writable_pte(spte))
 930                        kvm_set_pfn_dirty(spte_to_pfn(spte));
 931
 932                spte = mark_spte_for_access_track(spte);
 933                mmu_spte_update_no_track(sptep, spte);
 934        }
 935
 936        return true;
 937}
 938
 939static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
 940{
 941        /*
 942         * Prevent page table teardown by making any free-er wait during
 943         * kvm_flush_remote_tlbs() IPI to all active vcpus.
 944         */
 945        local_irq_disable();
 946
 947        /*
 948         * Make sure a following spte read is not reordered ahead of the write
 949         * to vcpu->mode.
 950         */
 951        smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
 952}
 953
 954static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
 955{
 956        /*
 957         * Make sure the write to vcpu->mode is not reordered in front of
 958         * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
 959         * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
 960         */
 961        smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
 962        local_irq_enable();
 963}
 964
 965static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
 966                                  struct kmem_cache *base_cache, int min)
 967{
 968        void *obj;
 969
 970        if (cache->nobjs >= min)
 971                return 0;
 972        while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
 973                obj = kmem_cache_zalloc(base_cache, GFP_KERNEL_ACCOUNT);
 974                if (!obj)
 975                        return cache->nobjs >= min ? 0 : -ENOMEM;
 976                cache->objects[cache->nobjs++] = obj;
 977        }
 978        return 0;
 979}
 980
 981static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
 982{
 983        return cache->nobjs;
 984}
 985
 986static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
 987                                  struct kmem_cache *cache)
 988{
 989        while (mc->nobjs)
 990                kmem_cache_free(cache, mc->objects[--mc->nobjs]);
 991}
 992
 993static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
 994                                       int min)
 995{
 996        void *page;
 997
 998        if (cache->nobjs >= min)
 999                return 0;
1000        while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1001                page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
1002                if (!page)
1003                        return cache->nobjs >= min ? 0 : -ENOMEM;
1004                cache->objects[cache->nobjs++] = page;
1005        }
1006        return 0;
1007}
1008
1009static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
1010{
1011        while (mc->nobjs)
1012                free_page((unsigned long)mc->objects[--mc->nobjs]);
1013}
1014
1015static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
1016{
1017        int r;
1018
1019        r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1020                                   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
1021        if (r)
1022                goto out;
1023        r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
1024        if (r)
1025                goto out;
1026        r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
1027                                   mmu_page_header_cache, 4);
1028out:
1029        return r;
1030}
1031
1032static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1033{
1034        mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1035                                pte_list_desc_cache);
1036        mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
1037        mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
1038                                mmu_page_header_cache);
1039}
1040
1041static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
1042{
1043        void *p;
1044
1045        BUG_ON(!mc->nobjs);
1046        p = mc->objects[--mc->nobjs];
1047        return p;
1048}
1049
1050static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
1051{
1052        return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
1053}
1054
1055static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1056{
1057        kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1058}
1059
1060static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1061{
1062        if (!sp->role.direct)
1063                return sp->gfns[index];
1064
1065        return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1066}
1067
1068static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1069{
1070        if (sp->role.direct)
1071                BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
1072        else
1073                sp->gfns[index] = gfn;
1074}
1075
1076/*
1077 * Return the pointer to the large page information for a given gfn,
1078 * handling slots that are not large page aligned.
1079 */
1080static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1081                                              struct kvm_memory_slot *slot,
1082                                              int level)
1083{
1084        unsigned long idx;
1085
1086        idx = gfn_to_index(gfn, slot->base_gfn, level);
1087        return &slot->arch.lpage_info[level - 2][idx];
1088}
1089
1090static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1091                                            gfn_t gfn, int count)
1092{
1093        struct kvm_lpage_info *linfo;
1094        int i;
1095
1096        for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1097                linfo = lpage_info_slot(gfn, slot, i);
1098                linfo->disallow_lpage += count;
1099                WARN_ON(linfo->disallow_lpage < 0);
1100        }
1101}
1102
1103void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1104{
1105        update_gfn_disallow_lpage_count(slot, gfn, 1);
1106}
1107
1108void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1109{
1110        update_gfn_disallow_lpage_count(slot, gfn, -1);
1111}
1112
1113static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1114{
1115        struct kvm_memslots *slots;
1116        struct kvm_memory_slot *slot;
1117        gfn_t gfn;
1118
1119        kvm->arch.indirect_shadow_pages++;
1120        gfn = sp->gfn;
1121        slots = kvm_memslots_for_spte_role(kvm, sp->role);
1122        slot = __gfn_to_memslot(slots, gfn);
1123
1124        /* the non-leaf shadow pages are keeping readonly. */
1125        if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1126                return kvm_slot_page_track_add_page(kvm, slot, gfn,
1127                                                    KVM_PAGE_TRACK_WRITE);
1128
1129        kvm_mmu_gfn_disallow_lpage(slot, gfn);
1130}
1131
1132static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1133{
1134        struct kvm_memslots *slots;
1135        struct kvm_memory_slot *slot;
1136        gfn_t gfn;
1137
1138        kvm->arch.indirect_shadow_pages--;
1139        gfn = sp->gfn;
1140        slots = kvm_memslots_for_spte_role(kvm, sp->role);
1141        slot = __gfn_to_memslot(slots, gfn);
1142        if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1143                return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1144                                                       KVM_PAGE_TRACK_WRITE);
1145
1146        kvm_mmu_gfn_allow_lpage(slot, gfn);
1147}
1148
1149static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1150                                          struct kvm_memory_slot *slot)
1151{
1152        struct kvm_lpage_info *linfo;
1153
1154        if (slot) {
1155                linfo = lpage_info_slot(gfn, slot, level);
1156                return !!linfo->disallow_lpage;
1157        }
1158
1159        return true;
1160}
1161
1162static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1163                                        int level)
1164{
1165        struct kvm_memory_slot *slot;
1166
1167        slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1168        return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1169}
1170
1171static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
1172{
1173        unsigned long page_size;
1174        int i, ret = 0;
1175
1176        page_size = kvm_host_page_size(kvm, gfn);
1177
1178        for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1179                if (page_size >= KVM_HPAGE_SIZE(i))
1180                        ret = i;
1181                else
1182                        break;
1183        }
1184
1185        return ret;
1186}
1187
1188static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1189                                          bool no_dirty_log)
1190{
1191        if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1192                return false;
1193        if (no_dirty_log && slot->dirty_bitmap)
1194                return false;
1195
1196        return true;
1197}
1198
1199static struct kvm_memory_slot *
1200gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1201                            bool no_dirty_log)
1202{
1203        struct kvm_memory_slot *slot;
1204
1205        slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1206        if (!memslot_valid_for_gpte(slot, no_dirty_log))
1207                slot = NULL;
1208
1209        return slot;
1210}
1211
1212static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1213                         bool *force_pt_level)
1214{
1215        int host_level, level, max_level;
1216        struct kvm_memory_slot *slot;
1217
1218        if (unlikely(*force_pt_level))
1219                return PT_PAGE_TABLE_LEVEL;
1220
1221        slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1222        *force_pt_level = !memslot_valid_for_gpte(slot, true);
1223        if (unlikely(*force_pt_level))
1224                return PT_PAGE_TABLE_LEVEL;
1225
1226        host_level = host_mapping_level(vcpu->kvm, large_gfn);
1227
1228        if (host_level == PT_PAGE_TABLE_LEVEL)
1229                return host_level;
1230
1231        max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1232
1233        for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1234                if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1235                        break;
1236
1237        return level - 1;
1238}
1239
1240/*
1241 * About rmap_head encoding:
1242 *
1243 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1244 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1245 * pte_list_desc containing more mappings.
1246 */
1247
1248/*
1249 * Returns the number of pointers in the rmap chain, not counting the new one.
1250 */
1251static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1252                        struct kvm_rmap_head *rmap_head)
1253{
1254        struct pte_list_desc *desc;
1255        int i, count = 0;
1256
1257        if (!rmap_head->val) {
1258                rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1259                rmap_head->val = (unsigned long)spte;
1260        } else if (!(rmap_head->val & 1)) {
1261                rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1262                desc = mmu_alloc_pte_list_desc(vcpu);
1263                desc->sptes[0] = (u64 *)rmap_head->val;
1264                desc->sptes[1] = spte;
1265                rmap_head->val = (unsigned long)desc | 1;
1266                ++count;
1267        } else {
1268                rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1269                desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1270                while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1271                        desc = desc->more;
1272                        count += PTE_LIST_EXT;
1273                }
1274                if (desc->sptes[PTE_LIST_EXT-1]) {
1275                        desc->more = mmu_alloc_pte_list_desc(vcpu);
1276                        desc = desc->more;
1277                }
1278                for (i = 0; desc->sptes[i]; ++i)
1279                        ++count;
1280                desc->sptes[i] = spte;
1281        }
1282        return count;
1283}
1284
1285static void
1286pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1287                           struct pte_list_desc *desc, int i,
1288                           struct pte_list_desc *prev_desc)
1289{
1290        int j;
1291
1292        for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1293                ;
1294        desc->sptes[i] = desc->sptes[j];
1295        desc->sptes[j] = NULL;
1296        if (j != 0)
1297                return;
1298        if (!prev_desc && !desc->more)
1299                rmap_head->val = (unsigned long)desc->sptes[0];
1300        else
1301                if (prev_desc)
1302                        prev_desc->more = desc->more;
1303                else
1304                        rmap_head->val = (unsigned long)desc->more | 1;
1305        mmu_free_pte_list_desc(desc);
1306}
1307
1308static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1309{
1310        struct pte_list_desc *desc;
1311        struct pte_list_desc *prev_desc;
1312        int i;
1313
1314        if (!rmap_head->val) {
1315                pr_err("%s: %p 0->BUG\n", __func__, spte);
1316                BUG();
1317        } else if (!(rmap_head->val & 1)) {
1318                rmap_printk("%s:  %p 1->0\n", __func__, spte);
1319                if ((u64 *)rmap_head->val != spte) {
1320                        pr_err("%s:  %p 1->BUG\n", __func__, spte);
1321                        BUG();
1322                }
1323                rmap_head->val = 0;
1324        } else {
1325                rmap_printk("%s:  %p many->many\n", __func__, spte);
1326                desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1327                prev_desc = NULL;
1328                while (desc) {
1329                        for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1330                                if (desc->sptes[i] == spte) {
1331                                        pte_list_desc_remove_entry(rmap_head,
1332                                                        desc, i, prev_desc);
1333                                        return;
1334                                }
1335                        }
1336                        prev_desc = desc;
1337                        desc = desc->more;
1338                }
1339                pr_err("%s: %p many->many\n", __func__, spte);
1340                BUG();
1341        }
1342}
1343
1344static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1345{
1346        mmu_spte_clear_track_bits(sptep);
1347        __pte_list_remove(sptep, rmap_head);
1348}
1349
1350static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1351                                           struct kvm_memory_slot *slot)
1352{
1353        unsigned long idx;
1354
1355        idx = gfn_to_index(gfn, slot->base_gfn, level);
1356        return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1357}
1358
1359static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1360                                         struct kvm_mmu_page *sp)
1361{
1362        struct kvm_memslots *slots;
1363        struct kvm_memory_slot *slot;
1364
1365        slots = kvm_memslots_for_spte_role(kvm, sp->role);
1366        slot = __gfn_to_memslot(slots, gfn);
1367        return __gfn_to_rmap(gfn, sp->role.level, slot);
1368}
1369
1370static bool rmap_can_add(struct kvm_vcpu *vcpu)
1371{
1372        struct kvm_mmu_memory_cache *cache;
1373
1374        cache = &vcpu->arch.mmu_pte_list_desc_cache;
1375        return mmu_memory_cache_free_objects(cache);
1376}
1377
1378static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1379{
1380        struct kvm_mmu_page *sp;
1381        struct kvm_rmap_head *rmap_head;
1382
1383        sp = page_header(__pa(spte));
1384        kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1385        rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1386        return pte_list_add(vcpu, spte, rmap_head);
1387}
1388
1389static void rmap_remove(struct kvm *kvm, u64 *spte)
1390{
1391        struct kvm_mmu_page *sp;
1392        gfn_t gfn;
1393        struct kvm_rmap_head *rmap_head;
1394
1395        sp = page_header(__pa(spte));
1396        gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1397        rmap_head = gfn_to_rmap(kvm, gfn, sp);
1398        __pte_list_remove(spte, rmap_head);
1399}
1400
1401/*
1402 * Used by the following functions to iterate through the sptes linked by a
1403 * rmap.  All fields are private and not assumed to be used outside.
1404 */
1405struct rmap_iterator {
1406        /* private fields */
1407        struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1408        int pos;                        /* index of the sptep */
1409};
1410
1411/*
1412 * Iteration must be started by this function.  This should also be used after
1413 * removing/dropping sptes from the rmap link because in such cases the
1414 * information in the itererator may not be valid.
1415 *
1416 * Returns sptep if found, NULL otherwise.
1417 */
1418static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1419                           struct rmap_iterator *iter)
1420{
1421        u64 *sptep;
1422
1423        if (!rmap_head->val)
1424                return NULL;
1425
1426        if (!(rmap_head->val & 1)) {
1427                iter->desc = NULL;
1428                sptep = (u64 *)rmap_head->val;
1429                goto out;
1430        }
1431
1432        iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1433        iter->pos = 0;
1434        sptep = iter->desc->sptes[iter->pos];
1435out:
1436        BUG_ON(!is_shadow_present_pte(*sptep));
1437        return sptep;
1438}
1439
1440/*
1441 * Must be used with a valid iterator: e.g. after rmap_get_first().
1442 *
1443 * Returns sptep if found, NULL otherwise.
1444 */
1445static u64 *rmap_get_next(struct rmap_iterator *iter)
1446{
1447        u64 *sptep;
1448
1449        if (iter->desc) {
1450                if (iter->pos < PTE_LIST_EXT - 1) {
1451                        ++iter->pos;
1452                        sptep = iter->desc->sptes[iter->pos];
1453                        if (sptep)
1454                                goto out;
1455                }
1456
1457                iter->desc = iter->desc->more;
1458
1459                if (iter->desc) {
1460                        iter->pos = 0;
1461                        /* desc->sptes[0] cannot be NULL */
1462                        sptep = iter->desc->sptes[iter->pos];
1463                        goto out;
1464                }
1465        }
1466
1467        return NULL;
1468out:
1469        BUG_ON(!is_shadow_present_pte(*sptep));
1470        return sptep;
1471}
1472
1473#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1474        for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1475             _spte_; _spte_ = rmap_get_next(_iter_))
1476
1477static void drop_spte(struct kvm *kvm, u64 *sptep)
1478{
1479        if (mmu_spte_clear_track_bits(sptep))
1480                rmap_remove(kvm, sptep);
1481}
1482
1483
1484static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1485{
1486        if (is_large_pte(*sptep)) {
1487                WARN_ON(page_header(__pa(sptep))->role.level ==
1488                        PT_PAGE_TABLE_LEVEL);
1489                drop_spte(kvm, sptep);
1490                --kvm->stat.lpages;
1491                return true;
1492        }
1493
1494        return false;
1495}
1496
1497static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1498{
1499        if (__drop_large_spte(vcpu->kvm, sptep)) {
1500                struct kvm_mmu_page *sp = page_header(__pa(sptep));
1501
1502                kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1503                        KVM_PAGES_PER_HPAGE(sp->role.level));
1504        }
1505}
1506
1507/*
1508 * Write-protect on the specified @sptep, @pt_protect indicates whether
1509 * spte write-protection is caused by protecting shadow page table.
1510 *
1511 * Note: write protection is difference between dirty logging and spte
1512 * protection:
1513 * - for dirty logging, the spte can be set to writable at anytime if
1514 *   its dirty bitmap is properly set.
1515 * - for spte protection, the spte can be writable only after unsync-ing
1516 *   shadow page.
1517 *
1518 * Return true if tlb need be flushed.
1519 */
1520static bool spte_write_protect(u64 *sptep, bool pt_protect)
1521{
1522        u64 spte = *sptep;
1523
1524        if (!is_writable_pte(spte) &&
1525              !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1526                return false;
1527
1528        rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1529
1530        if (pt_protect)
1531                spte &= ~SPTE_MMU_WRITEABLE;
1532        spte = spte & ~PT_WRITABLE_MASK;
1533
1534        return mmu_spte_update(sptep, spte);
1535}
1536
1537static bool __rmap_write_protect(struct kvm *kvm,
1538                                 struct kvm_rmap_head *rmap_head,
1539                                 bool pt_protect)
1540{
1541        u64 *sptep;
1542        struct rmap_iterator iter;
1543        bool flush = false;
1544
1545        for_each_rmap_spte(rmap_head, &iter, sptep)
1546                flush |= spte_write_protect(sptep, pt_protect);
1547
1548        return flush;
1549}
1550
1551static bool spte_clear_dirty(u64 *sptep)
1552{
1553        u64 spte = *sptep;
1554
1555        rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1556
1557        spte &= ~shadow_dirty_mask;
1558
1559        return mmu_spte_update(sptep, spte);
1560}
1561
1562static bool wrprot_ad_disabled_spte(u64 *sptep)
1563{
1564        bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1565                                               (unsigned long *)sptep);
1566        if (was_writable)
1567                kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1568
1569        return was_writable;
1570}
1571
1572/*
1573 * Gets the GFN ready for another round of dirty logging by clearing the
1574 *      - D bit on ad-enabled SPTEs, and
1575 *      - W bit on ad-disabled SPTEs.
1576 * Returns true iff any D or W bits were cleared.
1577 */
1578static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1579{
1580        u64 *sptep;
1581        struct rmap_iterator iter;
1582        bool flush = false;
1583
1584        for_each_rmap_spte(rmap_head, &iter, sptep)
1585                if (spte_ad_enabled(*sptep))
1586                        flush |= spte_clear_dirty(sptep);
1587                else
1588                        flush |= wrprot_ad_disabled_spte(sptep);
1589
1590        return flush;
1591}
1592
1593static bool spte_set_dirty(u64 *sptep)
1594{
1595        u64 spte = *sptep;
1596
1597        rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1598
1599        spte |= shadow_dirty_mask;
1600
1601        return mmu_spte_update(sptep, spte);
1602}
1603
1604static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1605{
1606        u64 *sptep;
1607        struct rmap_iterator iter;
1608        bool flush = false;
1609
1610        for_each_rmap_spte(rmap_head, &iter, sptep)
1611                if (spte_ad_enabled(*sptep))
1612                        flush |= spte_set_dirty(sptep);
1613
1614        return flush;
1615}
1616
1617/**
1618 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1619 * @kvm: kvm instance
1620 * @slot: slot to protect
1621 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1622 * @mask: indicates which pages we should protect
1623 *
1624 * Used when we do not need to care about huge page mappings: e.g. during dirty
1625 * logging we do not have any such mappings.
