linux/arch/x86/kvm/vmx/vmx.c
<<
>>
Prefs
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * This module enables machines with Intel VT-x extensions to run virtual
   5 * machines without emulation or binary translation.
   6 *
   7 * Copyright (C) 2006 Qumranet, Inc.
   8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
   9 *
  10 * Authors:
  11 *   Avi Kivity   <avi@qumranet.com>
  12 *   Yaniv Kamay  <yaniv@qumranet.com>
  13 *
  14 * This work is licensed under the terms of the GNU GPL, version 2.  See
  15 * the COPYING file in the top-level directory.
  16 *
  17 */
  18
  19#include <linux/frame.h>
  20#include <linux/highmem.h>
  21#include <linux/hrtimer.h>
  22#include <linux/kernel.h>
  23#include <linux/kvm_host.h>
  24#include <linux/module.h>
  25#include <linux/moduleparam.h>
  26#include <linux/mod_devicetable.h>
  27#include <linux/mm.h>
  28#include <linux/sched.h>
  29#include <linux/sched/smt.h>
  30#include <linux/slab.h>
  31#include <linux/tboot.h>
  32#include <linux/trace_events.h>
  33
  34#include <asm/apic.h>
  35#include <asm/asm.h>
  36#include <asm/cpu.h>
  37#include <asm/debugreg.h>
  38#include <asm/desc.h>
  39#include <asm/fpu/internal.h>
  40#include <asm/io.h>
  41#include <asm/irq_remapping.h>
  42#include <asm/kexec.h>
  43#include <asm/perf_event.h>
  44#include <asm/mce.h>
  45#include <asm/mmu_context.h>
  46#include <asm/mshyperv.h>
  47#include <asm/spec-ctrl.h>
  48#include <asm/virtext.h>
  49#include <asm/vmx.h>
  50
  51#include "capabilities.h"
  52#include "cpuid.h"
  53#include "evmcs.h"
  54#include "irq.h"
  55#include "kvm_cache_regs.h"
  56#include "lapic.h"
  57#include "mmu.h"
  58#include "nested.h"
  59#include "ops.h"
  60#include "pmu.h"
  61#include "trace.h"
  62#include "vmcs.h"
  63#include "vmcs12.h"
  64#include "vmx.h"
  65#include "x86.h"
  66
  67MODULE_AUTHOR("Qumranet");
  68MODULE_LICENSE("GPL");
  69
  70static const struct x86_cpu_id vmx_cpu_id[] = {
  71        X86_FEATURE_MATCH(X86_FEATURE_VMX),
  72        {}
  73};
  74MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
  75
  76bool __read_mostly enable_vpid = 1;
  77module_param_named(vpid, enable_vpid, bool, 0444);
  78
  79static bool __read_mostly enable_vnmi = 1;
  80module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
  81
  82bool __read_mostly flexpriority_enabled = 1;
  83module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  84
  85bool __read_mostly enable_ept = 1;
  86module_param_named(ept, enable_ept, bool, S_IRUGO);
  87
  88bool __read_mostly enable_unrestricted_guest = 1;
  89module_param_named(unrestricted_guest,
  90                        enable_unrestricted_guest, bool, S_IRUGO);
  91
  92bool __read_mostly enable_ept_ad_bits = 1;
  93module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
  94
  95static bool __read_mostly emulate_invalid_guest_state = true;
  96module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  97
  98static bool __read_mostly fasteoi = 1;
  99module_param(fasteoi, bool, S_IRUGO);
 100
 101bool __read_mostly enable_apicv = 1;
 102module_param(enable_apicv, bool, S_IRUGO);
 103
 104/*
 105 * If nested=1, nested virtualization is supported, i.e., guests may use
 106 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
 107 * use VMX instructions.
 108 */
 109int __read_mostly nested = -1;
 110module_param(nested, bint, S_IRUGO);
 111
 112static u64 __read_mostly host_xss;
 113
 114bool __read_mostly enable_pml = 1;
 115module_param_named(pml, enable_pml, bool, S_IRUGO);
 116
 117#define MSR_BITMAP_MODE_X2APIC          1
 118#define MSR_BITMAP_MODE_X2APIC_APICV    2
 119
 120#define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
 121
 122/* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
 123static int __read_mostly cpu_preemption_timer_multi;
 124static bool __read_mostly enable_preemption_timer = 1;
 125#ifdef CONFIG_X86_64
 126module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
 127#endif
 128
 129#define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
 130#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
 131#define KVM_VM_CR0_ALWAYS_ON                            \
 132        (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST |      \
 133         X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
 134#define KVM_CR4_GUEST_OWNED_BITS                                      \
 135        (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
 136         | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
 137
 138#define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
 139#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
 140#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
 141
 142#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
 143
 144#define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
 145        RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
 146        RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
 147        RTIT_STATUS_BYTECNT))
 148
 149#define MSR_IA32_RTIT_OUTPUT_BASE_MASK \
 150        (~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f)
 151
 152/*
 153 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
 154 * ple_gap:    upper bound on the amount of time between two successive
 155 *             executions of PAUSE in a loop. Also indicate if ple enabled.
 156 *             According to test, this time is usually smaller than 128 cycles.
 157 * ple_window: upper bound on the amount of time a guest is allowed to execute
 158 *             in a PAUSE loop. Tests indicate that most spinlocks are held for
 159 *             less than 2^12 cycles
 160 * Time is measured based on a counter that runs at the same rate as the TSC,
 161 * refer SDM volume 3b section 21.6.13 & 22.1.3.
 162 */
 163static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
 164module_param(ple_gap, uint, 0444);
 165
 166static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
 167module_param(ple_window, uint, 0444);
 168
 169/* Default doubles per-vcpu window every exit. */
 170static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
 171module_param(ple_window_grow, uint, 0444);
 172
 173/* Default resets per-vcpu window every exit to ple_window. */
 174static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
 175module_param(ple_window_shrink, uint, 0444);
 176
 177/* Default is to compute the maximum so we can never overflow. */
 178static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
 179module_param(ple_window_max, uint, 0444);
 180
 181/* Default is SYSTEM mode, 1 for host-guest mode */
 182int __read_mostly pt_mode = PT_MODE_SYSTEM;
 183module_param(pt_mode, int, S_IRUGO);
 184
 185static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
 186static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
 187static DEFINE_MUTEX(vmx_l1d_flush_mutex);
 188
 189/* Storage for pre module init parameter parsing */
 190static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
 191
 192static const struct {
 193        const char *option;
 194        bool for_parse;
 195} vmentry_l1d_param[] = {
 196        [VMENTER_L1D_FLUSH_AUTO]         = {"auto", true},
 197        [VMENTER_L1D_FLUSH_NEVER]        = {"never", true},
 198        [VMENTER_L1D_FLUSH_COND]         = {"cond", true},
 199        [VMENTER_L1D_FLUSH_ALWAYS]       = {"always", true},
 200        [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
 201        [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
 202};
 203
 204#define L1D_CACHE_ORDER 4
 205static void *vmx_l1d_flush_pages;
 206
 207static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
 208{
 209        struct page *page;
 210        unsigned int i;
 211
 212        if (!enable_ept) {
 213                l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
 214                return 0;
 215        }
 216
 217        if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
 218                u64 msr;
 219
 220                rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
 221                if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
 222                        l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
 223                        return 0;
 224                }
 225        }
 226
 227        /* If set to auto use the default l1tf mitigation method */
 228        if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
 229                switch (l1tf_mitigation) {
 230                case L1TF_MITIGATION_OFF:
 231                        l1tf = VMENTER_L1D_FLUSH_NEVER;
 232                        break;
 233                case L1TF_MITIGATION_FLUSH_NOWARN:
 234                case L1TF_MITIGATION_FLUSH:
 235                case L1TF_MITIGATION_FLUSH_NOSMT:
 236                        l1tf = VMENTER_L1D_FLUSH_COND;
 237                        break;
 238                case L1TF_MITIGATION_FULL:
 239                case L1TF_MITIGATION_FULL_FORCE:
 240                        l1tf = VMENTER_L1D_FLUSH_ALWAYS;
 241                        break;
 242                }
 243        } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
 244                l1tf = VMENTER_L1D_FLUSH_ALWAYS;
 245        }
 246
 247        if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
 248            !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
 249                /*
 250                 * This allocation for vmx_l1d_flush_pages is not tied to a VM
 251                 * lifetime and so should not be charged to a memcg.
 252                 */
 253                page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
 254                if (!page)
 255                        return -ENOMEM;
 256                vmx_l1d_flush_pages = page_address(page);
 257
 258                /*
 259                 * Initialize each page with a different pattern in
 260                 * order to protect against KSM in the nested
 261                 * virtualization case.
 262                 */
 263                for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
 264                        memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
 265                               PAGE_SIZE);
 266                }
 267        }
 268
 269        l1tf_vmx_mitigation = l1tf;
 270
 271        if (l1tf != VMENTER_L1D_FLUSH_NEVER)
 272                static_branch_enable(&vmx_l1d_should_flush);
 273        else
 274                static_branch_disable(&vmx_l1d_should_flush);
 275
 276        if (l1tf == VMENTER_L1D_FLUSH_COND)
 277                static_branch_enable(&vmx_l1d_flush_cond);
 278        else
 279                static_branch_disable(&vmx_l1d_flush_cond);
 280        return 0;
 281}
 282
 283static int vmentry_l1d_flush_parse(const char *s)
 284{
 285        unsigned int i;
 286
 287        if (s) {
 288                for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
 289                        if (vmentry_l1d_param[i].for_parse &&
 290                            sysfs_streq(s, vmentry_l1d_param[i].option))
 291                                return i;
 292                }
 293        }
 294        return -EINVAL;
 295}
 296
 297static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
 298{
 299        int l1tf, ret;
 300
 301        l1tf = vmentry_l1d_flush_parse(s);
 302        if (l1tf < 0)
 303                return l1tf;
 304
 305        if (!boot_cpu_has(X86_BUG_L1TF))
 306                return 0;
 307
 308        /*
 309         * Has vmx_init() run already? If not then this is the pre init
 310         * parameter parsing. In that case just store the value and let
 311         * vmx_init() do the proper setup after enable_ept has been
 312         * established.
 313         */
 314        if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
 315                vmentry_l1d_flush_param = l1tf;
 316                return 0;
 317        }
 318
 319        mutex_lock(&vmx_l1d_flush_mutex);
 320        ret = vmx_setup_l1d_flush(l1tf);
 321        mutex_unlock(&vmx_l1d_flush_mutex);
 322        return ret;
 323}
 324
 325static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
 326{
 327        if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
 328                return sprintf(s, "???\n");
 329
 330        return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
 331}
 332
 333static const struct kernel_param_ops vmentry_l1d_flush_ops = {
 334        .set = vmentry_l1d_flush_set,
 335        .get = vmentry_l1d_flush_get,
 336};
 337module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
 338
 339static bool guest_state_valid(struct kvm_vcpu *vcpu);
 340static u32 vmx_segment_access_rights(struct kvm_segment *var);
 341static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
 342                                                          u32 msr, int type);
 343
 344void vmx_vmexit(void);
 345
 346static DEFINE_PER_CPU(struct vmcs *, vmxarea);
 347DEFINE_PER_CPU(struct vmcs *, current_vmcs);
 348/*
 349 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
 350 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
 351 */
 352static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
 353
 354/*
 355 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
 356 * can find which vCPU should be waken up.
 357 */
 358static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
 359static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
 360
 361static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
 362static DEFINE_SPINLOCK(vmx_vpid_lock);
 363
 364struct vmcs_config vmcs_config;
 365struct vmx_capability vmx_capability;
 366
 367#define VMX_SEGMENT_FIELD(seg)                                  \
 368        [VCPU_SREG_##seg] = {                                   \
 369                .selector = GUEST_##seg##_SELECTOR,             \
 370                .base = GUEST_##seg##_BASE,                     \
 371                .limit = GUEST_##seg##_LIMIT,                   \
 372                .ar_bytes = GUEST_##seg##_AR_BYTES,             \
 373        }
 374
 375static const struct kvm_vmx_segment_field {
 376        unsigned selector;
 377        unsigned base;
 378        unsigned limit;
 379        unsigned ar_bytes;
 380} kvm_vmx_segment_fields[] = {
 381        VMX_SEGMENT_FIELD(CS),
 382        VMX_SEGMENT_FIELD(DS),
 383        VMX_SEGMENT_FIELD(ES),
 384        VMX_SEGMENT_FIELD(FS),
 385        VMX_SEGMENT_FIELD(GS),
 386        VMX_SEGMENT_FIELD(SS),
 387        VMX_SEGMENT_FIELD(TR),
 388        VMX_SEGMENT_FIELD(LDTR),
 389};
 390
 391u64 host_efer;
 392
 393/*
 394 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
 395 * will emulate SYSCALL in legacy mode if the vendor string in guest
 396 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
 397 * support this emulation, IA32_STAR must always be included in
 398 * vmx_msr_index[], even in i386 builds.
 399 */
 400const u32 vmx_msr_index[] = {
 401#ifdef CONFIG_X86_64
 402        MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
 403#endif
 404        MSR_EFER, MSR_TSC_AUX, MSR_STAR,
 405};
 406
 407#if IS_ENABLED(CONFIG_HYPERV)
 408static bool __read_mostly enlightened_vmcs = true;
 409module_param(enlightened_vmcs, bool, 0444);
 410
 411/* check_ept_pointer() should be under protection of ept_pointer_lock. */
 412static void check_ept_pointer_match(struct kvm *kvm)
 413{
 414        struct kvm_vcpu *vcpu;
 415        u64 tmp_eptp = INVALID_PAGE;
 416        int i;
 417
 418        kvm_for_each_vcpu(i, vcpu, kvm) {
 419                if (!VALID_PAGE(tmp_eptp)) {
 420                        tmp_eptp = to_vmx(vcpu)->ept_pointer;
 421                } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
 422                        to_kvm_vmx(kvm)->ept_pointers_match
 423                                = EPT_POINTERS_MISMATCH;
 424                        return;
 425                }
 426        }
 427
 428        to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
 429}
 430
 431static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
 432                void *data)
 433{
 434        struct kvm_tlb_range *range = data;
 435
 436        return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
 437                        range->pages);
 438}
 439
 440static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
 441                struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
 442{
 443        u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
 444
 445        /*
 446         * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
 447         * of the base of EPT PML4 table, strip off EPT configuration
 448         * information.
 449         */
 450        if (range)
 451                return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
 452                                kvm_fill_hv_flush_list_func, (void *)range);
 453        else
 454                return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
 455}
 456
 457static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
 458                struct kvm_tlb_range *range)
 459{
 460        struct kvm_vcpu *vcpu;
 461        int ret = 0, i;
 462
 463        spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
 464
 465        if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
 466                check_ept_pointer_match(kvm);
 467
 468        if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
 469                kvm_for_each_vcpu(i, vcpu, kvm) {
 470                        /* If ept_pointer is invalid pointer, bypass flush request. */
 471                        if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
 472                                ret |= __hv_remote_flush_tlb_with_range(
 473                                        kvm, vcpu, range);
 474                }
 475        } else {
 476                ret = __hv_remote_flush_tlb_with_range(kvm,
 477                                kvm_get_vcpu(kvm, 0), range);
 478        }
 479
 480        spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
 481        return ret;
 482}
 483static int hv_remote_flush_tlb(struct kvm *kvm)
 484{
 485        return hv_remote_flush_tlb_with_range(kvm, NULL);
 486}
 487
 488#endif /* IS_ENABLED(CONFIG_HYPERV) */
 489
 490/*
 491 * Comment's format: document - errata name - stepping - processor name.
 492 * Refer from
 493 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
 494 */
 495static u32 vmx_preemption_cpu_tfms[] = {
 496/* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
 4970x000206E6,
 498/* 323056.pdf - AAX65  - C2 - Xeon L3406 */
 499/* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
 500/* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
 5010x00020652,
 502/* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
 5030x00020655,
 504/* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
 505/* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
 506/*
 507 * 320767.pdf - AAP86  - B1 -
 508 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
 509 */
 5100x000106E5,
 511/* 321333.pdf - AAM126 - C0 - Xeon 3500 */
 5120x000106A0,
 513/* 321333.pdf - AAM126 - C1 - Xeon 3500 */
 5140x000106A1,
 515/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
 5160x000106A4,
 517 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
 518 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
 519 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
 5200x000106A5,
 521 /* Xeon E3-1220 V2 */
 5220x000306A8,
 523};
 524
 525static inline bool cpu_has_broken_vmx_preemption_timer(void)
 526{
 527        u32 eax = cpuid_eax(0x00000001), i;
 528
 529        /* Clear the reserved bits */
 530        eax &= ~(0x3U << 14 | 0xfU << 28);
 531        for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
 532                if (eax == vmx_preemption_cpu_tfms[i])
 533                        return true;
 534
 535        return false;
 536}
 537
 538static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
 539{
 540        return flexpriority_enabled && lapic_in_kernel(vcpu);
 541}
 542
 543static inline bool report_flexpriority(void)
 544{
 545        return flexpriority_enabled;
 546}
 547
 548static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
 549{
 550        int i;
 551
 552        for (i = 0; i < vmx->nmsrs; ++i)
 553                if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
 554                        return i;
 555        return -1;
 556}
 557
 558struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
 559{
 560        int i;
 561
 562        i = __find_msr_index(vmx, msr);
 563        if (i >= 0)
 564                return &vmx->guest_msrs[i];
 565        return NULL;
 566}
 567
 568void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
 569{
 570        vmcs_clear(loaded_vmcs->vmcs);
 571        if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
 572                vmcs_clear(loaded_vmcs->shadow_vmcs);
 573        loaded_vmcs->cpu = -1;
 574        loaded_vmcs->launched = 0;
 575}
 576
 577#ifdef CONFIG_KEXEC_CORE
 578/*
 579 * This bitmap is used to indicate whether the vmclear
 580 * operation is enabled on all cpus. All disabled by
 581 * default.
 582 */
 583static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
 584
 585static inline void crash_enable_local_vmclear(int cpu)
 586{
 587        cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
 588}
 589
 590static inline void crash_disable_local_vmclear(int cpu)
 591{
 592        cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
 593}
 594
 595static inline int crash_local_vmclear_enabled(int cpu)
 596{
 597        return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
 598}
 599
 600static void crash_vmclear_local_loaded_vmcss(void)
 601{
 602        int cpu = raw_smp_processor_id();
 603        struct loaded_vmcs *v;
 604
 605        if (!crash_local_vmclear_enabled(cpu))
 606                return;
 607
 608        list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
 609                            loaded_vmcss_on_cpu_link)
 610                vmcs_clear(v->vmcs);
 611}
 612#else
 613static inline void crash_enable_local_vmclear(int cpu) { }
 614static inline void crash_disable_local_vmclear(int cpu) { }
 615#endif /* CONFIG_KEXEC_CORE */
 616
 617static void __loaded_vmcs_clear(void *arg)
 618{
 619        struct loaded_vmcs *loaded_vmcs = arg;
 620        int cpu = raw_smp_processor_id();
 621
 622        if (loaded_vmcs->cpu != cpu)
 623                return; /* vcpu migration can race with cpu offline */
 624        if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
 625                per_cpu(current_vmcs, cpu) = NULL;
 626        crash_disable_local_vmclear(cpu);
 627        list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
 628
 629        /*
 630         * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
 631         * is before setting loaded_vmcs->vcpu to -1 which is done in
 632         * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
 633         * then adds the vmcs into percpu list before it is deleted.
 634         */
 635        smp_wmb();
 636
 637        loaded_vmcs_init(loaded_vmcs);
 638        crash_enable_local_vmclear(cpu);
 639}
 640
 641void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
 642{
 643        int cpu = loaded_vmcs->cpu;
 644
 645        if (cpu != -1)
 646                smp_call_function_single(cpu,
 647                         __loaded_vmcs_clear, loaded_vmcs, 1);
 648}
 649
 650static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
 651                                       unsigned field)
 652{
 653        bool ret;
 654        u32 mask = 1 << (seg * SEG_FIELD_NR + field);
 655
 656        if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
 657                vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
 658                vmx->segment_cache.bitmask = 0;
 659        }
 660        ret = vmx->segment_cache.bitmask & mask;
 661        vmx->segment_cache.bitmask |= mask;
 662        return ret;
 663}
 664
 665static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
 666{
 667        u16 *p = &vmx->segment_cache.seg[seg].selector;
 668
 669        if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
 670                *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
 671        return *p;
 672}
 673
 674static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
 675{
 676        ulong *p = &vmx->segment_cache.seg[seg].base;
 677
 678        if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
 679                *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
 680        return *p;
 681}
 682
 683static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
 684{
 685        u32 *p = &vmx->segment_cache.seg[seg].limit;
 686
 687        if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
 688                *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
 689        return *p;
 690}
 691
 692static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
 693{
 694        u32 *p = &vmx->segment_cache.seg[seg].ar;
 695
 696        if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
 697                *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
 698        return *p;
 699}
 700
 701void update_exception_bitmap(struct kvm_vcpu *vcpu)
 702{
 703        u32 eb;
 704
 705        eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
 706             (1u << DB_VECTOR) | (1u << AC_VECTOR);
 707        /*
 708         * Guest access to VMware backdoor ports could legitimately
 709         * trigger #GP because of TSS I/O permission bitmap.
 710         * We intercept those #GP and allow access to them anyway
 711         * as VMware does.
 712         */
 713        if (enable_vmware_backdoor)
 714                eb |= (1u << GP_VECTOR);
 715        if ((vcpu->guest_debug &
 716             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
 717            (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
 718                eb |= 1u << BP_VECTOR;
 719        if (to_vmx(vcpu)->rmode.vm86_active)
 720                eb = ~0;
 721        if (enable_ept)
 722                eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
 723
 724        /* When we are running a nested L2 guest and L1 specified for it a
 725         * certain exception bitmap, we must trap the same exceptions and pass
 726         * them to L1. When running L2, we will only handle the exceptions
 727         * specified above if L1 did not want them.
 728         */
 729        if (is_guest_mode(vcpu))
 730                eb |= get_vmcs12(vcpu)->exception_bitmap;
 731
 732        vmcs_write32(EXCEPTION_BITMAP, eb);
 733}
 734
 735/*
 736 * Check if MSR is intercepted for currently loaded MSR bitmap.
 737 */
 738static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
 739{
 740        unsigned long *msr_bitmap;
 741        int f = sizeof(unsigned long);
 742
 743        if (!cpu_has_vmx_msr_bitmap())
 744                return true;
 745
 746        msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
 747
 748        if (msr <= 0x1fff) {
 749                return !!test_bit(msr, msr_bitmap + 0x800 / f);
 750        } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
 751                msr &= 0x1fff;
 752                return !!test_bit(msr, msr_bitmap + 0xc00 / f);
 753        }
 754
 755        return true;
 756}
 757
 758static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
 759                unsigned long entry, unsigned long exit)
 760{
 761        vm_entry_controls_clearbit(vmx, entry);
 762        vm_exit_controls_clearbit(vmx, exit);
 763}
 764
 765static int find_msr(struct vmx_msrs *m, unsigned int msr)
 766{
 767        unsigned int i;
 768
 769        for (i = 0; i < m->nr; ++i) {
 770                if (m->val[i].index == msr)
 771                        return i;
 772        }
 773        return -ENOENT;
 774}
 775
 776static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
 777{
 778        int i;
 779        struct msr_autoload *m = &vmx->msr_autoload;
 780
 781        switch (msr) {
 782        case MSR_EFER:
 783                if (cpu_has_load_ia32_efer()) {
 784                        clear_atomic_switch_msr_special(vmx,
 785                                        VM_ENTRY_LOAD_IA32_EFER,
 786                                        VM_EXIT_LOAD_IA32_EFER);
 787                        return;
 788                }
 789                break;
 790        case MSR_CORE_PERF_GLOBAL_CTRL:
 791                if (cpu_has_load_perf_global_ctrl()) {
 792                        clear_atomic_switch_msr_special(vmx,
 793                                        VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
 794                                        VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
 795                        return;
 796                }
 797                break;
 798        }
 799        i = find_msr(&m->guest, msr);
 800        if (i < 0)
 801                goto skip_guest;
 802        --m->guest.nr;
 803        m->guest.val[i] = m->guest.val[m->guest.nr];
 804        vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
 805
 806skip_guest:
 807        i = find_msr(&m->host, msr);
 808        if (i < 0)
 809                return;
 810
 811        --m->host.nr;
 812        m->host.val[i] = m->host.val[m->host.nr];
 813        vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
 814}
 815
 816static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
 817                unsigned long entry, unsigned long exit,
 818                unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
 819                u64 guest_val, u64 host_val)
 820{
 821        vmcs_write64(guest_val_vmcs, guest_val);
 822        if (host_val_vmcs != HOST_IA32_EFER)
 823                vmcs_write64(host_val_vmcs, host_val);
 824        vm_entry_controls_setbit(vmx, entry);
 825        vm_exit_controls_setbit(vmx, exit);
 826}
 827
 828static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
 829                                  u64 guest_val, u64 host_val, bool entry_only)
 830{
 831        int i, j = 0;
 832        struct msr_autoload *m = &vmx->msr_autoload;
 833
 834        switch (msr) {
 835        case MSR_EFER:
 836                if (cpu_has_load_ia32_efer()) {
 837                        add_atomic_switch_msr_special(vmx,
 838                                        VM_ENTRY_LOAD_IA32_EFER,
 839                                        VM_EXIT_LOAD_IA32_EFER,
 840                                        GUEST_IA32_EFER,
 841                                        HOST_IA32_EFER,
 842                                        guest_val, host_val);
 843                        return;
 844                }
 845                break;
 846        case MSR_CORE_PERF_GLOBAL_CTRL:
 847                if (cpu_has_load_perf_global_ctrl()) {
 848                        add_atomic_switch_msr_special(vmx,
 849                                        VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
 850                                        VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
 851                                        GUEST_IA32_PERF_GLOBAL_CTRL,
 852                                        HOST_IA32_PERF_GLOBAL_CTRL,
 853                                        guest_val, host_val);
 854                        return;
 855                }
 856                break;
 857        case MSR_IA32_PEBS_ENABLE:
 858                /* PEBS needs a quiescent period after being disabled (to write
 859                 * a record).  Disabling PEBS through VMX MSR swapping doesn't
 860                 * provide that period, so a CPU could write host's record into
 861                 * guest's memory.
 862                 */
 863                wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
 864        }
 865
 866        i = find_msr(&m->guest, msr);
 867        if (!entry_only)
 868                j = find_msr(&m->host, msr);
 869
 870        if ((i < 0 && m->guest.nr == NR_AUTOLOAD_MSRS) ||
 871                (j < 0 &&  m->host.nr == NR_AUTOLOAD_MSRS)) {
 872                printk_once(KERN_WARNING "Not enough msr switch entries. "
 873                                "Can't add msr %x\n", msr);
 874                return;
 875        }
 876        if (i < 0) {
 877                i = m->guest.nr++;
 878                vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
 879        }
 880        m->guest.val[i].index = msr;
 881        m->guest.val[i].value = guest_val;
 882
 883        if (entry_only)
 884                return;
 885
 886        if (j < 0) {
 887                j = m->host.nr++;
 888                vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
 889        }
 890        m->host.val[j].index = msr;
 891        m->host.val[j].value = host_val;
 892}
 893
 894static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
 895{
 896        u64 guest_efer = vmx->vcpu.arch.efer;
 897        u64 ignore_bits = 0;
 898
 899        if (!enable_ept) {
 900                /*
 901                 * NX is needed to handle CR0.WP=1, CR4.SMEP=1.  Testing
 902                 * host CPUID is more efficient than testing guest CPUID
 903                 * or CR4.  Host SMEP is anyway a requirement for guest SMEP.
 904                 */
 905                if (boot_cpu_has(X86_FEATURE_SMEP))
 906                        guest_efer |= EFER_NX;
 907                else if (!(guest_efer & EFER_NX))
 908                        ignore_bits |= EFER_NX;
 909        }
 910
 911        /*
 912         * LMA and LME handled by hardware; SCE meaningless outside long mode.
 913         */
 914        ignore_bits |= EFER_SCE;
 915#ifdef CONFIG_X86_64
 916        ignore_bits |= EFER_LMA | EFER_LME;
 917        /* SCE is meaningful only in long mode on Intel */
 918        if (guest_efer & EFER_LMA)
 919                ignore_bits &= ~(u64)EFER_SCE;
 920#endif
 921
 922        /*
 923         * On EPT, we can't emulate NX, so we must switch EFER atomically.
 924         * On CPUs that support "load IA32_EFER", always switch EFER
 925         * atomically, since it's faster than switching it manually.
 926         */
 927        if (cpu_has_load_ia32_efer() ||
 928            (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
 929                if (!(guest_efer & EFER_LMA))
 930                        guest_efer &= ~EFER_LME;
 931                if (guest_efer != host_efer)
 932                        add_atomic_switch_msr(vmx, MSR_EFER,
 933                                              guest_efer, host_efer, false);
 934                else
 935                        clear_atomic_switch_msr(vmx, MSR_EFER);
 936                return false;
 937        } else {
 938                clear_atomic_switch_msr(vmx, MSR_EFER);
 939
 940                guest_efer &= ~ignore_bits;
 941                guest_efer |= host_efer & ignore_bits;
 942
 943                vmx->guest_msrs[efer_offset].data = guest_efer;
 944                vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
 945
 946                return true;
 947        }
 948}
 949
 950#ifdef CONFIG_X86_32
 951/*
 952 * On 32-bit kernels, VM exits still load the FS and GS bases from the
 953 * VMCS rather than the segment table.  KVM uses this helper to figure
 954 * out the current bases to poke them into the VMCS before entry.
 955 */
 956static unsigned long segment_base(u16 selector)
 957{
 958        struct desc_struct *table;
 959        unsigned long v;
 960
 961        if (!(selector & ~SEGMENT_RPL_MASK))
 962                return 0;
 963
 964        table = get_current_gdt_ro();
 965
 966        if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
 967                u16 ldt_selector = kvm_read_ldt();
 968
 969                if (!(ldt_selector & ~SEGMENT_RPL_MASK))
 970                        return 0;
 971
 972                table = (struct desc_struct *)segment_base(ldt_selector);
 973        }
 974        v = get_desc_base(&table[selector >> 3]);
 975        return v;
 976}
 977#endif
 978
 979static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
 980{
 981        u32 i;
 982
 983        wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
 984        wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
 985        wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
 986        wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
 987        for (i = 0; i < addr_range; i++) {
 988                wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
 989                wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
 990        }
 991}
 992
 993static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
 994{
 995        u32 i;
 996
 997        rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
 998        rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
 999        rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1000        rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1001        for (i = 0; i < addr_range; i++) {
1002                rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1003                rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1004        }
1005}
1006
1007static void pt_guest_enter(struct vcpu_vmx *vmx)
1008{
1009        if (pt_mode == PT_MODE_SYSTEM)
1010                return;
1011
1012        /*
1013         * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1014         * Save host state before VM entry.
1015         */
1016        rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1017        if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1018                wrmsrl(MSR_IA32_RTIT_CTL, 0);
1019                pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1020                pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1021        }
1022}
1023
1024static void pt_guest_exit(struct vcpu_vmx *vmx)
1025{
1026        if (pt_mode == PT_MODE_SYSTEM)
1027                return;
1028
1029        if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1030                pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1031                pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1032        }
1033
1034        /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1035        wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1036}
1037
1038void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1039{
1040        struct vcpu_vmx *vmx = to_vmx(vcpu);
1041        struct vmcs_host_state *host_state;
1042#ifdef CONFIG_X86_64
1043        int cpu = raw_smp_processor_id();
1044#endif
1045        unsigned long fs_base, gs_base;
1046        u16 fs_sel, gs_sel;
1047        int i;
1048
1049        vmx->req_immediate_exit = false;
1050
1051        /*
1052         * Note that guest MSRs to be saved/restored can also be changed
1053         * when guest state is loaded. This happens when guest transitions
1054         * to/from long-mode by setting MSR_EFER.LMA.
1055         */
1056        if (!vmx->loaded_cpu_state || vmx->guest_msrs_dirty) {
1057                vmx->guest_msrs_dirty = false;
1058                for (i = 0; i < vmx->save_nmsrs; ++i)
1059                        kvm_set_shared_msr(vmx->guest_msrs[i].index,
1060                                           vmx->guest_msrs[i].data,
1061                                           vmx->guest_msrs[i].mask);
1062
1063        }
1064
1065        if (vmx->loaded_cpu_state)
1066                return;
1067
1068        vmx->loaded_cpu_state = vmx->loaded_vmcs;
1069        host_state = &vmx->loaded_cpu_state->host_state;
1070
1071        /*
1072         * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1073         * allow segment selectors with cpl > 0 or ti == 1.
1074         */
1075        host_state->ldt_sel = kvm_read_ldt();
1076
1077#ifdef CONFIG_X86_64
1078        savesegment(ds, host_state->ds_sel);
1079        savesegment(es, host_state->es_sel);
1080
1081        gs_base = cpu_kernelmode_gs_base(cpu);
1082        if (likely(is_64bit_mm(current->mm))) {
1083                save_fsgs_for_kvm();
1084                fs_sel = current->thread.fsindex;
1085                gs_sel = current->thread.gsindex;
1086                fs_base = current->thread.fsbase;
1087                vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1088        } else {
1089                savesegment(fs, fs_sel);
1090                savesegment(gs, gs_sel);
1091                fs_base = read_msr(MSR_FS_BASE);
1092                vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1093        }
1094
1095        wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1096#else
1097        savesegment(fs, fs_sel);
1098        savesegment(gs, gs_sel);
1099        fs_base = segment_base(fs_sel);
1100        gs_base = segment_base(gs_sel);
1101#endif
1102
1103        if (unlikely(fs_sel != host_state->fs_sel)) {
1104                if (!(fs_sel & 7))
1105                        vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1106                else
1107                        vmcs_write16(HOST_FS_SELECTOR, 0);
1108                host_state->fs_sel = fs_sel;
1109        }
1110        if (unlikely(gs_sel != host_state->gs_sel)) {
1111                if (!(gs_sel & 7))
1112                        vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1113                else
1114                        vmcs_write16(HOST_GS_SELECTOR, 0);
1115                host_state->gs_sel = gs_sel;
1116        }
1117        if (unlikely(fs_base != host_state->fs_base)) {
1118                vmcs_writel(HOST_FS_BASE, fs_base);
1119                host_state->fs_base = fs_base;
1120        }
1121        if (unlikely(gs_base != host_state->gs_base)) {
1122                vmcs_writel(HOST_GS_BASE, gs_base);
1123                host_state->gs_base = gs_base;
1124        }
1125}
1126
1127static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1128{
1129        struct vmcs_host_state *host_state;
1130
1131        if (!vmx->loaded_cpu_state)
1132                return;
1133
1134        WARN_ON_ONCE(vmx->loaded_cpu_state != vmx->loaded_vmcs);
1135        host_state = &vmx->loaded_cpu_state->host_state;
1136
1137        ++vmx->vcpu.stat.host_state_reload;
1138        vmx->loaded_cpu_state = NULL;
1139
1140#ifdef CONFIG_X86_64
1141        rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1142#endif
1143        if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1144                kvm_load_ldt(host_state->ldt_sel);
1145#ifdef CONFIG_X86_64
1146                load_gs_index(host_state->gs_sel);
1147#else
1148                loadsegment(gs, host_state->gs_sel);
1149#endif
1150        }
1151        if (host_state->fs_sel & 7)
1152                loadsegment(fs, host_state->fs_sel);
1153#ifdef CONFIG_X86_64
1154        if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1155                loadsegment(ds, host_state->ds_sel);
1156                loadsegment(es, host_state->es_sel);
1157        }
1158#endif
1159        invalidate_tss_limit();
1160#ifdef CONFIG_X86_64
1161        wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1162#endif
1163        load_fixmap_gdt(raw_smp_processor_id());
1164}
1165
1166#ifdef CONFIG_X86_64
1167static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1168{
1169        preempt_disable();
1170        if (vmx->loaded_cpu_state)
1171                rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1172        preempt_enable();
1173        return vmx->msr_guest_kernel_gs_base;
1174}
1175
1176static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1177{
1178        preempt_disable();
1179        if (vmx->loaded_cpu_state)
1180                wrmsrl(MSR_KERNEL_GS_BASE, data);
1181        preempt_enable();
1182        vmx->msr_guest_kernel_gs_base = data;
1183}
1184#endif
1185
1186static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1187{
1188        struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1189        struct pi_desc old, new;
1190        unsigned int dest;
1191
1192        /*
1193         * In case of hot-plug or hot-unplug, we may have to undo
1194         * vmx_vcpu_pi_put even if there is no assigned device.  And we
1195         * always keep PI.NDST up to date for simplicity: it makes the
1196         * code easier, and CPU migration is not a fast path.
1197         */
1198        if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
1199                return;
1200
1201        /* The full case.  */
1202        do {
1203                old.control = new.control = pi_desc->control;
1204
1205                dest = cpu_physical_id(cpu);
1206
1207                if (x2apic_enabled())
1208                        new.ndst = dest;
1209                else
1210                        new.ndst = (dest << 8) & 0xFF00;
1211
1212                new.sn = 0;
1213        } while (cmpxchg64(&pi_desc->control, old.control,
1214                           new.control) != old.control);
1215
1216        /*
1217         * Clear SN before reading the bitmap.  The VT-d firmware
1218         * writes the bitmap and reads SN atomically (5.2.3 in the
1219         * spec), so it doesn't really have a memory barrier that
1220         * pairs with this, but we cannot do that and we need one.
1221         */
1222        smp_mb__after_atomic();
1223
1224        if (!bitmap_empty((unsigned long *)pi_desc->pir, NR_VECTORS))
1225                pi_set_on(pi_desc);
1226}
1227
1228/*
1229 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1230 * vcpu mutex is already taken.
1231 */
1232void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1233{
1234        struct vcpu_vmx *vmx = to_vmx(vcpu);
1235        bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1236
1237        if (!already_loaded) {
1238                loaded_vmcs_clear(vmx->loaded_vmcs);
1239                local_irq_disable();
1240                crash_disable_local_vmclear(cpu);
1241
1242                /*
1243                 * Read loaded_vmcs->cpu should be before fetching
1244                 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1245                 * See the comments in __loaded_vmcs_clear().
1246                 */
1247                smp_rmb();
1248
1249                list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1250                         &per_cpu(loaded_vmcss_on_cpu, cpu));
1251                crash_enable_local_vmclear(cpu);
1252                local_irq_enable();
1253        }
1254
1255        if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1256                per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1257                vmcs_load(vmx->loaded_vmcs->vmcs);
1258                indirect_branch_prediction_barrier();
1259        }
1260
1261        if (!already_loaded) {
1262                void *gdt = get_current_gdt_ro();
1263                unsigned long sysenter_esp;
1264
1265                kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1266
1267                /*
1268                 * Linux uses per-cpu TSS and GDT, so set these when switching
1269                 * processors.  See 22.2.4.
1270                 */
1271                vmcs_writel(HOST_TR_BASE,
1272                            (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1273                vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1274
1275                /*
1276                 * VM exits change the host TR limit to 0x67 after a VM
1277                 * exit.  This is okay, since 0x67 covers everything except
1278                 * the IO bitmap and have have code to handle the IO bitmap
1279                 * being lost after a VM exit.
1280                 */
1281                BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
1282
1283                rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1284                vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1285
1286                vmx->loaded_vmcs->cpu = cpu;
1287        }
1288
1289        /* Setup TSC multiplier */
1290        if (kvm_has_tsc_control &&
1291            vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1292                decache_tsc_multiplier(vmx);
1293
1294        vmx_vcpu_pi_load(vcpu, cpu);
1295        vmx->host_pkru = read_pkru();
1296        vmx->host_debugctlmsr = get_debugctlmsr();
1297}
1298
1299static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
1300{
1301        struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1302
1303        if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1304                !irq_remapping_cap(IRQ_POSTING_CAP)  ||
1305                !kvm_vcpu_apicv_active(vcpu))
1306                return;
1307
1308        /* Set SN when the vCPU is preempted */
1309        if (vcpu->preempted)
1310                pi_set_sn(pi_desc);
1311}
1312
1313void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1314{
1315        vmx_vcpu_pi_put(vcpu);
1316
1317        vmx_prepare_switch_to_host(to_vmx(vcpu));
1318}
1319
1320static bool emulation_required(struct kvm_vcpu *vcpu)
1321{
1322        return emulate_invalid_guest_state && !guest_state_valid(vcpu);
1323}
1324
1325static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1326
1327unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1328{
1329        unsigned long rflags, save_rflags;
1330
1331        if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1332                __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1333                rflags = vmcs_readl(GUEST_RFLAGS);
1334                if (to_vmx(vcpu)->rmode.vm86_active) {
1335                        rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1336                        save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1337                        rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1338                }
1339                to_vmx(vcpu)->rflags = rflags;
1340        }
1341        return to_vmx(vcpu)->rflags;
1342}
1343
1344void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1345{
1346        unsigned long old_rflags = vmx_get_rflags(vcpu);
1347
1348        __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1349        to_vmx(vcpu)->rflags = rflags;
1350        if (to_vmx(vcpu)->rmode.vm86_active) {
1351                to_vmx(vcpu)->rmode.save_rflags = rflags;
1352                rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1353        }
1354        vmcs_writel(GUEST_RFLAGS, rflags);
1355
1356        if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
1357                to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
1358}
1359
1360u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1361{
1362        u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1363        int ret = 0;
1364
1365        if (interruptibility & GUEST_INTR_STATE_STI)
1366                ret |= KVM_X86_SHADOW_INT_STI;
1367        if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1368                ret |= KVM_X86_SHADOW_INT_MOV_SS;
1369
1370        return ret;
1371}
1372
1373void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1374{
1375        u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1376        u32 interruptibility = interruptibility_old;
1377
1378        interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1379
1380        if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1381                interruptibility |= GUEST_INTR_STATE_MOV_SS;
1382        else if (mask & KVM_X86_SHADOW_INT_STI)
1383                interruptibility |= GUEST_INTR_STATE_STI;
1384
1385        if ((interruptibility != interruptibility_old))
1386                vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1387}
1388
1389static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1390{
1391        struct vcpu_vmx *vmx = to_vmx(vcpu);
1392        unsigned long value;
1393
1394        /*
1395         * Any MSR write that attempts to change bits marked reserved will
1396         * case a #GP fault.
1397         */
1398        if (data & vmx->pt_desc.ctl_bitmask)
1399                return 1;
1400
1401        /*
1402         * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1403         * result in a #GP unless the same write also clears TraceEn.
1404         */
1405        if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1406                ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1407                return 1;
1408
1409        /*
1410         * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1411         * and FabricEn would cause #GP, if
1412         * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1413         */
1414        if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1415                !(data & RTIT_CTL_FABRIC_EN) &&
1416                !intel_pt_validate_cap(vmx->pt_desc.caps,
1417                                        PT_CAP_single_range_output))
1418                return 1;
1419
1420        /*
1421         * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1422         * utilize encodings marked reserved will casue a #GP fault.
1423         */
1424        value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1425        if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1426                        !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1427                        RTIT_CTL_MTC_RANGE_OFFSET, &value))
1428                return 1;
1429        value = intel_pt_validate_cap(vmx->pt_desc.caps,
1430                                                PT_CAP_cycle_thresholds);
1431        if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1432                        !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1433                        RTIT_CTL_CYC_THRESH_OFFSET, &value))
1434                return 1;
1435        value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1436        if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1437                        !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1438                        RTIT_CTL_PSB_FREQ_OFFSET, &value))
1439                return 1;
1440
1441        /*
1442         * If ADDRx_CFG is reserved or the encodings is >2 will
1443         * cause a #GP fault.
1444         */
1445        value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1446        if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1447                return 1;
1448        value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1449        if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1450                return 1;
1451        value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1452        if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1453                return 1;
1454        value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1455        if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1456                return 1;
1457
1458        return 0;
1459}
1460
1461
1462static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1463{
1464        unsigned long rip;
1465
1466        rip = kvm_rip_read(vcpu);
1467        rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1468        kvm_rip_write(vcpu, rip);
1469
1470        /* skipping an emulated instruction also counts */
1471        vmx_set_interrupt_shadow(vcpu, 0);
1472}
1473
1474static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1475{
1476        /*
1477         * Ensure that we clear the HLT state in the VMCS.  We don't need to
1478         * explicitly skip the instruction because if the HLT state is set,
1479         * then the instruction is already executing and RIP has already been
1480         * advanced.
1481         */
1482        if (kvm_hlt_in_guest(vcpu->kvm) &&
1483                        vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1484                vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1485}
1486
1487static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1488{
1489        struct vcpu_vmx *vmx = to_vmx(vcpu);
1490        unsigned nr = vcpu->arch.exception.nr;
1491        bool has_error_code = vcpu->arch.exception.has_error_code;
1492        u32 error_code = vcpu->arch.exception.error_code;
1493        u32 intr_info = nr | INTR_INFO_VALID_MASK;
1494
1495        kvm_deliver_exception_payload(vcpu);
1496
1497        if (has_error_code) {
1498                vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1499                intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1500        }
1501
1502        if (vmx->rmode.vm86_active) {
1503                int inc_eip = 0;
1504                if (kvm_exception_is_soft(nr))
1505                        inc_eip = vcpu->arch.event_exit_inst_len;
1506                if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1507                        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1508                return;
1509        }
1510
1511        WARN_ON_ONCE(vmx->emulation_required);
1512
1513        if (kvm_exception_is_soft(nr)) {
1514                vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1515                             vmx->vcpu.arch.event_exit_inst_len);
1516                intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1517        } else
1518                intr_info |= INTR_TYPE_HARD_EXCEPTION;
1519
1520        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1521
1522        vmx_clear_hlt(vcpu);
1523}
1524
1525static bool vmx_rdtscp_supported(void)
1526{
1527        return cpu_has_vmx_rdtscp();
1528}
1529
1530static bool vmx_invpcid_supported(void)
1531{
1532        return cpu_has_vmx_invpcid();
1533}
1534
1535/*
1536 * Swap MSR entry in host/guest MSR entry array.
1537 */
1538static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1539{
1540        struct shared_msr_entry tmp;
1541
1542        tmp = vmx->guest_msrs[to];
1543        vmx->guest_msrs[to] = vmx->guest_msrs[from];
1544        vmx->guest_msrs[from] = tmp;
1545}
1546
1547/*
1548 * Set up the vmcs to automatically save and restore system
1549 * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1550 * mode, as fiddling with msrs is very expensive.
1551 */
1552static void setup_msrs(struct vcpu_vmx *vmx)
1553{
1554        int save_nmsrs, index;
1555
1556        save_nmsrs = 0;
1557#ifdef CONFIG_X86_64
1558        /*
1559         * The SYSCALL MSRs are only needed on long mode guests, and only
1560         * when EFER.SCE is set.
1561         */
1562        if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1563                index = __find_msr_index(vmx, MSR_STAR);
1564                if (index >= 0)
1565                        move_msr_up(vmx, index, save_nmsrs++);
1566                index = __find_msr_index(vmx, MSR_LSTAR);
1567                if (index >= 0)
1568                        move_msr_up(vmx, index, save_nmsrs++);
1569                index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1570                if (index >= 0)
1571                        move_msr_up(vmx, index, save_nmsrs++);
1572        }
1573#endif
1574        index = __find_msr_index(vmx, MSR_EFER);
1575        if (index >= 0 && update_transition_efer(vmx, index))
1576                move_msr_up(vmx, index, save_nmsrs++);
1577        index = __find_msr_index(vmx, MSR_TSC_AUX);
1578        if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1579                move_msr_up(vmx, index, save_nmsrs++);
1580
1581        vmx->save_nmsrs = save_nmsrs;
1582        vmx->guest_msrs_dirty = true;
1583
1584        if (cpu_has_vmx_msr_bitmap())
1585                vmx_update_msr_bitmap(&vmx->vcpu);
1586}
1587
1588static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1589{
1590        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1591
1592        if (is_guest_mode(vcpu) &&
1593            (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1594                return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
1595
1596        return vcpu->arch.tsc_offset;
1597}
1598
1599static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1600{
1601        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1602        u64 g_tsc_offset = 0;
1603
1604        /*
1605         * We're here if L1 chose not to trap WRMSR to TSC. According
1606         * to the spec, this should set L1's TSC; The offset that L1
1607         * set for L2 remains unchanged, and still needs to be added
1608         * to the newly set TSC to get L2's TSC.
1609         */
1610        if (is_guest_mode(vcpu) &&
1611            (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1612                g_tsc_offset = vmcs12->tsc_offset;
1613
1614        trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1615                                   vcpu->arch.tsc_offset - g_tsc_offset,
1616                                   offset);
1617        vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1618        return offset + g_tsc_offset;
1619}
1620
1621/*
1622 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1623 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1624 * all guests if the "nested" module option is off, and can also be disabled
1625 * for a single guest by disabling its VMX cpuid bit.
1626 */
1627bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1628{
1629        return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1630}
1631
1632static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1633                                                 uint64_t val)
1634{
1635        uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1636
1637        return !(val & ~valid_bits);
1638}
1639
1640static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1641{
1642        switch (msr->index) {
1643        case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1644                if (!nested)
1645                        return 1;
1646                return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1647        default:
1648                return 1;
1649        }
1650
1651        return 0;
1652}
1653
1654/*
1655 * Reads an msr value (of 'msr_index') into 'pdata'.
1656 * Returns 0 on success, non-0 otherwise.
1657 * Assumes vcpu_load() was already called.