1626 */
1627static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1628                                     struct kvm_memory_slot *slot,
1629                                     gfn_t gfn_offset, unsigned long mask)
1630{
1631        struct kvm_rmap_head *rmap_head;
1632
1633        while (mask) {
1634                rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1635                                          PT_PAGE_TABLE_LEVEL, slot);
1636                __rmap_write_protect(kvm, rmap_head, false);
1637
1638                /* clear the first set bit */
1639                mask &= mask - 1;
1640        }
1641}
1642
1643/**
1644 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1645 * protect the page if the D-bit isn't supported.
1646 * @kvm: kvm instance
1647 * @slot: slot to clear D-bit
1648 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1649 * @mask: indicates which pages we should clear D-bit
1650 *
1651 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1652 */
1653void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1654                                     struct kvm_memory_slot *slot,
1655                                     gfn_t gfn_offset, unsigned long mask)
1656{
1657        struct kvm_rmap_head *rmap_head;
1658
1659        while (mask) {
1660                rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1661                                          PT_PAGE_TABLE_LEVEL, slot);
1662                __rmap_clear_dirty(kvm, rmap_head);
1663
1664                /* clear the first set bit */
1665                mask &= mask - 1;
1666        }
1667}
1668EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1669
1670/**
1671 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1672 * PT level pages.
1673 *
1674 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1675 * enable dirty logging for them.
1676 *
1677 * Used when we do not need to care about huge page mappings: e.g. during dirty
1678 * logging we do not have any such mappings.
1679 */
1680void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1681                                struct kvm_memory_slot *slot,
1682                                gfn_t gfn_offset, unsigned long mask)
1683{
1684        if (kvm_x86_ops->enable_log_dirty_pt_masked)
1685                kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1686                                mask);
1687        else
1688                kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1689}
1690
1691/**
1692 * kvm_arch_write_log_dirty - emulate dirty page logging
1693 * @vcpu: Guest mode vcpu
1694 *
1695 * Emulate arch specific page modification logging for the
1696 * nested hypervisor
1697 */
1698int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1699{
1700        if (kvm_x86_ops->write_log_dirty)
1701                return kvm_x86_ops->write_log_dirty(vcpu);
1702
1703        return 0;
1704}
1705
1706bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1707                                    struct kvm_memory_slot *slot, u64 gfn)
1708{
1709        struct kvm_rmap_head *rmap_head;
1710        int i;
1711        bool write_protected = false;
1712
1713        for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1714                rmap_head = __gfn_to_rmap(gfn, i, slot);
1715                write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1716        }
1717
1718        return write_protected;
1719}
1720
1721static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1722{
1723        struct kvm_memory_slot *slot;
1724
1725        slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1726        return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1727}
1728
1729static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1730{
1731        u64 *sptep;
1732        struct rmap_iterator iter;
1733        bool flush = false;
1734
1735        while ((sptep = rmap_get_first(rmap_head, &iter))) {
1736                rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1737
1738                pte_list_remove(rmap_head, sptep);
1739                flush = true;
1740        }
1741
1742        return flush;
1743}
1744
1745static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1746                           struct kvm_memory_slot *slot, gfn_t gfn, int level,
1747                           unsigned long data)
1748{
1749        return kvm_zap_rmapp(kvm, rmap_head);
1750}
1751
1752static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1753                             struct kvm_memory_slot *slot, gfn_t gfn, int level,
1754                             unsigned long data)
1755{
1756        u64 *sptep;
1757        struct rmap_iterator iter;
1758        int need_flush = 0;
1759        u64 new_spte;
1760        pte_t *ptep = (pte_t *)data;
1761        kvm_pfn_t new_pfn;
1762
1763        WARN_ON(pte_huge(*ptep));
1764        new_pfn = pte_pfn(*ptep);
1765
1766restart:
1767        for_each_rmap_spte(rmap_head, &iter, sptep) {
1768                rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1769                            sptep, *sptep, gfn, level);
1770
1771                need_flush = 1;
1772
1773                if (pte_write(*ptep)) {
1774                        pte_list_remove(rmap_head, sptep);
1775                        goto restart;
1776                } else {
1777                        new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1778                        new_spte |= (u64)new_pfn << PAGE_SHIFT;
1779
1780                        new_spte &= ~PT_WRITABLE_MASK;
1781                        new_spte &= ~SPTE_HOST_WRITEABLE;
1782
1783                        new_spte = mark_spte_for_access_track(new_spte);
1784
1785                        mmu_spte_clear_track_bits(sptep);
1786                        mmu_spte_set(sptep, new_spte);
1787                }
1788        }
1789
1790        if (need_flush && kvm_available_flush_tlb_with_range()) {
1791                kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1792                return 0;
1793        }
1794
1795        return need_flush;
1796}
1797
1798struct slot_rmap_walk_iterator {
1799        /* input fields. */
1800        struct kvm_memory_slot *slot;
1801        gfn_t start_gfn;
1802        gfn_t end_gfn;
1803        int start_level;
1804        int end_level;
1805
1806        /* output fields. */
1807        gfn_t gfn;
1808        struct kvm_rmap_head *rmap;
1809        int level;
1810
1811        /* private field. */
1812        struct kvm_rmap_head *end_rmap;
1813};
1814
1815static void
1816rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1817{
1818        iterator->level = level;
1819        iterator->gfn = iterator->start_gfn;
1820        iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1821        iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1822                                           iterator->slot);
1823}
1824
1825static void
1826slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1827                    struct kvm_memory_slot *slot, int start_level,
1828                    int end_level, gfn_t start_gfn, gfn_t end_gfn)
1829{
1830        iterator->slot = slot;
1831        iterator->start_level = start_level;
1832        iterator->end_level = end_level;
1833        iterator->start_gfn = start_gfn;
1834        iterator->end_gfn = end_gfn;
1835
1836        rmap_walk_init_level(iterator, iterator->start_level);
1837}
1838
1839static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1840{
1841        return !!iterator->rmap;
1842}
1843
1844static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1845{
1846        if (++iterator->rmap <= iterator->end_rmap) {
1847                iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1848                return;
1849        }
1850
1851        if (++iterator->level > iterator->end_level) {
1852                iterator->rmap = NULL;
1853                return;
1854        }
1855
1856        rmap_walk_init_level(iterator, iterator->level);
1857}
1858
1859#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1860           _start_gfn, _end_gfn, _iter_)                                \
1861        for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1862                                 _end_level_, _start_gfn, _end_gfn);    \
1863             slot_rmap_walk_okay(_iter_);                               \
1864             slot_rmap_walk_next(_iter_))
1865
1866static int kvm_handle_hva_range(struct kvm *kvm,
1867                                unsigned long start,
1868                                unsigned long end,
1869                                unsigned long data,
1870                                int (*handler)(struct kvm *kvm,
1871                                               struct kvm_rmap_head *rmap_head,
1872                                               struct kvm_memory_slot *slot,
1873                                               gfn_t gfn,
1874                                               int level,
1875                                               unsigned long data))
1876{
1877        struct kvm_memslots *slots;
1878        struct kvm_memory_slot *memslot;
1879        struct slot_rmap_walk_iterator iterator;
1880        int ret = 0;
1881        int i;
1882
1883        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1884                slots = __kvm_memslots(kvm, i);
1885                kvm_for_each_memslot(memslot, slots) {
1886                        unsigned long hva_start, hva_end;
1887                        gfn_t gfn_start, gfn_end;
1888
1889                        hva_start = max(start, memslot->userspace_addr);
1890                        hva_end = min(end, memslot->userspace_addr +
1891                                      (memslot->npages << PAGE_SHIFT));
1892                        if (hva_start >= hva_end)
1893                                continue;
1894                        /*
1895                         * {gfn(page) | page intersects with [hva_start, hva_end)} =
1896                         * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1897                         */
1898                        gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1899                        gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1900
1901                        for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1902                                                 PT_MAX_HUGEPAGE_LEVEL,
1903                                                 gfn_start, gfn_end - 1,
1904                                                 &iterator)
1905                                ret |= handler(kvm, iterator.rmap, memslot,
1906                                               iterator.gfn, iterator.level, data);
1907                }
1908        }
1909
1910        return ret;
1911}
1912
1913static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1914                          unsigned long data,
1915                          int (*handler)(struct kvm *kvm,
1916                                         struct kvm_rmap_head *rmap_head,
1917                                         struct kvm_memory_slot *slot,
1918                                         gfn_t gfn, int level,
1919                                         unsigned long data))
1920{
1921        return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1922}
1923
1924int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1925{
1926        return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1927}
1928
1929int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1930{
1931        return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1932}
1933
1934static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1935                         struct kvm_memory_slot *slot, gfn_t gfn, int level,
1936                         unsigned long data)
1937{
1938        u64 *sptep;
1939        struct rmap_iterator uninitialized_var(iter);
1940        int young = 0;
1941
1942        for_each_rmap_spte(rmap_head, &iter, sptep)
1943                young |= mmu_spte_age(sptep);
1944
1945        trace_kvm_age_page(gfn, level, slot, young);
1946        return young;
1947}
1948
1949static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1950                              struct kvm_memory_slot *slot, gfn_t gfn,
1951                              int level, unsigned long data)
1952{
1953        u64 *sptep;
1954        struct rmap_iterator iter;
1955
1956        for_each_rmap_spte(rmap_head, &iter, sptep)
1957                if (is_accessed_spte(*sptep))
1958                        return 1;
1959        return 0;
1960}
1961
1962#define RMAP_RECYCLE_THRESHOLD 1000
1963
1964static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1965{
1966        struct kvm_rmap_head *rmap_head;
1967        struct kvm_mmu_page *sp;
1968
1969        sp = page_header(__pa(spte));
1970
1971        rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1972
1973        kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1974        kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1975                        KVM_PAGES_PER_HPAGE(sp->role.level));
1976}
1977
1978int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1979{
1980        return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1981}
1982
1983int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1984{
1985        return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1986}
1987
1988#ifdef MMU_DEBUG
1989static int is_empty_shadow_page(u64 *spt)
1990{
1991        u64 *pos;
1992        u64 *end;
1993
1994        for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1995                if (is_shadow_present_pte(*pos)) {
1996                        printk(KERN_ERR "%s: %p %llx\n", __func__,
1997                               pos, *pos);
1998                        return 0;
1999                }
2000        return 1;
2001}
2002#endif
2003
2004/*
2005 * This value is the sum of all of the kvm instances's
2006 * kvm->arch.n_used_mmu_pages values.  We need a global,
2007 * aggregate version in order to make the slab shrinker
2008 * faster
2009 */
2010static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
2011{
2012        kvm->arch.n_used_mmu_pages += nr;
2013        percpu_counter_add(&kvm_total_used_mmu_pages, nr);
2014}
2015
2016static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
2017{
2018        MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
2019        hlist_del(&sp->hash_link);
2020        list_del(&sp->link);
2021        free_page((unsigned long)sp->spt);
2022        if (!sp->role.direct)
2023                free_page((unsigned long)sp->gfns);
2024        kmem_cache_free(mmu_page_header_cache, sp);
2025}
2026
2027static unsigned kvm_page_table_hashfn(gfn_t gfn)
2028{
2029        return hash_64(gfn, KVM_MMU_HASH_SHIFT);
2030}
2031
2032static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
2033                                    struct kvm_mmu_page *sp, u64 *parent_pte)
2034{
2035        if (!parent_pte)
2036                return;
2037
2038        pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
2039}
2040
2041static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
2042                                       u64 *parent_pte)
2043{
2044        __pte_list_remove(parent_pte, &sp->parent_ptes);
2045}
2046
2047static void drop_parent_pte(struct kvm_mmu_page *sp,
2048                            u64 *parent_pte)
2049{
2050        mmu_page_remove_parent_pte(sp, parent_pte);
2051        mmu_spte_clear_no_track(parent_pte);
2052}
2053
2054static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
2055{
2056        struct kvm_mmu_page *sp;
2057
2058        sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2059        sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2060        if (!direct)
2061                sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2062        set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2063        list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
2064        kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2065        return sp;
2066}
2067
2068static void mark_unsync(u64 *spte);
2069static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2070{
2071        u64 *sptep;
2072        struct rmap_iterator iter;
2073
2074        for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2075                mark_unsync(sptep);
2076        }
2077}
2078
2079static void mark_unsync(u64 *spte)
2080{
2081        struct kvm_mmu_page *sp;
2082        unsigned int index;
2083
2084        sp = page_header(__pa(spte));
2085        index = spte - sp->spt;
2086        if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2087                return;
2088        if (sp->unsync_children++)
2089                return;
2090        kvm_mmu_mark_parents_unsync(sp);
2091}
2092
2093static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2094                               struct kvm_mmu_page *sp)
2095{
2096        return 0;
2097}
2098
2099static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
2100{
2101}
2102
2103static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2104                                 struct kvm_mmu_page *sp, u64 *spte,
2105                                 const void *pte)
2106{
2107        WARN_ON(1);
2108}
2109
2110#define KVM_PAGE_ARRAY_NR 16
2111
2112struct kvm_mmu_pages {
2113        struct mmu_page_and_offset {
2114                struct kvm_mmu_page *sp;
2115                unsigned int idx;
2116        } page[KVM_PAGE_ARRAY_NR];
2117        unsigned int nr;
2118};
2119
2120static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2121                         int idx)
2122{
2123        int i;
2124
2125        if (sp->unsync)
2126                for (i=0; i < pvec->nr; i++)
2127                        if (pvec->page[i].sp == sp)
2128                                return 0;
2129
2130        pvec->page[pvec->nr].sp = sp;
2131        pvec->page[pvec->nr].idx = idx;
2132        pvec->nr++;
2133        return (pvec->nr == KVM_PAGE_ARRAY_NR);
2134}
2135
2136static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2137{
2138        --sp->unsync_children;
2139        WARN_ON((int)sp->unsync_children < 0);
2140        __clear_bit(idx, sp->unsync_child_bitmap);
2141}
2142
2143static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2144                           struct kvm_mmu_pages *pvec)
2145{
2146        int i, ret, nr_unsync_leaf = 0;
2147
2148        for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2149                struct kvm_mmu_page *child;
2150                u64 ent = sp->spt[i];
2151
2152                if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2153                        clear_unsync_child_bit(sp, i);
2154                        continue;
2155                }
2156
2157                child = page_header(ent & PT64_BASE_ADDR_MASK);
2158
2159                if (child->unsync_children) {
2160                        if (mmu_pages_add(pvec, child, i))
2161                                return -ENOSPC;
2162
2163                        ret = __mmu_unsync_walk(child, pvec);
2164                        if (!ret) {
2165                                clear_unsync_child_bit(sp, i);
2166                                continue;
2167                        } else if (ret > 0) {
2168                                nr_unsync_leaf += ret;
2169                        } else
2170                                return ret;
2171                } else if (child->unsync) {
2172                        nr_unsync_leaf++;
2173                        if (mmu_pages_add(pvec, child, i))
2174                                return -ENOSPC;
2175                } else
2176                        clear_unsync_child_bit(sp, i);
2177        }
2178
2179        return nr_unsync_leaf;
2180}
2181
2182#define INVALID_INDEX (-1)
2183
2184static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2185                           struct kvm_mmu_pages *pvec)
2186{
2187        pvec->nr = 0;
2188        if (!sp->unsync_children)
2189                return 0;
2190
2191        mmu_pages_add(pvec, sp, INVALID_INDEX);
2192        return __mmu_unsync_walk(sp, pvec);
2193}
2194
2195static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2196{
2197        WARN_ON(!sp->unsync);
2198        trace_kvm_mmu_sync_page(sp);
2199        sp->unsync = 0;
2200        --kvm->stat.mmu_unsync;
2201}
2202
2203static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2204                                     struct list_head *invalid_list);
2205static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2206                                    struct list_head *invalid_list);
2207
2208
2209#define for_each_valid_sp(_kvm, _sp, _gfn)                              \
2210        hlist_for_each_entry(_sp,                                       \
2211          &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2212                if ((_sp)->role.invalid) {    \
2213                } else
2214
2215#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
2216        for_each_valid_sp(_kvm, _sp, _gfn)                              \
2217                if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2218
2219static inline bool is_ept_sp(struct kvm_mmu_page *sp)
2220{
2221        return sp->role.cr0_wp && sp->role.smap_andnot_wp;
2222}
2223
2224/* @sp->gfn should be write-protected at the call site */
2225static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2226                            struct list_head *invalid_list)
2227{
2228        if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
2229            vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
2230                kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2231                return false;
2232        }
2233
2234        return true;
2235}
2236
2237static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
2238                                        struct list_head *invalid_list,
2239                                        bool remote_flush)
2240{
2241        if (!remote_flush && list_empty(invalid_list))
2242                return false;
2243
2244        if (!list_empty(invalid_list))
2245                kvm_mmu_commit_zap_page(kvm, invalid_list);
2246        else
2247                kvm_flush_remote_tlbs(kvm);
2248        return true;
2249}
2250
2251static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2252                                 struct list_head *invalid_list,
2253                                 bool remote_flush, bool local_flush)
2254{
2255        if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
2256                return;
2257
2258        if (local_flush)
2259                kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2260}
2261
2262#ifdef CONFIG_KVM_MMU_AUDIT
2263#include "mmu_audit.c"
2264#else
2265static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2266static void mmu_audit_disable(void) { }
2267#endif
2268
2269static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2270                         struct list_head *invalid_list)
2271{
2272        kvm_unlink_unsync_page(vcpu->kvm, sp);
2273        return __kvm_sync_page(vcpu, sp, invalid_list);
2274}
2275
2276/* @gfn should be write-protected at the call site */
2277static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2278                           struct list_head *invalid_list)
2279{
2280        struct kvm_mmu_page *s;
2281        bool ret = false;
2282
2283        for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2284                if (!s->unsync)
2285                        continue;
2286
2287                WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2288                ret |= kvm_sync_page(vcpu, s, invalid_list);
2289        }
2290
2291        return ret;
2292}
2293
2294struct mmu_page_path {
2295        struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2296        unsigned int idx[PT64_ROOT_MAX_LEVEL];
2297};
2298
2299#define for_each_sp(pvec, sp, parents, i)                       \
2300                for (i = mmu_pages_first(&pvec, &parents);      \
2301                        i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
2302                        i = mmu_pages_next(&pvec, &parents, i))
2303
2304static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2305                          struct mmu_page_path *parents,
2306                          int i)
2307{
2308        int n;
2309
2310        for (n = i+1; n < pvec->nr; n++) {
2311                struct kvm_mmu_page *sp = pvec->page[n].sp;
2312                unsigned idx = pvec->page[n].idx;
2313                int level = sp->role.level;
2314
2315                parents->idx[level-1] = idx;
2316                if (level == PT_PAGE_TABLE_LEVEL)
2317                        break;
2318
2319                parents->parent[level-2] = sp;
2320        }
2321
2322        return n;
2323}
2324
2325static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2326                           struct mmu_page_path *parents)
2327{
2328        struct kvm_mmu_page *sp;
2329        int level;
2330
2331        if (pvec->nr == 0)
2332                return 0;
2333
2334        WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2335
2336        sp = pvec->page[0].sp;
2337        level = sp->role.level;
2338        WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2339
2340        parents->parent[level-2] = sp;
2341
2342        /* Also set up a sentinel.  Further entries in pvec are all
2343         * children of sp, so this element is never overwritten.
2344         */
2345        parents->parent[level-1] = NULL;
2346        return mmu_pages_next(pvec, parents, 0);
2347}
2348
2349static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2350{
2351        struct kvm_mmu_page *sp;
2352        unsigned int level = 0;
2353
2354        do {
2355                unsigned int idx = parents->idx[level];
2356                sp = parents->parent[level];
2357                if (!sp)
2358                        return;
2359
2360                WARN_ON(idx == INVALID_INDEX);
2361                clear_unsync_child_bit(sp, idx);
2362                level++;
2363        } while (!sp->unsync_children);
2364}
2365
2366static void mmu_sync_children(struct kvm_vcpu *vcpu,
2367                              struct kvm_mmu_page *parent)
2368{
2369        int i;
2370        struct kvm_mmu_page *sp;
2371        struct mmu_page_path parents;
2372        struct kvm_mmu_pages pages;
2373        LIST_HEAD(invalid_list);
2374        bool flush = false;
2375
2376        while (mmu_unsync_walk(parent, &pages)) {
2377                bool protected = false;
2378
2379                for_each_sp(pages, sp, parents, i)
2380                        protected |= rmap_write_protect(vcpu, sp->gfn);
2381
2382                if (protected) {
2383                        kvm_flush_remote_tlbs(vcpu->kvm);
2384                        flush = false;
2385                }
2386
2387                for_each_sp(pages, sp, parents, i) {
2388                        flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2389                        mmu_pages_clear_parents(&parents);
2390                }
2391                if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2392                        kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2393                        cond_resched_lock(&vcpu->kvm->mmu_lock);
2394                        flush = false;
2395                }
2396        }
2397
2398        kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2399}
2400
2401static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2402{
2403        atomic_set(&sp->write_flooding_count,  0);
2404}
2405
2406static void clear_sp_write_flooding_count(u64 *spte)
2407{
2408        struct kvm_mmu_page *sp =  page_header(__pa(spte));
2409
2410        __clear_sp_write_flooding_count(sp);
2411}
2412
2413static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2414                                             gfn_t gfn,
2415                                             gva_t gaddr,
2416                                             unsigned level,
2417                                             int direct,
2418                                             unsigned access)
2419{
2420        union kvm_mmu_page_role role;
2421        unsigned quadrant;
2422        struct kvm_mmu_page *sp;
2423        bool need_sync = false;
2424        bool flush = false;
2425        int collisions = 0;
2426        LIST_HEAD(invalid_list);
2427
2428        role = vcpu->arch.mmu->mmu_role.base;
2429        role.level = level;
2430        role.direct = direct;
2431        if (role.direct)
2432                role.gpte_is_8_bytes = true;
2433        role.access = access;
2434        if (!vcpu->arch.mmu->direct_map
2435            && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2436                quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2437                quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2438                role.quadrant = quadrant;
2439        }
2440        for_each_valid_sp(vcpu->kvm, sp, gfn) {
2441                if (sp->gfn != gfn) {
2442                        collisions++;
2443                        continue;
2444                }
2445
2446                if (!need_sync && sp->unsync)
2447                        need_sync = true;
2448
2449                if (sp->role.word != role.word)
2450                        continue;
2451
2452                if (sp->unsync) {
2453                        /* The page is good, but __kvm_sync_page might still end
2454                         * up zapping it.  If so, break in order to rebuild it.
2455                         */
2456                        if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2457                                break;
2458
2459                        WARN_ON(!list_empty(&invalid_list));
2460                        kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2461                }
2462
2463                if (sp->unsync_children)
2464                        kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2465
2466                __clear_sp_write_flooding_count(sp);
2467                trace_kvm_mmu_get_page(sp, false);
2468                goto out;
2469        }
2470
2471        ++vcpu->kvm->stat.mmu_cache_miss;
2472
2473        sp = kvm_mmu_alloc_page(vcpu, direct);
2474
2475        sp->gfn = gfn;
2476        sp->role = role;
2477        hlist_add_head(&sp->hash_link,
2478                &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2479        if (!direct) {
2480                /*
2481                 * we should do write protection before syncing pages
2482                 * otherwise the content of the synced shadow page may
2483                 * be inconsistent with guest page table.
2484                 */
2485                account_shadowed(vcpu->kvm, sp);
2486                if (level == PT_PAGE_TABLE_LEVEL &&
2487                      rmap_write_protect(vcpu, gfn))
2488                        kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2489
2490                if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2491                        flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2492        }
2493        clear_page(sp->spt);
2494        trace_kvm_mmu_get_page(sp, true);
2495
2496        kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2497out:
2498        if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2499                vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2500        return sp;
2501}
2502
2503static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2504                                        struct kvm_vcpu *vcpu, hpa_t root,
2505                                        u64 addr)
2506{
2507        iterator->addr = addr;
2508        iterator->shadow_addr = root;
2509        iterator->level = vcpu->arch.mmu->shadow_root_level;
2510
2511        if (iterator->level == PT64_ROOT_4LEVEL &&
2512            vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2513            !vcpu->arch.mmu->direct_map)
2514                --iterator->level;
2515
2516        if (iterator->level == PT32E_ROOT_LEVEL) {
2517                /*
2518                 * prev_root is currently only used for 64-bit hosts. So only
2519                 * the active root_hpa is valid here.
2520                 */
2521                BUG_ON(root != vcpu->arch.mmu->root_hpa);
2522
2523                iterator->shadow_addr
2524                        = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2525                iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2526                --iterator->level;
2527                if (!iterator->shadow_addr)
2528                        iterator->level = 0;
2529        }
2530}
2531
2532static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2533                             struct kvm_vcpu *vcpu, u64 addr)
2534{
2535        shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2536                                    addr);
2537}
2538
2539static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2540{
2541        if (iterator->level < PT_PAGE_TABLE_LEVEL)
2542                return false;
2543
2544        iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2545        iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2546        return true;
2547}
2548
2549static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2550                               u64 spte)
2551{
2552        if (is_last_spte(spte, iterator->level)) {
2553                iterator->level = 0;
2554                return;
2555        }
2556
2557        iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2558        --iterator->level;
2559}
2560
2561static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2562{
2563        __shadow_walk_next(iterator, *iterator->sptep);
2564}
2565
2566static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2567                             struct kvm_mmu_page *sp)
2568{
2569        u64 spte;
2570
2571        BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2572
2573        spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2574               shadow_user_mask | shadow_x_mask | shadow_me_mask;
2575
2576        if (sp_ad_disabled(sp))
2577                spte |= shadow_acc_track_value;
2578        else
2579                spte |= shadow_accessed_mask;
2580
2581        mmu_spte_set(sptep, spte);
2582
2583        mmu_page_add_parent_pte(vcpu, sp, sptep);
2584
2585        if (sp->unsync_children || sp->unsync)
2586                mark_unsync(sptep);
2587}
2588
2589static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2590                                   unsigned direct_access)
2591{
2592        if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2593                struct kvm_mmu_page *child;
2594
2595                /*
2596                 * For the direct sp, if the guest pte's dirty bit
2597                 * changed form clean to dirty, it will corrupt the
2598                 * sp's access: allow writable in the read-only sp,
2599                 * so we should update the spte at this point to get
2600                 * a new sp with the correct access.
2601                 */
2602                child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2603                if (child->role.access == direct_access)
2604                        return;
2605
2606                drop_parent_pte(child, sptep);
2607                kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2608        }
2609}
2610
2611static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2612                             u64 *spte)
2613{
2614        u64 pte;
2615        struct kvm_mmu_page *child;
2616
2617        pte = *spte;
2618        if (is_shadow_present_pte(pte)) {
2619                if (is_last_spte(pte, sp->role.level)) {
2620                        drop_spte(kvm, spte);
2621                        if (is_large_pte(pte))
2622                                --kvm->stat.lpages;
2623                } else {
2624                        child = page_header(pte & PT64_BASE_ADDR_MASK);
2625                        drop_parent_pte(child, spte);
2626                }
2627                return true;
2628        }
2629
2630        if (is_mmio_spte(pte))
2631                mmu_spte_clear_no_track(spte);
2632
2633        return false;
2634}
2635
2636static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2637                                         struct kvm_mmu_page *sp)
2638{
2639        unsigned i;
2640
2641        for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2642                mmu_page_zap_pte(kvm, sp, sp->spt + i);
2643}
2644
2645static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2646{
2647        u64 *sptep;
2648        struct rmap_iterator iter;
2649
2650        while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2651                drop_parent_pte(sp, sptep);
2652}
2653
2654static int mmu_zap_unsync_children(struct kvm *kvm,
2655                                   struct kvm_mmu_page *parent,
2656                                   struct list_head *invalid_list)
2657{
2658        int i, zapped = 0;
2659        struct mmu_page_path parents;
2660        struct kvm_mmu_pages pages;
2661
2662        if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2663                return 0;
2664
2665        while (mmu_unsync_walk(parent, &pages)) {
2666                struct kvm_mmu_page *sp;
2667
2668                for_each_sp(pages, sp, parents, i) {
2669                        kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2670                        mmu_pages_clear_parents(&parents);
2671                        zapped++;
2672                }
2673        }
2674
2675        return zapped;
2676}
2677
2678static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2679                                       struct kvm_mmu_page *sp,
2680                                       struct list_head *invalid_list,
2681                                       int *nr_zapped)
2682{
2683        bool list_unstable;
2684
2685        trace_kvm_mmu_prepare_zap_page(sp);
2686        ++kvm->stat.mmu_shadow_zapped;
2687        *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2688        kvm_mmu_page_unlink_children(kvm, sp);
2689        kvm_mmu_unlink_parents(kvm, sp);
2690
2691        /* Zapping children means active_mmu_pages has become unstable. */
2692        list_unstable = *nr_zapped;
2693
2694        if (!sp->role.invalid && !sp->role.direct)
2695                unaccount_shadowed(kvm, sp);
2696
2697        if (sp->unsync)
2698                kvm_unlink_unsync_page(kvm, sp);
2699        if (!sp->root_count) {
2700                /* Count self */
2701                (*nr_zapped)++;
2702                list_move(&sp->link, invalid_list);
2703                kvm_mod_used_mmu_pages(kvm, -1);
2704        } else {
2705                list_move(&sp->link, &kvm->arch.active_mmu_pages);
2706
2707                if (!sp->role.invalid)
2708                        kvm_reload_remote_mmus(kvm);
2709        }
2710
2711        sp->role.invalid = 1;
2712        return list_unstable;
2713}
2714
2715static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2716                                     struct list_head *invalid_list)
2717{
2718        int nr_zapped;
2719
2720        __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2721        return nr_zapped;
2722}
2723
2724static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2725                                    struct list_head *invalid_list)
2726{
2727        struct kvm_mmu_page *sp, *nsp;
2728
2729        if (list_empty(invalid_list))
2730                return;
2731
2732        /*
2733         * We need to make sure everyone sees our modifications to
2734         * the page tables and see changes to vcpu->mode here. The barrier
2735         * in the kvm_flush_remote_tlbs() achieves this. This pairs
2736         * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2737         *
2738         * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2739         * guest mode and/or lockless shadow page table walks.
2740         */
2741        kvm_flush_remote_tlbs(kvm);
2742
2743        list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2744                WARN_ON(!sp->role.invalid || sp->root_count);
2745                kvm_mmu_free_page(sp);
2746        }
2747}
2748
2749static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2750                                        struct list_head *invalid_list)
2751{
2752        struct kvm_mmu_page *sp;
2753
2754        if (list_empty(&kvm->arch.active_mmu_pages))
2755                return false;
2756
2757        sp = list_last_entry(&kvm->arch.active_mmu_pages,
2758                             struct kvm_mmu_page, link);
2759        return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2760}
2761
2762/*
2763 * Changing the number of mmu pages allocated to the vm
2764 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2765 */
2766void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2767{
2768        LIST_HEAD(invalid_list);
2769
2770        spin_lock(&kvm->mmu_lock);
2771
2772        if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2773                /* Need to free some mmu pages to achieve the goal. */
2774                while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2775                        if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2776                                break;
2777
2778                kvm_mmu_commit_zap_page(kvm, &invalid_list);
2779                goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2780        }
2781
2782        kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2783
2784        spin_unlock(&kvm->mmu_lock);
2785}
2786
2787int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2788{
2789        struct kvm_mmu_page *sp;
2790        LIST_HEAD(invalid_list);
2791        int r;
2792
2793        pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2794        r = 0;
2795        spin_lock(&kvm->mmu_lock);
2796        for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2797                pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2798                         sp->role.word);
2799                r = 1;
2800                kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2801        }
2802        kvm_mmu_commit_zap_page(kvm, &invalid_list);
2803        spin_unlock(&kvm->mmu_lock);
2804
2805        return r;
2806}
2807EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2808
2809static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2810{
2811        trace_kvm_mmu_unsync_page(sp);
2812        ++vcpu->kvm->stat.mmu_unsync;
2813        sp->unsync = 1;
2814
2815        kvm_mmu_mark_parents_unsync(sp);
2816}
2817
2818static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2819                                   bool can_unsync)
2820{
2821        struct kvm_mmu_page *sp;
2822
2823        if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2824                return true;
2825
2826        for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2827                if (!can_unsync)
2828                        return true;
2829
2830                if (sp->unsync)
2831                        continue;
2832
2833                WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2834                kvm_unsync_page(vcpu, sp);
2835        }
2836
2837        /*
2838         * We need to ensure that the marking of unsync pages is visible
2839         * before the SPTE is updated to allow writes because
2840         * kvm_mmu_sync_roots() checks the unsync flags without holding
2841         * the MMU lock and so can race with this. If the SPTE was updated
2842         * before the page had been marked as unsync-ed, something like the
2843         * following could happen:
2844         *
2845         * CPU 1                    CPU 2
2846         * ---------------------------------------------------------------------
2847         * 1.2 Host updates SPTE
2848         *     to be writable
2849         *                      2.1 Guest writes a GPTE for GVA X.
2850         *                          (GPTE being in the guest page table shadowed
2851         *                           by the SP from CPU 1.)
2852         *                          This reads SPTE during the page table walk.
2853         *                          Since SPTE.W is read as 1, there is no
2854         *                          fault.
2855         *
2856         *                      2.2 Guest issues TLB flush.
2857         *                          That causes a VM Exit.
2858         *
2859         *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
2860         *                          Since it is false, so it just returns.
2861         *
2862         *                      2.4 Guest accesses GVA X.
2863         *                          Since the mapping in the SP was not updated,
2864         *                          so the old mapping for GVA X incorrectly
2865         *                          gets used.
2866         * 1.1 Host marks SP
2867         *     as unsync
2868         *     (sp->unsync = true)
2869         *
2870         * The write barrier below ensures that 1.1 happens before 1.2 and thus
2871         * the situation in 2.4 does not arise. The implicit barrier in 2.2
2872         * pairs with this write barrier.
2873         */
2874        smp_wmb();
2875
2876        return false;
2877}
2878
2879static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2880{
2881        if (pfn_valid(pfn))
2882                return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2883                        /*
2884                         * Some reserved pages, such as those from NVDIMM
2885                         * DAX devices, are not for MMIO, and can be mapped
2886                         * with cached memory type for better performance.
2887                         * However, the above check misconceives those pages
2888                         * as MMIO, and results in KVM mapping them with UC
2889                         * memory type, which would hurt the performance.
2890                         * Therefore, we check the host memory type in addition
2891                         * and only treat UC/UC-/WC pages as MMIO.
2892                         */
2893                        (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
2894
2895        return true;
2896}
2897
2898/* Bits which may be returned by set_spte() */
2899#define SET_SPTE_WRITE_PROTECTED_PT     BIT(0)
2900#define SET_SPTE_NEED_REMOTE_TLB_FLUSH  BIT(1)
2901
2902static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2903                    unsigned pte_access, int level,
2904                    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2905                    bool can_unsync, bool host_writable)
2906{
2907        u64 spte = 0;
2908        int ret = 0;
2909        struct kvm_mmu_page *sp;
2910
2911        if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2912                return 0;
2913
2914        sp = page_header(__pa(sptep));
2915        if (sp_ad_disabled(sp))
2916                spte |= shadow_acc_track_value;
2917
2918        /*
2919         * For the EPT case, shadow_present_mask is 0 if hardware
2920         * supports exec-only page table entries.  In that case,
2921         * ACC_USER_MASK and shadow_user_mask are used to represent
2922         * read access.  See FNAME(gpte_access) in paging_tmpl.h.
2923         */
2924        spte |= shadow_present_mask;
2925        if (!speculative)
2926                spte |= spte_shadow_accessed_mask(spte);
2927
2928        if (pte_access & ACC_EXEC_MASK)
2929                spte |= shadow_x_mask;
2930        else
2931                spte |= shadow_nx_mask;
2932
2933        if (pte_access & ACC_USER_MASK)
2934                spte |= shadow_user_mask;
2935
2936        if (level > PT_PAGE_TABLE_LEVEL)
2937                spte |= PT_PAGE_SIZE_MASK;
2938        if (tdp_enabled)
2939                spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2940                        kvm_is_mmio_pfn(pfn));
2941
2942        if (host_writable)
2943                spte |= SPTE_HOST_WRITEABLE;
2944        else
2945                pte_access &= ~ACC_WRITE_MASK;
2946
2947        if (!kvm_is_mmio_pfn(pfn))
2948                spte |= shadow_me_mask;
2949
2950        spte |= (u64)pfn << PAGE_SHIFT;
2951
2952        if (pte_access & ACC_WRITE_MASK) {
2953
2954                /*
2955                 * Other vcpu creates new sp in the window between
2956                 * mapping_level() and acquiring mmu-lock. We can
2957                 * allow guest to retry the access, the mapping can
2958                 * be fixed if guest refault.