1658 */
1659static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1660{
1661        struct vcpu_vmx *vmx = to_vmx(vcpu);
1662        struct shared_msr_entry *msr;
1663        u32 index;
1664
1665        switch (msr_info->index) {
1666#ifdef CONFIG_X86_64
1667        case MSR_FS_BASE:
1668                msr_info->data = vmcs_readl(GUEST_FS_BASE);
1669                break;
1670        case MSR_GS_BASE:
1671                msr_info->data = vmcs_readl(GUEST_GS_BASE);
1672                break;
1673        case MSR_KERNEL_GS_BASE:
1674                msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1675                break;
1676#endif
1677        case MSR_EFER:
1678                return kvm_get_msr_common(vcpu, msr_info);
1679        case MSR_IA32_SPEC_CTRL:
1680                if (!msr_info->host_initiated &&
1681                    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1682                        return 1;
1683
1684                msr_info->data = to_vmx(vcpu)->spec_ctrl;
1685                break;
1686        case MSR_IA32_SYSENTER_CS:
1687                msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1688                break;
1689        case MSR_IA32_SYSENTER_EIP:
1690                msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1691                break;
1692        case MSR_IA32_SYSENTER_ESP:
1693                msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1694                break;
1695        case MSR_IA32_BNDCFGS:
1696                if (!kvm_mpx_supported() ||
1697                    (!msr_info->host_initiated &&
1698                     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1699                        return 1;
1700                msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1701                break;
1702        case MSR_IA32_MCG_EXT_CTL:
1703                if (!msr_info->host_initiated &&
1704                    !(vmx->msr_ia32_feature_control &
1705                      FEATURE_CONTROL_LMCE))
1706                        return 1;
1707                msr_info->data = vcpu->arch.mcg_ext_ctl;
1708                break;
1709        case MSR_IA32_FEATURE_CONTROL:
1710                msr_info->data = vmx->msr_ia32_feature_control;
1711                break;
1712        case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1713                if (!nested_vmx_allowed(vcpu))
1714                        return 1;
1715                return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1716                                       &msr_info->data);
1717        case MSR_IA32_XSS:
1718                if (!vmx_xsaves_supported())
1719                        return 1;
1720                msr_info->data = vcpu->arch.ia32_xss;
1721                break;
1722        case MSR_IA32_RTIT_CTL:
1723                if (pt_mode != PT_MODE_HOST_GUEST)
1724                        return 1;
1725                msr_info->data = vmx->pt_desc.guest.ctl;
1726                break;
1727        case MSR_IA32_RTIT_STATUS:
1728                if (pt_mode != PT_MODE_HOST_GUEST)
1729                        return 1;
1730                msr_info->data = vmx->pt_desc.guest.status;
1731                break;
1732        case MSR_IA32_RTIT_CR3_MATCH:
1733                if ((pt_mode != PT_MODE_HOST_GUEST) ||
1734                        !intel_pt_validate_cap(vmx->pt_desc.caps,
1735                                                PT_CAP_cr3_filtering))
1736                        return 1;
1737                msr_info->data = vmx->pt_desc.guest.cr3_match;
1738                break;
1739        case MSR_IA32_RTIT_OUTPUT_BASE:
1740                if ((pt_mode != PT_MODE_HOST_GUEST) ||
1741                        (!intel_pt_validate_cap(vmx->pt_desc.caps,
1742                                        PT_CAP_topa_output) &&
1743                         !intel_pt_validate_cap(vmx->pt_desc.caps,
1744                                        PT_CAP_single_range_output)))
1745                        return 1;
1746                msr_info->data = vmx->pt_desc.guest.output_base;
1747                break;
1748        case MSR_IA32_RTIT_OUTPUT_MASK:
1749                if ((pt_mode != PT_MODE_HOST_GUEST) ||
1750                        (!intel_pt_validate_cap(vmx->pt_desc.caps,
1751                                        PT_CAP_topa_output) &&
1752                         !intel_pt_validate_cap(vmx->pt_desc.caps,
1753                                        PT_CAP_single_range_output)))
1754                        return 1;
1755                msr_info->data = vmx->pt_desc.guest.output_mask;
1756                break;
1757        case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1758                index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1759                if ((pt_mode != PT_MODE_HOST_GUEST) ||
1760                        (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1761                                        PT_CAP_num_address_ranges)))
1762                        return 1;
1763                if (index % 2)
1764                        msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1765                else
1766                        msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1767                break;
1768        case MSR_TSC_AUX:
1769                if (!msr_info->host_initiated &&
1770                    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1771                        return 1;
1772                /* Else, falls through */
1773        default:
1774                msr = find_msr_entry(vmx, msr_info->index);
1775                if (msr) {
1776                        msr_info->data = msr->data;
1777                        break;
1778                }
1779                return kvm_get_msr_common(vcpu, msr_info);
1780        }
1781
1782        return 0;
1783}
1784
1785/*
1786 * Writes msr value into into the appropriate "register".
1787 * Returns 0 on success, non-0 otherwise.
1788 * Assumes vcpu_load() was already called.
1789 */
1790static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1791{
1792        struct vcpu_vmx *vmx = to_vmx(vcpu);
1793        struct shared_msr_entry *msr;
1794        int ret = 0;
1795        u32 msr_index = msr_info->index;
1796        u64 data = msr_info->data;
1797        u32 index;
1798
1799        switch (msr_index) {
1800        case MSR_EFER:
1801                ret = kvm_set_msr_common(vcpu, msr_info);
1802                break;
1803#ifdef CONFIG_X86_64
1804        case MSR_FS_BASE:
1805                vmx_segment_cache_clear(vmx);
1806                vmcs_writel(GUEST_FS_BASE, data);
1807                break;
1808        case MSR_GS_BASE:
1809                vmx_segment_cache_clear(vmx);
1810                vmcs_writel(GUEST_GS_BASE, data);
1811                break;
1812        case MSR_KERNEL_GS_BASE:
1813                vmx_write_guest_kernel_gs_base(vmx, data);
1814                break;
1815#endif
1816        case MSR_IA32_SYSENTER_CS:
1817                vmcs_write32(GUEST_SYSENTER_CS, data);
1818                break;
1819        case MSR_IA32_SYSENTER_EIP:
1820                vmcs_writel(GUEST_SYSENTER_EIP, data);
1821                break;
1822        case MSR_IA32_SYSENTER_ESP:
1823                vmcs_writel(GUEST_SYSENTER_ESP, data);
1824                break;
1825        case MSR_IA32_BNDCFGS:
1826                if (!kvm_mpx_supported() ||
1827                    (!msr_info->host_initiated &&
1828                     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1829                        return 1;
1830                if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
1831                    (data & MSR_IA32_BNDCFGS_RSVD))
1832                        return 1;
1833                vmcs_write64(GUEST_BNDCFGS, data);
1834                break;
1835        case MSR_IA32_SPEC_CTRL:
1836                if (!msr_info->host_initiated &&
1837                    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1838                        return 1;
1839
1840                /* The STIBP bit doesn't fault even if it's not advertised */
1841                if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
1842                        return 1;
1843
1844                vmx->spec_ctrl = data;
1845
1846                if (!data)
1847                        break;
1848
1849                /*
1850                 * For non-nested:
1851                 * When it's written (to non-zero) for the first time, pass
1852                 * it through.
1853                 *
1854                 * For nested:
1855                 * The handling of the MSR bitmap for L2 guests is done in
1856                 * nested_vmx_merge_msr_bitmap. We should not touch the
1857                 * vmcs02.msr_bitmap here since it gets completely overwritten
1858                 * in the merging. We update the vmcs01 here for L1 as well
1859                 * since it will end up touching the MSR anyway now.
1860                 */
1861                vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
1862                                              MSR_IA32_SPEC_CTRL,
1863                                              MSR_TYPE_RW);
1864                break;
1865        case MSR_IA32_PRED_CMD:
1866                if (!msr_info->host_initiated &&
1867                    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1868                        return 1;
1869
1870                if (data & ~PRED_CMD_IBPB)
1871                        return 1;
1872
1873                if (!data)
1874                        break;
1875
1876                wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
1877
1878                /*
1879                 * For non-nested:
1880                 * When it's written (to non-zero) for the first time, pass
1881                 * it through.
1882                 *
1883                 * For nested:
1884                 * The handling of the MSR bitmap for L2 guests is done in
1885                 * nested_vmx_merge_msr_bitmap. We should not touch the
1886                 * vmcs02.msr_bitmap here since it gets completely overwritten
1887                 * in the merging.
1888                 */
1889                vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
1890                                              MSR_TYPE_W);
1891                break;
1892        case MSR_IA32_CR_PAT:
1893                if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1894                        if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
1895                                return 1;
1896                        vmcs_write64(GUEST_IA32_PAT, data);
1897                        vcpu->arch.pat = data;
1898                        break;
1899                }
1900                ret = kvm_set_msr_common(vcpu, msr_info);
1901                break;
1902        case MSR_IA32_TSC_ADJUST:
1903                ret = kvm_set_msr_common(vcpu, msr_info);
1904                break;
1905        case MSR_IA32_MCG_EXT_CTL:
1906                if ((!msr_info->host_initiated &&
1907                     !(to_vmx(vcpu)->msr_ia32_feature_control &
1908                       FEATURE_CONTROL_LMCE)) ||
1909                    (data & ~MCG_EXT_CTL_LMCE_EN))
1910                        return 1;
1911                vcpu->arch.mcg_ext_ctl = data;
1912                break;
1913        case MSR_IA32_FEATURE_CONTROL:
1914                if (!vmx_feature_control_msr_valid(vcpu, data) ||
1915                    (to_vmx(vcpu)->msr_ia32_feature_control &
1916                     FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
1917                        return 1;
1918                vmx->msr_ia32_feature_control = data;
1919                if (msr_info->host_initiated && data == 0)
1920                        vmx_leave_nested(vcpu);
1921                break;
1922        case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1923                if (!msr_info->host_initiated)
1924                        return 1; /* they are read-only */
1925                if (!nested_vmx_allowed(vcpu))
1926                        return 1;
1927                return vmx_set_vmx_msr(vcpu, msr_index, data);
1928        case MSR_IA32_XSS:
1929                if (!vmx_xsaves_supported())
1930                        return 1;
1931                /*
1932                 * The only supported bit as of Skylake is bit 8, but
1933                 * it is not supported on KVM.
1934                 */
1935                if (data != 0)
1936                        return 1;
1937                vcpu->arch.ia32_xss = data;
1938                if (vcpu->arch.ia32_xss != host_xss)
1939                        add_atomic_switch_msr(vmx, MSR_IA32_XSS,
1940                                vcpu->arch.ia32_xss, host_xss, false);
1941                else
1942                        clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
1943                break;
1944        case MSR_IA32_RTIT_CTL:
1945                if ((pt_mode != PT_MODE_HOST_GUEST) ||
1946                        vmx_rtit_ctl_check(vcpu, data) ||
1947                        vmx->nested.vmxon)
1948                        return 1;
1949                vmcs_write64(GUEST_IA32_RTIT_CTL, data);
1950                vmx->pt_desc.guest.ctl = data;
1951                pt_update_intercept_for_msr(vmx);
1952                break;
1953        case MSR_IA32_RTIT_STATUS:
1954                if ((pt_mode != PT_MODE_HOST_GUEST) ||
1955                        (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
1956                        (data & MSR_IA32_RTIT_STATUS_MASK))
1957                        return 1;
1958                vmx->pt_desc.guest.status = data;
1959                break;
1960        case MSR_IA32_RTIT_CR3_MATCH:
1961                if ((pt_mode != PT_MODE_HOST_GUEST) ||
1962                        (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
1963                        !intel_pt_validate_cap(vmx->pt_desc.caps,
1964                                                PT_CAP_cr3_filtering))
1965                        return 1;
1966                vmx->pt_desc.guest.cr3_match = data;
1967                break;
1968        case MSR_IA32_RTIT_OUTPUT_BASE:
1969                if ((pt_mode != PT_MODE_HOST_GUEST) ||
1970                        (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
1971                        (!intel_pt_validate_cap(vmx->pt_desc.caps,
1972                                        PT_CAP_topa_output) &&
1973                         !intel_pt_validate_cap(vmx->pt_desc.caps,
1974                                        PT_CAP_single_range_output)) ||
1975                        (data & MSR_IA32_RTIT_OUTPUT_BASE_MASK))
1976                        return 1;
1977                vmx->pt_desc.guest.output_base = data;
1978                break;
1979        case MSR_IA32_RTIT_OUTPUT_MASK:
1980                if ((pt_mode != PT_MODE_HOST_GUEST) ||
1981                        (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
1982                        (!intel_pt_validate_cap(vmx->pt_desc.caps,
1983                                        PT_CAP_topa_output) &&
1984                         !intel_pt_validate_cap(vmx->pt_desc.caps,
1985                                        PT_CAP_single_range_output)))
1986                        return 1;
1987                vmx->pt_desc.guest.output_mask = data;
1988                break;
1989        case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1990                index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1991                if ((pt_mode != PT_MODE_HOST_GUEST) ||
1992                        (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
1993                        (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1994                                        PT_CAP_num_address_ranges)))
1995                        return 1;
1996                if (index % 2)
1997                        vmx->pt_desc.guest.addr_b[index / 2] = data;
1998                else
1999                        vmx->pt_desc.guest.addr_a[index / 2] = data;
2000                break;
2001        case MSR_TSC_AUX:
2002                if (!msr_info->host_initiated &&
2003                    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2004                        return 1;
2005                /* Check reserved bit, higher 32 bits should be zero */
2006                if ((data >> 32) != 0)
2007                        return 1;
2008                /* Else, falls through */
2009        default:
2010                msr = find_msr_entry(vmx, msr_index);
2011                if (msr) {
2012                        u64 old_msr_data = msr->data;
2013                        msr->data = data;
2014                        if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2015                                preempt_disable();
2016                                ret = kvm_set_shared_msr(msr->index, msr->data,
2017                                                         msr->mask);
2018                                preempt_enable();
2019                                if (ret)
2020                                        msr->data = old_msr_data;
2021                        }
2022                        break;
2023                }
2024                ret = kvm_set_msr_common(vcpu, msr_info);
2025        }
2026
2027        return ret;
2028}
2029
2030static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2031{
2032        __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2033        switch (reg) {
2034        case VCPU_REGS_RSP:
2035                vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2036                break;
2037        case VCPU_REGS_RIP:
2038                vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2039                break;
2040        case VCPU_EXREG_PDPTR:
2041                if (enable_ept)
2042                        ept_save_pdptrs(vcpu);
2043                break;
2044        default:
2045                break;
2046        }
2047}
2048
2049static __init int cpu_has_kvm_support(void)
2050{
2051        return cpu_has_vmx();
2052}
2053
2054static __init int vmx_disabled_by_bios(void)
2055{
2056        u64 msr;
2057
2058        rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2059        if (msr & FEATURE_CONTROL_LOCKED) {
2060                /* launched w/ TXT and VMX disabled */
2061                if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2062                        && tboot_enabled())
2063                        return 1;
2064                /* launched w/o TXT and VMX only enabled w/ TXT */
2065                if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2066                        && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2067                        && !tboot_enabled()) {
2068                        printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2069                                "activate TXT before enabling KVM\n");
2070                        return 1;
2071                }
2072                /* launched w/o TXT and VMX disabled */
2073                if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2074                        && !tboot_enabled())
2075                        return 1;
2076        }
2077
2078        return 0;
2079}
2080
2081static void kvm_cpu_vmxon(u64 addr)
2082{
2083        cr4_set_bits(X86_CR4_VMXE);
2084        intel_pt_handle_vmx(1);
2085
2086        asm volatile ("vmxon %0" : : "m"(addr));
2087}
2088
2089static int hardware_enable(void)
2090{
2091        int cpu = raw_smp_processor_id();
2092        u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2093        u64 old, test_bits;
2094
2095        if (cr4_read_shadow() & X86_CR4_VMXE)
2096                return -EBUSY;
2097
2098        /*
2099         * This can happen if we hot-added a CPU but failed to allocate
2100         * VP assist page for it.
2101         */
2102        if (static_branch_unlikely(&enable_evmcs) &&
2103            !hv_get_vp_assist_page(cpu))
2104                return -EFAULT;
2105
2106        INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2107        INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
2108        spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
2109
2110        /*
2111         * Now we can enable the vmclear operation in kdump
2112         * since the loaded_vmcss_on_cpu list on this cpu
2113         * has been initialized.
2114         *
2115         * Though the cpu is not in VMX operation now, there
2116         * is no problem to enable the vmclear operation
2117         * for the loaded_vmcss_on_cpu list is empty!
2118         */
2119        crash_enable_local_vmclear(cpu);
2120
2121        rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2122
2123        test_bits = FEATURE_CONTROL_LOCKED;
2124        test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2125        if (tboot_enabled())
2126                test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2127
2128        if ((old & test_bits) != test_bits) {
2129                /* enable and lock */
2130                wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2131        }
2132        kvm_cpu_vmxon(phys_addr);
2133        if (enable_ept)
2134                ept_sync_global();
2135
2136        return 0;
2137}
2138
2139static void vmclear_local_loaded_vmcss(void)
2140{
2141        int cpu = raw_smp_processor_id();
2142        struct loaded_vmcs *v, *n;
2143
2144        list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2145                                 loaded_vmcss_on_cpu_link)
2146                __loaded_vmcs_clear(v);
2147}
2148
2149
2150/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2151 * tricks.
2152 */
2153static void kvm_cpu_vmxoff(void)
2154{
2155        asm volatile (__ex("vmxoff"));
2156
2157        intel_pt_handle_vmx(0);
2158        cr4_clear_bits(X86_CR4_VMXE);
2159}
2160
2161static void hardware_disable(void)
2162{
2163        vmclear_local_loaded_vmcss();
2164        kvm_cpu_vmxoff();
2165}
2166
2167static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2168                                      u32 msr, u32 *result)
2169{
2170        u32 vmx_msr_low, vmx_msr_high;
2171        u32 ctl = ctl_min | ctl_opt;
2172
2173        rdmsr(msr, vmx_msr_low, vmx_msr_high);
2174
2175        ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2176        ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2177
2178        /* Ensure minimum (required) set of control bits are supported. */
2179        if (ctl_min & ~ctl)
2180                return -EIO;
2181
2182        *result = ctl;
2183        return 0;
2184}
2185
2186static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2187                                    struct vmx_capability *vmx_cap)
2188{
2189        u32 vmx_msr_low, vmx_msr_high;
2190        u32 min, opt, min2, opt2;
2191        u32 _pin_based_exec_control = 0;
2192        u32 _cpu_based_exec_control = 0;
2193        u32 _cpu_based_2nd_exec_control = 0;
2194        u32 _vmexit_control = 0;
2195        u32 _vmentry_control = 0;
2196
2197        memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2198        min = CPU_BASED_HLT_EXITING |
2199#ifdef CONFIG_X86_64
2200              CPU_BASED_CR8_LOAD_EXITING |
2201              CPU_BASED_CR8_STORE_EXITING |
2202#endif
2203              CPU_BASED_CR3_LOAD_EXITING |
2204              CPU_BASED_CR3_STORE_EXITING |
2205              CPU_BASED_UNCOND_IO_EXITING |
2206              CPU_BASED_MOV_DR_EXITING |
2207              CPU_BASED_USE_TSC_OFFSETING |
2208              CPU_BASED_MWAIT_EXITING |
2209              CPU_BASED_MONITOR_EXITING |
2210              CPU_BASED_INVLPG_EXITING |
2211              CPU_BASED_RDPMC_EXITING;
2212
2213        opt = CPU_BASED_TPR_SHADOW |
2214              CPU_BASED_USE_MSR_BITMAPS |
2215              CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2216        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2217                                &_cpu_based_exec_control) < 0)
2218                return -EIO;
2219#ifdef CONFIG_X86_64
2220        if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2221                _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2222                                           ~CPU_BASED_CR8_STORE_EXITING;
2223#endif
2224        if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2225                min2 = 0;
2226                opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2227                        SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2228                        SECONDARY_EXEC_WBINVD_EXITING |
2229                        SECONDARY_EXEC_ENABLE_VPID |
2230                        SECONDARY_EXEC_ENABLE_EPT |
2231                        SECONDARY_EXEC_UNRESTRICTED_GUEST |
2232                        SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2233                        SECONDARY_EXEC_DESC |
2234                        SECONDARY_EXEC_RDTSCP |
2235                        SECONDARY_EXEC_ENABLE_INVPCID |
2236                        SECONDARY_EXEC_APIC_REGISTER_VIRT |
2237                        SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2238                        SECONDARY_EXEC_SHADOW_VMCS |
2239                        SECONDARY_EXEC_XSAVES |
2240                        SECONDARY_EXEC_RDSEED_EXITING |
2241                        SECONDARY_EXEC_RDRAND_EXITING |
2242                        SECONDARY_EXEC_ENABLE_PML |
2243                        SECONDARY_EXEC_TSC_SCALING |
2244                        SECONDARY_EXEC_PT_USE_GPA |
2245                        SECONDARY_EXEC_PT_CONCEAL_VMX |
2246                        SECONDARY_EXEC_ENABLE_VMFUNC |
2247                        SECONDARY_EXEC_ENCLS_EXITING;
2248                if (adjust_vmx_controls(min2, opt2,
2249                                        MSR_IA32_VMX_PROCBASED_CTLS2,
2250                                        &_cpu_based_2nd_exec_control) < 0)
2251                        return -EIO;
2252        }
2253#ifndef CONFIG_X86_64
2254        if (!(_cpu_based_2nd_exec_control &
2255                                SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2256                _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2257#endif
2258
2259        if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2260                _cpu_based_2nd_exec_control &= ~(
2261                                SECONDARY_EXEC_APIC_REGISTER_VIRT |
2262                                SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2263                                SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2264
2265        rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2266                &vmx_cap->ept, &vmx_cap->vpid);
2267
2268        if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2269                /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2270                   enabled */
2271                _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2272                                             CPU_BASED_CR3_STORE_EXITING |
2273                                             CPU_BASED_INVLPG_EXITING);
2274        } else if (vmx_cap->ept) {
2275                vmx_cap->ept = 0;
2276                pr_warn_once("EPT CAP should not exist if not support "
2277                                "1-setting enable EPT VM-execution control\n");
2278        }
2279        if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2280                vmx_cap->vpid) {
2281                vmx_cap->vpid = 0;
2282                pr_warn_once("VPID CAP should not exist if not support "
2283                                "1-setting enable VPID VM-execution control\n");
2284        }
2285
2286        min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2287#ifdef CONFIG_X86_64
2288        min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2289#endif
2290        opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2291              VM_EXIT_SAVE_IA32_PAT |
2292              VM_EXIT_LOAD_IA32_PAT |
2293              VM_EXIT_LOAD_IA32_EFER |
2294              VM_EXIT_CLEAR_BNDCFGS |
2295              VM_EXIT_PT_CONCEAL_PIP |
2296              VM_EXIT_CLEAR_IA32_RTIT_CTL;
2297        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2298                                &_vmexit_control) < 0)
2299                return -EIO;
2300
2301        min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2302        opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2303                 PIN_BASED_VMX_PREEMPTION_TIMER;
2304        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2305                                &_pin_based_exec_control) < 0)
2306                return -EIO;
2307
2308        if (cpu_has_broken_vmx_preemption_timer())
2309                _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2310        if (!(_cpu_based_2nd_exec_control &
2311                SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2312                _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2313
2314        min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2315        opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2316              VM_ENTRY_LOAD_IA32_PAT |
2317              VM_ENTRY_LOAD_IA32_EFER |
2318              VM_ENTRY_LOAD_BNDCFGS |
2319              VM_ENTRY_PT_CONCEAL_PIP |
2320              VM_ENTRY_LOAD_IA32_RTIT_CTL;
2321        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2322                                &_vmentry_control) < 0)
2323                return -EIO;
2324
2325        /*
2326         * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2327         * can't be used due to an errata where VM Exit may incorrectly clear
2328         * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2329         * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2330         */
2331        if (boot_cpu_data.x86 == 0x6) {
2332                switch (boot_cpu_data.x86_model) {
2333                case 26: /* AAK155 */
2334                case 30: /* AAP115 */
2335                case 37: /* AAT100 */
2336                case 44: /* BC86,AAY89,BD102 */
2337                case 46: /* BA97 */
2338                        _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2339                        _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2340                        pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2341                                        "does not work properly. Using workaround\n");
2342                        break;
2343                default:
2344                        break;
2345                }
2346        }
2347
2348
2349        rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2350
2351        /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2352        if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2353                return -EIO;
2354
2355#ifdef CONFIG_X86_64
2356        /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2357        if (vmx_msr_high & (1u<<16))
2358                return -EIO;
2359#endif
2360
2361        /* Require Write-Back (WB) memory type for VMCS accesses. */
2362        if (((vmx_msr_high >> 18) & 15) != 6)
2363                return -EIO;
2364
2365        vmcs_conf->size = vmx_msr_high & 0x1fff;
2366        vmcs_conf->order = get_order(vmcs_conf->size);
2367        vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2368
2369        vmcs_conf->revision_id = vmx_msr_low;
2370
2371        vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2372        vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2373        vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2374        vmcs_conf->vmexit_ctrl         = _vmexit_control;
2375        vmcs_conf->vmentry_ctrl        = _vmentry_control;
2376
2377        if (static_branch_unlikely(&enable_evmcs))
2378                evmcs_sanitize_exec_ctrls(vmcs_conf);
2379
2380        return 0;
2381}
2382
2383struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2384{
2385        int node = cpu_to_node(cpu);
2386        struct page *pages;
2387        struct vmcs *vmcs;
2388
2389        pages = __alloc_pages_node(node, flags, vmcs_config.order);
2390        if (!pages)
2391                return NULL;
2392        vmcs = page_address(pages);
2393        memset(vmcs, 0, vmcs_config.size);
2394
2395        /* KVM supports Enlightened VMCS v1 only */
2396        if (static_branch_unlikely(&enable_evmcs))
2397                vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2398        else
2399                vmcs->hdr.revision_id = vmcs_config.revision_id;
2400
2401        if (shadow)
2402                vmcs->hdr.shadow_vmcs = 1;
2403        return vmcs;
2404}
2405
2406void free_vmcs(struct vmcs *vmcs)
2407{
2408        free_pages((unsigned long)vmcs, vmcs_config.order);
2409}
2410
2411/*
2412 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2413 */
2414void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2415{
2416        if (!loaded_vmcs->vmcs)
2417                return;
2418        loaded_vmcs_clear(loaded_vmcs);
2419        free_vmcs(loaded_vmcs->vmcs);
2420        loaded_vmcs->vmcs = NULL;
2421        if (loaded_vmcs->msr_bitmap)
2422                free_page((unsigned long)loaded_vmcs->msr_bitmap);
2423        WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2424}
2425
2426int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2427{
2428        loaded_vmcs->vmcs = alloc_vmcs(false);
2429        if (!loaded_vmcs->vmcs)
2430                return -ENOMEM;
2431
2432        loaded_vmcs->shadow_vmcs = NULL;
2433        loaded_vmcs_init(loaded_vmcs);
2434
2435        if (cpu_has_vmx_msr_bitmap()) {
2436                loaded_vmcs->msr_bitmap = (unsigned long *)
2437                                __get_free_page(GFP_KERNEL_ACCOUNT);
2438                if (!loaded_vmcs->msr_bitmap)
2439                        goto out_vmcs;
2440                memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2441
2442                if (IS_ENABLED(CONFIG_HYPERV) &&
2443                    static_branch_unlikely(&enable_evmcs) &&
2444                    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2445                        struct hv_enlightened_vmcs *evmcs =
2446                                (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2447
2448                        evmcs->hv_enlightenments_control.msr_bitmap = 1;
2449                }
2450        }
2451
2452        memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2453
2454        return 0;
2455
2456out_vmcs:
2457        free_loaded_vmcs(loaded_vmcs);
2458        return -ENOMEM;
2459}
2460
2461static void free_kvm_area(void)
2462{
2463        int cpu;
2464
2465        for_each_possible_cpu(cpu) {
2466                free_vmcs(per_cpu(vmxarea, cpu));
2467                per_cpu(vmxarea, cpu) = NULL;
2468        }
2469}
2470
2471static __init int alloc_kvm_area(void)
2472{
2473        int cpu;
2474
2475        for_each_possible_cpu(cpu) {
2476                struct vmcs *vmcs;
2477
2478                vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2479                if (!vmcs) {
2480                        free_kvm_area();
2481                        return -ENOMEM;
2482                }
2483
2484                /*
2485                 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2486                 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2487                 * revision_id reported by MSR_IA32_VMX_BASIC.