2959                 */
2960                if (level > PT_PAGE_TABLE_LEVEL &&
2961                    mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2962                        goto done;
2963
2964                spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2965
2966                /*
2967                 * Optimization: for pte sync, if spte was writable the hash
2968                 * lookup is unnecessary (and expensive). Write protection
2969                 * is responsibility of mmu_get_page / kvm_sync_page.
2970                 * Same reasoning can be applied to dirty page accounting.
2971                 */
2972                if (!can_unsync && is_writable_pte(*sptep))
2973                        goto set_pte;
2974
2975                if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2976                        pgprintk("%s: found shadow page for %llx, marking ro\n",
2977                                 __func__, gfn);
2978                        ret |= SET_SPTE_WRITE_PROTECTED_PT;
2979                        pte_access &= ~ACC_WRITE_MASK;
2980                        spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2981                }
2982        }
2983
2984        if (pte_access & ACC_WRITE_MASK) {
2985                kvm_vcpu_mark_page_dirty(vcpu, gfn);
2986                spte |= spte_shadow_dirty_mask(spte);
2987        }
2988
2989        if (speculative)
2990                spte = mark_spte_for_access_track(spte);
2991
2992set_pte:
2993        if (mmu_spte_update(sptep, spte))
2994                ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2995done:
2996        return ret;
2997}
2998
2999static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
3000                        int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
3001                        bool speculative, bool host_writable)
3002{
3003        int was_rmapped = 0;
3004        int rmap_count;
3005        int set_spte_ret;
3006        int ret = RET_PF_RETRY;
3007        bool flush = false;
3008
3009        pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
3010                 *sptep, write_fault, gfn);
3011
3012        if (is_shadow_present_pte(*sptep)) {
3013                /*
3014                 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
3015                 * the parent of the now unreachable PTE.
3016                 */
3017                if (level > PT_PAGE_TABLE_LEVEL &&
3018                    !is_large_pte(*sptep)) {
3019                        struct kvm_mmu_page *child;
3020                        u64 pte = *sptep;
3021
3022                        child = page_header(pte & PT64_BASE_ADDR_MASK);
3023                        drop_parent_pte(child, sptep);
3024                        flush = true;
3025                } else if (pfn != spte_to_pfn(*sptep)) {
3026                        pgprintk("hfn old %llx new %llx\n",
3027                                 spte_to_pfn(*sptep), pfn);
3028                        drop_spte(vcpu->kvm, sptep);
3029                        flush = true;
3030                } else
3031                        was_rmapped = 1;
3032        }
3033
3034        set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
3035                                speculative, true, host_writable);
3036        if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
3037                if (write_fault)
3038                        ret = RET_PF_EMULATE;
3039                kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3040        }
3041
3042        if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
3043                kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
3044                                KVM_PAGES_PER_HPAGE(level));
3045
3046        if (unlikely(is_mmio_spte(*sptep)))
3047                ret = RET_PF_EMULATE;
3048
3049        pgprintk("%s: setting spte %llx\n", __func__, *sptep);
3050        pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
3051                 is_large_pte(*sptep)? "2MB" : "4kB",
3052                 *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
3053                 *sptep, sptep);
3054        if (!was_rmapped && is_large_pte(*sptep))
3055                ++vcpu->kvm->stat.lpages;
3056
3057        if (is_shadow_present_pte(*sptep)) {
3058                if (!was_rmapped) {
3059                        rmap_count = rmap_add(vcpu, sptep, gfn);
3060                        if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3061                                rmap_recycle(vcpu, sptep, gfn);
3062                }
3063        }
3064
3065        kvm_release_pfn_clean(pfn);
3066
3067        return ret;
3068}
3069
3070static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
3071                                     bool no_dirty_log)
3072{
3073        struct kvm_memory_slot *slot;
3074
3075        slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
3076        if (!slot)
3077                return KVM_PFN_ERR_FAULT;
3078
3079        return gfn_to_pfn_memslot_atomic(slot, gfn);
3080}
3081
3082static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3083                                    struct kvm_mmu_page *sp,
3084                                    u64 *start, u64 *end)
3085{
3086        struct page *pages[PTE_PREFETCH_NUM];
3087        struct kvm_memory_slot *slot;
3088        unsigned access = sp->role.access;
3089        int i, ret;
3090        gfn_t gfn;
3091
3092        gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3093        slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3094        if (!slot)
3095                return -1;
3096
3097        ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3098        if (ret <= 0)
3099                return -1;
3100
3101        for (i = 0; i < ret; i++, gfn++, start++)
3102                mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3103                             page_to_pfn(pages[i]), true, true);
3104
3105        return 0;
3106}
3107
3108static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3109                                  struct kvm_mmu_page *sp, u64 *sptep)
3110{
3111        u64 *spte, *start = NULL;
3112        int i;
3113
3114        WARN_ON(!sp->role.direct);
3115
3116        i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3117        spte = sp->spt + i;
3118
3119        for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3120                if (is_shadow_present_pte(*spte) || spte == sptep) {
3121                        if (!start)
3122                                continue;
3123                        if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3124                                break;
3125                        start = NULL;
3126                } else if (!start)
3127                        start = spte;
3128        }
3129}
3130
3131static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3132{
3133        struct kvm_mmu_page *sp;
3134
3135        sp = page_header(__pa(sptep));
3136
3137        /*
3138         * Without accessed bits, there's no way to distinguish between
3139         * actually accessed translations and prefetched, so disable pte
3140         * prefetch if accessed bits aren't available.
3141         */
3142        if (sp_ad_disabled(sp))
3143                return;
3144
3145        if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3146                return;
3147
3148        __direct_pte_prefetch(vcpu, sp, sptep);
3149}
3150
3151static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
3152                        int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
3153{
3154        struct kvm_shadow_walk_iterator iterator;
3155        struct kvm_mmu_page *sp;
3156        int emulate = 0;
3157        gfn_t pseudo_gfn;
3158
3159        if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3160                return 0;
3161
3162        for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
3163                if (iterator.level == level) {
3164                        emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
3165                                               write, level, gfn, pfn, prefault,
3166                                               map_writable);
3167                        direct_pte_prefetch(vcpu, iterator.sptep);
3168                        ++vcpu->stat.pf_fixed;
3169                        break;
3170                }
3171
3172                drop_large_spte(vcpu, iterator.sptep);
3173                if (!is_shadow_present_pte(*iterator.sptep)) {
3174                        u64 base_addr = iterator.addr;
3175
3176                        base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
3177                        pseudo_gfn = base_addr >> PAGE_SHIFT;
3178                        sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
3179                                              iterator.level - 1, 1, ACC_ALL);
3180
3181                        link_shadow_page(vcpu, iterator.sptep, sp);
3182                }
3183        }
3184        return emulate;
3185}
3186
3187static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3188{
3189        send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3190}
3191
3192static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3193{
3194        /*
3195         * Do not cache the mmio info caused by writing the readonly gfn
3196         * into the spte otherwise read access on readonly gfn also can
3197         * caused mmio page fault and treat it as mmio access.
3198         */
3199        if (pfn == KVM_PFN_ERR_RO_FAULT)
3200                return RET_PF_EMULATE;
3201
3202        if (pfn == KVM_PFN_ERR_HWPOISON) {
3203                kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3204                return RET_PF_RETRY;
3205        }
3206
3207        return -EFAULT;
3208}
3209
3210static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
3211                                        gfn_t *gfnp, kvm_pfn_t *pfnp,
3212                                        int *levelp)
3213{
3214        kvm_pfn_t pfn = *pfnp;
3215        gfn_t gfn = *gfnp;
3216        int level = *levelp;
3217
3218        /*
3219         * Check if it's a transparent hugepage. If this would be an
3220         * hugetlbfs page, level wouldn't be set to
3221         * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3222         * here.
3223         */
3224        if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3225            level == PT_PAGE_TABLE_LEVEL &&
3226            PageTransCompoundMap(pfn_to_page(pfn)) &&
3227            !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
3228                unsigned long mask;
3229                /*
3230                 * mmu_notifier_retry was successful and we hold the
3231                 * mmu_lock here, so the pmd can't become splitting
3232                 * from under us, and in turn
3233                 * __split_huge_page_refcount() can't run from under
3234                 * us and we can safely transfer the refcount from
3235                 * PG_tail to PG_head as we switch the pfn to tail to
3236                 * head.
3237                 */
3238                *levelp = level = PT_DIRECTORY_LEVEL;
3239                mask = KVM_PAGES_PER_HPAGE(level) - 1;
3240                VM_BUG_ON((gfn & mask) != (pfn & mask));
3241                if (pfn & mask) {
3242                        gfn &= ~mask;
3243                        *gfnp = gfn;
3244                        kvm_release_pfn_clean(pfn);
3245                        pfn &= ~mask;
3246                        kvm_get_pfn(pfn);
3247                        *pfnp = pfn;
3248                }
3249        }
3250}
3251
3252static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3253                                kvm_pfn_t pfn, unsigned access, int *ret_val)
3254{
3255        /* The pfn is invalid, report the error! */
3256        if (unlikely(is_error_pfn(pfn))) {
3257                *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3258                return true;
3259        }
3260
3261        if (unlikely(is_noslot_pfn(pfn)))
3262                vcpu_cache_mmio_info(vcpu, gva, gfn, access);
3263
3264        return false;
3265}
3266
3267static bool page_fault_can_be_fast(u32 error_code)
3268{
3269        /*
3270         * Do not fix the mmio spte with invalid generation number which
3271         * need to be updated by slow page fault path.
3272         */
3273        if (unlikely(error_code & PFERR_RSVD_MASK))
3274                return false;
3275
3276        /* See if the page fault is due to an NX violation */
3277        if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3278                      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3279                return false;
3280
3281        /*
3282         * #PF can be fast if:
3283         * 1. The shadow page table entry is not present, which could mean that
3284         *    the fault is potentially caused by access tracking (if enabled).
3285         * 2. The shadow page table entry is present and the fault
3286         *    is caused by write-protect, that means we just need change the W
3287         *    bit of the spte which can be done out of mmu-lock.
3288         *
3289         * However, if access tracking is disabled we know that a non-present
3290         * page must be a genuine page fault where we have to create a new SPTE.
3291         * So, if access tracking is disabled, we return true only for write
3292         * accesses to a present page.
3293         */
3294
3295        return shadow_acc_track_mask != 0 ||
3296               ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3297                == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3298}
3299
3300/*
3301 * Returns true if the SPTE was fixed successfully. Otherwise,
3302 * someone else modified the SPTE from its original value.
3303 */
3304static bool
3305fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3306                        u64 *sptep, u64 old_spte, u64 new_spte)
3307{
3308        gfn_t gfn;
3309
3310        WARN_ON(!sp->role.direct);
3311
3312        /*
3313         * Theoretically we could also set dirty bit (and flush TLB) here in
3314         * order to eliminate unnecessary PML logging. See comments in
3315         * set_spte. But fast_page_fault is very unlikely to happen with PML
3316         * enabled, so we do not do this. This might result in the same GPA
3317         * to be logged in PML buffer again when the write really happens, and
3318         * eventually to be called by mark_page_dirty twice. But it's also no
3319         * harm. This also avoids the TLB flush needed after setting dirty bit
3320         * so non-PML cases won't be impacted.
3321         *
3322         * Compare with set_spte where instead shadow_dirty_mask is set.
3323         */
3324        if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3325                return false;
3326
3327        if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3328                /*
3329                 * The gfn of direct spte is stable since it is
3330                 * calculated by sp->gfn.
3331                 */
3332                gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3333                kvm_vcpu_mark_page_dirty(vcpu, gfn);
3334        }
3335
3336        return true;
3337}
3338
3339static bool is_access_allowed(u32 fault_err_code, u64 spte)
3340{
3341        if (fault_err_code & PFERR_FETCH_MASK)
3342                return is_executable_pte(spte);
3343
3344        if (fault_err_code & PFERR_WRITE_MASK)
3345                return is_writable_pte(spte);
3346
3347        /* Fault was on Read access */
3348        return spte & PT_PRESENT_MASK;
3349}
3350
3351/*
3352 * Return value:
3353 * - true: let the vcpu to access on the same address again.
3354 * - false: let the real page fault path to fix it.
3355 */
3356static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3357                            u32 error_code)
3358{
3359        struct kvm_shadow_walk_iterator iterator;
3360        struct kvm_mmu_page *sp;
3361        bool fault_handled = false;
3362        u64 spte = 0ull;
3363        uint retry_count = 0;
3364
3365        if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3366                return false;
3367
3368        if (!page_fault_can_be_fast(error_code))
3369                return false;
3370
3371        walk_shadow_page_lockless_begin(vcpu);
3372
3373        do {
3374                u64 new_spte;
3375
3376                for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3377                        if (!is_shadow_present_pte(spte) ||
3378                            iterator.level < level)
3379                                break;
3380
3381                sp = page_header(__pa(iterator.sptep));
3382                if (!is_last_spte(spte, sp->role.level))
3383                        break;
3384
3385                /*
3386                 * Check whether the memory access that caused the fault would
3387                 * still cause it if it were to be performed right now. If not,
3388                 * then this is a spurious fault caused by TLB lazily flushed,
3389                 * or some other CPU has already fixed the PTE after the
3390                 * current CPU took the fault.
3391                 *
3392                 * Need not check the access of upper level table entries since
3393                 * they are always ACC_ALL.
3394                 */
3395                if (is_access_allowed(error_code, spte)) {
3396                        fault_handled = true;
3397                        break;
3398                }
3399
3400                new_spte = spte;
3401
3402                if (is_access_track_spte(spte))
3403                        new_spte = restore_acc_track_spte(new_spte);
3404
3405                /*
3406                 * Currently, to simplify the code, write-protection can
3407                 * be removed in the fast path only if the SPTE was
3408                 * write-protected for dirty-logging or access tracking.
3409                 */
3410                if ((error_code & PFERR_WRITE_MASK) &&
3411                    spte_can_locklessly_be_made_writable(spte))
3412                {
3413                        new_spte |= PT_WRITABLE_MASK;
3414
3415                        /*
3416                         * Do not fix write-permission on the large spte.  Since
3417                         * we only dirty the first page into the dirty-bitmap in
3418                         * fast_pf_fix_direct_spte(), other pages are missed
3419                         * if its slot has dirty logging enabled.
3420                         *
3421                         * Instead, we let the slow page fault path create a
3422                         * normal spte to fix the access.
3423                         *
3424                         * See the comments in kvm_arch_commit_memory_region().
3425                         */
3426                        if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3427                                break;
3428                }
3429
3430                /* Verify that the fault can be handled in the fast path */
3431                if (new_spte == spte ||
3432                    !is_access_allowed(error_code, new_spte))
3433                        break;
3434
3435                /*
3436                 * Currently, fast page fault only works for direct mapping
3437                 * since the gfn is not stable for indirect shadow page. See
3438                 * Documentation/virtual/kvm/locking.txt to get more detail.
3439                 */
3440                fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3441                                                        iterator.sptep, spte,
3442                                                        new_spte);
3443                if (fault_handled)
3444                        break;
3445
3446                if (++retry_count > 4) {
3447                        printk_once(KERN_WARNING
3448                                "kvm: Fast #PF retrying more than 4 times.\n");
3449                        break;
3450                }
3451
3452        } while (true);
3453
3454        trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3455                              spte, fault_handled);
3456        walk_shadow_page_lockless_end(vcpu);
3457
3458        return fault_handled;
3459}
3460
3461static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3462                         gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3463static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
3464
3465static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3466                         gfn_t gfn, bool prefault)
3467{
3468        int r;
3469        int level;
3470        bool force_pt_level = false;
3471        kvm_pfn_t pfn;
3472        unsigned long mmu_seq;
3473        bool map_writable, write = error_code & PFERR_WRITE_MASK;
3474
3475        level = mapping_level(vcpu, gfn, &force_pt_level);
3476        if (likely(!force_pt_level)) {
3477                /*
3478                 * This path builds a PAE pagetable - so we can map
3479                 * 2mb pages at maximum. Therefore check if the level
3480                 * is larger than that.
3481                 */
3482                if (level > PT_DIRECTORY_LEVEL)
3483                        level = PT_DIRECTORY_LEVEL;
3484
3485                gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3486        }
3487
3488        if (fast_page_fault(vcpu, v, level, error_code))
3489                return RET_PF_RETRY;
3490
3491        mmu_seq = vcpu->kvm->mmu_notifier_seq;
3492        smp_rmb();
3493
3494        if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3495                return RET_PF_RETRY;
3496
3497        if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3498                return r;
3499
3500        spin_lock(&vcpu->kvm->mmu_lock);
3501        if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3502                goto out_unlock;
3503        if (make_mmu_pages_available(vcpu) < 0)
3504                goto out_unlock;
3505        if (likely(!force_pt_level))
3506                transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3507        r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3508        spin_unlock(&vcpu->kvm->mmu_lock);
3509
3510        return r;
3511
3512out_unlock:
3513        spin_unlock(&vcpu->kvm->mmu_lock);
3514        kvm_release_pfn_clean(pfn);
3515        return RET_PF_RETRY;
3516}
3517
3518static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3519                               struct list_head *invalid_list)
3520{
3521        struct kvm_mmu_page *sp;
3522
3523        if (!VALID_PAGE(*root_hpa))
3524                return;
3525
3526        sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3527        --sp->root_count;
3528        if (!sp->root_count && sp->role.invalid)
3529                kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3530
3531        *root_hpa = INVALID_PAGE;
3532}
3533
3534/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3535void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3536                        ulong roots_to_free)
3537{
3538        int i;
3539        LIST_HEAD(invalid_list);
3540        bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3541
3542        BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3543
3544        /* Before acquiring the MMU lock, see if we need to do any real work. */
3545        if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3546                for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3547                        if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3548                            VALID_PAGE(mmu->prev_roots[i].hpa))
3549                                break;
3550
3551                if (i == KVM_MMU_NUM_PREV_ROOTS)
3552                        return;
3553        }
3554
3555        spin_lock(&vcpu->kvm->mmu_lock);
3556
3557        for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3558                if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3559                        mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3560                                           &invalid_list);
3561
3562        if (free_active_root) {
3563                if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3564                    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3565                        mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3566                                           &invalid_list);
3567                } else {
3568                        for (i = 0; i < 4; ++i)
3569                                if (mmu->pae_root[i] != 0)
3570                                        mmu_free_root_page(vcpu->kvm,
3571                                                           &mmu->pae_root[i],
3572                                                           &invalid_list);
3573                        mmu->root_hpa = INVALID_PAGE;
3574                }
3575                mmu->root_cr3 = 0;
3576        }
3577
3578        kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3579        spin_unlock(&vcpu->kvm->mmu_lock);
3580}
3581EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3582
3583static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3584{
3585        int ret = 0;
3586
3587        if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3588                kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3589                ret = 1;
3590        }
3591
3592        return ret;
3593}
3594
3595static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3596{
3597        struct kvm_mmu_page *sp;
3598        unsigned i;
3599
3600        if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3601                spin_lock(&vcpu->kvm->mmu_lock);
3602                if(make_mmu_pages_available(vcpu) < 0) {
3603                        spin_unlock(&vcpu->kvm->mmu_lock);
3604                        return -ENOSPC;
3605                }
3606                sp = kvm_mmu_get_page(vcpu, 0, 0,
3607                                vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
3608                ++sp->root_count;
3609                spin_unlock(&vcpu->kvm->mmu_lock);
3610                vcpu->arch.mmu->root_hpa = __pa(sp->spt);
3611        } else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
3612                for (i = 0; i < 4; ++i) {
3613                        hpa_t root = vcpu->arch.mmu->pae_root[i];
3614
3615                        MMU_WARN_ON(VALID_PAGE(root));
3616                        spin_lock(&vcpu->kvm->mmu_lock);
3617                        if (make_mmu_pages_available(vcpu) < 0) {
3618                                spin_unlock(&vcpu->kvm->mmu_lock);
3619                                return -ENOSPC;
3620                        }
3621                        sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3622                                        i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3623                        root = __pa(sp->spt);
3624                        ++sp->root_count;
3625                        spin_unlock(&vcpu->kvm->mmu_lock);
3626                        vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3627                }
3628                vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3629        } else
3630                BUG();
3631        vcpu->arch.mmu->root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
3632
3633        return 0;
3634}
3635
3636static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3637{
3638        struct kvm_mmu_page *sp;
3639        u64 pdptr, pm_mask;
3640        gfn_t root_gfn, root_cr3;
3641        int i;
3642
3643        root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
3644        root_gfn = root_cr3 >> PAGE_SHIFT;
3645
3646        if (mmu_check_root(vcpu, root_gfn))
3647                return 1;
3648
3649        /*
3650         * Do we shadow a long mode page table? If so we need to
3651         * write-protect the guests page table root.