2488                 *
2489                 * However, even though not explicitly documented by
2490                 * TLFS, VMXArea passed as VMXON argument should
2491                 * still be marked with revision_id reported by
2492                 * physical CPU.
2493                 */
2494                if (static_branch_unlikely(&enable_evmcs))
2495                        vmcs->hdr.revision_id = vmcs_config.revision_id;
2496
2497                per_cpu(vmxarea, cpu) = vmcs;
2498        }
2499        return 0;
2500}
2501
2502static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2503                struct kvm_segment *save)
2504{
2505        if (!emulate_invalid_guest_state) {
2506                /*
2507                 * CS and SS RPL should be equal during guest entry according
2508                 * to VMX spec, but in reality it is not always so. Since vcpu
2509                 * is in the middle of the transition from real mode to
2510                 * protected mode it is safe to assume that RPL 0 is a good
2511                 * default value.
2512                 */
2513                if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2514                        save->selector &= ~SEGMENT_RPL_MASK;
2515                save->dpl = save->selector & SEGMENT_RPL_MASK;
2516                save->s = 1;
2517        }
2518        vmx_set_segment(vcpu, save, seg);
2519}
2520
2521static void enter_pmode(struct kvm_vcpu *vcpu)
2522{
2523        unsigned long flags;
2524        struct vcpu_vmx *vmx = to_vmx(vcpu);
2525
2526        /*
2527         * Update real mode segment cache. It may be not up-to-date if sement
2528         * register was written while vcpu was in a guest mode.
2529         */
2530        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2531        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2532        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2533        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2534        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2535        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2536
2537        vmx->rmode.vm86_active = 0;
2538
2539        vmx_segment_cache_clear(vmx);
2540
2541        vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2542
2543        flags = vmcs_readl(GUEST_RFLAGS);
2544        flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2545        flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2546        vmcs_writel(GUEST_RFLAGS, flags);
2547
2548        vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2549                        (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2550
2551        update_exception_bitmap(vcpu);
2552
2553        fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2554        fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2555        fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2556        fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2557        fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2558        fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2559}
2560
2561static void fix_rmode_seg(int seg, struct kvm_segment *save)
2562{
2563        const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2564        struct kvm_segment var = *save;
2565
2566        var.dpl = 0x3;
2567        if (seg == VCPU_SREG_CS)
2568                var.type = 0x3;
2569
2570        if (!emulate_invalid_guest_state) {
2571                var.selector = var.base >> 4;
2572                var.base = var.base & 0xffff0;
2573                var.limit = 0xffff;
2574                var.g = 0;
2575                var.db = 0;
2576                var.present = 1;
2577                var.s = 1;
2578                var.l = 0;
2579                var.unusable = 0;
2580                var.type = 0x3;
2581                var.avl = 0;
2582                if (save->base & 0xf)
2583                        printk_once(KERN_WARNING "kvm: segment base is not "
2584                                        "paragraph aligned when entering "
2585                                        "protected mode (seg=%d)", seg);
2586        }
2587
2588        vmcs_write16(sf->selector, var.selector);
2589        vmcs_writel(sf->base, var.base);
2590        vmcs_write32(sf->limit, var.limit);
2591        vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2592}
2593
2594static void enter_rmode(struct kvm_vcpu *vcpu)
2595{
2596        unsigned long flags;
2597        struct vcpu_vmx *vmx = to_vmx(vcpu);
2598        struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2599
2600        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2601        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2602        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2603        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2604        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2605        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2606        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2607
2608        vmx->rmode.vm86_active = 1;
2609
2610        /*
2611         * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2612         * vcpu. Warn the user that an update is overdue.
2613         */
2614        if (!kvm_vmx->tss_addr)
2615                printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2616                             "called before entering vcpu\n");
2617
2618        vmx_segment_cache_clear(vmx);
2619
2620        vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2621        vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2622        vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2623
2624        flags = vmcs_readl(GUEST_RFLAGS);
2625        vmx->rmode.save_rflags = flags;
2626
2627        flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2628
2629        vmcs_writel(GUEST_RFLAGS, flags);
2630        vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2631        update_exception_bitmap(vcpu);
2632
2633        fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2634        fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2635        fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2636        fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2637        fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2638        fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2639
2640        kvm_mmu_reset_context(vcpu);
2641}
2642
2643void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2644{
2645        struct vcpu_vmx *vmx = to_vmx(vcpu);
2646        struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2647
2648        if (!msr)
2649                return;
2650
2651        vcpu->arch.efer = efer;
2652        if (efer & EFER_LMA) {
2653                vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2654                msr->data = efer;
2655        } else {
2656                vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2657
2658                msr->data = efer & ~EFER_LME;
2659        }
2660        setup_msrs(vmx);
2661}
2662
2663#ifdef CONFIG_X86_64
2664
2665static void enter_lmode(struct kvm_vcpu *vcpu)
2666{
2667        u32 guest_tr_ar;
2668
2669        vmx_segment_cache_clear(to_vmx(vcpu));
2670
2671        guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2672        if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2673                pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2674                                     __func__);
2675                vmcs_write32(GUEST_TR_AR_BYTES,
2676                             (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2677                             | VMX_AR_TYPE_BUSY_64_TSS);
2678        }
2679        vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2680}
2681
2682static void exit_lmode(struct kvm_vcpu *vcpu)
2683{
2684        vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2685        vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2686}
2687
2688#endif
2689
2690static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2691{
2692        int vpid = to_vmx(vcpu)->vpid;
2693
2694        if (!vpid_sync_vcpu_addr(vpid, addr))
2695                vpid_sync_context(vpid);
2696
2697        /*
2698         * If VPIDs are not supported or enabled, then the above is a no-op.
2699         * But we don't really need a TLB flush in that case anyway, because
2700         * each VM entry/exit includes an implicit flush when VPID is 0.
2701         */
2702}
2703
2704static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2705{
2706        ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2707
2708        vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2709        vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2710}
2711
2712static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2713{
2714        if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
2715                vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2716        __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2717}
2718
2719static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2720{
2721        ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2722
2723        vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2724        vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2725}
2726
2727static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2728{
2729        struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2730
2731        if (!test_bit(VCPU_EXREG_PDPTR,
2732                      (unsigned long *)&vcpu->arch.regs_dirty))
2733                return;
2734
2735        if (is_pae_paging(vcpu)) {
2736                vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2737                vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2738                vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2739                vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2740        }
2741}
2742
2743void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2744{
2745        struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2746
2747        if (is_pae_paging(vcpu)) {
2748                mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2749                mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2750                mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2751                mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2752        }
2753
2754        __set_bit(VCPU_EXREG_PDPTR,
2755                  (unsigned long *)&vcpu->arch.regs_avail);
2756        __set_bit(VCPU_EXREG_PDPTR,
2757                  (unsigned long *)&vcpu->arch.regs_dirty);
2758}
2759
2760static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2761                                        unsigned long cr0,
2762                                        struct kvm_vcpu *vcpu)
2763{
2764        if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2765                vmx_decache_cr3(vcpu);
2766        if (!(cr0 & X86_CR0_PG)) {
2767                /* From paging/starting to nonpaging */
2768                vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2769                             vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
2770                             (CPU_BASED_CR3_LOAD_EXITING |
2771                              CPU_BASED_CR3_STORE_EXITING));
2772                vcpu->arch.cr0 = cr0;
2773                vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2774        } else if (!is_paging(vcpu)) {
2775                /* From nonpaging to paging */
2776                vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2777                             vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
2778                             ~(CPU_BASED_CR3_LOAD_EXITING |
2779                               CPU_BASED_CR3_STORE_EXITING));
2780                vcpu->arch.cr0 = cr0;
2781                vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2782        }
2783
2784        if (!(cr0 & X86_CR0_WP))
2785                *hw_cr0 &= ~X86_CR0_WP;
2786}
2787
2788void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2789{
2790        struct vcpu_vmx *vmx = to_vmx(vcpu);
2791        unsigned long hw_cr0;
2792
2793        hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
2794        if (enable_unrestricted_guest)
2795                hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2796        else {
2797                hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
2798
2799                if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2800                        enter_pmode(vcpu);
2801
2802                if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2803                        enter_rmode(vcpu);
2804        }
2805
2806#ifdef CONFIG_X86_64
2807        if (vcpu->arch.efer & EFER_LME) {
2808                if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2809                        enter_lmode(vcpu);
2810                if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2811                        exit_lmode(vcpu);
2812        }
2813#endif
2814
2815        if (enable_ept && !enable_unrestricted_guest)
2816                ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2817
2818        vmcs_writel(CR0_READ_SHADOW, cr0);
2819        vmcs_writel(GUEST_CR0, hw_cr0);
2820        vcpu->arch.cr0 = cr0;
2821
2822        /* depends on vcpu->arch.cr0 to be set to a new value */
2823        vmx->emulation_required = emulation_required(vcpu);
2824}
2825
2826static int get_ept_level(struct kvm_vcpu *vcpu)
2827{
2828        if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
2829                return 5;
2830        return 4;
2831}
2832
2833u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
2834{
2835        u64 eptp = VMX_EPTP_MT_WB;
2836
2837        eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
2838
2839        if (enable_ept_ad_bits &&
2840            (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
2841                eptp |= VMX_EPTP_AD_ENABLE_BIT;
2842        eptp |= (root_hpa & PAGE_MASK);
2843
2844        return eptp;
2845}
2846
2847void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
2848{
2849        struct kvm *kvm = vcpu->kvm;
2850        unsigned long guest_cr3;
2851        u64 eptp;
2852
2853        guest_cr3 = cr3;
2854        if (enable_ept) {
2855                eptp = construct_eptp(vcpu, cr3);
2856                vmcs_write64(EPT_POINTER, eptp);
2857
2858                if (kvm_x86_ops->tlb_remote_flush) {
2859                        spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
2860                        to_vmx(vcpu)->ept_pointer = eptp;
2861                        to_kvm_vmx(kvm)->ept_pointers_match
2862                                = EPT_POINTERS_CHECK;
2863                        spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
2864                }
2865
2866                if (enable_unrestricted_guest || is_paging(vcpu) ||
2867                    is_guest_mode(vcpu))
2868                        guest_cr3 = kvm_read_cr3(vcpu);
2869                else
2870                        guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
2871                ept_load_pdptrs(vcpu);
2872        }
2873
2874        vmcs_writel(GUEST_CR3, guest_cr3);
2875}
2876
2877int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2878{
2879        /*
2880         * Pass through host's Machine Check Enable value to hw_cr4, which
2881         * is in force while we are in guest mode.  Do not let guests control
2882         * this bit, even if host CR4.MCE == 0.
2883         */
2884        unsigned long hw_cr4;
2885
2886        hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
2887        if (enable_unrestricted_guest)
2888                hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
2889        else if (to_vmx(vcpu)->rmode.vm86_active)
2890                hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
2891        else
2892                hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
2893
2894        if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
2895                if (cr4 & X86_CR4_UMIP) {
2896                        vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
2897                                SECONDARY_EXEC_DESC);
2898                        hw_cr4 &= ~X86_CR4_UMIP;
2899                } else if (!is_guest_mode(vcpu) ||
2900                        !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC))
2901                        vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
2902                                        SECONDARY_EXEC_DESC);
2903        }
2904
2905        if (cr4 & X86_CR4_VMXE) {
2906                /*
2907                 * To use VMXON (and later other VMX instructions), a guest
2908                 * must first be able to turn on cr4.VMXE (see handle_vmon()).
2909                 * So basically the check on whether to allow nested VMX
2910                 * is here.  We operate under the default treatment of SMM,
2911                 * so VMX cannot be enabled under SMM.
2912                 */
2913                if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
2914                        return 1;
2915        }
2916
2917        if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
2918                return 1;
2919
2920        vcpu->arch.cr4 = cr4;
2921
2922        if (!enable_unrestricted_guest) {
2923                if (enable_ept) {
2924                        if (!is_paging(vcpu)) {
2925                                hw_cr4 &= ~X86_CR4_PAE;
2926                                hw_cr4 |= X86_CR4_PSE;
2927                        } else if (!(cr4 & X86_CR4_PAE)) {
2928                                hw_cr4 &= ~X86_CR4_PAE;
2929                        }
2930                }
2931
2932                /*
2933                 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
2934                 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
2935                 * to be manually disabled when guest switches to non-paging
2936                 * mode.
2937                 *
2938                 * If !enable_unrestricted_guest, the CPU is always running
2939                 * with CR0.PG=1 and CR4 needs to be modified.
2940                 * If enable_unrestricted_guest, the CPU automatically
2941                 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
2942                 */
2943                if (!is_paging(vcpu))
2944                        hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
2945        }
2946
2947        vmcs_writel(CR4_READ_SHADOW, cr4);
2948        vmcs_writel(GUEST_CR4, hw_cr4);
2949        return 0;
2950}
2951
2952void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
2953{
2954        struct vcpu_vmx *vmx = to_vmx(vcpu);
2955        u32 ar;
2956
2957        if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
2958                *var = vmx->rmode.segs[seg];
2959                if (seg == VCPU_SREG_TR
2960                    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
2961                        return;
2962                var->base = vmx_read_guest_seg_base(vmx, seg);
2963                var->selector = vmx_read_guest_seg_selector(vmx, seg);
2964                return;
2965        }
2966        var->base = vmx_read_guest_seg_base(vmx, seg);
2967        var->limit = vmx_read_guest_seg_limit(vmx, seg);
2968        var->selector = vmx_read_guest_seg_selector(vmx, seg);
2969        ar = vmx_read_guest_seg_ar(vmx, seg);
2970        var->unusable = (ar >> 16) & 1;
2971        var->type = ar & 15;
2972        var->s = (ar >> 4) & 1;
2973        var->dpl = (ar >> 5) & 3;
2974        /*
2975         * Some userspaces do not preserve unusable property. Since usable
2976         * segment has to be present according to VMX spec we can use present
2977         * property to amend userspace bug by making unusable segment always
2978         * nonpresent. vmx_segment_access_rights() already marks nonpresent
2979         * segment as unusable.
2980         */
2981        var->present = !var->unusable;
2982        var->avl = (ar >> 12) & 1;
2983        var->l = (ar >> 13) & 1;
2984        var->db = (ar >> 14) & 1;
2985        var->g = (ar >> 15) & 1;
2986}
2987
2988static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2989{
2990        struct kvm_segment s;
2991
2992        if (to_vmx(vcpu)->rmode.vm86_active) {
2993                vmx_get_segment(vcpu, &s, seg);
2994                return s.base;
2995        }
2996        return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
2997}
2998
2999int vmx_get_cpl(struct kvm_vcpu *vcpu)
3000{
3001        struct vcpu_vmx *vmx = to_vmx(vcpu);
3002
3003        if (unlikely(vmx->rmode.vm86_active))
3004                return 0;
3005        else {
3006                int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3007                return VMX_AR_DPL(ar);
3008        }
3009}
3010
3011static u32 vmx_segment_access_rights(struct kvm_segment *var)
3012{
3013        u32 ar;
3014
3015        if (var->unusable || !var->present)
3016                ar = 1 << 16;
3017        else {
3018                ar = var->type & 15;
3019                ar |= (var->s & 1) << 4;
3020                ar |= (var->dpl & 3) << 5;
3021                ar |= (var->present & 1) << 7;
3022                ar |= (var->avl & 1) << 12;
3023                ar |= (var->l & 1) << 13;
3024                ar |= (var->db & 1) << 14;
3025                ar |= (var->g & 1) << 15;
3026        }
3027
3028        return ar;
3029}
3030
3031void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3032{
3033        struct vcpu_vmx *vmx = to_vmx(vcpu);
3034        const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3035
3036        vmx_segment_cache_clear(vmx);
3037
3038        if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3039                vmx->rmode.segs[seg] = *var;
3040                if (seg == VCPU_SREG_TR)
3041                        vmcs_write16(sf->selector, var->selector);
3042                else if (var->s)
3043                        fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3044                goto out;
3045        }
3046
3047        vmcs_writel(sf->base, var->base);
3048        vmcs_write32(sf->limit, var->limit);
3049        vmcs_write16(sf->selector, var->selector);
3050
3051        /*
3052         *   Fix the "Accessed" bit in AR field of segment registers for older
3053         * qemu binaries.
3054         *   IA32 arch specifies that at the time of processor reset the
3055         * "Accessed" bit in the AR field of segment registers is 1. And qemu
3056         * is setting it to 0 in the userland code. This causes invalid guest
3057         * state vmexit when "unrestricted guest" mode is turned on.
3058         *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3059         * tree. Newer qemu binaries with that qemu fix would not need this
3060         * kvm hack.
3061         */
3062        if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3063                var->type |= 0x1; /* Accessed */
3064
3065        vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3066
3067out:
3068        vmx->emulation_required = emulation_required(vcpu);
3069}
3070
3071static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3072{
3073        u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3074
3075        *db = (ar >> 14) & 1;
3076        *l = (ar >> 13) & 1;
3077}
3078
3079static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3080{
3081        dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3082        dt->address = vmcs_readl(GUEST_IDTR_BASE);
3083}
3084
3085static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3086{
3087        vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3088        vmcs_writel(GUEST_IDTR_BASE, dt->address);
3089}
3090
3091static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3092{
3093        dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3094        dt->address = vmcs_readl(GUEST_GDTR_BASE);
3095}
3096
3097static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3098{
3099        vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3100        vmcs_writel(GUEST_GDTR_BASE, dt->address);
3101}
3102
3103static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3104{
3105        struct kvm_segment var;
3106        u32 ar;
3107
3108        vmx_get_segment(vcpu, &var, seg);
3109        var.dpl = 0x3;
3110        if (seg == VCPU_SREG_CS)
3111                var.type = 0x3;
3112        ar = vmx_segment_access_rights(&var);
3113
3114        if (var.base != (var.selector << 4))
3115                return false;
3116        if (var.limit != 0xffff)
3117                return false;
3118        if (ar != 0xf3)
3119                return false;
3120
3121        return true;
3122}
3123
3124static bool code_segment_valid(struct kvm_vcpu *vcpu)
3125{
3126        struct kvm_segment cs;
3127        unsigned int cs_rpl;
3128
3129        vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3130        cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3131
3132        if (cs.unusable)
3133                return false;
3134        if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3135                return false;
3136        if (!cs.s)
3137                return false;
3138        if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3139                if (cs.dpl > cs_rpl)
3140                        return false;
3141        } else {
3142                if (cs.dpl != cs_rpl)
3143                        return false;
3144        }
3145        if (!cs.present)
3146                return false;
3147
3148        /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3149        return true;
3150}
3151
3152static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3153{
3154        struct kvm_segment ss;
3155        unsigned int ss_rpl;
3156
3157        vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3158        ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3159
3160        if (ss.unusable)
3161                return true;
3162        if (ss.type != 3 && ss.type != 7)
3163                return false;
3164        if (!ss.s)
3165                return false;
3166        if (ss.dpl != ss_rpl) /* DPL != RPL */
3167                return false;
3168        if (!ss.present)
3169                return false;
3170
3171        return true;
3172}
3173
3174static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3175{
3176        struct kvm_segment var;
3177        unsigned int rpl;
3178
3179        vmx_get_segment(vcpu, &var, seg);
3180        rpl = var.selector & SEGMENT_RPL_MASK;
3181
3182        if (var.unusable)
3183                return true;
3184        if (!var.s)
3185                return false;
3186        if (!var.present)
3187                return false;
3188        if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3189                if (var.dpl < rpl) /* DPL < RPL */
3190                        return false;
3191        }
3192
3193        /* TODO: Add other members to kvm_segment_field to allow checking for other access
3194         * rights flags
3195         */
3196        return true;
3197}
3198
3199static bool tr_valid(struct kvm_vcpu *vcpu)
3200{
3201        struct kvm_segment tr;
3202
3203        vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3204
3205        if (tr.unusable)
3206                return false;
3207        if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
3208                return false;
3209        if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3210                return false;
3211        if (!tr.present)
3212                return false;
3213
3214        return true;
3215}
3216
3217static bool ldtr_valid(struct kvm_vcpu *vcpu)
3218{
3219        struct kvm_segment ldtr;
3220
3221        vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3222
3223        if (ldtr.unusable)
3224                return true;
3225        if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
3226                return false;
3227        if (ldtr.type != 2)
3228                return false;
3229        if (!ldtr.present)
3230                return false;
3231
3232        return true;
3233}
3234
3235static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3236{
3237        struct kvm_segment cs, ss;
3238
3239        vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3240        vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3241
3242        return ((cs.selector & SEGMENT_RPL_MASK) ==
3243                 (ss.selector & SEGMENT_RPL_MASK));
3244}
3245
3246/*
3247 * Check if guest state is valid. Returns true if valid, false if
3248 * not.
3249 * We assume that registers are always usable
3250 */
3251static bool guest_state_valid(struct kvm_vcpu *vcpu)
3252{
3253        if (enable_unrestricted_guest)
3254                return true;
3255
3256        /* real mode guest state checks */
3257        if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3258                if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3259                        return false;
3260                if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3261                        return false;
3262                if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3263                        return false;
3264                if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3265                        return false;
3266                if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3267                        return false;
3268                if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3269                        return false;
3270        } else {
3271        /* protected mode guest state checks */
3272                if (!cs_ss_rpl_check(vcpu))
3273                        return false;
3274                if (!code_segment_valid(vcpu))
3275                        return false;
3276                if (!stack_segment_valid(vcpu))
3277                        return false;
3278                if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3279                        return false;
3280                if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3281                        return false;
3282                if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3283                        return false;
3284                if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3285                        return false;
3286                if (!tr_valid(vcpu))
3287                        return false;
3288                if (!ldtr_valid(vcpu))
3289                        return false;
3290        }
3291        /* TODO:
3292         * - Add checks on RIP
3293         * - Add checks on RFLAGS
3294         */
3295
3296        return true;
3297}
3298
3299static int init_rmode_tss(struct kvm *kvm)
3300{
3301        gfn_t fn;
3302        u16 data = 0;
3303        int idx, r;
3304
3305        idx = srcu_read_lock(&kvm->srcu);
3306        fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3307        r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3308        if (r < 0)
3309                goto out;
3310        data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3311        r = kvm_write_guest_page(kvm, fn++, &data,
3312                        TSS_IOPB_BASE_OFFSET, sizeof(u16));
3313        if (r < 0)
3314                goto out;
3315        r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3316        if (r < 0)
3317                goto out;
3318        r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3319        if (r < 0)
3320                goto out;
3321        data = ~0;
3322        r = kvm_write_guest_page(kvm, fn, &data,
3323                                 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3324                                 sizeof(u8));
3325out:
3326        srcu_read_unlock(&kvm->srcu, idx);
3327        return r;
3328}
3329
3330static int init_rmode_identity_map(struct kvm *kvm)
3331{
3332        struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3333        int i, idx, r = 0;
3334        kvm_pfn_t identity_map_pfn;
3335        u32 tmp;
3336
3337        /* Protect kvm_vmx->ept_identity_pagetable_done. */
3338        mutex_lock(&kvm->slots_lock);
3339
3340        if (likely(kvm_vmx->ept_identity_pagetable_done))
3341                goto out2;
3342
3343        if (!kvm_vmx->ept_identity_map_addr)
3344                kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3345        identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3346
3347        r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3348                                    kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3349        if (r < 0)
3350                goto out2;
3351
3352        idx = srcu_read_lock(&kvm->srcu);
3353        r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3354        if (r < 0)
3355                goto out;
3356        /* Set up identity-mapping pagetable for EPT in real mode */
3357        for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3358                tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3359                        _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3360                r = kvm_write_guest_page(kvm, identity_map_pfn,
3361                                &tmp, i * sizeof(tmp), sizeof(tmp));
3362                if (r < 0)
3363                        goto out;
3364        }
3365        kvm_vmx->ept_identity_pagetable_done = true;
3366
3367out:
3368        srcu_read_unlock(&kvm->srcu, idx);
3369
3370out2:
3371        mutex_unlock(&kvm->slots_lock);
3372        return r;
3373}
3374
3375static void seg_setup(int seg)
3376{
3377        const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3378        unsigned int ar;
3379
3380        vmcs_write16(sf->selector, 0);
3381        vmcs_writel(sf->base, 0);
3382        vmcs_write32(sf->limit, 0xffff);
3383        ar = 0x93;
3384        if (seg == VCPU_SREG_CS)
3385                ar |= 0x08; /* code segment */
3386
3387        vmcs_write32(sf->ar_bytes, ar);
3388}
3389
3390static int alloc_apic_access_page(struct kvm *kvm)
3391{
3392        struct page *page;
3393        int r = 0;
3394
3395        mutex_lock(&kvm->slots_lock);
3396        if (kvm->arch.apic_access_page_done)
3397                goto out;
3398        r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3399                                    APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3400        if (r)
3401                goto out;
3402
3403        page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3404        if (is_error_page(page)) {
3405                r = -EFAULT;
3406                goto out;
3407        }
3408
3409        /*
3410         * Do not pin the page in memory, so that memory hot-unplug
3411         * is able to migrate it.
3412         */
3413        put_page(page);
3414        kvm->arch.apic_access_page_done = true;
3415out:
3416        mutex_unlock(&kvm->slots_lock);
3417        return r;
3418}
3419
3420int allocate_vpid(void)
3421{
3422        int vpid;
3423
3424        if (!enable_vpid)
3425                return 0;
3426        spin_lock(&vmx_vpid_lock);
3427        vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3428        if (vpid < VMX_NR_VPIDS)
3429                __set_bit(vpid, vmx_vpid_bitmap);
3430        else
3431                vpid = 0;
3432        spin_unlock(&vmx_vpid_lock);
3433        return vpid;
3434}
3435
3436void free_vpid(int vpid)
3437{
3438        if (!enable_vpid || vpid == 0)
3439                return;
3440        spin_lock(&vmx_vpid_lock);
3441        __clear_bit(vpid, vmx_vpid_bitmap);
3442        spin_unlock(&vmx_vpid_lock);
3443}
3444
3445static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3446                                                          u32 msr, int type)
3447{
3448        int f = sizeof(unsigned long);
3449
3450        if (!cpu_has_vmx_msr_bitmap())
3451                return;
3452
3453        if (static_branch_unlikely(&enable_evmcs))
3454                evmcs_touch_msr_bitmap();
3455
3456        /*
3457         * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3458         * have the write-low and read-high bitmap offsets the wrong way round.
3459         * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3460         */
3461        if (msr <= 0x1fff) {
3462                if (type & MSR_TYPE_R)
3463                        /* read-low */
3464                        __clear_bit(msr, msr_bitmap + 0x000 / f);
3465
3466                if (type & MSR_TYPE_W)
3467                        /* write-low */
3468                        __clear_bit(msr, msr_bitmap + 0x800 / f);
3469
3470        } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3471                msr &= 0x1fff;
3472                if (type & MSR_TYPE_R)
3473                        /* read-high */
3474                        __clear_bit(msr, msr_bitmap + 0x400 / f);
3475
3476                if (type & MSR_TYPE_W)
3477                        /* write-high */
3478                        __clear_bit(msr, msr_bitmap + 0xc00 / f);
3479
3480        }
3481}
3482
3483static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3484                                                         u32 msr, int type)
3485{
3486        int f = sizeof(unsigned long);
3487
3488        if (!cpu_has_vmx_msr_bitmap())
3489                return;
3490
3491        if (static_branch_unlikely(&enable_evmcs))
3492                evmcs_touch_msr_bitmap();
3493
3494        /*
3495         * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3496         * have the write-low and read-high bitmap offsets the wrong way round.
3497         * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3498         */
3499        if (msr <= 0x1fff) {
3500                if (type & MSR_TYPE_R)
3501                        /* read-low */
3502                        __set_bit(msr, msr_bitmap + 0x000 / f);
3503
3504                if (type & MSR_TYPE_W)
3505                        /* write-low */
3506                        __set_bit(msr, msr_bitmap + 0x800 / f);
3507
3508        } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3509                msr &= 0x1fff;
3510                if (type & MSR_TYPE_R)
3511                        /* read-high */
3512                        __set_bit(msr, msr_bitmap + 0x400 / f);
3513
3514                if (type & MSR_TYPE_W)
3515                        /* write-high */
3516                        __set_bit(msr, msr_bitmap + 0xc00 / f);
3517
3518        }
3519}
3520
3521static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
3522                                                      u32 msr, int type, bool value)
3523{
3524        if (value)
3525                vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
3526        else
3527                vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
3528}
3529
3530static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3531{
3532        u8 mode = 0;
3533
3534        if (cpu_has_secondary_exec_ctrls() &&
3535            (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
3536             SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3537                mode |= MSR_BITMAP_MODE_X2APIC;
3538                if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3539                        mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3540        }
3541
3542        return mode;
3543}
3544
3545static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
3546                                         u8 mode)
3547{
3548        int msr;
3549
3550        for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3551                unsigned word = msr / BITS_PER_LONG;
3552                msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3553                msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
3554        }
3555
3556        if (mode & MSR_BITMAP_MODE_X2APIC) {
3557                /*
3558                 * TPR reads and writes can be virtualized even if virtual interrupt
3559                 * delivery is not in use.
3560                 */
3561                vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
3562                if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3563                        vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
3564                        vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3565                        vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3566                }
3567        }
3568}
3569
3570void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3571{
3572        struct vcpu_vmx *vmx = to_vmx(vcpu);
3573        unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3574        u8 mode = vmx_msr_bitmap_mode(vcpu);
3575        u8 changed = mode ^ vmx->msr_bitmap_mode;
3576
3577        if (!changed)
3578                return;
3579
3580        if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3581                vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
3582
3583        vmx->msr_bitmap_mode = mode;
3584}
3585
3586void pt_update_intercept_for_msr(struct vcpu_vmx *vmx)
3587{
3588        unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3589        bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3590        u32 i;
3591
3592        vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS,
3593                                                        MSR_TYPE_RW, flag);
3594        vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE,
3595                                                        MSR_TYPE_RW, flag);
3596        vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK,
3597                                                        MSR_TYPE_RW, flag);
3598        vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH,
3599                                                        MSR_TYPE_RW, flag);
3600        for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3601                vmx_set_intercept_for_msr(msr_bitmap,
3602                        MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3603                vmx_set_intercept_for_msr(msr_bitmap,
3604                        MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3605        }
3606}
3607
3608static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
3609{
3610        return enable_apicv;
3611}
3612
3613static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3614{
3615        struct vcpu_vmx *vmx = to_vmx(vcpu);
3616        void *vapic_page;
3617        u32 vppr;
3618        int rvi;
3619
3620        if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3621                !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3622                WARN_ON_ONCE(!vmx->nested.virtual_apic_page))
3623                return false;
3624
3625        rvi = vmx_get_rvi();
3626
3627        vapic_page = kmap(vmx->nested.virtual_apic_page);
3628        vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3629        kunmap(vmx->nested.virtual_apic_page);
3630
3631        return ((rvi & 0xf0) > (vppr & 0xf0));
3632}
3633
3634static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3635                                                     bool nested)
3636{
3637#ifdef CONFIG_SMP
3638        int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3639
3640        if (vcpu->mode == IN_GUEST_MODE) {
3641                /*
3642                 * The vector of interrupt to be delivered to vcpu had
3643                 * been set in PIR before this function.
3644                 *
3645                 * Following cases will be reached in this block, and
3646                 * we always send a notification event in all cases as
3647                 * explained below.
3648                 *
3649                 * Case 1: vcpu keeps in non-root mode. Sending a
3650                 * notification event posts the interrupt to vcpu.
3651                 *
3652                 * Case 2: vcpu exits to root mode and is still
3653                 * runnable. PIR will be synced to vIRR before the
3654                 * next vcpu entry. Sending a notification event in
3655                 * this case has no effect, as vcpu is not in root
3656                 * mode.
3657                 *
3658                 * Case 3: vcpu exits to root mode and is blocked.
3659                 * vcpu_block() has already synced PIR to vIRR and
3660                 * never blocks vcpu if vIRR is not cleared. Therefore,
3661                 * a blocked vcpu here does not wait for any requested
3662                 * interrupts in PIR, and sending a notification event
3663                 * which has no effect is safe here.
3664                 */
3665
3666                apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3667                return true;
3668        }
3669#endif
3670        return false;
3671}
3672
3673static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3674                                                int vector)
3675{
3676        struct vcpu_vmx *vmx = to_vmx(vcpu);
3677
3678        if (is_guest_mode(vcpu) &&
3679            vector == vmx->nested.posted_intr_nv) {
3680                /*
3681                 * If a posted intr is not recognized by hardware,
3682                 * we will accomplish it in the next vmentry.
3683                 */
3684                vmx->nested.pi_pending = true;
3685                kvm_make_request(KVM_REQ_EVENT, vcpu);
3686                /* the PIR and ON have been set by L1. */
3687                if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3688                        kvm_vcpu_kick(vcpu);
3689                return 0;
3690        }
3691        return -1;
3692}
3693/*
3694 * Send interrupt to vcpu via posted interrupt way.
3695 * 1. If target vcpu is running(non-root mode), send posted interrupt
3696 * notification to vcpu and hardware will sync PIR to vIRR atomically.
3697 * 2. If target vcpu isn't running(root mode), kick it to pick up the
3698 * interrupt from PIR in next vmentry.
3699 */
3700static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3701{
3702        struct vcpu_vmx *vmx = to_vmx(vcpu);
3703        int r;
3704
3705        r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3706        if (!r)
3707                return;
3708
3709        if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3710                return;
3711
3712        /* If a previous notification has sent the IPI, nothing to do.  */
3713        if (pi_test_and_set_on(&vmx->pi_desc))
3714                return;
3715
3716        if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
3717                kvm_vcpu_kick(vcpu);
3718}
3719
3720/*
3721 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3722 * will not change in the lifetime of the guest.
3723 * Note that host-state that does change is set elsewhere. E.g., host-state
3724 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3725 */
3726void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
3727{
3728        u32 low32, high32;
3729        unsigned long tmpl;
3730        struct desc_ptr dt;
3731        unsigned long cr0, cr3, cr4;
3732
3733        cr0 = read_cr0();
3734        WARN_ON(cr0 & X86_CR0_TS);
3735        vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
3736
3737        /*
3738         * Save the most likely value for this task's CR3 in the VMCS.
3739         * We can't use __get_current_cr3_fast() because we're not atomic.
3740         */
3741        cr3 = __read_cr3();
3742        vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
3743        vmx->loaded_vmcs->host_state.cr3 = cr3;
3744
3745        /* Save the most likely value for this task's CR4 in the VMCS. */
3746        cr4 = cr4_read_shadow();
3747        vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
3748        vmx->loaded_vmcs->host_state.cr4 = cr4;
3749
3750        vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
3751#ifdef CONFIG_X86_64
3752        /*
3753         * Load null selectors, so we can avoid reloading them in
3754         * vmx_prepare_switch_to_host(), in case userspace uses
3755         * the null selectors too (the expected case).
3756         */
3757        vmcs_write16(HOST_DS_SELECTOR, 0);
3758        vmcs_write16(HOST_ES_SELECTOR, 0);
3759#else
3760        vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3761        vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3762#endif
3763        vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3764        vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
3765
3766        store_idt(&dt);
3767        vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
3768        vmx->host_idt_base = dt.address;
3769
3770        vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
3771
3772        rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3773        vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3774        rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3775        vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
3776
3777        if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3778                rdmsr(MSR_IA32_CR_PAT, low32, high32);
3779                vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3780        }
3781
3782        if (cpu_has_load_ia32_efer())
3783                vmcs_write64(HOST_IA32_EFER, host_efer);
3784}
3785
3786void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3787{
3788        vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3789        if (enable_ept)
3790                vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3791        if (is_guest_mode(&vmx->vcpu))
3792                vmx->vcpu.arch.cr4_guest_owned_bits &=
3793                        ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3794        vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3795}
3796
3797static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
3798{
3799        u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
3800
3801        if (!kvm_vcpu_apicv_active(&vmx->vcpu))
3802                pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
3803
3804        if (!enable_vnmi)
3805                pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
3806
3807        /* Enable the preemption timer dynamically */
3808        pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3809        return pin_based_exec_ctrl;
3810}
3811
3812static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
3813{
3814        struct vcpu_vmx *vmx = to_vmx(vcpu);
3815
3816        vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
3817        if (cpu_has_secondary_exec_ctrls()) {
3818                if (kvm_vcpu_apicv_active(vcpu))
3819                        vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
3820                                      SECONDARY_EXEC_APIC_REGISTER_VIRT |
3821                                      SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3822                else
3823                        vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
3824                                        SECONDARY_EXEC_APIC_REGISTER_VIRT |
3825                                        SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3826        }
3827
3828        if (cpu_has_vmx_msr_bitmap())
3829                vmx_update_msr_bitmap(vcpu);
3830}
3831
3832u32 vmx_exec_control(struct vcpu_vmx *vmx)
3833{
3834        u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3835
3836        if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
3837                exec_control &= ~CPU_BASED_MOV_DR_EXITING;
3838
3839        if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
3840                exec_control &= ~CPU_BASED_TPR_SHADOW;
3841#ifdef CONFIG_X86_64
3842                exec_control |= CPU_BASED_CR8_STORE_EXITING |
3843                                CPU_BASED_CR8_LOAD_EXITING;
3844#endif
3845        }
3846        if (!enable_ept)
3847                exec_control |= CPU_BASED_CR3_STORE_EXITING |
3848                                CPU_BASED_CR3_LOAD_EXITING  |
3849                                CPU_BASED_INVLPG_EXITING;
3850        if (kvm_mwait_in_guest(vmx->vcpu.kvm))
3851                exec_control &= ~(CPU_BASED_MWAIT_EXITING |
3852                                CPU_BASED_MONITOR_EXITING);
3853        if (kvm_hlt_in_guest(vmx->vcpu.kvm))
3854                exec_control &= ~CPU_BASED_HLT_EXITING;
3855        return exec_control;
3856}
3857
3858
3859static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
3860{
3861        struct kvm_vcpu *vcpu = &vmx->vcpu;
3862
3863        u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3864
3865        if (pt_mode == PT_MODE_SYSTEM)
3866                exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
3867        if (!cpu_need_virtualize_apic_accesses(vcpu))
3868                exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3869        if (vmx->vpid == 0)
3870                exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
3871        if (!enable_ept) {
3872                exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
3873                enable_unrestricted_guest = 0;
3874        }
3875        if (!enable_unrestricted_guest)
3876                exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
3877        if (kvm_pause_in_guest(vmx->vcpu.kvm))
3878                exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
3879        if (!kvm_vcpu_apicv_active(vcpu))
3880                exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
3881                                  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3882        exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
3883
3884        /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
3885         * in vmx_set_cr4.  */
3886        exec_control &= ~SECONDARY_EXEC_DESC;
3887
3888        /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
3889           (handle_vmptrld).
3890           We can NOT enable shadow_vmcs here because we don't have yet
3891           a current VMCS12
3892        */
3893        exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
3894
3895        if (!enable_pml)
3896                exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
3897
3898        if (vmx_xsaves_supported()) {
3899                /* Exposing XSAVES only when XSAVE is exposed */
3900                bool xsaves_enabled =
3901                        guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
3902                        guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
3903
3904                if (!xsaves_enabled)
3905                        exec_control &= ~SECONDARY_EXEC_XSAVES;
3906
3907                if (nested) {
3908                        if (xsaves_enabled)
3909                                vmx->nested.msrs.secondary_ctls_high |=
3910                                        SECONDARY_EXEC_XSAVES;
3911                        else
3912                                vmx->nested.msrs.secondary_ctls_high &=
3913                                        ~SECONDARY_EXEC_XSAVES;
3914                }
3915        }
3916
3917        if (vmx_rdtscp_supported()) {
3918                bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
3919                if (!rdtscp_enabled)
3920                        exec_control &= ~SECONDARY_EXEC_RDTSCP;
3921
3922                if (nested) {
3923                        if (rdtscp_enabled)
3924                                vmx->nested.msrs.secondary_ctls_high |=
3925                                        SECONDARY_EXEC_RDTSCP;
3926                        else
3927                                vmx->nested.msrs.secondary_ctls_high &=
3928                                        ~SECONDARY_EXEC_RDTSCP;
3929                }
3930        }
3931
3932        if (vmx_invpcid_supported()) {
3933                /* Exposing INVPCID only when PCID is exposed */
3934                bool invpcid_enabled =
3935                        guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
3936                        guest_cpuid_has(vcpu, X86_FEATURE_PCID);
3937
3938                if (!invpcid_enabled) {
3939                        exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
3940                        guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
3941                }
3942
3943                if (nested) {
3944                        if (invpcid_enabled)
3945                                vmx->nested.msrs.secondary_ctls_high |=
3946                                        SECONDARY_EXEC_ENABLE_INVPCID;
3947                        else
3948                                vmx->nested.msrs.secondary_ctls_high &=
3949                                        ~SECONDARY_EXEC_ENABLE_INVPCID;
3950                }
3951        }
3952
3953        if (vmx_rdrand_supported()) {
3954                bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
3955                if (rdrand_enabled)
3956                        exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
3957
3958                if (nested) {
3959                        if (rdrand_enabled)
3960                                vmx->nested.msrs.secondary_ctls_high |=
3961                                        SECONDARY_EXEC_RDRAND_EXITING;
3962                        else
3963                                vmx->nested.msrs.secondary_ctls_high &=
3964                                        ~SECONDARY_EXEC_RDRAND_EXITING;
3965                }
3966        }
3967
3968        if (vmx_rdseed_supported()) {
3969                bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
3970                if (rdseed_enabled)
3971                        exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
3972
3973                if (nested) {
3974                        if (rdseed_enabled)
3975                                vmx->nested.msrs.secondary_ctls_high |=
3976                                        SECONDARY_EXEC_RDSEED_EXITING;
3977                        else
3978                                vmx->nested.msrs.secondary_ctls_high &=
3979                                        ~SECONDARY_EXEC_RDSEED_EXITING;
3980                }
3981        }
3982
3983        vmx->secondary_exec_control = exec_control;
3984}
3985
3986static void ept_set_mmio_spte_mask(void)
3987{
3988        /*
3989         * EPT Misconfigurations can be generated if the value of bits 2:0
3990         * of an EPT paging-structure entry is 110b (write/execute).
3991         */
3992        kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
3993                                   VMX_EPT_MISCONFIG_WX_VALUE);
3994}
3995
3996#define VMX_XSS_EXIT_BITMAP 0
3997
3998/*
3999 * Sets up the vmcs for emulated real mode.
4000 */
4001static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
4002{
4003        int i;
4004
4005        if (nested)
4006                nested_vmx_vcpu_setup();
4007
4008        if (cpu_has_vmx_msr_bitmap())
4009                vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4010
4011        vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4012
4013        /* Control */
4014        vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4015        vmx->hv_deadline_tsc = -1;
4016
4017        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4018
4019        if (cpu_has_secondary_exec_ctrls()) {
4020                vmx_compute_secondary_exec_control(vmx);
4021                vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4022                             vmx->secondary_exec_control);
4023        }
4024
4025        if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4026                vmcs_write64(EOI_EXIT_BITMAP0, 0);
4027                vmcs_write64(EOI_EXIT_BITMAP1, 0);
4028                vmcs_write64(EOI_EXIT_BITMAP2, 0);
4029                vmcs_write64(EOI_EXIT_BITMAP3, 0);
4030
4031                vmcs_write16(GUEST_INTR_STATUS, 0);
4032
4033                vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4034                vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4035        }
4036
4037        if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4038                vmcs_write32(PLE_GAP, ple_gap);
4039                vmx->ple_window = ple_window;
4040                vmx->ple_window_dirty = true;
4041        }
4042
4043        vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4044        vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4045        vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4046
4047        vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4048        vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4049        vmx_set_constant_host_state(vmx);
4050        vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4051        vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4052
4053        if (cpu_has_vmx_vmfunc())
4054                vmcs_write64(VM_FUNCTION_CONTROL, 0);
4055
4056        vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4057        vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4058        vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4059        vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4060        vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4061
4062        if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4063                vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4064
4065        for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4066                u32 index = vmx_msr_index[i];
4067                u32 data_low, data_high;
4068                int j = vmx->nmsrs;
4069
4070                if (rdmsr_safe(index, &data_low, &data_high) < 0)
4071                        continue;
4072                if (wrmsr_safe(index, data_low, data_high) < 0)
4073                        continue;
4074                vmx->guest_msrs[j].index = i;
4075                vmx->guest_msrs[j].data = 0;
4076                vmx->guest_msrs[j].mask = -1ull;
4077                ++vmx->nmsrs;
4078        }
4079
4080        vm_exit_controls_init(vmx, vmx_vmexit_ctrl());
4081
4082        /* 22.2.1, 20.8.1 */
4083        vm_entry_controls_init(vmx, vmx_vmentry_ctrl());
4084
4085        vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
4086        vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
4087
4088        set_cr4_guest_host_mask(vmx);
4089
4090        if (vmx_xsaves_supported())
4091                vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4092
4093        if (enable_pml) {
4094                vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4095                vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4096        }
4097
4098        if (cpu_has_vmx_encls_vmexit())
4099                vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4100
4101        if (pt_mode == PT_MODE_HOST_GUEST) {
4102                memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4103                /* Bit[6~0] are forced to 1, writes are ignored. */
4104                vmx->pt_desc.guest.output_mask = 0x7F;
4105                vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4106        }
4107}
4108
4109static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4110{
4111        struct vcpu_vmx *vmx = to_vmx(vcpu);
4112        struct msr_data apic_base_msr;
4113        u64 cr0;
4114
4115        vmx->rmode.vm86_active = 0;
4116        vmx->spec_ctrl = 0;
4117
4118        vcpu->arch.microcode_version = 0x100000000ULL;
4119        vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4120        kvm_set_cr8(vcpu, 0);
4121
4122        if (!init_event) {
4123                apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4124                                     MSR_IA32_APICBASE_ENABLE;
4125                if (kvm_vcpu_is_reset_bsp(vcpu))
4126                        apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4127                apic_base_msr.host_initiated = true;
4128                kvm_set_apic_base(vcpu, &apic_base_msr);
4129        }
4130
4131        vmx_segment_cache_clear(vmx);
4132
4133        seg_setup(VCPU_SREG_CS);
4134        vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4135        vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4136
4137        seg_setup(VCPU_SREG_DS);
4138        seg_setup(VCPU_SREG_ES);
4139        seg_setup(VCPU_SREG_FS);
4140        seg_setup(VCPU_SREG_GS);
4141        seg_setup(VCPU_SREG_SS);
4142
4143        vmcs_write16(GUEST_TR_SELECTOR, 0);
4144        vmcs_writel(GUEST_TR_BASE, 0);
4145        vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4146        vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4147
4148        vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4149        vmcs_writel(GUEST_LDTR_BASE, 0);
4150        vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4151        vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4152
4153        if (!init_event) {
4154                vmcs_write32(GUEST_SYSENTER_CS, 0);
4155                vmcs_writel(GUEST_SYSENTER_ESP, 0);
4156                vmcs_writel(GUEST_SYSENTER_EIP, 0);
4157                vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4158        }
4159
4160        kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4161        kvm_rip_write(vcpu, 0xfff0);
4162
4163        vmcs_writel(GUEST_GDTR_BASE, 0);
4164        vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4165
4166        vmcs_writel(GUEST_IDTR_BASE, 0);
4167        vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4168
4169        vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4170        vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4171        vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4172        if (kvm_mpx_supported())
4173                vmcs_write64(GUEST_BNDCFGS, 0);
4174
4175        setup_msrs(vmx);
4176
4177        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4178
4179        if (cpu_has_vmx_tpr_shadow() && !init_event) {
4180                vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4181                if (cpu_need_tpr_shadow(vcpu))
4182                        vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4183                                     __pa(vcpu->arch.apic->regs));
4184                vmcs_write32(TPR_THRESHOLD, 0);
4185        }
4186
4187        kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4188
4189        if (vmx->vpid != 0)
4190                vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4191
4192        cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4193        vmx->vcpu.arch.cr0 = cr0;
4194        vmx_set_cr0(vcpu, cr0); /* enter rmode */
4195        vmx_set_cr4(vcpu, 0);
4196        vmx_set_efer(vcpu, 0);
4197
4198        update_exception_bitmap(vcpu);
4199
4200        vpid_sync_context(vmx->vpid);
4201        if (init_event)
4202                vmx_clear_hlt(vcpu);
4203}
4204
4205static void enable_irq_window(struct kvm_vcpu *vcpu)
4206{
4207        vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
4208                      CPU_BASED_VIRTUAL_INTR_PENDING);
4209}
4210
4211static void enable_nmi_window(struct kvm_vcpu *vcpu)
4212{
4213        if (!enable_vnmi ||
4214            vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4215                enable_irq_window(vcpu);
4216                return;
4217        }
4218
4219        vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
4220                      CPU_BASED_VIRTUAL_NMI_PENDING);
4221}
4222
4223static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4224{
4225        struct vcpu_vmx *vmx = to_vmx(vcpu);
4226        uint32_t intr;
4227        int irq = vcpu->arch.interrupt.nr;
4228
4229        trace_kvm_inj_virq(irq);
4230
4231        ++vcpu->stat.irq_injections;
4232        if (vmx->rmode.vm86_active) {
4233                int inc_eip = 0;
4234                if (vcpu->arch.interrupt.soft)
4235                        inc_eip = vcpu->arch.event_exit_inst_len;
4236                if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4237                        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4238                return;
4239        }
4240        intr = irq | INTR_INFO_VALID_MASK;
4241        if (vcpu->arch.interrupt.soft) {
4242                intr |= INTR_TYPE_SOFT_INTR;
4243                vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4244                             vmx->vcpu.arch.event_exit_inst_len);
4245        } else
4246                intr |= INTR_TYPE_EXT_INTR;
4247        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4248
4249        vmx_clear_hlt(vcpu);
4250}
4251
4252static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4253{
4254        struct vcpu_vmx *vmx = to_vmx(vcpu);
4255
4256        if (!enable_vnmi) {
4257                /*
4258                 * Tracking the NMI-blocked state in software is built upon
4259                 * finding the next open IRQ window. This, in turn, depends on
4260                 * well-behaving guests: They have to keep IRQs disabled at
4261                 * least as long as the NMI handler runs. Otherwise we may
4262                 * cause NMI nesting, maybe breaking the guest. But as this is
4263                 * highly unlikely, we can live with the residual risk.