3652         */
3653        if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3654                hpa_t root = vcpu->arch.mmu->root_hpa;
3655
3656                MMU_WARN_ON(VALID_PAGE(root));
3657
3658                spin_lock(&vcpu->kvm->mmu_lock);
3659                if (make_mmu_pages_available(vcpu) < 0) {
3660                        spin_unlock(&vcpu->kvm->mmu_lock);
3661                        return -ENOSPC;
3662                }
3663                sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3664                                vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
3665                root = __pa(sp->spt);
3666                ++sp->root_count;
3667                spin_unlock(&vcpu->kvm->mmu_lock);
3668                vcpu->arch.mmu->root_hpa = root;
3669                goto set_root_cr3;
3670        }
3671
3672        /*
3673         * We shadow a 32 bit page table. This may be a legacy 2-level
3674         * or a PAE 3-level page table. In either case we need to be aware that
3675         * the shadow page table may be a PAE or a long mode page table.
3676         */
3677        pm_mask = PT_PRESENT_MASK;
3678        if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3679                pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3680
3681        for (i = 0; i < 4; ++i) {
3682                hpa_t root = vcpu->arch.mmu->pae_root[i];
3683
3684                MMU_WARN_ON(VALID_PAGE(root));
3685                if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3686                        pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3687                        if (!(pdptr & PT_PRESENT_MASK)) {
3688                                vcpu->arch.mmu->pae_root[i] = 0;
3689                                continue;
3690                        }
3691                        root_gfn = pdptr >> PAGE_SHIFT;
3692                        if (mmu_check_root(vcpu, root_gfn))
3693                                return 1;
3694                }
3695                spin_lock(&vcpu->kvm->mmu_lock);
3696                if (make_mmu_pages_available(vcpu) < 0) {
3697                        spin_unlock(&vcpu->kvm->mmu_lock);
3698                        return -ENOSPC;
3699                }
3700                sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3701                                      0, ACC_ALL);
3702                root = __pa(sp->spt);
3703                ++sp->root_count;
3704                spin_unlock(&vcpu->kvm->mmu_lock);
3705
3706                vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3707        }
3708        vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3709
3710        /*
3711         * If we shadow a 32 bit page table with a long mode page
3712         * table we enter this path.
3713         */
3714        if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3715                if (vcpu->arch.mmu->lm_root == NULL) {
3716                        /*
3717                         * The additional page necessary for this is only
3718                         * allocated on demand.
3719                         */
3720
3721                        u64 *lm_root;
3722
3723                        lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3724                        if (lm_root == NULL)
3725                                return 1;
3726
3727                        lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3728
3729                        vcpu->arch.mmu->lm_root = lm_root;
3730                }
3731
3732                vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3733        }
3734
3735set_root_cr3:
3736        vcpu->arch.mmu->root_cr3 = root_cr3;
3737
3738        return 0;
3739}
3740
3741static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3742{
3743        if (vcpu->arch.mmu->direct_map)
3744                return mmu_alloc_direct_roots(vcpu);
3745        else
3746                return mmu_alloc_shadow_roots(vcpu);
3747}
3748
3749void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3750{
3751        int i;
3752        struct kvm_mmu_page *sp;
3753
3754        if (vcpu->arch.mmu->direct_map)
3755                return;
3756
3757        if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3758                return;
3759
3760        vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3761
3762        if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3763                hpa_t root = vcpu->arch.mmu->root_hpa;
3764                sp = page_header(root);
3765
3766                /*
3767                 * Even if another CPU was marking the SP as unsync-ed
3768                 * simultaneously, any guest page table changes are not
3769                 * guaranteed to be visible anyway until this VCPU issues a TLB
3770                 * flush strictly after those changes are made. We only need to
3771                 * ensure that the other CPU sets these flags before any actual
3772                 * changes to the page tables are made. The comments in
3773                 * mmu_need_write_protect() describe what could go wrong if this
3774                 * requirement isn't satisfied.
3775                 */
3776                if (!smp_load_acquire(&sp->unsync) &&
3777                    !smp_load_acquire(&sp->unsync_children))
3778                        return;
3779
3780                spin_lock(&vcpu->kvm->mmu_lock);
3781                kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3782
3783                mmu_sync_children(vcpu, sp);
3784
3785                kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3786                spin_unlock(&vcpu->kvm->mmu_lock);
3787                return;
3788        }
3789
3790        spin_lock(&vcpu->kvm->mmu_lock);
3791        kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3792
3793        for (i = 0; i < 4; ++i) {
3794                hpa_t root = vcpu->arch.mmu->pae_root[i];
3795
3796                if (root && VALID_PAGE(root)) {
3797                        root &= PT64_BASE_ADDR_MASK;
3798                        sp = page_header(root);
3799                        mmu_sync_children(vcpu, sp);
3800                }
3801        }
3802
3803        kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3804        spin_unlock(&vcpu->kvm->mmu_lock);
3805}
3806EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3807
3808static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3809                                  u32 access, struct x86_exception *exception)
3810{
3811        if (exception)
3812                exception->error_code = 0;
3813        return vaddr;
3814}
3815
3816static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3817                                         u32 access,
3818                                         struct x86_exception *exception)
3819{
3820        if (exception)
3821                exception->error_code = 0;
3822        return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3823}
3824
3825static bool
3826__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3827{
3828        int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3829
3830        return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3831                ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3832}
3833
3834static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3835{
3836        return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3837}
3838
3839static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3840{
3841        return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3842}
3843
3844static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3845{
3846        /*
3847         * A nested guest cannot use the MMIO cache if it is using nested
3848         * page tables, because cr2 is a nGPA while the cache stores GPAs.
3849         */
3850        if (mmu_is_nested(vcpu))
3851                return false;
3852
3853        if (direct)
3854                return vcpu_match_mmio_gpa(vcpu, addr);
3855
3856        return vcpu_match_mmio_gva(vcpu, addr);
3857}
3858
3859/* return true if reserved bit is detected on spte. */
3860static bool
3861walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3862{
3863        struct kvm_shadow_walk_iterator iterator;
3864        u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3865        int root, leaf;
3866        bool reserved = false;
3867
3868        if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3869                goto exit;
3870
3871        walk_shadow_page_lockless_begin(vcpu);
3872
3873        for (shadow_walk_init(&iterator, vcpu, addr),
3874                 leaf = root = iterator.level;
3875             shadow_walk_okay(&iterator);
3876             __shadow_walk_next(&iterator, spte)) {
3877                spte = mmu_spte_get_lockless(iterator.sptep);
3878
3879                sptes[leaf - 1] = spte;
3880                leaf--;
3881
3882                if (!is_shadow_present_pte(spte))
3883                        break;
3884
3885                reserved |= is_shadow_zero_bits_set(vcpu->arch.mmu, spte,
3886                                                    iterator.level);
3887        }
3888
3889        walk_shadow_page_lockless_end(vcpu);
3890
3891        if (reserved) {
3892                pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3893                       __func__, addr);
3894                while (root > leaf) {
3895                        pr_err("------ spte 0x%llx level %d.\n",
3896                               sptes[root - 1], root);
3897                        root--;
3898                }
3899        }
3900exit:
3901        *sptep = spte;
3902        return reserved;
3903}
3904
3905static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3906{
3907        u64 spte;
3908        bool reserved;
3909
3910        if (mmio_info_in_cache(vcpu, addr, direct))
3911                return RET_PF_EMULATE;
3912
3913        reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3914        if (WARN_ON(reserved))
3915                return -EINVAL;
3916
3917        if (is_mmio_spte(spte)) {
3918                gfn_t gfn = get_mmio_spte_gfn(spte);
3919                unsigned access = get_mmio_spte_access(spte);
3920
3921                if (!check_mmio_spte(vcpu, spte))
3922                        return RET_PF_INVALID;
3923
3924                if (direct)
3925                        addr = 0;
3926
3927                trace_handle_mmio_page_fault(addr, gfn, access);
3928                vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3929                return RET_PF_EMULATE;
3930        }
3931
3932        /*
3933         * If the page table is zapped by other cpus, let CPU fault again on
3934         * the address.
3935         */
3936        return RET_PF_RETRY;
3937}
3938
3939static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3940                                         u32 error_code, gfn_t gfn)
3941{
3942        if (unlikely(error_code & PFERR_RSVD_MASK))
3943                return false;
3944
3945        if (!(error_code & PFERR_PRESENT_MASK) ||
3946              !(error_code & PFERR_WRITE_MASK))
3947                return false;
3948
3949        /*
3950         * guest is writing the page which is write tracked which can
3951         * not be fixed by page fault handler.
3952         */
3953        if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3954                return true;
3955
3956        return false;
3957}
3958
3959static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3960{
3961        struct kvm_shadow_walk_iterator iterator;
3962        u64 spte;
3963
3964        if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3965                return;
3966
3967        walk_shadow_page_lockless_begin(vcpu);
3968        for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3969                clear_sp_write_flooding_count(iterator.sptep);
3970                if (!is_shadow_present_pte(spte))
3971                        break;
3972        }
3973        walk_shadow_page_lockless_end(vcpu);
3974}
3975
3976static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3977                                u32 error_code, bool prefault)
3978{
3979        gfn_t gfn = gva >> PAGE_SHIFT;
3980        int r;
3981
3982        pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3983
3984        if (page_fault_handle_page_track(vcpu, error_code, gfn))
3985                return RET_PF_EMULATE;
3986
3987        r = mmu_topup_memory_caches(vcpu);
3988        if (r)
3989                return r;
3990
3991        MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
3992
3993
3994        return nonpaging_map(vcpu, gva & PAGE_MASK,
3995                             error_code, gfn, prefault);
3996}
3997
3998static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3999{
4000        struct kvm_arch_async_pf arch;
4001
4002        arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4003        arch.gfn = gfn;
4004        arch.direct_map = vcpu->arch.mmu->direct_map;
4005        arch.cr3 = vcpu->arch.mmu->get_cr3(vcpu);
4006
4007        return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
4008}
4009
4010bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
4011{
4012        if (unlikely(!lapic_in_kernel(vcpu) ||
4013                     kvm_event_needs_reinjection(vcpu) ||
4014                     vcpu->arch.exception.pending))
4015                return false;
4016
4017        if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
4018                return false;
4019
4020        return kvm_x86_ops->interrupt_allowed(vcpu);
4021}
4022
4023static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
4024                         gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
4025{
4026        struct kvm_memory_slot *slot;
4027        bool async;
4028
4029        /*
4030         * Don't expose private memslots to L2.
4031         */
4032        if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
4033                *pfn = KVM_PFN_NOSLOT;
4034                return false;
4035        }
4036
4037        slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
4038        async = false;
4039        *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
4040        if (!async)
4041                return false; /* *pfn has correct page already */
4042
4043        if (!prefault && kvm_can_do_async_pf(vcpu)) {
4044                trace_kvm_try_async_get_page(gva, gfn);
4045                if (kvm_find_async_pf_gfn(vcpu, gfn)) {
4046                        trace_kvm_async_pf_doublefault(gva, gfn);
4047                        kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4048                        return true;
4049                } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
4050                        return true;
4051        }
4052
4053        *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
4054        return false;
4055}
4056
4057int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4058                                u64 fault_address, char *insn, int insn_len)
4059{
4060        int r = 1;
4061
4062        vcpu->arch.l1tf_flush_l1d = true;
4063        switch (vcpu->arch.apf.host_apf_reason) {
4064        default:
4065                trace_kvm_page_fault(fault_address, error_code);
4066
4067                if (kvm_event_needs_reinjection(vcpu))
4068                        kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4069                r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4070                                insn_len);
4071                break;
4072        case KVM_PV_REASON_PAGE_NOT_PRESENT:
4073                vcpu->arch.apf.host_apf_reason = 0;
4074                local_irq_disable();
4075                kvm_async_pf_task_wait(fault_address, 0);
4076                local_irq_enable();
4077                break;
4078        case KVM_PV_REASON_PAGE_READY:
4079                vcpu->arch.apf.host_apf_reason = 0;
4080                local_irq_disable();
4081                kvm_async_pf_task_wake(fault_address);
4082                local_irq_enable();
4083                break;
4084        }
4085        return r;
4086}
4087EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4088
4089static bool
4090check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
4091{
4092        int page_num = KVM_PAGES_PER_HPAGE(level);
4093
4094        gfn &= ~(page_num - 1);
4095
4096        return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
4097}
4098
4099static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
4100                          bool prefault)
4101{
4102        kvm_pfn_t pfn;
4103        int r;
4104        int level;
4105        bool force_pt_level;
4106        gfn_t gfn = gpa >> PAGE_SHIFT;
4107        unsigned long mmu_seq;
4108        int write = error_code & PFERR_WRITE_MASK;
4109        bool map_writable;
4110
4111        MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
4112
4113        if (page_fault_handle_page_track(vcpu, error_code, gfn))
4114                return RET_PF_EMULATE;
4115
4116        r = mmu_topup_memory_caches(vcpu);
4117        if (r)
4118                return r;
4119
4120        force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
4121                                                           PT_DIRECTORY_LEVEL);
4122        level = mapping_level(vcpu, gfn, &force_pt_level);
4123        if (likely(!force_pt_level)) {
4124                if (level > PT_DIRECTORY_LEVEL &&
4125                    !check_hugepage_cache_consistency(vcpu, gfn, level))
4126                        level = PT_DIRECTORY_LEVEL;
4127                gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
4128        }
4129
4130        if (fast_page_fault(vcpu, gpa, level, error_code))
4131                return RET_PF_RETRY;
4132
4133        mmu_seq = vcpu->kvm->mmu_notifier_seq;
4134        smp_rmb();
4135
4136        if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4137                return RET_PF_RETRY;
4138
4139        if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
4140                return r;
4141
4142        spin_lock(&vcpu->kvm->mmu_lock);
4143        if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4144                goto out_unlock;
4145        if (make_mmu_pages_available(vcpu) < 0)
4146                goto out_unlock;
4147        if (likely(!force_pt_level))
4148                transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
4149        r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
4150        spin_unlock(&vcpu->kvm->mmu_lock);
4151
4152        return r;
4153
4154out_unlock:
4155        spin_unlock(&vcpu->kvm->mmu_lock);
4156        kvm_release_pfn_clean(pfn);
4157        return RET_PF_RETRY;
4158}
4159
4160static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4161                                   struct kvm_mmu *context)
4162{
4163        context->page_fault = nonpaging_page_fault;
4164        context->gva_to_gpa = nonpaging_gva_to_gpa;
4165        context->sync_page = nonpaging_sync_page;
4166        context->invlpg = nonpaging_invlpg;
4167        context->update_pte = nonpaging_update_pte;
4168        context->root_level = 0;
4169        context->shadow_root_level = PT32E_ROOT_LEVEL;
4170        context->direct_map = true;
4171        context->nx = false;
4172}
4173
4174/*
4175 * Find out if a previously cached root matching the new CR3/role is available.
4176 * The current root is also inserted into the cache.
4177 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4178 * returned.
4179 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4180 * false is returned. This root should now be freed by the caller.
4181 */
4182static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4183                                  union kvm_mmu_page_role new_role)
4184{
4185        uint i;
4186        struct kvm_mmu_root_info root;
4187        struct kvm_mmu *mmu = vcpu->arch.mmu;
4188
4189        root.cr3 = mmu->root_cr3;
4190        root.hpa = mmu->root_hpa;
4191
4192        for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4193                swap(root, mmu->prev_roots[i]);
4194
4195                if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) &&
4196                    page_header(root.hpa) != NULL &&
4197                    new_role.word == page_header(root.hpa)->role.word)
4198                        break;
4199        }
4200
4201        mmu->root_hpa = root.hpa;
4202        mmu->root_cr3 = root.cr3;
4203
4204        return i < KVM_MMU_NUM_PREV_ROOTS;
4205}
4206
4207static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4208                            union kvm_mmu_page_role new_role,
4209                            bool skip_tlb_flush)
4210{
4211        struct kvm_mmu *mmu = vcpu->arch.mmu;
4212
4213        /*
4214         * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4215         * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4216         * later if necessary.
4217         */
4218        if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4219            mmu->root_level >= PT64_ROOT_4LEVEL) {
4220                if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
4221                        return false;
4222
4223                if (cached_root_available(vcpu, new_cr3, new_role)) {
4224                        kvm_make_request(KVM_REQ_LOAD_CR3, vcpu);
4225                        if (!skip_tlb_flush) {
4226                                kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4227                                kvm_x86_ops->tlb_flush(vcpu, true);
4228                        }
4229
4230                        /*
4231                         * The last MMIO access's GVA and GPA are cached in the
4232                         * VCPU. When switching to a new CR3, that GVA->GPA
4233                         * mapping may no longer be valid. So clear any cached
4234                         * MMIO info even when we don't need to sync the shadow
4235                         * page tables.
4236                         */
4237                        vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4238
4239                        __clear_sp_write_flooding_count(
4240                                page_header(mmu->root_hpa));
4241
4242                        return true;
4243                }
4244        }
4245
4246        return false;
4247}
4248
4249static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4250                              union kvm_mmu_page_role new_role,
4251                              bool skip_tlb_flush)
4252{
4253        if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
4254                kvm_mmu_free_roots(vcpu, vcpu->arch.mmu,
4255                                   KVM_MMU_ROOT_CURRENT);
4256}
4257
4258void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
4259{
4260        __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
4261                          skip_tlb_flush);
4262}
4263EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
4264
4265static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4266{
4267        return kvm_read_cr3(vcpu);
4268}
4269
4270static void inject_page_fault(struct kvm_vcpu *vcpu,
4271                              struct x86_exception *fault)
4272{
4273        vcpu->arch.mmu->inject_page_fault(vcpu, fault);
4274}
4275
4276static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4277                           unsigned access, int *nr_present)
4278{
4279        if (unlikely(is_mmio_spte(*sptep))) {
4280                if (gfn != get_mmio_spte_gfn(*sptep)) {
4281                        mmu_spte_clear_no_track(sptep);
4282                        return true;
4283                }
4284
4285                (*nr_present)++;
4286                mark_mmio_spte(vcpu, sptep, gfn, access);
4287                return true;
4288        }
4289
4290        return false;
4291}
4292
4293static inline bool is_last_gpte(struct kvm_mmu *mmu,
4294                                unsigned level, unsigned gpte)
4295{
4296        /*
4297         * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4298         * If it is clear, there are no large pages at this level, so clear
4299         * PT_PAGE_SIZE_MASK in gpte if that is the case.
4300         */
4301        gpte &= level - mmu->last_nonleaf_level;
4302
4303        /*
4304         * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
4305         * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4306         * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4307         */
4308        gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4309
4310        return gpte & PT_PAGE_SIZE_MASK;
4311}
4312
4313#define PTTYPE_EPT 18 /* arbitrary */
4314#define PTTYPE PTTYPE_EPT
4315#include "paging_tmpl.h"
4316#undef PTTYPE
4317
4318#define PTTYPE 64
4319#include "paging_tmpl.h"
4320#undef PTTYPE
4321
4322#define PTTYPE 32
4323#include "paging_tmpl.h"
4324#undef PTTYPE
4325
4326static void
4327__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4328                        struct rsvd_bits_validate *rsvd_check,
4329                        int maxphyaddr, int level, bool nx, bool gbpages,
4330                        bool pse, bool amd)
4331{
4332        u64 exb_bit_rsvd = 0;
4333        u64 gbpages_bit_rsvd = 0;
4334        u64 nonleaf_bit8_rsvd = 0;
4335
4336        rsvd_check->bad_mt_xwr = 0;
4337
4338        if (!nx)
4339                exb_bit_rsvd = rsvd_bits(63, 63);
4340        if (!gbpages)
4341                gbpages_bit_rsvd = rsvd_bits(7, 7);
4342
4343        /*
4344         * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4345         * leaf entries) on AMD CPUs only.
4346         */
4347        if (amd)
4348                nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4349
4350        switch (level) {
4351        case PT32_ROOT_LEVEL:
4352                /* no rsvd bits for 2 level 4K page table entries */
4353                rsvd_check->rsvd_bits_mask[0][1] = 0;
4354                rsvd_check->rsvd_bits_mask[0][0] = 0;
4355                rsvd_check->rsvd_bits_mask[1][0] =
4356                        rsvd_check->rsvd_bits_mask[0][0];
4357
4358                if (!pse) {
4359                        rsvd_check->rsvd_bits_mask[1][1] = 0;
4360                        break;
4361                }
4362
4363                if (is_cpuid_PSE36())
4364                        /* 36bits PSE 4MB page */
4365                        rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4366                else
4367                        /* 32 bits PSE 4MB page */
4368                        rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4369                break;
4370        case PT32E_ROOT_LEVEL:
4371                rsvd_check->rsvd_bits_mask[0][2] =
4372                        rsvd_bits(maxphyaddr, 63) |
4373                        rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
4374                rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4375                        rsvd_bits(maxphyaddr, 62);      /* PDE */
4376                rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4377                        rsvd_bits(maxphyaddr, 62);      /* PTE */
4378                rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4379                        rsvd_bits(maxphyaddr, 62) |
4380                        rsvd_bits(13, 20);              /* large page */
4381                rsvd_check->rsvd_bits_mask[1][0] =
4382                        rsvd_check->rsvd_bits_mask[0][0];
4383                break;
4384        case PT64_ROOT_5LEVEL:
4385                rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4386                        nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4387                        rsvd_bits(maxphyaddr, 51);
4388                rsvd_check->rsvd_bits_mask[1][4] =
4389                        rsvd_check->rsvd_bits_mask[0][4];
4390                /* fall through */
4391        case PT64_ROOT_4LEVEL:
4392                rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4393                        nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4394                        rsvd_bits(maxphyaddr, 51);
4395                rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4396                        nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4397                        rsvd_bits(maxphyaddr, 51);
4398                rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4399                        rsvd_bits(maxphyaddr, 51);
4400                rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4401                        rsvd_bits(maxphyaddr, 51);
4402                rsvd_check->rsvd_bits_mask[1][3] =
4403                        rsvd_check->rsvd_bits_mask[0][3];
4404                rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4405                        gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4406                        rsvd_bits(13, 29);
4407                rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4408                        rsvd_bits(maxphyaddr, 51) |
4409                        rsvd_bits(13, 20);              /* large page */
4410                rsvd_check->rsvd_bits_mask[1][0] =
4411                        rsvd_check->rsvd_bits_mask[0][0];
4412                break;
4413        }
4414}
4415
4416static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4417                                  struct kvm_mmu *context)
4418{
4419        __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4420                                cpuid_maxphyaddr(vcpu), context->root_level,
4421                                context->nx,
4422                                guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4423                                is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4424}
4425
4426static void
4427__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4428                            int maxphyaddr, bool execonly)
4429{
4430        u64 bad_mt_xwr;
4431
4432        rsvd_check->rsvd_bits_mask[0][4] =
4433                rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4434        rsvd_check->rsvd_bits_mask[0][3] =
4435                rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4436        rsvd_check->rsvd_bits_mask[0][2] =
4437                rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4438        rsvd_check->rsvd_bits_mask[0][1] =
4439                rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4440        rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4441
4442        /* large page */
4443        rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4444        rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4445        rsvd_check->rsvd_bits_mask[1][2] =
4446                rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4447        rsvd_check->rsvd_bits_mask[1][1] =
4448                rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4449        rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4450
4451        bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4452        bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4453        bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4454        bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4455        bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4456        if (!execonly) {
4457                /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4458                bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4459        }
4460        rsvd_check->bad_mt_xwr = bad_mt_xwr;
4461}
4462
4463static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4464                struct kvm_mmu *context, bool execonly)
4465{
4466        __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4467                                    cpuid_maxphyaddr(vcpu), execonly);
4468}
4469
4470/*
4471 * the page table on host is the shadow page table for the page
4472 * table in guest or amd nested guest, its mmu features completely
4473 * follow the features in guest.
4474 */
4475void
4476reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4477{
4478        bool uses_nx = context->nx ||
4479                context->mmu_role.base.smep_andnot_wp;
4480        struct rsvd_bits_validate *shadow_zero_check;
4481        int i;
4482
4483        /*
4484         * Passing "true" to the last argument is okay; it adds a check
4485         * on bit 8 of the SPTEs which KVM doesn't use anyway.
4486         */
4487        shadow_zero_check = &context->shadow_zero_check;
4488        __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4489                                boot_cpu_data.x86_phys_bits,
4490                                context->shadow_root_level, uses_nx,
4491                                guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4492                                is_pse(vcpu), true);
4493
4494        if (!shadow_me_mask)
4495                return;
4496
4497        for (i = context->shadow_root_level; --i >= 0;) {
4498                shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4499                shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4500        }
4501
4502}
4503EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4504
4505static inline bool boot_cpu_is_amd(void)
4506{
4507        WARN_ON_ONCE(!tdp_enabled);
4508        return shadow_x_mask == 0;
4509}
4510
4511/*
4512 * the direct page table on host, use as much mmu features as
4513 * possible, however, kvm currently does not do execution-protection.
4514 */
4515static void
4516reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4517                                struct kvm_mmu *context)
4518{
4519        struct rsvd_bits_validate *shadow_zero_check;
4520        int i;
4521
4522        shadow_zero_check = &context->shadow_zero_check;
4523
4524        if (boot_cpu_is_amd())
4525                __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4526                                        boot_cpu_data.x86_phys_bits,
4527                                        context->shadow_root_level, false,
4528                                        boot_cpu_has(X86_FEATURE_GBPAGES),
4529                                        true, true);
4530        else
4531                __reset_rsvds_bits_mask_ept(shadow_zero_check,
4532                                            boot_cpu_data.x86_phys_bits,
4533                                            false);
4534
4535        if (!shadow_me_mask)
4536                return;
4537
4538        for (i = context->shadow_root_level; --i >= 0;) {
4539                shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4540                shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4541        }
4542}
4543
4544/*
4545 * as the comments in reset_shadow_zero_bits_mask() except it
4546 * is the shadow page table for intel nested guest.
4547 */
4548static void
4549reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4550                                struct kvm_mmu *context, bool execonly)
4551{
4552        __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4553                                    boot_cpu_data.x86_phys_bits, execonly);
4554}
4555
4556#define BYTE_MASK(access) \
4557        ((1 & (access) ? 2 : 0) | \
4558         (2 & (access) ? 4 : 0) | \
4559         (3 & (access) ? 8 : 0) | \
4560         (4 & (access) ? 16 : 0) | \
4561         (5 & (access) ? 32 : 0) | \
4562         (6 & (access) ? 64 : 0) | \
4563         (7 & (access) ? 128 : 0))
4564
4565
4566static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4567                                      struct kvm_mmu *mmu, bool ept)
4568{
4569        unsigned byte;
4570
4571        const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4572        const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4573        const u8 u = BYTE_MASK(ACC_USER_MASK);
4574
4575        bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4576        bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4577        bool cr0_wp = is_write_protection(vcpu);
4578
4579        for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4580                unsigned pfec = byte << 1;
4581
4582                /*
4583                 * Each "*f" variable has a 1 bit for each UWX value
4584                 * that causes a fault with the given PFEC.
4585                 */
4586
4587                /* Faults from writes to non-writable pages */
4588                u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0;
4589                /* Faults from user mode accesses to supervisor pages */
4590                u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0;
4591                /* Faults from fetches of non-executable pages*/
4592                u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0;
4593                /* Faults from kernel mode fetches of user pages */
4594                u8 smepf = 0;
4595                /* Faults from kernel mode accesses of user pages */
4596                u8 smapf = 0;
4597
4598                if (!ept) {
4599                        /* Faults from kernel mode accesses to user pages */
4600                        u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4601
4602                        /* Not really needed: !nx will cause pte.nx to fault */
4603                        if (!mmu->nx)
4604                                ff = 0;
4605
4606                        /* Allow supervisor writes if !cr0.wp */
4607                        if (!cr0_wp)
4608                                wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4609
4610                        /* Disallow supervisor fetches of user code if cr4.smep */
4611                        if (cr4_smep)
4612                                smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4613
4614                        /*
4615                         * SMAP:kernel-mode data accesses from user-mode
4616                         * mappings should fault. A fault is considered
4617                         * as a SMAP violation if all of the following
4618                         * conditions are true:
4619                         *   - X86_CR4_SMAP is set in CR4
4620                         *   - A user page is accessed
4621                         *   - The access is not a fetch
4622                         *   - Page fault in kernel mode
4623                         *   - if CPL = 3 or X86_EFLAGS_AC is clear
4624                         *
4625                         * Here, we cover the first three conditions.
4626                         * The fourth is computed dynamically in permission_fault();
4627                         * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4628                         * *not* subject to SMAP restrictions.
4629                         */
4630                        if (cr4_smap)
4631                                smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4632                }
4633
4634                mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4635        }
4636}
4637
4638/*
4639* PKU is an additional mechanism by which the paging controls access to
4640* user-mode addresses based on the value in the PKRU register.  Protection
4641* key violations are reported through a bit in the page fault error code.
4642* Unlike other bits of the error code, the PK bit is not known at the
4643* call site of e.g. gva_to_gpa; it must be computed directly in
4644* permission_fault based on two bits of PKRU, on some machine state (CR4,
4645* CR0, EFER, CPL), and on other bits of the error code and the page tables.
4646*
4647* In particular the following conditions come from the error code, the
4648* page tables and the machine state:
4649* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4650* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4651* - PK is always zero if U=0 in the page tables
4652* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4653*
4654* The PKRU bitmask caches the result of these four conditions.  The error
4655* code (minus the P bit) and the page table's U bit form an index into the
4656* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4657* with the two bits of the PKRU register corresponding to the protection key.
4658* For the first three conditions above the bits will be 00, thus masking
4659* away both AD and WD.  For all reads or if the last condition holds, WD
4660* only will be masked away.
4661*/
4662static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4663                                bool ept)
4664{
4665        unsigned bit;
4666        bool wp;
4667
4668        if (ept) {
4669                mmu->pkru_mask = 0;
4670                return;
4671        }
4672
4673        /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4674        if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4675                mmu->pkru_mask = 0;
4676                return;
4677        }
4678
4679        wp = is_write_protection(vcpu);
4680
4681        for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4682                unsigned pfec, pkey_bits;
4683                bool check_pkey, check_write, ff, uf, wf, pte_user;
4684
4685                pfec = bit << 1;
4686                ff = pfec & PFERR_FETCH_MASK;
4687                uf = pfec & PFERR_USER_MASK;
4688                wf = pfec & PFERR_WRITE_MASK;
4689
4690                /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4691                pte_user = pfec & PFERR_RSVD_MASK;
4692
4693                /*
4694                 * Only need to check the access which is not an
4695                 * instruction fetch and is to a user page.
4696                 */
4697                check_pkey = (!ff && pte_user);
4698                /*
4699                 * write access is controlled by PKRU if it is a
4700                 * user access or CR0.WP = 1.
4701                 */
4702                check_write = check_pkey && wf && (uf || wp);
4703
4704                /* PKRU.AD stops both read and write access. */
4705                pkey_bits = !!check_pkey;
4706                /* PKRU.WD stops write access. */
4707                pkey_bits |= (!!check_write) << 1;
4708
4709                mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4710        }
4711}
4712
4713static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4714{
4715        unsigned root_level = mmu->root_level;
4716
4717        mmu->last_nonleaf_level = root_level;
4718        if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4719                mmu->last_nonleaf_level++;
4720}
4721
4722static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4723                                         struct kvm_mmu *context,
4724                                         int level)
4725{
4726        context->nx = is_nx(vcpu);
4727        context->root_level = level;
4728
4729        reset_rsvds_bits_mask(vcpu, context);
4730        update_permission_bitmask(vcpu, context, false);
4731        update_pkru_bitmask(vcpu, context, false);
4732        update_last_nonleaf_level(vcpu, context);
4733
4734        MMU_WARN_ON(!is_pae(vcpu));
4735        context->page_fault = paging64_page_fault;
4736        context->gva_to_gpa = paging64_gva_to_gpa;
4737        context->sync_page = paging64_sync_page;
4738        context->invlpg = paging64_invlpg;
4739        context->update_pte = paging64_update_pte;
4740        context->shadow_root_level = level;
4741        context->direct_map = false;
4742}
4743
4744static void paging64_init_context(struct kvm_vcpu *vcpu,
4745                                  struct kvm_mmu *context)
4746{
4747        int root_level = is_la57_mode(vcpu) ?
4748                         PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4749
4750        paging64_init_context_common(vcpu, context, root_level);
4751}
4752
4753static void paging32_init_context(struct kvm_vcpu *vcpu,
4754                                  struct kvm_mmu *context)
4755{
4756        context->nx = false;
4757        context->root_level = PT32_ROOT_LEVEL;
4758
4759        reset_rsvds_bits_mask(vcpu, context);
4760        update_permission_bitmask(vcpu, context, false);
4761        update_pkru_bitmask(vcpu, context, false);
4762        update_last_nonleaf_level(vcpu, context);
4763
4764        context->page_fault = paging32_page_fault;
4765        context->gva_to_gpa = paging32_gva_to_gpa;
4766        context->sync_page = paging32_sync_page;
4767        context->invlpg = paging32_invlpg;
4768        context->update_pte = paging32_update_pte;
4769        context->shadow_root_level = PT32E_ROOT_LEVEL;
4770        context->direct_map = false;
4771}
4772
4773static void paging32E_init_context(struct kvm_vcpu *vcpu,
4774                                   struct kvm_mmu *context)
4775{
4776        paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4777}
4778
4779static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4780{
4781        union kvm_mmu_extended_role ext = {0};
4782
4783        ext.cr0_pg = !!is_paging(vcpu);
4784        ext.cr4_pae = !!is_pae(vcpu);
4785        ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4786        ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4787        ext.cr4_pse = !!is_pse(vcpu);
4788        ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4789        ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
4790        ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4791
4792        ext.valid = 1;
4793
4794        return ext;
4795}
4796
4797static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4798                                                   bool base_only)
4799{
4800        union kvm_mmu_role role = {0};
4801
4802        role.base.access = ACC_ALL;
4803        role.base.nxe = !!is_nx(vcpu);
4804        role.base.cr0_wp = is_write_protection(vcpu);
4805        role.base.smm = is_smm(vcpu);
4806        role.base.guest_mode = is_guest_mode(vcpu);
4807
4808        if (base_only)
4809                return role;
4810
4811        role.ext = kvm_calc_mmu_role_ext(vcpu);
4812
4813        return role;
4814}
4815
4816static union kvm_mmu_role
4817kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4818{
4819        union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4820
4821        role.base.ad_disabled = (shadow_accessed_mask == 0);
4822        role.base.level = kvm_x86_ops->get_tdp_level(vcpu);
4823        role.base.direct = true;
4824        role.base.gpte_is_8_bytes = true;
4825
4826        return role;
4827}
4828
4829static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4830{
4831        struct kvm_mmu *context = vcpu->arch.mmu;
4832        union kvm_mmu_role new_role =
4833                kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4834
4835        new_role.base.word &= mmu_base_role_mask.word;
4836        if (new_role.as_u64 == context->mmu_role.as_u64)
4837                return;
4838
4839        context->mmu_role.as_u64 = new_role.as_u64;
4840        context->page_fault = tdp_page_fault;
4841        context->sync_page = nonpaging_sync_page;
4842        context->invlpg = nonpaging_invlpg;
4843        context->update_pte = nonpaging_update_pte;
4844        context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
4845        context->direct_map = true;
4846        context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4847        context->get_cr3 = get_cr3;
4848        context->get_pdptr = kvm_pdptr_read;
4849        context->inject_page_fault = kvm_inject_page_fault;
4850
4851        if (!is_paging(vcpu)) {
4852                context->nx = false;
4853                context->gva_to_gpa = nonpaging_gva_to_gpa;
4854                context->root_level = 0;
4855        } else if (is_long_mode(vcpu)) {
4856                context->nx = is_nx(vcpu);
4857                context->root_level = is_la57_mode(vcpu) ?