4264                 */
4265                vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4266                vmx->loaded_vmcs->vnmi_blocked_time = 0;
4267        }
4268
4269        ++vcpu->stat.nmi_injections;
4270        vmx->loaded_vmcs->nmi_known_unmasked = false;
4271
4272        if (vmx->rmode.vm86_active) {
4273                if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4274                        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4275                return;
4276        }
4277
4278        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4279                        INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4280
4281        vmx_clear_hlt(vcpu);
4282}
4283
4284bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4285{
4286        struct vcpu_vmx *vmx = to_vmx(vcpu);
4287        bool masked;
4288
4289        if (!enable_vnmi)
4290                return vmx->loaded_vmcs->soft_vnmi_blocked;
4291        if (vmx->loaded_vmcs->nmi_known_unmasked)
4292                return false;
4293        masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4294        vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4295        return masked;
4296}
4297
4298void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4299{
4300        struct vcpu_vmx *vmx = to_vmx(vcpu);
4301
4302        if (!enable_vnmi) {
4303                if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4304                        vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4305                        vmx->loaded_vmcs->vnmi_blocked_time = 0;
4306                }
4307        } else {
4308                vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4309                if (masked)
4310                        vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4311                                      GUEST_INTR_STATE_NMI);
4312                else
4313                        vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4314                                        GUEST_INTR_STATE_NMI);
4315        }
4316}
4317
4318static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4319{
4320        if (to_vmx(vcpu)->nested.nested_run_pending)
4321                return 0;
4322
4323        if (!enable_vnmi &&
4324            to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4325                return 0;
4326
4327        return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4328                  (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4329                   | GUEST_INTR_STATE_NMI));
4330}
4331
4332static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4333{
4334        return (!to_vmx(vcpu)->nested.nested_run_pending &&
4335                vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4336                !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4337                        (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4338}
4339
4340static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4341{
4342        int ret;
4343
4344        if (enable_unrestricted_guest)
4345                return 0;
4346
4347        ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4348                                    PAGE_SIZE * 3);
4349        if (ret)
4350                return ret;
4351        to_kvm_vmx(kvm)->tss_addr = addr;
4352        return init_rmode_tss(kvm);
4353}
4354
4355static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4356{
4357        to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4358        return 0;
4359}
4360
4361static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4362{
4363        switch (vec) {
4364        case BP_VECTOR:
4365                /*
4366                 * Update instruction length as we may reinject the exception
4367                 * from user space while in guest debugging mode.
4368                 */
4369                to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4370                        vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4371                if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4372                        return false;
4373                /* fall through */
4374        case DB_VECTOR:
4375                if (vcpu->guest_debug &
4376                        (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4377                        return false;
4378                /* fall through */
4379        case DE_VECTOR:
4380        case OF_VECTOR:
4381        case BR_VECTOR:
4382        case UD_VECTOR:
4383        case DF_VECTOR:
4384        case SS_VECTOR:
4385        case GP_VECTOR:
4386        case MF_VECTOR:
4387                return true;
4388        break;
4389        }
4390        return false;
4391}
4392
4393static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4394                                  int vec, u32 err_code)
4395{
4396        /*
4397         * Instruction with address size override prefix opcode 0x67
4398         * Cause the #SS fault with 0 error code in VM86 mode.
4399         */
4400        if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4401                if (kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4402                        if (vcpu->arch.halt_request) {
4403                                vcpu->arch.halt_request = 0;
4404                                return kvm_vcpu_halt(vcpu);
4405                        }
4406                        return 1;
4407                }
4408                return 0;
4409        }
4410
4411        /*
4412         * Forward all other exceptions that are valid in real mode.
4413         * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4414         *        the required debugging infrastructure rework.
4415         */
4416        kvm_queue_exception(vcpu, vec);
4417        return 1;
4418}
4419
4420/*
4421 * Trigger machine check on the host. We assume all the MSRs are already set up
4422 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4423 * We pass a fake environment to the machine check handler because we want
4424 * the guest to be always treated like user space, no matter what context
4425 * it used internally.
4426 */
4427static void kvm_machine_check(void)
4428{
4429#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4430        struct pt_regs regs = {
4431                .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4432                .flags = X86_EFLAGS_IF,
4433        };
4434
4435        do_machine_check(&regs, 0);
4436#endif
4437}
4438
4439static int handle_machine_check(struct kvm_vcpu *vcpu)
4440{
4441        /* already handled by vcpu_run */
4442        return 1;
4443}
4444
4445static int handle_exception(struct kvm_vcpu *vcpu)
4446{
4447        struct vcpu_vmx *vmx = to_vmx(vcpu);
4448        struct kvm_run *kvm_run = vcpu->run;
4449        u32 intr_info, ex_no, error_code;
4450        unsigned long cr2, rip, dr6;
4451        u32 vect_info;
4452        enum emulation_result er;
4453
4454        vect_info = vmx->idt_vectoring_info;
4455        intr_info = vmx->exit_intr_info;
4456
4457        if (is_machine_check(intr_info))
4458                return handle_machine_check(vcpu);
4459
4460        if (is_nmi(intr_info))
4461                return 1;  /* already handled by vmx_vcpu_run() */
4462
4463        if (is_invalid_opcode(intr_info))
4464                return handle_ud(vcpu);
4465
4466        error_code = 0;
4467        if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4468                error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4469
4470        if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4471                WARN_ON_ONCE(!enable_vmware_backdoor);
4472                er = kvm_emulate_instruction(vcpu,
4473                        EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL);
4474                if (er == EMULATE_USER_EXIT)
4475                        return 0;
4476                else if (er != EMULATE_DONE)
4477                        kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4478                return 1;
4479        }
4480
4481        /*
4482         * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4483         * MMIO, it is better to report an internal error.
4484         * See the comments in vmx_handle_exit.
4485         */
4486        if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4487            !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4488                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4489                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4490                vcpu->run->internal.ndata = 3;
4491                vcpu->run->internal.data[0] = vect_info;
4492                vcpu->run->internal.data[1] = intr_info;
4493                vcpu->run->internal.data[2] = error_code;
4494                return 0;
4495        }
4496
4497        if (is_page_fault(intr_info)) {
4498                cr2 = vmcs_readl(EXIT_QUALIFICATION);
4499                /* EPT won't cause page fault directly */
4500                WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
4501                return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4502        }
4503
4504        ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4505
4506        if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4507                return handle_rmode_exception(vcpu, ex_no, error_code);
4508
4509        switch (ex_no) {
4510        case AC_VECTOR:
4511                kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4512                return 1;
4513        case DB_VECTOR:
4514                dr6 = vmcs_readl(EXIT_QUALIFICATION);
4515                if (!(vcpu->guest_debug &
4516                      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4517                        vcpu->arch.dr6 &= ~15;
4518                        vcpu->arch.dr6 |= dr6 | DR6_RTM;
4519                        if (is_icebp(intr_info))
4520                                skip_emulated_instruction(vcpu);
4521
4522                        kvm_queue_exception(vcpu, DB_VECTOR);
4523                        return 1;
4524                }
4525                kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4526                kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4527                /* fall through */
4528        case BP_VECTOR:
4529                /*
4530                 * Update instruction length as we may reinject #BP from
4531                 * user space while in guest debugging mode. Reading it for
4532                 * #DB as well causes no harm, it is not used in that case.
4533                 */
4534                vmx->vcpu.arch.event_exit_inst_len =
4535                        vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4536                kvm_run->exit_reason = KVM_EXIT_DEBUG;
4537                rip = kvm_rip_read(vcpu);
4538                kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4539                kvm_run->debug.arch.exception = ex_no;
4540                break;
4541        default:
4542                kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4543                kvm_run->ex.exception = ex_no;
4544                kvm_run->ex.error_code = error_code;
4545                break;
4546        }
4547        return 0;
4548}
4549
4550static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4551{
4552        ++vcpu->stat.irq_exits;
4553        return 1;
4554}
4555
4556static int handle_triple_fault(struct kvm_vcpu *vcpu)
4557{
4558        vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4559        vcpu->mmio_needed = 0;
4560        return 0;
4561}
4562
4563static int handle_io(struct kvm_vcpu *vcpu)
4564{
4565        unsigned long exit_qualification;
4566        int size, in, string;
4567        unsigned port;
4568
4569        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4570        string = (exit_qualification & 16) != 0;
4571
4572        ++vcpu->stat.io_exits;
4573
4574        if (string)
4575                return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4576
4577        port = exit_qualification >> 16;
4578        size = (exit_qualification & 7) + 1;
4579        in = (exit_qualification & 8) != 0;
4580
4581        return kvm_fast_pio(vcpu, size, port, in);
4582}
4583
4584static void
4585vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4586{
4587        /*
4588         * Patch in the VMCALL instruction:
4589         */
4590        hypercall[0] = 0x0f;
4591        hypercall[1] = 0x01;
4592        hypercall[2] = 0xc1;
4593}
4594
4595/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4596static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4597{
4598        if (is_guest_mode(vcpu)) {
4599                struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4600                unsigned long orig_val = val;
4601
4602                /*
4603                 * We get here when L2 changed cr0 in a way that did not change
4604                 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4605                 * but did change L0 shadowed bits. So we first calculate the
4606                 * effective cr0 value that L1 would like to write into the
4607                 * hardware. It consists of the L2-owned bits from the new
4608                 * value combined with the L1-owned bits from L1's guest_cr0.
4609                 */
4610                val = (val & ~vmcs12->cr0_guest_host_mask) |
4611                        (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4612
4613                if (!nested_guest_cr0_valid(vcpu, val))
4614                        return 1;
4615
4616                if (kvm_set_cr0(vcpu, val))
4617                        return 1;
4618                vmcs_writel(CR0_READ_SHADOW, orig_val);
4619                return 0;
4620        } else {
4621                if (to_vmx(vcpu)->nested.vmxon &&
4622                    !nested_host_cr0_valid(vcpu, val))
4623                        return 1;
4624
4625                return kvm_set_cr0(vcpu, val);
4626        }
4627}
4628
4629static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4630{
4631        if (is_guest_mode(vcpu)) {
4632                struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4633                unsigned long orig_val = val;
4634
4635                /* analogously to handle_set_cr0 */
4636                val = (val & ~vmcs12->cr4_guest_host_mask) |
4637                        (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4638                if (kvm_set_cr4(vcpu, val))
4639                        return 1;
4640                vmcs_writel(CR4_READ_SHADOW, orig_val);
4641                return 0;
4642        } else
4643                return kvm_set_cr4(vcpu, val);
4644}
4645
4646static int handle_desc(struct kvm_vcpu *vcpu)
4647{
4648        WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4649        return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4650}
4651
4652static int handle_cr(struct kvm_vcpu *vcpu)
4653{
4654        unsigned long exit_qualification, val;
4655        int cr;
4656        int reg;
4657        int err;
4658        int ret;
4659
4660        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4661        cr = exit_qualification & 15;
4662        reg = (exit_qualification >> 8) & 15;
4663        switch ((exit_qualification >> 4) & 3) {
4664        case 0: /* mov to cr */
4665                val = kvm_register_readl(vcpu, reg);
4666                trace_kvm_cr_write(cr, val);
4667                switch (cr) {
4668                case 0:
4669                        err = handle_set_cr0(vcpu, val);
4670                        return kvm_complete_insn_gp(vcpu, err);
4671                case 3:
4672                        WARN_ON_ONCE(enable_unrestricted_guest);
4673                        err = kvm_set_cr3(vcpu, val);
4674                        return kvm_complete_insn_gp(vcpu, err);
4675                case 4:
4676                        err = handle_set_cr4(vcpu, val);
4677                        return kvm_complete_insn_gp(vcpu, err);
4678                case 8: {
4679                                u8 cr8_prev = kvm_get_cr8(vcpu);
4680                                u8 cr8 = (u8)val;
4681                                err = kvm_set_cr8(vcpu, cr8);
4682                                ret = kvm_complete_insn_gp(vcpu, err);
4683                                if (lapic_in_kernel(vcpu))
4684                                        return ret;
4685                                if (cr8_prev <= cr8)
4686                                        return ret;
4687                                /*
4688                                 * TODO: we might be squashing a
4689                                 * KVM_GUESTDBG_SINGLESTEP-triggered
4690                                 * KVM_EXIT_DEBUG here.
4691                                 */
4692                                vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4693                                return 0;
4694                        }
4695                }
4696                break;
4697        case 2: /* clts */
4698                WARN_ONCE(1, "Guest should always own CR0.TS");
4699                vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4700                trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4701                return kvm_skip_emulated_instruction(vcpu);
4702        case 1: /*mov from cr*/
4703                switch (cr) {
4704                case 3:
4705                        WARN_ON_ONCE(enable_unrestricted_guest);
4706                        val = kvm_read_cr3(vcpu);
4707                        kvm_register_write(vcpu, reg, val);
4708                        trace_kvm_cr_read(cr, val);
4709                        return kvm_skip_emulated_instruction(vcpu);
4710                case 8:
4711                        val = kvm_get_cr8(vcpu);
4712                        kvm_register_write(vcpu, reg, val);
4713                        trace_kvm_cr_read(cr, val);
4714                        return kvm_skip_emulated_instruction(vcpu);
4715                }
4716                break;
4717        case 3: /* lmsw */
4718                val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4719                trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4720                kvm_lmsw(vcpu, val);
4721
4722                return kvm_skip_emulated_instruction(vcpu);
4723        default:
4724                break;
4725        }
4726        vcpu->run->exit_reason = 0;
4727        vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4728               (int)(exit_qualification >> 4) & 3, cr);
4729        return 0;
4730}
4731
4732static int handle_dr(struct kvm_vcpu *vcpu)
4733{
4734        unsigned long exit_qualification;
4735        int dr, dr7, reg;
4736
4737        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4738        dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4739
4740        /* First, if DR does not exist, trigger UD */
4741        if (!kvm_require_dr(vcpu, dr))
4742                return 1;
4743
4744        /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4745        if (!kvm_require_cpl(vcpu, 0))
4746                return 1;
4747        dr7 = vmcs_readl(GUEST_DR7);
4748        if (dr7 & DR7_GD) {
4749                /*
4750                 * As the vm-exit takes precedence over the debug trap, we
4751                 * need to emulate the latter, either for the host or the
4752                 * guest debugging itself.
4753                 */
4754                if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4755                        vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4756                        vcpu->run->debug.arch.dr7 = dr7;
4757                        vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4758                        vcpu->run->debug.arch.exception = DB_VECTOR;
4759                        vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4760                        return 0;
4761                } else {
4762                        vcpu->arch.dr6 &= ~15;
4763                        vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
4764                        kvm_queue_exception(vcpu, DB_VECTOR);
4765                        return 1;
4766                }
4767        }
4768
4769        if (vcpu->guest_debug == 0) {
4770                vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
4771                                CPU_BASED_MOV_DR_EXITING);
4772
4773                /*
4774                 * No more DR vmexits; force a reload of the debug registers
4775                 * and reenter on this instruction.  The next vmexit will
4776                 * retrieve the full state of the debug registers.
4777                 */
4778                vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4779                return 1;
4780        }
4781
4782        reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4783        if (exit_qualification & TYPE_MOV_FROM_DR) {
4784                unsigned long val;
4785
4786                if (kvm_get_dr(vcpu, dr, &val))
4787                        return 1;
4788                kvm_register_write(vcpu, reg, val);
4789        } else
4790                if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4791                        return 1;
4792
4793        return kvm_skip_emulated_instruction(vcpu);
4794}
4795
4796static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
4797{
4798        return vcpu->arch.dr6;
4799}
4800
4801static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
4802{
4803}
4804
4805static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
4806{
4807        get_debugreg(vcpu->arch.db[0], 0);
4808        get_debugreg(vcpu->arch.db[1], 1);
4809        get_debugreg(vcpu->arch.db[2], 2);
4810        get_debugreg(vcpu->arch.db[3], 3);
4811        get_debugreg(vcpu->arch.dr6, 6);
4812        vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
4813
4814        vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
4815        vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
4816}
4817
4818static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4819{
4820        vmcs_writel(GUEST_DR7, val);
4821}
4822
4823static int handle_cpuid(struct kvm_vcpu *vcpu)
4824{
4825        return kvm_emulate_cpuid(vcpu);
4826}
4827
4828static int handle_rdmsr(struct kvm_vcpu *vcpu)
4829{
4830        u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4831        struct msr_data msr_info;
4832
4833        msr_info.index = ecx;
4834        msr_info.host_initiated = false;
4835        if (vmx_get_msr(vcpu, &msr_info)) {
4836                trace_kvm_msr_read_ex(ecx);
4837                kvm_inject_gp(vcpu, 0);
4838                return 1;
4839        }
4840
4841        trace_kvm_msr_read(ecx, msr_info.data);
4842
4843        /* FIXME: handling of bits 32:63 of rax, rdx */
4844        vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
4845        vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
4846        return kvm_skip_emulated_instruction(vcpu);
4847}
4848
4849static int handle_wrmsr(struct kvm_vcpu *vcpu)
4850{
4851        struct msr_data msr;
4852        u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4853        u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
4854                | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
4855
4856        msr.data = data;
4857        msr.index = ecx;
4858        msr.host_initiated = false;
4859        if (kvm_set_msr(vcpu, &msr) != 0) {
4860                trace_kvm_msr_write_ex(ecx, data);
4861                kvm_inject_gp(vcpu, 0);
4862                return 1;
4863        }
4864
4865        trace_kvm_msr_write(ecx, data);
4866        return kvm_skip_emulated_instruction(vcpu);
4867}
4868
4869static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
4870{
4871        kvm_apic_update_ppr(vcpu);
4872        return 1;
4873}
4874
4875static int handle_interrupt_window(struct kvm_vcpu *vcpu)
4876{
4877        vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
4878                        CPU_BASED_VIRTUAL_INTR_PENDING);
4879
4880        kvm_make_request(KVM_REQ_EVENT, vcpu);
4881
4882        ++vcpu->stat.irq_window_exits;
4883        return 1;
4884}
4885
4886static int handle_halt(struct kvm_vcpu *vcpu)
4887{
4888        return kvm_emulate_halt(vcpu);
4889}
4890
4891static int handle_vmcall(struct kvm_vcpu *vcpu)
4892{
4893        return kvm_emulate_hypercall(vcpu);
4894}
4895
4896static int handle_invd(struct kvm_vcpu *vcpu)
4897{
4898        return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4899}
4900
4901static int handle_invlpg(struct kvm_vcpu *vcpu)
4902{
4903        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4904
4905        kvm_mmu_invlpg(vcpu, exit_qualification);
4906        return kvm_skip_emulated_instruction(vcpu);
4907}
4908
4909static int handle_rdpmc(struct kvm_vcpu *vcpu)
4910{
4911        int err;
4912
4913        err = kvm_rdpmc(vcpu);
4914        return kvm_complete_insn_gp(vcpu, err);
4915}
4916
4917static int handle_wbinvd(struct kvm_vcpu *vcpu)
4918{
4919        return kvm_emulate_wbinvd(vcpu);
4920}
4921
4922static int handle_xsetbv(struct kvm_vcpu *vcpu)
4923{
4924        u64 new_bv = kvm_read_edx_eax(vcpu);
4925        u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4926
4927        if (kvm_set_xcr(vcpu, index, new_bv) == 0)
4928                return kvm_skip_emulated_instruction(vcpu);
4929        return 1;
4930}
4931
4932static int handle_xsaves(struct kvm_vcpu *vcpu)
4933{
4934        kvm_skip_emulated_instruction(vcpu);
4935        WARN(1, "this should never happen\n");
4936        return 1;
4937}
4938
4939static int handle_xrstors(struct kvm_vcpu *vcpu)
4940{
4941        kvm_skip_emulated_instruction(vcpu);
4942        WARN(1, "this should never happen\n");
4943        return 1;
4944}
4945
4946static int handle_apic_access(struct kvm_vcpu *vcpu)
4947{
4948        if (likely(fasteoi)) {
4949                unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4950                int access_type, offset;
4951
4952                access_type = exit_qualification & APIC_ACCESS_TYPE;
4953                offset = exit_qualification & APIC_ACCESS_OFFSET;
4954                /*
4955                 * Sane guest uses MOV to write EOI, with written value
4956                 * not cared. So make a short-circuit here by avoiding
4957                 * heavy instruction emulation.
4958                 */
4959                if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
4960                    (offset == APIC_EOI)) {
4961                        kvm_lapic_set_eoi(vcpu);
4962                        return kvm_skip_emulated_instruction(vcpu);
4963                }
4964        }
4965        return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4966}
4967
4968static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
4969{
4970        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4971        int vector = exit_qualification & 0xff;
4972
4973        /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
4974        kvm_apic_set_eoi_accelerated(vcpu, vector);
4975        return 1;
4976}
4977
4978static int handle_apic_write(struct kvm_vcpu *vcpu)
4979{
4980        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4981        u32 offset = exit_qualification & 0xfff;
4982
4983        /* APIC-write VM exit is trap-like and thus no need to adjust IP */
4984        kvm_apic_write_nodecode(vcpu, offset);
4985        return 1;
4986}
4987
4988static int handle_task_switch(struct kvm_vcpu *vcpu)
4989{
4990        struct vcpu_vmx *vmx = to_vmx(vcpu);
4991        unsigned long exit_qualification;
4992        bool has_error_code = false;
4993        u32 error_code = 0;
4994        u16 tss_selector;
4995        int reason, type, idt_v, idt_index;
4996
4997        idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
4998        idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
4999        type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5000
5001        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5002
5003        reason = (u32)exit_qualification >> 30;
5004        if (reason == TASK_SWITCH_GATE && idt_v) {
5005                switch (type) {
5006                case INTR_TYPE_NMI_INTR:
5007                        vcpu->arch.nmi_injected = false;
5008                        vmx_set_nmi_mask(vcpu, true);
5009                        break;
5010                case INTR_TYPE_EXT_INTR:
5011                case INTR_TYPE_SOFT_INTR:
5012                        kvm_clear_interrupt_queue(vcpu);
5013                        break;
5014                case INTR_TYPE_HARD_EXCEPTION:
5015                        if (vmx->idt_vectoring_info &
5016                            VECTORING_INFO_DELIVER_CODE_MASK) {
5017                                has_error_code = true;
5018                                error_code =
5019                                        vmcs_read32(IDT_VECTORING_ERROR_CODE);
5020                        }
5021                        /* fall through */
5022                case INTR_TYPE_SOFT_EXCEPTION:
5023                        kvm_clear_exception_queue(vcpu);
5024                        break;
5025                default:
5026                        break;
5027                }
5028        }
5029        tss_selector = exit_qualification;
5030
5031        if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5032                       type != INTR_TYPE_EXT_INTR &&
5033                       type != INTR_TYPE_NMI_INTR))
5034                skip_emulated_instruction(vcpu);
5035
5036        if (kvm_task_switch(vcpu, tss_selector,
5037                            type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5038                            has_error_code, error_code) == EMULATE_FAIL) {
5039                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5040                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5041                vcpu->run->internal.ndata = 0;
5042                return 0;
5043        }
5044
5045        /*
5046         * TODO: What about debug traps on tss switch?
5047         *       Are we supposed to inject them and update dr6?
5048         */
5049
5050        return 1;
5051}
5052
5053static int handle_ept_violation(struct kvm_vcpu *vcpu)
5054{
5055        unsigned long exit_qualification;
5056        gpa_t gpa;
5057        u64 error_code;
5058
5059        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5060
5061        /*
5062         * EPT violation happened while executing iret from NMI,
5063         * "blocked by NMI" bit has to be set before next VM entry.
5064         * There are errata that may cause this bit to not be set:
5065         * AAK134, BY25.
5066         */
5067        if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5068                        enable_vnmi &&
5069                        (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5070                vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5071
5072        gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5073        trace_kvm_page_fault(gpa, exit_qualification);
5074
5075        /* Is it a read fault? */
5076        error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5077                     ? PFERR_USER_MASK : 0;
5078        /* Is it a write fault? */
5079        error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5080                      ? PFERR_WRITE_MASK : 0;
5081        /* Is it a fetch fault? */
5082        error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5083                      ? PFERR_FETCH_MASK : 0;
5084        /* ept page table entry is present? */
5085        error_code |= (exit_qualification &
5086                       (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5087                        EPT_VIOLATION_EXECUTABLE))
5088                      ? PFERR_PRESENT_MASK : 0;
5089
5090        error_code |= (exit_qualification & 0x100) != 0 ?
5091               PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5092
5093        vcpu->arch.exit_qualification = exit_qualification;
5094        return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5095}
5096
5097static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5098{
5099        gpa_t gpa;
5100
5101        /*
5102         * A nested guest cannot optimize MMIO vmexits, because we have an
5103         * nGPA here instead of the required GPA.
5104         */
5105        gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5106        if (!is_guest_mode(vcpu) &&
5107            !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5108                trace_kvm_fast_mmio(gpa);
5109                /*
5110                 * Doing kvm_skip_emulated_instruction() depends on undefined
5111                 * behavior: Intel's manual doesn't mandate
5112                 * VM_EXIT_INSTRUCTION_LEN to be set in VMCS when EPT MISCONFIG
5113                 * occurs and while on real hardware it was observed to be set,
5114                 * other hypervisors (namely Hyper-V) don't set it, we end up
5115                 * advancing IP with some random value. Disable fast mmio when
5116                 * running nested and keep it for real hardware in hope that
5117                 * VM_EXIT_INSTRUCTION_LEN will always be set correctly.
5118                 */
5119                if (!static_cpu_has(X86_FEATURE_HYPERVISOR))
5120                        return kvm_skip_emulated_instruction(vcpu);
5121                else
5122                        return kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) ==
5123                                                                EMULATE_DONE;
5124        }
5125
5126        return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5127}
5128
5129static int handle_nmi_window(struct kvm_vcpu *vcpu)
5130{
5131        WARN_ON_ONCE(!enable_vnmi);
5132        vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
5133                        CPU_BASED_VIRTUAL_NMI_PENDING);
5134        ++vcpu->stat.nmi_window_exits;
5135        kvm_make_request(KVM_REQ_EVENT, vcpu);
5136
5137        return 1;
5138}
5139
5140static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5141{
5142        struct vcpu_vmx *vmx = to_vmx(vcpu);
5143        enum emulation_result err = EMULATE_DONE;
5144        int ret = 1;
5145        u32 cpu_exec_ctrl;
5146        bool intr_window_requested;
5147        unsigned count = 130;
5148
5149        /*
5150         * We should never reach the point where we are emulating L2
5151         * due to invalid guest state as that means we incorrectly
5152         * allowed a nested VMEntry with an invalid vmcs12.
5153         */
5154        WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
5155
5156        cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5157        intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5158
5159        while (vmx->emulation_required && count-- != 0) {
5160                if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5161                        return handle_interrupt_window(&vmx->vcpu);
5162
5163                if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5164                        return 1;
5165
5166                err = kvm_emulate_instruction(vcpu, 0);
5167
5168                if (err == EMULATE_USER_EXIT) {
5169                        ++vcpu->stat.mmio_exits;
5170                        ret = 0;
5171                        goto out;
5172                }
5173
5174                if (err != EMULATE_DONE)
5175                        goto emulation_error;
5176
5177                if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5178                    vcpu->arch.exception.pending)
5179                        goto emulation_error;
5180
5181                if (vcpu->arch.halt_request) {
5182                        vcpu->arch.halt_request = 0;
5183                        ret = kvm_vcpu_halt(vcpu);
5184                        goto out;
5185                }
5186
5187                if (signal_pending(current))
5188                        goto out;
5189                if (need_resched())
5190                        schedule();
5191        }
5192
5193out:
5194        return ret;
5195
5196emulation_error:
5197        vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5198        vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5199        vcpu->run->internal.ndata = 0;
5200        return 0;
5201}
5202
5203static void grow_ple_window(struct kvm_vcpu *vcpu)
5204{
5205        struct vcpu_vmx *vmx = to_vmx(vcpu);
5206        int old = vmx->ple_window;
5207
5208        vmx->ple_window = __grow_ple_window(old, ple_window,
5209                                            ple_window_grow,
5210                                            ple_window_max);
5211
5212        if (vmx->ple_window != old)
5213                vmx->ple_window_dirty = true;
5214
5215        trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
5216}
5217
5218static void shrink_ple_window(struct kvm_vcpu *vcpu)
5219{
5220        struct vcpu_vmx *vmx = to_vmx(vcpu);
5221        int old = vmx->ple_window;
5222
5223        vmx->ple_window = __shrink_ple_window(old, ple_window,
5224                                              ple_window_shrink,
5225                                              ple_window);
5226
5227        if (vmx->ple_window != old)
5228                vmx->ple_window_dirty = true;
5229
5230        trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
5231}
5232
5233/*
5234 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
5235 */
5236static void wakeup_handler(void)
5237{
5238        struct kvm_vcpu *vcpu;
5239        int cpu = smp_processor_id();
5240
5241        spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5242        list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
5243                        blocked_vcpu_list) {
5244                struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
5245
5246                if (pi_test_on(pi_desc) == 1)
5247                        kvm_vcpu_kick(vcpu);
5248        }
5249        spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5250}
5251
5252static void vmx_enable_tdp(void)
5253{
5254        kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5255                enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5256                enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5257                0ull, VMX_EPT_EXECUTABLE_MASK,
5258                cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5259                VMX_EPT_RWX_MASK, 0ull);
5260
5261        ept_set_mmio_spte_mask();
5262        kvm_enable_tdp();
5263}
5264
5265/*
5266 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5267 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5268 */
5269static int handle_pause(struct kvm_vcpu *vcpu)
5270{
5271        if (!kvm_pause_in_guest(vcpu->kvm))
5272                grow_ple_window(vcpu);
5273
5274        /*
5275         * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5276         * VM-execution control is ignored if CPL > 0. OTOH, KVM
5277         * never set PAUSE_EXITING and just set PLE if supported,
5278         * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5279         */
5280        kvm_vcpu_on_spin(vcpu, true);
5281        return kvm_skip_emulated_instruction(vcpu);
5282}
5283
5284static int handle_nop(struct kvm_vcpu *vcpu)
5285{
5286        return kvm_skip_emulated_instruction(vcpu);
5287}
5288
5289static int handle_mwait(struct kvm_vcpu *vcpu)
5290{
5291        printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5292        return handle_nop(vcpu);
5293}
5294
5295static int handle_invalid_op(struct kvm_vcpu *vcpu)
5296{
5297        kvm_queue_exception(vcpu, UD_VECTOR);
5298        return 1;
5299}
5300
5301static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5302{
5303        return 1;
5304}
5305
5306static int handle_monitor(struct kvm_vcpu *vcpu)
5307{
5308        printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5309        return handle_nop(vcpu);
5310}
5311
5312static int handle_invpcid(struct kvm_vcpu *vcpu)
5313{
5314        u32 vmx_instruction_info;
5315        unsigned long type;
5316        bool pcid_enabled;
5317        gva_t gva;
5318        struct x86_exception e;
5319        unsigned i;
5320        unsigned long roots_to_free = 0;
5321        struct {
5322                u64 pcid;
5323                u64 gla;
5324        } operand;
5325
5326        if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5327                kvm_queue_exception(vcpu, UD_VECTOR);
5328                return 1;
5329        }
5330
5331        vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5332        type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5333
5334        if (type > 3) {
5335                kvm_inject_gp(vcpu, 0);
5336                return 1;
5337        }
5338
5339        /* According to the Intel instruction reference, the memory operand
5340         * is read even if it isn't needed (e.g., for type==all)
5341         */
5342        if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5343                                vmx_instruction_info, false, &gva))
5344                return 1;
5345
5346        if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5347                kvm_inject_page_fault(vcpu, &e);
5348                return 1;
5349        }
5350
5351        if (operand.pcid >> 12 != 0) {
5352                kvm_inject_gp(vcpu, 0);
5353                return 1;
5354        }
5355
5356        pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
5357
5358        switch (type) {
5359        case INVPCID_TYPE_INDIV_ADDR:
5360                if ((!pcid_enabled && (operand.pcid != 0)) ||
5361                    is_noncanonical_address(operand.gla, vcpu)) {
5362                        kvm_inject_gp(vcpu, 0);
5363                        return 1;
5364                }
5365                kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
5366                return kvm_skip_emulated_instruction(vcpu);
5367
5368        case INVPCID_TYPE_SINGLE_CTXT:
5369                if (!pcid_enabled && (operand.pcid != 0)) {
5370                        kvm_inject_gp(vcpu, 0);
5371                        return 1;
5372                }
5373
5374                if (kvm_get_active_pcid(vcpu) == operand.pcid) {
5375                        kvm_mmu_sync_roots(vcpu);
5376                        kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5377                }
5378
5379                for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5380                        if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3)
5381                            == operand.pcid)
5382                                roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5383
5384                kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
5385                /*
5386                 * If neither the current cr3 nor any of the prev_roots use the
5387                 * given PCID, then nothing needs to be done here because a
5388                 * resync will happen anyway before switching to any other CR3.
5389                 */
5390
5391                return kvm_skip_emulated_instruction(vcpu);
5392
5393        case INVPCID_TYPE_ALL_NON_GLOBAL:
5394                /*
5395                 * Currently, KVM doesn't mark global entries in the shadow
5396                 * page tables, so a non-global flush just degenerates to a
5397                 * global flush. If needed, we could optimize this later by
5398                 * keeping track of global entries in shadow page tables.
5399                 */
5400
5401                /* fall-through */
5402        case INVPCID_TYPE_ALL_INCL_GLOBAL:
5403                kvm_mmu_unload(vcpu);
5404                return kvm_skip_emulated_instruction(vcpu);
5405
5406        default:
5407                BUG(); /* We have already checked above that type <= 3 */
5408        }
5409}
5410
5411static int handle_pml_full(struct kvm_vcpu *vcpu)
5412{
5413        unsigned long exit_qualification;
5414
5415        trace_kvm_pml_full(vcpu->vcpu_id);
5416
5417        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5418
5419        /*
5420         * PML buffer FULL happened while executing iret from NMI,
5421         * "blocked by NMI" bit has to be set before next VM entry.
5422         */
5423        if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5424                        enable_vnmi &&
5425                        (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5426                vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5427                                GUEST_INTR_STATE_NMI);
5428
5429        /*
5430         * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5431         * here.., and there's no userspace involvement needed for PML.
5432         */
5433        return 1;
5434}
5435
5436static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5437{
5438        if (!to_vmx(vcpu)->req_immediate_exit)
5439                kvm_lapic_expired_hv_timer(vcpu);
5440        return 1;
5441}
5442
5443/*
5444 * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5445 * are overwritten by nested_vmx_setup() when nested=1.
5446 */
5447static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5448{
5449        kvm_queue_exception(vcpu, UD_VECTOR);
5450        return 1;
5451}
5452
5453static int handle_encls(struct kvm_vcpu *vcpu)
5454{
5455        /*
5456         * SGX virtualization is not yet supported.  There is no software
5457         * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5458         * to prevent the guest from executing ENCLS.
5459         */
5460        kvm_queue_exception(vcpu, UD_VECTOR);
5461        return 1;
5462}
5463
5464/*
5465 * The exit handlers return 1 if the exit was handled fully and guest execution
5466 * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5467 * to be done to userspace and return 0.
5468 */
5469static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5470        [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
5471        [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5472        [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5473        [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
5474        [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5475        [EXIT_REASON_CR_ACCESS]               = handle_cr,
5476        [EXIT_REASON_DR_ACCESS]               = handle_dr,
5477        [EXIT_REASON_CPUID]                   = handle_cpuid,
5478        [EXIT_REASON_MSR_READ]                = handle_rdmsr,
5479        [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
5480        [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
5481        [EXIT_REASON_HLT]                     = handle_halt,
5482        [EXIT_REASON_INVD]                    = handle_invd,
5483        [EXIT_REASON_INVLPG]                  = handle_invlpg,
5484        [EXIT_REASON_RDPMC]                   = handle_rdpmc,
5485        [EXIT_REASON_VMCALL]                  = handle_vmcall,
5486        [EXIT_REASON_VMCLEAR]                 = handle_vmx_instruction,
5487        [EXIT_REASON_VMLAUNCH]                = handle_vmx_instruction,
5488        [EXIT_REASON_VMPTRLD]                 = handle_vmx_instruction,
5489        [EXIT_REASON_VMPTRST]                 = handle_vmx_instruction,
5490        [EXIT_REASON_VMREAD]                  = handle_vmx_instruction,
5491        [EXIT_REASON_VMRESUME]                = handle_vmx_instruction,
5492        [EXIT_REASON_VMWRITE]                 = handle_vmx_instruction,
5493        [EXIT_REASON_VMOFF]                   = handle_vmx_instruction,
5494        [EXIT_REASON_VMON]                    = handle_vmx_instruction,
5495        [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5496        [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5497        [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5498        [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5499        [EXIT_REASON_WBINVD]                  = handle_wbinvd,
5500        [EXIT_REASON_XSETBV]                  = handle_xsetbv,
5501        [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5502        [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5503        [EXIT_REASON_GDTR_IDTR]               = handle_desc,
5504        [EXIT_REASON_LDTR_TR]                 = handle_desc,
5505        [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
5506        [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5507        [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5508        [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
5509        [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5510        [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
5511        [EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5512        [EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5513        [EXIT_REASON_RDRAND]                  = handle_invalid_op,
5514        [EXIT_REASON_RDSEED]                  = handle_invalid_op,
5515        [EXIT_REASON_XSAVES]                  = handle_xsaves,
5516        [EXIT_REASON_XRSTORS]                 = handle_xrstors,
5517        [EXIT_REASON_PML_FULL]                = handle_pml_full,
5518        [EXIT_REASON_INVPCID]                 = handle_invpcid,
5519        [EXIT_REASON_VMFUNC]                  = handle_vmx_instruction,
5520        [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
5521        [EXIT_REASON_ENCLS]                   = handle_encls,
5522};
5523
5524static const int kvm_vmx_max_exit_handlers =
5525        ARRAY_SIZE(kvm_vmx_exit_handlers);
5526
5527static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5528{
5529        *info1 = vmcs_readl(EXIT_QUALIFICATION);
5530        *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5531}
5532
5533static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5534{
5535        if (vmx->pml_pg) {
5536                __free_page(vmx->pml_pg);
5537                vmx->pml_pg = NULL;
5538        }
5539}
5540
5541static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5542{
5543        struct vcpu_vmx *vmx = to_vmx(vcpu);
5544        u64 *pml_buf;
5545        u16 pml_idx;
5546
5547        pml_idx = vmcs_read16(GUEST_PML_INDEX);
5548
5549        /* Do nothing if PML buffer is empty */
5550        if (pml_idx == (PML_ENTITY_NUM - 1))
5551                return;
5552
5553        /* PML index always points to next available PML buffer entity */
5554        if (pml_idx >= PML_ENTITY_NUM)
5555                pml_idx = 0;
5556        else
5557                pml_idx++;
5558
5559        pml_buf = page_address(vmx->pml_pg);
5560        for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5561                u64 gpa;
5562
5563                gpa = pml_buf[pml_idx];
5564                WARN_ON(gpa & (PAGE_SIZE - 1));
5565                kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5566        }
5567
5568        /* reset PML index */
5569        vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5570}
5571
5572/*
5573 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5574 * Called before reporting dirty_bitmap to userspace.
5575 */
5576static void kvm_flush_pml_buffers(struct kvm *kvm)
5577{
5578        int i;
5579        struct kvm_vcpu *vcpu;
5580        /*
5581         * We only need to kick vcpu out of guest mode here, as PML buffer
5582         * is flushed at beginning of all VMEXITs, and it's obvious that only
5583         * vcpus running in guest are possible to have unflushed GPAs in PML
5584         * buffer.
5585         */
5586        kvm_for_each_vcpu(i, vcpu, kvm)
5587                kvm_vcpu_kick(vcpu);
5588}
5589
5590static void vmx_dump_sel(char *name, uint32_t sel)
5591{
5592        pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5593               name, vmcs_read16(sel),
5594               vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5595               vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5596               vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5597}
5598
5599static void vmx_dump_dtsel(char *name, uint32_t limit)
5600{
5601        pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5602               name, vmcs_read32(limit),
5603               vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5604}
5605
5606void dump_vmcs(void)
5607{
5608        u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5609        u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5610        u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5611        u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5612        u32 secondary_exec_control = 0;
5613        unsigned long cr4 = vmcs_readl(GUEST_CR4);
5614        u64 efer = vmcs_read64(GUEST_IA32_EFER);
5615        int i, n;
5616
5617        if (cpu_has_secondary_exec_ctrls())
5618                secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5619
5620        pr_err("*** Guest State ***\n");
5621        pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5622               vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5623               vmcs_readl(CR0_GUEST_HOST_MASK));
5624        pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5625               cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5626        pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5627        if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5628            (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5629        {
5630                pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5631                       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5632                pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5633                       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5634        }
5635        pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5636               vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5637        pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5638               vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5639        pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5640               vmcs_readl(GUEST_SYSENTER_ESP),
5641               vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5642        vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5643        vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5644        vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5645        vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5646        vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5647        vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5648        vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5649        vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5650        vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5651        vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5652        if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5653            (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5654                pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
5655                       efer, vmcs_read64(GUEST_IA32_PAT));
5656        pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5657               vmcs_read64(GUEST_IA32_DEBUGCTL),
5658               vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5659        if (cpu_has_load_perf_global_ctrl() &&
5660            vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5661                pr_err("PerfGlobCtl = 0x%016llx\n",
5662                       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5663        if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5664                pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5665        pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5666               vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5667               vmcs_read32(GUEST_ACTIVITY_STATE));
5668        if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5669                pr_err("InterruptStatus = %04x\n",
5670                       vmcs_read16(GUEST_INTR_STATUS));
5671
5672        pr_err("*** Host State ***\n");
5673        pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5674               vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5675        pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5676               vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5677               vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5678               vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5679               vmcs_read16(HOST_TR_SELECTOR));
5680        pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5681               vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5682               vmcs_readl(HOST_TR_BASE));
5683        pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5684               vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5685        pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5686               vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5687               vmcs_readl(HOST_CR4));
5688        pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5689               vmcs_readl(HOST_IA32_SYSENTER_ESP),
5690               vmcs_read32(HOST_IA32_SYSENTER_CS),
5691               vmcs_readl(HOST_IA32_SYSENTER_EIP));
5692        if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5693                pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
5694                       vmcs_read64(HOST_IA32_EFER),
5695                       vmcs_read64(HOST_IA32_PAT));
5696        if (cpu_has_load_perf_global_ctrl() &&
5697            vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5698                pr_err("PerfGlobCtl = 0x%016llx\n",
5699                       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5700
5701        pr_err("*** Control State ***\n");
5702        pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5703               pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5704        pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5705        pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5706               vmcs_read32(EXCEPTION_BITMAP),
5707               vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5708               vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5709        pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5710               vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5711               vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5712               vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5713        pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5714               vmcs_read32(VM_EXIT_INTR_INFO),
5715               vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5716               vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5717        pr_err("        reason=%08x qualification=%016lx\n",
5718               vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5719        pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5720               vmcs_read32(IDT_VECTORING_INFO_FIELD),
5721               vmcs_read32(IDT_VECTORING_ERROR_CODE));
5722        pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5723        if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5724                pr_err("TSC Multiplier = 0x%016llx\n",
5725                       vmcs_read64(TSC_MULTIPLIER));
5726        if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
5727                pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5728        if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5729                pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5730        if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5731                pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5732        n = vmcs_read32(CR3_TARGET_COUNT);
5733        for (i = 0; i + 1 < n; i += 4)
5734                pr_err("CR3 target%u=%016lx target%u=%016lx\n",
5735                       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
5736                       i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
5737        if (i < n)
5738                pr_err("CR3 target%u=%016lx\n",
5739                       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
5740        if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5741                pr_err("PLE Gap=%08x Window=%08x\n",
5742                       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5743        if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5744                pr_err("Virtual processor ID = 0x%04x\n",
5745                       vmcs_read16(VIRTUAL_PROCESSOR_ID));
5746}
5747
5748/*
5749 * The guest has exited.  See if we can fix it or if we need userspace
5750 * assistance.
5751 */
5752static int vmx_handle_exit(struct kvm_vcpu *vcpu)
5753{
5754        struct vcpu_vmx *vmx = to_vmx(vcpu);
5755        u32 exit_reason = vmx->exit_reason;
5756        u32 vectoring_info = vmx->idt_vectoring_info;
5757
5758        trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
5759
5760        /*
5761         * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5762         * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5763         * querying dirty_bitmap, we only need to kick all vcpus out of guest
5764         * mode as if vcpus is in root mode, the PML buffer must has been
5765         * flushed already.
5766         */
5767        if (enable_pml)
5768                vmx_flush_pml_buffer(vcpu);
5769
5770        /* If guest state is invalid, start emulating */
5771        if (vmx->emulation_required)
5772                return handle_invalid_guest_state(vcpu);
5773
5774        if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
5775                return nested_vmx_reflect_vmexit(vcpu, exit_reason);
5776
5777        if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5778                dump_vmcs();
5779                vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5780                vcpu->run->fail_entry.hardware_entry_failure_reason
5781                        = exit_reason;
5782                return 0;
5783        }
5784
5785        if (unlikely(vmx->fail)) {
5786                vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5787                vcpu->run->fail_entry.hardware_entry_failure_reason
5788                        = vmcs_read32(VM_INSTRUCTION_ERROR);
5789                return 0;
5790        }
5791
5792        /*
5793         * Note:
5794         * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5795         * delivery event since it indicates guest is accessing MMIO.
5796         * The vm-exit can be triggered again after return to guest that
5797         * will cause infinite loop.
5798         */
5799        if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5800                        (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5801                        exit_reason != EXIT_REASON_EPT_VIOLATION &&
5802                        exit_reason != EXIT_REASON_PML_FULL &&
5803                        exit_reason != EXIT_REASON_TASK_SWITCH)) {
5804                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5805                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5806                vcpu->run->internal.ndata = 3;
5807                vcpu->run->internal.data[0] = vectoring_info;
5808                vcpu->run->internal.data[1] = exit_reason;
5809                vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5810                if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
5811                        vcpu->run->internal.ndata++;
5812                        vcpu->run->internal.data[3] =
5813                                vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5814                }
5815                return 0;
5816        }
5817
5818        if (unlikely(!enable_vnmi &&
5819                     vmx->loaded_vmcs->soft_vnmi_blocked)) {
5820                if (vmx_interrupt_allowed(vcpu)) {
5821                        vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5822                } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5823                           vcpu->arch.nmi_pending) {
5824                        /*
5825                         * This CPU don't support us in finding the end of an
5826                         * NMI-blocked window if the guest runs with IRQs
5827                         * disabled. So we pull the trigger after 1 s of
5828                         * futile waiting, but inform the user about this.
5829                         */
5830                        printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5831                               "state on VCPU %d after 1 s timeout\n",
5832                               __func__, vcpu->vcpu_id);
5833                        vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5834                }
5835        }
5836
5837        if (exit_reason < kvm_vmx_max_exit_handlers
5838            && kvm_vmx_exit_handlers[exit_reason])
5839                return kvm_vmx_exit_handlers[exit_reason](vcpu);
5840        else {
5841                vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
5842                                exit_reason);
5843                kvm_queue_exception(vcpu, UD_VECTOR);
5844                return 1;
5845        }
5846}
5847
5848/*
5849 * Software based L1D cache flush which is used when microcode providing
5850 * the cache control MSR is not loaded.
5851 *
5852 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
5853 * flush it is required to read in 64 KiB because the replacement algorithm
5854 * is not exactly LRU. This could be sized at runtime via topology
5855 * information but as all relevant affected CPUs have 32KiB L1D cache size
5856 * there is no point in doing so.
5857 */
5858static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
5859{
5860        int size = PAGE_SIZE << L1D_CACHE_ORDER;
5861
5862        /*
5863         * This code is only executed when the the flush mode is 'cond' or
5864         * 'always'
5865         */
5866        if (static_branch_likely(&vmx_l1d_flush_cond)) {
5867                bool flush_l1d;
5868
5869                /*
5870                 * Clear the per-vcpu flush bit, it gets set again
5871                 * either from vcpu_run() or from one of the unsafe
5872                 * VMEXIT handlers.
5873                 */
5874                flush_l1d = vcpu->arch.l1tf_flush_l1d;
5875                vcpu->arch.l1tf_flush_l1d = false;
5876
5877                /*
5878                 * Clear the per-cpu flush bit, it gets set again from
5879                 * the interrupt handlers.