4858                                PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4859                reset_rsvds_bits_mask(vcpu, context);
4860                context->gva_to_gpa = paging64_gva_to_gpa;
4861        } else if (is_pae(vcpu)) {
4862                context->nx = is_nx(vcpu);
4863                context->root_level = PT32E_ROOT_LEVEL;
4864                reset_rsvds_bits_mask(vcpu, context);
4865                context->gva_to_gpa = paging64_gva_to_gpa;
4866        } else {
4867                context->nx = false;
4868                context->root_level = PT32_ROOT_LEVEL;
4869                reset_rsvds_bits_mask(vcpu, context);
4870                context->gva_to_gpa = paging32_gva_to_gpa;
4871        }
4872
4873        update_permission_bitmask(vcpu, context, false);
4874        update_pkru_bitmask(vcpu, context, false);
4875        update_last_nonleaf_level(vcpu, context);
4876        reset_tdp_shadow_zero_bits_mask(vcpu, context);
4877}
4878
4879static union kvm_mmu_role
4880kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4881{
4882        union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4883
4884        role.base.smep_andnot_wp = role.ext.cr4_smep &&
4885                !is_write_protection(vcpu);
4886        role.base.smap_andnot_wp = role.ext.cr4_smap &&
4887                !is_write_protection(vcpu);
4888        role.base.direct = !is_paging(vcpu);
4889        role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4890
4891        if (!is_long_mode(vcpu))
4892                role.base.level = PT32E_ROOT_LEVEL;
4893        else if (is_la57_mode(vcpu))
4894                role.base.level = PT64_ROOT_5LEVEL;
4895        else
4896                role.base.level = PT64_ROOT_4LEVEL;
4897
4898        return role;
4899}
4900
4901void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4902{
4903        struct kvm_mmu *context = vcpu->arch.mmu;
4904        union kvm_mmu_role new_role =
4905                kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4906
4907        new_role.base.word &= mmu_base_role_mask.word;
4908        if (new_role.as_u64 == context->mmu_role.as_u64)
4909                return;
4910
4911        if (!is_paging(vcpu))
4912                nonpaging_init_context(vcpu, context);
4913        else if (is_long_mode(vcpu))
4914                paging64_init_context(vcpu, context);
4915        else if (is_pae(vcpu))
4916                paging32E_init_context(vcpu, context);
4917        else
4918                paging32_init_context(vcpu, context);
4919
4920        context->mmu_role.as_u64 = new_role.as_u64;
4921        reset_shadow_zero_bits_mask(vcpu, context);
4922}
4923EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4924
4925static union kvm_mmu_role
4926kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4927                                   bool execonly)
4928{
4929        union kvm_mmu_role role = {0};
4930
4931        /* SMM flag is inherited from root_mmu */
4932        role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4933
4934        role.base.level = PT64_ROOT_4LEVEL;
4935        role.base.gpte_is_8_bytes = true;
4936        role.base.direct = false;
4937        role.base.ad_disabled = !accessed_dirty;
4938        role.base.guest_mode = true;
4939        role.base.access = ACC_ALL;
4940
4941        /*
4942         * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4943         * SMAP variation to denote shadow EPT entries.
4944         */
4945        role.base.cr0_wp = true;
4946        role.base.smap_andnot_wp = true;
4947
4948        role.ext = kvm_calc_mmu_role_ext(vcpu);
4949        role.ext.execonly = execonly;
4950
4951        return role;
4952}
4953
4954void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4955                             bool accessed_dirty, gpa_t new_eptp)
4956{
4957        struct kvm_mmu *context = vcpu->arch.mmu;
4958        union kvm_mmu_role new_role =
4959                kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4960                                                   execonly);
4961
4962        __kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false);
4963
4964        new_role.base.word &= mmu_base_role_mask.word;
4965        if (new_role.as_u64 == context->mmu_role.as_u64)
4966                return;
4967
4968        context->shadow_root_level = PT64_ROOT_4LEVEL;
4969
4970        context->nx = true;
4971        context->ept_ad = accessed_dirty;
4972        context->page_fault = ept_page_fault;
4973        context->gva_to_gpa = ept_gva_to_gpa;
4974        context->sync_page = ept_sync_page;
4975        context->invlpg = ept_invlpg;
4976        context->update_pte = ept_update_pte;
4977        context->root_level = PT64_ROOT_4LEVEL;
4978        context->direct_map = false;
4979        context->mmu_role.as_u64 = new_role.as_u64;
4980
4981        update_permission_bitmask(vcpu, context, true);
4982        update_pkru_bitmask(vcpu, context, true);
4983        update_last_nonleaf_level(vcpu, context);
4984        reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4985        reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4986}
4987EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4988
4989static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4990{
4991        struct kvm_mmu *context = vcpu->arch.mmu;
4992
4993        kvm_init_shadow_mmu(vcpu);
4994        context->set_cr3           = kvm_x86_ops->set_cr3;
4995        context->get_cr3           = get_cr3;
4996        context->get_pdptr         = kvm_pdptr_read;
4997        context->inject_page_fault = kvm_inject_page_fault;
4998}
4999
5000static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
5001{
5002        union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
5003        struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5004
5005        new_role.base.word &= mmu_base_role_mask.word;
5006        if (new_role.as_u64 == g_context->mmu_role.as_u64)
5007                return;
5008
5009        g_context->mmu_role.as_u64 = new_role.as_u64;
5010        g_context->get_cr3           = get_cr3;
5011        g_context->get_pdptr         = kvm_pdptr_read;
5012        g_context->inject_page_fault = kvm_inject_page_fault;
5013
5014        /*
5015         * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5016         * L1's nested page tables (e.g. EPT12). The nested translation
5017         * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5018         * L2's page tables as the first level of translation and L1's
5019         * nested page tables as the second level of translation. Basically
5020         * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5021         */
5022        if (!is_paging(vcpu)) {
5023                g_context->nx = false;
5024                g_context->root_level = 0;
5025                g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5026        } else if (is_long_mode(vcpu)) {
5027                g_context->nx = is_nx(vcpu);
5028                g_context->root_level = is_la57_mode(vcpu) ?
5029                                        PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5030                reset_rsvds_bits_mask(vcpu, g_context);
5031                g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5032        } else if (is_pae(vcpu)) {
5033                g_context->nx = is_nx(vcpu);
5034                g_context->root_level = PT32E_ROOT_LEVEL;
5035                reset_rsvds_bits_mask(vcpu, g_context);
5036                g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5037        } else {
5038                g_context->nx = false;
5039                g_context->root_level = PT32_ROOT_LEVEL;
5040                reset_rsvds_bits_mask(vcpu, g_context);
5041                g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5042        }
5043
5044        update_permission_bitmask(vcpu, g_context, false);
5045        update_pkru_bitmask(vcpu, g_context, false);
5046        update_last_nonleaf_level(vcpu, g_context);
5047}
5048
5049void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
5050{
5051        if (reset_roots) {
5052                uint i;
5053
5054                vcpu->arch.mmu->root_hpa = INVALID_PAGE;
5055
5056                for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5057                        vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5058        }
5059
5060        if (mmu_is_nested(vcpu))
5061                init_kvm_nested_mmu(vcpu);
5062        else if (tdp_enabled)
5063                init_kvm_tdp_mmu(vcpu);
5064        else
5065                init_kvm_softmmu(vcpu);
5066}
5067EXPORT_SYMBOL_GPL(kvm_init_mmu);
5068
5069static union kvm_mmu_page_role
5070kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5071{
5072        union kvm_mmu_role role;
5073
5074        if (tdp_enabled)
5075                role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
5076        else
5077                role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5078
5079        return role.base;
5080}
5081
5082void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5083{
5084        kvm_mmu_unload(vcpu);
5085        kvm_init_mmu(vcpu, true);
5086}
5087EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5088
5089int kvm_mmu_load(struct kvm_vcpu *vcpu)
5090{
5091        int r;
5092
5093        r = mmu_topup_memory_caches(vcpu);
5094        if (r)
5095                goto out;
5096        r = mmu_alloc_roots(vcpu);
5097        kvm_mmu_sync_roots(vcpu);
5098        if (r)
5099                goto out;
5100        kvm_mmu_load_cr3(vcpu);
5101        kvm_x86_ops->tlb_flush(vcpu, true);
5102out:
5103        return r;
5104}
5105EXPORT_SYMBOL_GPL(kvm_mmu_load);
5106
5107void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5108{
5109        kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5110        WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5111        kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5112        WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
5113}
5114EXPORT_SYMBOL_GPL(kvm_mmu_unload);
5115
5116static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
5117                                  struct kvm_mmu_page *sp, u64 *spte,
5118                                  const void *new)
5119{
5120        if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
5121                ++vcpu->kvm->stat.mmu_pde_zapped;
5122                return;
5123        }
5124
5125        ++vcpu->kvm->stat.mmu_pte_updated;
5126        vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
5127}
5128
5129static bool need_remote_flush(u64 old, u64 new)
5130{
5131        if (!is_shadow_present_pte(old))
5132                return false;
5133        if (!is_shadow_present_pte(new))
5134                return true;
5135        if ((old ^ new) & PT64_BASE_ADDR_MASK)
5136                return true;
5137        old ^= shadow_nx_mask;
5138        new ^= shadow_nx_mask;
5139        return (old & ~new & PT64_PERM_MASK) != 0;
5140}
5141
5142static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5143                                    int *bytes)
5144{
5145        u64 gentry = 0;
5146        int r;
5147
5148        /*
5149         * Assume that the pte write on a page table of the same type
5150         * as the current vcpu paging mode since we update the sptes only
5151         * when they have the same mode.
5152         */
5153        if (is_pae(vcpu) && *bytes == 4) {
5154                /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5155                *gpa &= ~(gpa_t)7;
5156                *bytes = 8;
5157        }
5158
5159        if (*bytes == 4 || *bytes == 8) {
5160                r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5161                if (r)
5162                        gentry = 0;
5163        }
5164
5165        return gentry;
5166}
5167
5168/*
5169 * If we're seeing too many writes to a page, it may no longer be a page table,
5170 * or we may be forking, in which case it is better to unmap the page.
5171 */
5172static bool detect_write_flooding(struct kvm_mmu_page *sp)
5173{
5174        /*
5175         * Skip write-flooding detected for the sp whose level is 1, because
5176         * it can become unsync, then the guest page is not write-protected.
5177         */
5178        if (sp->role.level == PT_PAGE_TABLE_LEVEL)
5179                return false;
5180
5181        atomic_inc(&sp->write_flooding_count);
5182        return atomic_read(&sp->write_flooding_count) >= 3;
5183}
5184
5185/*
5186 * Misaligned accesses are too much trouble to fix up; also, they usually
5187 * indicate a page is not used as a page table.
5188 */
5189static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5190                                    int bytes)
5191{
5192        unsigned offset, pte_size, misaligned;
5193
5194        pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5195                 gpa, bytes, sp->role.word);
5196
5197        offset = offset_in_page(gpa);
5198        pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5199
5200        /*
5201         * Sometimes, the OS only writes the last one bytes to update status
5202         * bits, for example, in linux, andb instruction is used in clear_bit().
5203         */
5204        if (!(offset & (pte_size - 1)) && bytes == 1)
5205                return false;
5206
5207        misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5208        misaligned |= bytes < 4;
5209
5210        return misaligned;
5211}
5212
5213static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5214{
5215        unsigned page_offset, quadrant;
5216        u64 *spte;
5217        int level;
5218
5219        page_offset = offset_in_page(gpa);
5220        level = sp->role.level;
5221        *nspte = 1;
5222        if (!sp->role.gpte_is_8_bytes) {
5223                page_offset <<= 1;      /* 32->64 */
5224                /*
5225                 * A 32-bit pde maps 4MB while the shadow pdes map
5226                 * only 2MB.  So we need to double the offset again
5227                 * and zap two pdes instead of one.
5228                 */
5229                if (level == PT32_ROOT_LEVEL) {
5230                        page_offset &= ~7; /* kill rounding error */
5231                        page_offset <<= 1;
5232                        *nspte = 2;
5233                }
5234                quadrant = page_offset >> PAGE_SHIFT;
5235                page_offset &= ~PAGE_MASK;
5236                if (quadrant != sp->role.quadrant)
5237                        return NULL;
5238        }
5239
5240        spte = &sp->spt[page_offset / sizeof(*spte)];
5241        return spte;
5242}
5243
5244static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5245                              const u8 *new, int bytes,
5246                              struct kvm_page_track_notifier_node *node)
5247{
5248        gfn_t gfn = gpa >> PAGE_SHIFT;
5249        struct kvm_mmu_page *sp;
5250        LIST_HEAD(invalid_list);
5251        u64 entry, gentry, *spte;
5252        int npte;
5253        bool remote_flush, local_flush;
5254
5255        /*
5256         * If we don't have indirect shadow pages, it means no page is
5257         * write-protected, so we can exit simply.
5258         */
5259        if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5260                return;
5261
5262        remote_flush = local_flush = false;
5263
5264        pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5265
5266        /*
5267         * No need to care whether allocation memory is successful
5268         * or not since pte prefetch is skiped if it does not have
5269         * enough objects in the cache.
5270         */
5271        mmu_topup_memory_caches(vcpu);
5272
5273        spin_lock(&vcpu->kvm->mmu_lock);
5274
5275        gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5276
5277        ++vcpu->kvm->stat.mmu_pte_write;
5278        kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5279
5280        for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5281                if (detect_write_misaligned(sp, gpa, bytes) ||
5282                      detect_write_flooding(sp)) {
5283                        kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5284                        ++vcpu->kvm->stat.mmu_flooded;
5285                        continue;
5286                }
5287
5288                spte = get_written_sptes(sp, gpa, &npte);
5289                if (!spte)
5290                        continue;
5291
5292                local_flush = true;
5293                while (npte--) {
5294                        u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5295
5296                        entry = *spte;
5297                        mmu_page_zap_pte(vcpu->kvm, sp, spte);
5298                        if (gentry &&
5299                              !((sp->role.word ^ base_role)
5300                              & mmu_base_role_mask.word) && rmap_can_add(vcpu))
5301                                mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
5302                        if (need_remote_flush(entry, *spte))
5303                                remote_flush = true;
5304                        ++spte;
5305                }
5306        }
5307        kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5308        kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5309        spin_unlock(&vcpu->kvm->mmu_lock);
5310}
5311
5312int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5313{
5314        gpa_t gpa;
5315        int r;
5316
5317        if (vcpu->arch.mmu->direct_map)
5318                return 0;
5319
5320        gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5321
5322        r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5323
5324        return r;
5325}
5326EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5327
5328static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
5329{
5330        LIST_HEAD(invalid_list);
5331
5332        if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
5333                return 0;
5334
5335        while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
5336                if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
5337                        break;
5338
5339                ++vcpu->kvm->stat.mmu_recycled;
5340        }
5341        kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
5342
5343        if (!kvm_mmu_available_pages(vcpu->kvm))
5344                return -ENOSPC;
5345        return 0;
5346}
5347
5348int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
5349                       void *insn, int insn_len)
5350{
5351        int r, emulation_type = 0;
5352        enum emulation_result er;
5353        bool direct = vcpu->arch.mmu->direct_map;
5354
5355        /* With shadow page tables, fault_address contains a GVA or nGPA.  */
5356        if (vcpu->arch.mmu->direct_map) {
5357                vcpu->arch.gpa_available = true;
5358                vcpu->arch.gpa_val = cr2;
5359        }
5360
5361        r = RET_PF_INVALID;
5362        if (unlikely(error_code & PFERR_RSVD_MASK)) {
5363                r = handle_mmio_page_fault(vcpu, cr2, direct);
5364                if (r == RET_PF_EMULATE)
5365                        goto emulate;
5366        }
5367
5368        if (r == RET_PF_INVALID) {
5369                r = vcpu->arch.mmu->page_fault(vcpu, cr2,
5370                                               lower_32_bits(error_code),
5371                                               false);
5372                WARN_ON(r == RET_PF_INVALID);
5373        }
5374
5375        if (r == RET_PF_RETRY)
5376                return 1;
5377        if (r < 0)
5378                return r;
5379
5380        /*
5381         * Before emulating the instruction, check if the error code
5382         * was due to a RO violation while translating the guest page.
5383         * This can occur when using nested virtualization with nested
5384         * paging in both guests. If true, we simply unprotect the page
5385         * and resume the guest.
5386         */
5387        if (vcpu->arch.mmu->direct_map &&
5388            (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5389                kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
5390                return 1;
5391        }
5392
5393        /*
5394         * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5395         * optimistically try to just unprotect the page and let the processor
5396         * re-execute the instruction that caused the page fault.  Do not allow
5397         * retrying MMIO emulation, as it's not only pointless but could also
5398         * cause us to enter an infinite loop because the processor will keep
5399         * faulting on the non-existent MMIO address.  Retrying an instruction
5400         * from a nested guest is also pointless and dangerous as we are only
5401         * explicitly shadowing L1's page tables, i.e. unprotecting something
5402         * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5403         */
5404        if (!mmio_info_in_cache(vcpu, cr2, direct) && !is_guest_mode(vcpu))
5405                emulation_type = EMULTYPE_ALLOW_RETRY;
5406emulate:
5407        /*
5408         * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5409         * This can happen if a guest gets a page-fault on data access but the HW
5410         * table walker is not able to read the instruction page (e.g instruction
5411         * page is not present in memory). In those cases we simply restart the
5412         * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
5413         */
5414        if (unlikely(insn && !insn_len)) {
5415                if (!kvm_x86_ops->need_emulation_on_page_fault(vcpu))
5416                        return 1;
5417        }
5418
5419        er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
5420
5421        switch (er) {
5422        case EMULATE_DONE:
5423                return 1;
5424        case EMULATE_USER_EXIT:
5425                ++vcpu->stat.mmio_exits;
5426                /* fall through */
5427        case EMULATE_FAIL:
5428                return 0;
5429        default:
5430                BUG();
5431        }
5432}
5433EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5434
5435void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5436{
5437        struct kvm_mmu *mmu = vcpu->arch.mmu;
5438        int i;
5439
5440        /* INVLPG on a * non-canonical address is a NOP according to the SDM.  */
5441        if (is_noncanonical_address(gva, vcpu))
5442                return;
5443
5444        mmu->invlpg(vcpu, gva, mmu->root_hpa);
5445
5446        /*
5447         * INVLPG is required to invalidate any global mappings for the VA,
5448         * irrespective of PCID. Since it would take us roughly similar amount
5449         * of work to determine whether any of the prev_root mappings of the VA
5450         * is marked global, or to just sync it blindly, so we might as well
5451         * just always sync it.
5452         *
5453         * Mappings not reachable via the current cr3 or the prev_roots will be
5454         * synced when switching to that cr3, so nothing needs to be done here
5455         * for them.
5456         */
5457        for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5458                if (VALID_PAGE(mmu->prev_roots[i].hpa))
5459                        mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5460
5461        kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5462        ++vcpu->stat.invlpg;
5463}
5464EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5465
5466void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5467{
5468        struct kvm_mmu *mmu = vcpu->arch.mmu;
5469        bool tlb_flush = false;
5470        uint i;
5471
5472        if (pcid == kvm_get_active_pcid(vcpu)) {
5473                mmu->invlpg(vcpu, gva, mmu->root_hpa);
5474                tlb_flush = true;
5475        }
5476
5477        for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5478                if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5479                    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
5480                        mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5481                        tlb_flush = true;
5482                }
5483        }
5484
5485        if (tlb_flush)
5486                kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5487
5488        ++vcpu->stat.invlpg;
5489
5490        /*
5491         * Mappings not reachable via the current cr3 or the prev_roots will be
5492         * synced when switching to that cr3, so nothing needs to be done here
5493         * for them.
5494         */
5495}
5496EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5497
5498void kvm_enable_tdp(void)
5499{
5500        tdp_enabled = true;
5501}
5502EXPORT_SYMBOL_GPL(kvm_enable_tdp);
5503
5504void kvm_disable_tdp(void)
5505{
5506        tdp_enabled = false;
5507}
5508EXPORT_SYMBOL_GPL(kvm_disable_tdp);
5509
5510
5511/* The return value indicates if tlb flush on all vcpus is needed. */
5512typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5513
5514/* The caller should hold mmu-lock before calling this function. */
5515static __always_inline bool
5516slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5517                        slot_level_handler fn, int start_level, int end_level,
5518                        gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5519{
5520        struct slot_rmap_walk_iterator iterator;
5521        bool flush = false;
5522
5523        for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5524                        end_gfn, &iterator) {
5525                if (iterator.rmap)
5526                        flush |= fn(kvm, iterator.rmap);
5527
5528                if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5529                        if (flush && lock_flush_tlb) {
5530                                kvm_flush_remote_tlbs_with_address(kvm,
5531                                                start_gfn,
5532                                                iterator.gfn - start_gfn + 1);
5533                                flush = false;
5534                        }
5535                        cond_resched_lock(&kvm->mmu_lock);
5536                }
5537        }
5538
5539        if (flush && lock_flush_tlb) {
5540                kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5541                                                   end_gfn - start_gfn + 1);
5542                flush = false;
5543        }
5544
5545        return flush;
5546}
5547
5548static __always_inline bool
5549slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5550                  slot_level_handler fn, int start_level, int end_level,
5551                  bool lock_flush_tlb)
5552{
5553        return slot_handle_level_range(kvm, memslot, fn, start_level,
5554                        end_level, memslot->base_gfn,
5555                        memslot->base_gfn + memslot->npages - 1,
5556                        lock_flush_tlb);
5557}
5558
5559static __always_inline bool
5560slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5561                      slot_level_handler fn, bool lock_flush_tlb)
5562{
5563        return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5564                                 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5565}
5566
5567static __always_inline bool
5568slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5569                        slot_level_handler fn, bool lock_flush_tlb)
5570{
5571        return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5572                                 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5573}
5574
5575static __always_inline bool
5576slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5577                 slot_level_handler fn, bool lock_flush_tlb)
5578{
5579        return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5580                                 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5581}
5582
5583static void free_mmu_pages(struct kvm_vcpu *vcpu)
5584{
5585        free_page((unsigned long)vcpu->arch.mmu->pae_root);
5586        free_page((unsigned long)vcpu->arch.mmu->lm_root);
5587}
5588
5589static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
5590{
5591        struct page *page;
5592        int i;
5593
5594        /*
5595         * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5596         * while the PDP table is a per-vCPU construct that's allocated at MMU
5597         * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5598         * x86_64.  Therefore we need to allocate the PDP table in the first
5599         * 4GB of memory, which happens to fit the DMA32 zone.  Except for
5600         * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5601         * skip allocating the PDP table.
5602         */
5603        if (tdp_enabled && kvm_x86_ops->get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5604                return 0;
5605
5606        page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5607        if (!page)
5608                return -ENOMEM;
5609
5610        vcpu->arch.mmu->pae_root = page_address(page);
5611        for (i = 0; i < 4; ++i)
5612                vcpu->arch.mmu->pae_root[i] = INVALID_PAGE;
5613
5614        return 0;
5615}
5616
5617int kvm_mmu_create(struct kvm_vcpu *vcpu)
5618{
5619        uint i;
5620
5621        vcpu->arch.mmu = &vcpu->arch.root_mmu;
5622        vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5623
5624        vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
5625        vcpu->arch.root_mmu.root_cr3 = 0;
5626        vcpu->arch.root_mmu.translate_gpa = translate_gpa;
5627        for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5628                vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5629
5630        vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
5631        vcpu->arch.guest_mmu.root_cr3 = 0;
5632        vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5633        for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5634                vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5635
5636        vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5637        return alloc_mmu_pages(vcpu);
5638}
5639
5640static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5641                        struct kvm_memory_slot *slot,
5642                        struct kvm_page_track_notifier_node *node)
5643{
5644        struct kvm_mmu_page *sp;
5645        LIST_HEAD(invalid_list);
5646        unsigned long i;
5647        bool flush;
5648        gfn_t gfn;
5649
5650        spin_lock(&kvm->mmu_lock);
5651
5652        if (list_empty(&kvm->arch.active_mmu_pages))
5653                goto out_unlock;
5654
5655        flush = slot_handle_all_level(kvm, slot, kvm_zap_rmapp, false);
5656
5657        for (i = 0; i < slot->npages; i++) {
5658                gfn = slot->base_gfn + i;
5659
5660                for_each_valid_sp(kvm, sp, gfn) {
5661                        if (sp->gfn != gfn)
5662                                continue;
5663
5664                        kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
5665                }
5666                if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5667                        kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
5668                        flush = false;
5669                        cond_resched_lock(&kvm->mmu_lock);
5670                }
5671        }
5672        kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
5673
5674out_unlock:
5675        spin_unlock(&kvm->mmu_lock);
5676}
5677
5678void kvm_mmu_init_vm(struct kvm *kvm)
5679{
5680        struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5681
5682        node->track_write = kvm_mmu_pte_write;
5683        node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5684        kvm_page_track_register_notifier(kvm, node);
5685}
5686
5687void kvm_mmu_uninit_vm(struct kvm *kvm)
5688{
5689        struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5690
5691        kvm_page_track_unregister_notifier(kvm, node);
5692}
5693
5694void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5695{
5696        struct kvm_memslots *slots;
5697        struct kvm_memory_slot *memslot;
5698        int i;
5699
5700        spin_lock(&kvm->mmu_lock);
5701        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5702                slots = __kvm_memslots(kvm, i);
5703                kvm_for_each_memslot(memslot, slots) {
5704                        gfn_t start, end;
5705
5706                        start = max(gfn_start, memslot->base_gfn);
5707                        end = min(gfn_end, memslot->base_gfn + memslot->npages);
5708                        if (start >= end)
5709                                continue;
5710
5711                        slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5712                                                PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5713                                                start, end - 1, true);
5714                }
5715        }
5716
5717        spin_unlock(&kvm->mmu_lock);
5718}
5719
5720static bool slot_rmap_write_protect(struct kvm *kvm,
5721                                    struct kvm_rmap_head *rmap_head)
5722{
5723        return __rmap_write_protect(kvm, rmap_head, false);
5724}
5725
5726void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5727                                      struct kvm_memory_slot *memslot)
5728{
5729        bool flush;
5730
5731        spin_lock(&kvm->mmu_lock);
5732        flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5733                                      false);
5734        spin_unlock(&kvm->mmu_lock);
5735
5736        /*
5737         * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5738         * which do tlb flush out of mmu-lock should be serialized by
5739         * kvm->slots_lock otherwise tlb flush would be missed.
5740         */
5741        lockdep_assert_held(&kvm->slots_lock);
5742
5743        /*
5744         * We can flush all the TLBs out of the mmu lock without TLB
5745         * corruption since we just change the spte from writable to
5746         * readonly so that we only need to care the case of changing
5747         * spte from present to present (changing the spte from present
5748         * to nonpresent will flush all the TLBs immediately), in other
5749         * words, the only case we care is mmu_spte_update() where we
5750         * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5751         * instead of PT_WRITABLE_MASK, that means it does not depend
5752         * on PT_WRITABLE_MASK anymore.
5753         */
5754        if (flush)
5755                kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5756                        memslot->npages);
5757}
5758
5759static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5760                                         struct kvm_rmap_head *rmap_head)
5761{
5762        u64 *sptep;
5763        struct rmap_iterator iter;
5764        int need_tlb_flush = 0;
5765        kvm_pfn_t pfn;
5766        struct kvm_mmu_page *sp;
5767
5768restart:
5769        for_each_rmap_spte(rmap_head, &iter, sptep) {
5770                sp = page_header(__pa(sptep));
5771                pfn = spte_to_pfn(*sptep);
5772
5773                /*
5774                 * We cannot do huge page mapping for indirect shadow pages,
5775                 * which are found on the last rmap (level = 1) when not using
5776                 * tdp; such shadow pages are synced with the page table in
5777                 * the guest, and the guest page table is using 4K page size
5778                 * mapping if the indirect sp has level = 1.
5779                 */
5780                if (sp->role.direct &&
5781                        !kvm_is_reserved_pfn(pfn) &&
5782                        PageTransCompoundMap(pfn_to_page(pfn))) {
5783                        pte_list_remove(rmap_head, sptep);
5784
5785                        if (kvm_available_flush_tlb_with_range())
5786                                kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5787                                        KVM_PAGES_PER_HPAGE(sp->role.level));
5788                        else
5789                                need_tlb_flush = 1;
5790
5791                        goto restart;
5792                }
5793        }
5794
5795        return need_tlb_flush;
5796}
5797
5798void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5799                                   const struct kvm_memory_slot *memslot)
5800{
5801        /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5802        spin_lock(&kvm->mmu_lock);
5803        slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5804                         kvm_mmu_zap_collapsible_spte, true);
5805        spin_unlock(&kvm->mmu_lock);
5806}
5807
5808void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5809                                   struct kvm_memory_slot *memslot)
5810{
5811        bool flush;
5812
5813        spin_lock(&kvm->mmu_lock);
5814        flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5815        spin_unlock(&kvm->mmu_lock);
5816
5817        lockdep_assert_held(&kvm->slots_lock);
5818
5819        /*
5820         * It's also safe to flush TLBs out of mmu lock here as currently this
5821         * function is only used for dirty logging, in which case flushing TLB
5822         * out of mmu lock also guarantees no dirty pages will be lost in
5823         * dirty_bitmap.
5824         */
5825        if (flush)
5826                kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5827                                memslot->npages);
5828}
5829EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5830
5831void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5832                                        struct kvm_memory_slot *memslot)
5833{
5834        bool flush;
5835
5836        spin_lock(&kvm->mmu_lock);
5837        flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5838                                        false);
5839        spin_unlock(&kvm->mmu_lock);
5840
5841        /* see kvm_mmu_slot_remove_write_access */
5842        lockdep_assert_held(&kvm->slots_lock);
5843
5844        if (flush)
5845                kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5846                                memslot->npages);
5847}
5848EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5849
5850void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5851                            struct kvm_memory_slot *memslot)
5852{
5853        bool flush;
5854
5855        spin_lock(&kvm->mmu_lock);
5856        flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5857        spin_unlock(&kvm->mmu_lock);
5858
5859        lockdep_assert_held(&kvm->slots_lock);
5860
5861        /* see kvm_mmu_slot_leaf_clear_dirty */
5862        if (flush)
5863                kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5864                                memslot->npages);
5865}
5866EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5867
5868static void __kvm_mmu_zap_all(struct kvm *kvm, bool mmio_only)
5869{
5870        struct kvm_mmu_page *sp, *node;
5871        LIST_HEAD(invalid_list);
5872        int ign;
5873
5874        spin_lock(&kvm->mmu_lock);
5875restart:
5876        list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5877                if (mmio_only && !sp->mmio_cached)
5878                        continue;
5879                if (sp->role.invalid && sp->root_count)
5880                        continue;
5881                if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) {
5882                        WARN_ON_ONCE(mmio_only);
5883                        goto restart;
5884                }
5885                if (cond_resched_lock(&kvm->mmu_lock))
5886                        goto restart;
5887        }
5888
5889        kvm_mmu_commit_zap_page(kvm, &invalid_list);
5890        spin_unlock(&kvm->mmu_lock);
5891}
5892
5893void kvm_mmu_zap_all(struct kvm *kvm)
5894{
5895        return __kvm_mmu_zap_all(kvm, false);
5896}
5897
5898void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5899{
5900        WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5901
5902        gen &= MMIO_SPTE_GEN_MASK;
5903
5904        /*
5905         * Generation numbers are incremented in multiples of the number of
5906         * address spaces in order to provide unique generations across all
5907         * address spaces.  Strip what is effectively the address space
5908         * modifier prior to checking for a wrap of the MMIO generation so
5909         * that a wrap in any address space is detected.
5910         */
5911        gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5912
5913        /*
5914         * The very rare case: if the MMIO generation number has wrapped,
5915         * zap all shadow pages.
5916         */
5917        if (unlikely(gen == 0)) {
5918                kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5919                __kvm_mmu_zap_all(kvm, true);
5920        }
5921}
5922
5923static unsigned long
5924mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5925{
5926        struct kvm *kvm;
5927        int nr_to_scan = sc->nr_to_scan;
5928        unsigned long freed = 0;
5929
5930        spin_lock(&kvm_lock);
5931
5932        list_for_each_entry(kvm, &vm_list, vm_list) {
5933                int idx;
5934                LIST_HEAD(invalid_list);
5935
5936                /*
5937                 * Never scan more than sc->nr_to_scan VM instances.
5938                 * Will not hit this condition practically since we do not try
5939                 * to shrink more than one VM and it is very unlikely to see
5940                 * !n_used_mmu_pages so many times.
5941                 */
5942                if (!nr_to_scan--)
5943                        break;
5944                /*
5945                 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5946                 * here. We may skip a VM instance errorneosly, but we do not
5947                 * want to shrink a VM that only started to populate its MMU
5948                 * anyway.
5949                 */
5950                if (!kvm->arch.n_used_mmu_pages)
5951                        continue;
5952
5953                idx = srcu_read_lock(&kvm->srcu);
5954                spin_lock(&kvm->mmu_lock);
5955
5956                if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5957                        freed++;
5958                kvm_mmu_commit_zap_page(kvm, &invalid_list);
5959
5960                spin_unlock(&kvm->mmu_lock);
5961                srcu_read_unlock(&kvm->srcu, idx);
5962
5963                /*
5964                 * unfair on small ones
5965                 * per-vm shrinkers cry out
5966                 * sadness comes quickly
5967                 */
5968                list_move_tail(&kvm->vm_list, &vm_list);
5969                break;
5970        }
5971
5972        spin_unlock(&kvm_lock);
5973        return freed;
5974}
5975
5976static unsigned long
5977mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5978{
5979        return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5980}
5981
5982static struct shrinker mmu_shrinker = {
5983        .count_objects = mmu_shrink_count,
5984        .scan_objects = mmu_shrink_scan,
5985        .seeks = DEFAULT_SEEKS * 10,
5986};
5987
5988static void mmu_destroy_caches(void)
5989{
5990        kmem_cache_destroy(pte_list_desc_cache);
5991        kmem_cache_destroy(mmu_page_header_cache);
5992}
5993
5994int kvm_mmu_module_init(void)
5995{
5996        int ret = -ENOMEM;
5997
5998        /*
5999         * MMU roles use union aliasing which is, generally speaking, an
6000         * undefined behavior. However, we supposedly know how compilers behave
6001         * and the current status quo is unlikely to change. Guardians below are
6002         * supposed to let us know if the assumption becomes false.
6003         */
6004        BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6005        BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6006        BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6007
6008        kvm_mmu_reset_all_pte_masks();
6009
6010        pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6011                                            sizeof(struct pte_list_desc),
6012                                            0, SLAB_ACCOUNT, NULL);
6013        if (!pte_list_desc_cache)
6014                goto out;
6015
6016        mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6017                                                  sizeof(struct kvm_mmu_page),
6018                                                  0, SLAB_ACCOUNT, NULL);
6019        if (!mmu_page_header_cache)
6020                goto out;
6021
6022        if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6023                goto out;
6024
6025        ret = register_shrinker(&mmu_shrinker);
6026        if (ret)
6027                goto out;
6028
6029        return 0;
6030
6031out:
6032        mmu_destroy_caches();
6033        return ret;
6034}
6035
6036/*
6037 * Calculate mmu pages needed for kvm.
6038 */
6039unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6040{
6041        unsigned long nr_mmu_pages;
6042        unsigned long nr_pages = 0;
6043        struct kvm_memslots *slots;
6044        struct kvm_memory_slot *memslot;
6045        int i;
6046
6047        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6048                slots = __kvm_memslots(kvm, i);
6049
6050                kvm_for_each_memslot(memslot, slots)
6051                        nr_pages += memslot->npages;
6052        }
6053
6054        nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6055        nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6056
6057        return nr_mmu_pages;
6058}
6059
6060void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6061{
6062        kvm_mmu_unload(vcpu);
6063        free_mmu_pages(vcpu);
6064        mmu_free_memory_caches(vcpu);
6065}
6066
6067void kvm_mmu_module_exit(void)
6068{
6069        mmu_destroy_caches();
6070        percpu_counter_destroy(&kvm_total_used_mmu_pages);
6071        unregister_shrinker(&mmu_shrinker);
6072        mmu_audit_disable();
6073}
6074