5880                 */
5881                flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
5882                kvm_clear_cpu_l1tf_flush_l1d();
5883
5884                if (!flush_l1d)
5885                        return;
5886        }
5887
5888        vcpu->stat.l1d_flush++;
5889
5890        if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
5891                wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
5892                return;
5893        }
5894
5895        asm volatile(
5896                /* First ensure the pages are in the TLB */
5897                "xorl   %%eax, %%eax\n"
5898                ".Lpopulate_tlb:\n\t"
5899                "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
5900                "addl   $4096, %%eax\n\t"
5901                "cmpl   %%eax, %[size]\n\t"
5902                "jne    .Lpopulate_tlb\n\t"
5903                "xorl   %%eax, %%eax\n\t"
5904                "cpuid\n\t"
5905                /* Now fill the cache */
5906                "xorl   %%eax, %%eax\n"
5907                ".Lfill_cache:\n"
5908                "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
5909                "addl   $64, %%eax\n\t"
5910                "cmpl   %%eax, %[size]\n\t"
5911                "jne    .Lfill_cache\n\t"
5912                "lfence\n"
5913                :: [flush_pages] "r" (vmx_l1d_flush_pages),
5914                    [size] "r" (size)
5915                : "eax", "ebx", "ecx", "edx");
5916}
5917
5918static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5919{
5920        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5921
5922        if (is_guest_mode(vcpu) &&
5923                nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
5924                return;
5925
5926        if (irr == -1 || tpr < irr) {
5927                vmcs_write32(TPR_THRESHOLD, 0);
5928                return;
5929        }
5930
5931        vmcs_write32(TPR_THRESHOLD, irr);
5932}
5933
5934void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
5935{
5936        u32 sec_exec_control;
5937
5938        if (!lapic_in_kernel(vcpu))
5939                return;
5940
5941        if (!flexpriority_enabled &&
5942            !cpu_has_vmx_virtualize_x2apic_mode())
5943                return;
5944
5945        /* Postpone execution until vmcs01 is the current VMCS. */
5946        if (is_guest_mode(vcpu)) {
5947                to_vmx(vcpu)->nested.change_vmcs01_virtual_apic_mode = true;
5948                return;
5949        }
5950
5951        sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5952        sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
5953                              SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
5954
5955        switch (kvm_get_apic_mode(vcpu)) {
5956        case LAPIC_MODE_INVALID:
5957                WARN_ONCE(true, "Invalid local APIC state");
5958        case LAPIC_MODE_DISABLED:
5959                break;
5960        case LAPIC_MODE_XAPIC:
5961                if (flexpriority_enabled) {
5962                        sec_exec_control |=
5963                                SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5964                        vmx_flush_tlb(vcpu, true);
5965                }
5966                break;
5967        case LAPIC_MODE_X2APIC:
5968                if (cpu_has_vmx_virtualize_x2apic_mode())
5969                        sec_exec_control |=
5970                                SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
5971                break;
5972        }
5973        vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
5974
5975        vmx_update_msr_bitmap(vcpu);
5976}
5977
5978static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
5979{
5980        if (!is_guest_mode(vcpu)) {
5981                vmcs_write64(APIC_ACCESS_ADDR, hpa);
5982                vmx_flush_tlb(vcpu, true);
5983        }
5984}
5985
5986static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
5987{
5988        u16 status;
5989        u8 old;
5990
5991        if (max_isr == -1)
5992                max_isr = 0;
5993
5994        status = vmcs_read16(GUEST_INTR_STATUS);
5995        old = status >> 8;
5996        if (max_isr != old) {
5997                status &= 0xff;
5998                status |= max_isr << 8;
5999                vmcs_write16(GUEST_INTR_STATUS, status);
6000        }
6001}
6002
6003static void vmx_set_rvi(int vector)
6004{
6005        u16 status;
6006        u8 old;
6007
6008        if (vector == -1)
6009                vector = 0;
6010
6011        status = vmcs_read16(GUEST_INTR_STATUS);
6012        old = (u8)status & 0xff;
6013        if ((u8)vector != old) {
6014                status &= ~0xff;
6015                status |= (u8)vector;
6016                vmcs_write16(GUEST_INTR_STATUS, status);
6017        }
6018}
6019
6020static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6021{
6022        /*
6023         * When running L2, updating RVI is only relevant when
6024         * vmcs12 virtual-interrupt-delivery enabled.
6025         * However, it can be enabled only when L1 also
6026         * intercepts external-interrupts and in that case
6027         * we should not update vmcs02 RVI but instead intercept
6028         * interrupt. Therefore, do nothing when running L2.
6029         */
6030        if (!is_guest_mode(vcpu))
6031                vmx_set_rvi(max_irr);
6032}
6033
6034static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6035{
6036        struct vcpu_vmx *vmx = to_vmx(vcpu);
6037        int max_irr;
6038        bool max_irr_updated;
6039
6040        WARN_ON(!vcpu->arch.apicv_active);
6041        if (pi_test_on(&vmx->pi_desc)) {
6042                pi_clear_on(&vmx->pi_desc);
6043                /*
6044                 * IOMMU can write to PIR.ON, so the barrier matters even on UP.
6045                 * But on x86 this is just a compiler barrier anyway.
6046                 */
6047                smp_mb__after_atomic();
6048                max_irr_updated =
6049                        kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6050
6051                /*
6052                 * If we are running L2 and L1 has a new pending interrupt
6053                 * which can be injected, we should re-evaluate
6054                 * what should be done with this new L1 interrupt.
6055                 * If L1 intercepts external-interrupts, we should
6056                 * exit from L2 to L1. Otherwise, interrupt should be
6057                 * delivered directly to L2.
6058                 */
6059                if (is_guest_mode(vcpu) && max_irr_updated) {
6060                        if (nested_exit_on_intr(vcpu))
6061                                kvm_vcpu_exiting_guest_mode(vcpu);
6062                        else
6063                                kvm_make_request(KVM_REQ_EVENT, vcpu);
6064                }
6065        } else {
6066                max_irr = kvm_lapic_find_highest_irr(vcpu);
6067        }
6068        vmx_hwapic_irr_update(vcpu, max_irr);
6069        return max_irr;
6070}
6071
6072static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6073{
6074        if (!kvm_vcpu_apicv_active(vcpu))
6075                return;
6076
6077        vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6078        vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6079        vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6080        vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6081}
6082
6083static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6084{
6085        struct vcpu_vmx *vmx = to_vmx(vcpu);
6086
6087        pi_clear_on(&vmx->pi_desc);
6088        memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6089}
6090
6091static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
6092{
6093        u32 exit_intr_info = 0;
6094        u16 basic_exit_reason = (u16)vmx->exit_reason;
6095
6096        if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
6097              || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI))
6098                return;
6099
6100        if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6101                exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6102        vmx->exit_intr_info = exit_intr_info;
6103
6104        /* if exit due to PF check for async PF */
6105        if (is_page_fault(exit_intr_info))
6106                vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
6107
6108        /* Handle machine checks before interrupts are enabled */
6109        if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY ||
6110            is_machine_check(exit_intr_info))
6111                kvm_machine_check();
6112
6113        /* We need to handle NMIs before interrupts are enabled */
6114        if (is_nmi(exit_intr_info)) {
6115                kvm_before_interrupt(&vmx->vcpu);
6116                asm("int $2");
6117                kvm_after_interrupt(&vmx->vcpu);
6118        }
6119}
6120
6121static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
6122{
6123        u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6124
6125        if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
6126                        == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
6127                unsigned int vector;
6128                unsigned long entry;
6129                gate_desc *desc;
6130                struct vcpu_vmx *vmx = to_vmx(vcpu);
6131#ifdef CONFIG_X86_64
6132                unsigned long tmp;
6133#endif
6134
6135                vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
6136                desc = (gate_desc *)vmx->host_idt_base + vector;
6137                entry = gate_offset(desc);
6138                asm volatile(
6139#ifdef CONFIG_X86_64
6140                        "mov %%" _ASM_SP ", %[sp]\n\t"
6141                        "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6142                        "push $%c[ss]\n\t"
6143                        "push %[sp]\n\t"
6144#endif
6145                        "pushf\n\t"
6146                        __ASM_SIZE(push) " $%c[cs]\n\t"
6147                        CALL_NOSPEC
6148                        :
6149#ifdef CONFIG_X86_64
6150                        [sp]"=&r"(tmp),
6151#endif
6152                        ASM_CALL_CONSTRAINT
6153                        :
6154                        THUNK_TARGET(entry),
6155                        [ss]"i"(__KERNEL_DS),
6156                        [cs]"i"(__KERNEL_CS)
6157                        );
6158        }
6159}
6160STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
6161
6162static bool vmx_has_emulated_msr(int index)
6163{
6164        switch (index) {
6165        case MSR_IA32_SMBASE:
6166                /*
6167                 * We cannot do SMM unless we can run the guest in big
6168                 * real mode.
6169                 */
6170                return enable_unrestricted_guest || emulate_invalid_guest_state;
6171        case MSR_AMD64_VIRT_SPEC_CTRL:
6172                /* This is AMD only.  */
6173                return false;
6174        default:
6175                return true;
6176        }
6177}
6178
6179static bool vmx_pt_supported(void)
6180{
6181        return pt_mode == PT_MODE_HOST_GUEST;
6182}
6183
6184static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6185{
6186        u32 exit_intr_info;
6187        bool unblock_nmi;
6188        u8 vector;
6189        bool idtv_info_valid;
6190
6191        idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6192
6193        if (enable_vnmi) {
6194                if (vmx->loaded_vmcs->nmi_known_unmasked)
6195                        return;
6196                /*
6197                 * Can't use vmx->exit_intr_info since we're not sure what
6198                 * the exit reason is.
6199                 */
6200                exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6201                unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6202                vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6203                /*
6204                 * SDM 3: 27.7.1.2 (September 2008)
6205                 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6206                 * a guest IRET fault.
6207                 * SDM 3: 23.2.2 (September 2008)
6208                 * Bit 12 is undefined in any of the following cases:
6209                 *  If the VM exit sets the valid bit in the IDT-vectoring
6210                 *   information field.
6211                 *  If the VM exit is due to a double fault.
6212                 */
6213                if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6214                    vector != DF_VECTOR && !idtv_info_valid)
6215                        vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6216                                      GUEST_INTR_STATE_NMI);
6217                else
6218                        vmx->loaded_vmcs->nmi_known_unmasked =
6219                                !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6220                                  & GUEST_INTR_STATE_NMI);
6221        } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6222                vmx->loaded_vmcs->vnmi_blocked_time +=
6223                        ktime_to_ns(ktime_sub(ktime_get(),
6224                                              vmx->loaded_vmcs->entry_time));
6225}
6226
6227static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6228                                      u32 idt_vectoring_info,
6229                                      int instr_len_field,
6230                                      int error_code_field)
6231{
6232        u8 vector;
6233        int type;
6234        bool idtv_info_valid;
6235
6236        idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6237
6238        vcpu->arch.nmi_injected = false;
6239        kvm_clear_exception_queue(vcpu);
6240        kvm_clear_interrupt_queue(vcpu);
6241
6242        if (!idtv_info_valid)
6243                return;
6244
6245        kvm_make_request(KVM_REQ_EVENT, vcpu);
6246
6247        vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6248        type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6249
6250        switch (type) {
6251        case INTR_TYPE_NMI_INTR:
6252                vcpu->arch.nmi_injected = true;
6253                /*
6254                 * SDM 3: 27.7.1.2 (September 2008)
6255                 * Clear bit "block by NMI" before VM entry if a NMI
6256                 * delivery faulted.
6257                 */
6258                vmx_set_nmi_mask(vcpu, false);
6259                break;
6260        case INTR_TYPE_SOFT_EXCEPTION:
6261                vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6262                /* fall through */
6263        case INTR_TYPE_HARD_EXCEPTION:
6264                if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6265                        u32 err = vmcs_read32(error_code_field);
6266                        kvm_requeue_exception_e(vcpu, vector, err);
6267                } else
6268                        kvm_requeue_exception(vcpu, vector);
6269                break;
6270        case INTR_TYPE_SOFT_INTR:
6271                vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6272                /* fall through */
6273        case INTR_TYPE_EXT_INTR:
6274                kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6275                break;
6276        default:
6277                break;
6278        }
6279}
6280
6281static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6282{
6283        __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6284                                  VM_EXIT_INSTRUCTION_LEN,
6285                                  IDT_VECTORING_ERROR_CODE);
6286}
6287
6288static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6289{
6290        __vmx_complete_interrupts(vcpu,
6291                                  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6292                                  VM_ENTRY_INSTRUCTION_LEN,
6293                                  VM_ENTRY_EXCEPTION_ERROR_CODE);
6294
6295        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6296}
6297
6298static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6299{
6300        int i, nr_msrs;
6301        struct perf_guest_switch_msr *msrs;
6302
6303        msrs = perf_guest_get_msrs(&nr_msrs);
6304
6305        if (!msrs)
6306                return;
6307
6308        for (i = 0; i < nr_msrs; i++)
6309                if (msrs[i].host == msrs[i].guest)
6310                        clear_atomic_switch_msr(vmx, msrs[i].msr);
6311                else
6312                        add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6313                                        msrs[i].host, false);
6314}
6315
6316static void vmx_arm_hv_timer(struct vcpu_vmx *vmx, u32 val)
6317{
6318        vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, val);
6319        if (!vmx->loaded_vmcs->hv_timer_armed)
6320                vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
6321                              PIN_BASED_VMX_PREEMPTION_TIMER);
6322        vmx->loaded_vmcs->hv_timer_armed = true;
6323}
6324
6325static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6326{
6327        struct vcpu_vmx *vmx = to_vmx(vcpu);
6328        u64 tscl;
6329        u32 delta_tsc;
6330
6331        if (vmx->req_immediate_exit) {
6332                vmx_arm_hv_timer(vmx, 0);
6333                return;
6334        }
6335
6336        if (vmx->hv_deadline_tsc != -1) {
6337                tscl = rdtsc();
6338                if (vmx->hv_deadline_tsc > tscl)
6339                        /* set_hv_timer ensures the delta fits in 32-bits */
6340                        delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6341                                cpu_preemption_timer_multi);
6342                else
6343                        delta_tsc = 0;
6344
6345                vmx_arm_hv_timer(vmx, delta_tsc);
6346                return;
6347        }
6348
6349        if (vmx->loaded_vmcs->hv_timer_armed)
6350                vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
6351                                PIN_BASED_VMX_PREEMPTION_TIMER);
6352        vmx->loaded_vmcs->hv_timer_armed = false;
6353}
6354
6355void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6356{
6357        if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6358                vmx->loaded_vmcs->host_state.rsp = host_rsp;
6359                vmcs_writel(HOST_RSP, host_rsp);
6360        }
6361}
6362
6363bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
6364
6365static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
6366{
6367        struct vcpu_vmx *vmx = to_vmx(vcpu);
6368        unsigned long cr3, cr4;
6369
6370        /* Record the guest's net vcpu time for enforced NMI injections. */
6371        if (unlikely(!enable_vnmi &&
6372                     vmx->loaded_vmcs->soft_vnmi_blocked))
6373                vmx->loaded_vmcs->entry_time = ktime_get();
6374
6375        /* Don't enter VMX if guest state is invalid, let the exit handler
6376           start emulation until we arrive back to a valid state */
6377        if (vmx->emulation_required)
6378                return;
6379
6380        if (vmx->ple_window_dirty) {
6381                vmx->ple_window_dirty = false;
6382                vmcs_write32(PLE_WINDOW, vmx->ple_window);
6383        }
6384
6385        if (vmx->nested.need_vmcs12_sync)
6386                nested_sync_from_vmcs12(vcpu);
6387
6388        if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6389                vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6390        if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6391                vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6392
6393        cr3 = __get_current_cr3_fast();
6394        if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6395                vmcs_writel(HOST_CR3, cr3);
6396                vmx->loaded_vmcs->host_state.cr3 = cr3;
6397        }
6398
6399        cr4 = cr4_read_shadow();
6400        if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6401                vmcs_writel(HOST_CR4, cr4);
6402                vmx->loaded_vmcs->host_state.cr4 = cr4;
6403        }
6404
6405        /* When single-stepping over STI and MOV SS, we must clear the
6406         * corresponding interruptibility bits in the guest state. Otherwise
6407         * vmentry fails as it then expects bit 14 (BS) in pending debug
6408         * exceptions being set, but that's not correct for the guest debugging
6409         * case. */
6410        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6411                vmx_set_interrupt_shadow(vcpu, 0);
6412
6413        kvm_load_guest_xcr0(vcpu);
6414
6415        if (static_cpu_has(X86_FEATURE_PKU) &&
6416            kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
6417            vcpu->arch.pkru != vmx->host_pkru)
6418                __write_pkru(vcpu->arch.pkru);
6419
6420        pt_guest_enter(vmx);
6421
6422        atomic_switch_perf_msrs(vmx);
6423
6424        vmx_update_hv_timer(vcpu);
6425
6426        /*
6427         * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6428         * it's non-zero. Since vmentry is serialising on affected CPUs, there
6429         * is no need to worry about the conditional branch over the wrmsr
6430         * being speculatively taken.
6431         */
6432        x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6433
6434        /* L1D Flush includes CPU buffer clear to mitigate MDS */
6435        if (static_branch_unlikely(&vmx_l1d_should_flush))
6436                vmx_l1d_flush(vcpu);
6437        else if (static_branch_unlikely(&mds_user_clear))
6438                mds_clear_cpu_buffers();
6439
6440        if (vcpu->arch.cr2 != read_cr2())
6441                write_cr2(vcpu->arch.cr2);
6442
6443        vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6444                                   vmx->loaded_vmcs->launched);
6445
6446        vcpu->arch.cr2 = read_cr2();
6447
6448        /*
6449         * We do not use IBRS in the kernel. If this vCPU has used the
6450         * SPEC_CTRL MSR it may have left it on; save the value and
6451         * turn it off. This is much more efficient than blindly adding
6452         * it to the atomic save/restore list. Especially as the former
6453         * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6454         *
6455         * For non-nested case:
6456         * If the L01 MSR bitmap does not intercept the MSR, then we need to
6457         * save it.
6458         *
6459         * For nested case:
6460         * If the L02 MSR bitmap does not intercept the MSR, then we need to
6461         * save it.
6462         */
6463        if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6464                vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6465
6466        x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6467
6468        /* All fields are clean at this point */
6469        if (static_branch_unlikely(&enable_evmcs))
6470                current_evmcs->hv_clean_fields |=
6471                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6472
6473        /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6474        if (vmx->host_debugctlmsr)
6475                update_debugctlmsr(vmx->host_debugctlmsr);
6476
6477#ifndef CONFIG_X86_64
6478        /*
6479         * The sysexit path does not restore ds/es, so we must set them to
6480         * a reasonable value ourselves.
6481         *
6482         * We can't defer this to vmx_prepare_switch_to_host() since that
6483         * function may be executed in interrupt context, which saves and
6484         * restore segments around it, nullifying its effect.
6485         */
6486        loadsegment(ds, __USER_DS);
6487        loadsegment(es, __USER_DS);
6488#endif
6489
6490        vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6491                                  | (1 << VCPU_EXREG_RFLAGS)
6492                                  | (1 << VCPU_EXREG_PDPTR)
6493                                  | (1 << VCPU_EXREG_SEGMENTS)
6494                                  | (1 << VCPU_EXREG_CR3));
6495        vcpu->arch.regs_dirty = 0;
6496
6497        pt_guest_exit(vmx);
6498
6499        /*
6500         * eager fpu is enabled if PKEY is supported and CR4 is switched
6501         * back on host, so it is safe to read guest PKRU from current
6502         * XSAVE.
6503         */
6504        if (static_cpu_has(X86_FEATURE_PKU) &&
6505            kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
6506                vcpu->arch.pkru = __read_pkru();
6507                if (vcpu->arch.pkru != vmx->host_pkru)
6508                        __write_pkru(vmx->host_pkru);
6509        }
6510
6511        kvm_put_guest_xcr0(vcpu);
6512
6513        vmx->nested.nested_run_pending = 0;
6514        vmx->idt_vectoring_info = 0;
6515
6516        vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
6517        if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6518                return;
6519
6520        vmx->loaded_vmcs->launched = 1;
6521        vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6522
6523        vmx_complete_atomic_exit(vmx);
6524        vmx_recover_nmi_blocking(vmx);
6525        vmx_complete_interrupts(vmx);
6526}
6527
6528static struct kvm *vmx_vm_alloc(void)
6529{
6530        struct kvm_vmx *kvm_vmx = __vmalloc(sizeof(struct kvm_vmx),
6531                                            GFP_KERNEL_ACCOUNT | __GFP_ZERO,
6532                                            PAGE_KERNEL);
6533        return &kvm_vmx->kvm;
6534}
6535
6536static void vmx_vm_free(struct kvm *kvm)
6537{
6538        vfree(to_kvm_vmx(kvm));
6539}
6540
6541static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6542{
6543        struct vcpu_vmx *vmx = to_vmx(vcpu);
6544
6545        if (enable_pml)
6546                vmx_destroy_pml_buffer(vmx);
6547        free_vpid(vmx->vpid);
6548        nested_vmx_free_vcpu(vcpu);
6549        free_loaded_vmcs(vmx->loaded_vmcs);
6550        kfree(vmx->guest_msrs);
6551        kvm_vcpu_uninit(vcpu);
6552        kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.user_fpu);
6553        kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6554        kmem_cache_free(kvm_vcpu_cache, vmx);
6555}
6556
6557static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6558{
6559        int err;
6560        struct vcpu_vmx *vmx;
6561        unsigned long *msr_bitmap;
6562        int cpu;
6563
6564        vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
6565        if (!vmx)
6566                return ERR_PTR(-ENOMEM);
6567
6568        vmx->vcpu.arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
6569                        GFP_KERNEL_ACCOUNT);
6570        if (!vmx->vcpu.arch.user_fpu) {
6571                printk(KERN_ERR "kvm: failed to allocate kvm userspace's fpu\n");
6572                err = -ENOMEM;
6573                goto free_partial_vcpu;
6574        }
6575
6576        vmx->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
6577                        GFP_KERNEL_ACCOUNT);
6578        if (!vmx->vcpu.arch.guest_fpu) {
6579                printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
6580                err = -ENOMEM;
6581                goto free_user_fpu;
6582        }
6583
6584        vmx->vpid = allocate_vpid();
6585
6586        err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6587        if (err)
6588                goto free_vcpu;
6589
6590        err = -ENOMEM;
6591
6592        /*
6593         * If PML is turned on, failure on enabling PML just results in failure
6594         * of creating the vcpu, therefore we can simplify PML logic (by
6595         * avoiding dealing with cases, such as enabling PML partially on vcpus
6596         * for the guest, etc.
6597         */
6598        if (enable_pml) {
6599                vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6600                if (!vmx->pml_pg)
6601                        goto uninit_vcpu;
6602        }
6603
6604        vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
6605        BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
6606                     > PAGE_SIZE);
6607
6608        if (!vmx->guest_msrs)
6609                goto free_pml;
6610
6611        err = alloc_loaded_vmcs(&vmx->vmcs01);
6612        if (err < 0)
6613                goto free_msrs;
6614
6615        msr_bitmap = vmx->vmcs01.msr_bitmap;
6616        vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R);
6617        vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
6618        vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
6619        vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6620        vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6621        vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6622        vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6623        vmx->msr_bitmap_mode = 0;
6624
6625        vmx->loaded_vmcs = &vmx->vmcs01;
6626        cpu = get_cpu();
6627        vmx_vcpu_load(&vmx->vcpu, cpu);
6628        vmx->vcpu.cpu = cpu;
6629        vmx_vcpu_setup(vmx);
6630        vmx_vcpu_put(&vmx->vcpu);
6631        put_cpu();
6632        if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
6633                err = alloc_apic_access_page(kvm);
6634                if (err)
6635                        goto free_vmcs;
6636        }
6637
6638        if (enable_ept && !enable_unrestricted_guest) {
6639                err = init_rmode_identity_map(kvm);
6640                if (err)
6641                        goto free_vmcs;
6642        }
6643
6644        if (nested)
6645                nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
6646                                           vmx_capability.ept,
6647                                           kvm_vcpu_apicv_active(&vmx->vcpu));
6648        else
6649                memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6650
6651        vmx->nested.posted_intr_nv = -1;
6652        vmx->nested.current_vmptr = -1ull;
6653
6654        vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
6655
6656        /*
6657         * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6658         * or POSTED_INTR_WAKEUP_VECTOR.
6659         */
6660        vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6661        vmx->pi_desc.sn = 1;
6662
6663        vmx->ept_pointer = INVALID_PAGE;
6664
6665        return &vmx->vcpu;
6666
6667free_vmcs:
6668        free_loaded_vmcs(vmx->loaded_vmcs);
6669free_msrs:
6670        kfree(vmx->guest_msrs);
6671free_pml:
6672        vmx_destroy_pml_buffer(vmx);
6673uninit_vcpu:
6674        kvm_vcpu_uninit(&vmx->vcpu);
6675free_vcpu:
6676        free_vpid(vmx->vpid);
6677        kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6678free_user_fpu:
6679        kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.user_fpu);
6680free_partial_vcpu:
6681        kmem_cache_free(kvm_vcpu_cache, vmx);
6682        return ERR_PTR(err);
6683}
6684
6685#define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6686#define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6687
6688static int vmx_vm_init(struct kvm *kvm)
6689{
6690        spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
6691
6692        if (!ple_gap)
6693                kvm->arch.pause_in_guest = true;
6694
6695        if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6696                switch (l1tf_mitigation) {
6697                case L1TF_MITIGATION_OFF:
6698                case L1TF_MITIGATION_FLUSH_NOWARN:
6699                        /* 'I explicitly don't care' is set */
6700                        break;
6701                case L1TF_MITIGATION_FLUSH:
6702                case L1TF_MITIGATION_FLUSH_NOSMT:
6703                case L1TF_MITIGATION_FULL:
6704                        /*
6705                         * Warn upon starting the first VM in a potentially
6706                         * insecure environment.
6707                         */
6708                        if (sched_smt_active())
6709                                pr_warn_once(L1TF_MSG_SMT);
6710                        if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6711                                pr_warn_once(L1TF_MSG_L1D);
6712                        break;
6713                case L1TF_MITIGATION_FULL_FORCE:
6714                        /* Flush is enforced */
6715                        break;
6716                }
6717        }
6718        return 0;
6719}
6720
6721static void __init vmx_check_processor_compat(void *rtn)
6722{
6723        struct vmcs_config vmcs_conf;
6724        struct vmx_capability vmx_cap;
6725
6726        *(int *)rtn = 0;
6727        if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6728                *(int *)rtn = -EIO;
6729        if (nested)
6730                nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept,
6731                                           enable_apicv);
6732        if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6733                printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6734                                smp_processor_id());
6735                *(int *)rtn = -EIO;
6736        }
6737}
6738
6739static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6740{
6741        u8 cache;
6742        u64 ipat = 0;
6743
6744        /* For VT-d and EPT combination
6745         * 1. MMIO: always map as UC
6746         * 2. EPT with VT-d:
6747         *   a. VT-d without snooping control feature: can't guarantee the
6748         *      result, try to trust guest.
6749         *   b. VT-d with snooping control feature: snooping control feature of
6750         *      VT-d engine can guarantee the cache correctness. Just set it
6751         *      to WB to keep consistent with host. So the same as item 3.
6752         * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6753         *    consistent with host MTRR
6754         */
6755        if (is_mmio) {
6756                cache = MTRR_TYPE_UNCACHABLE;
6757                goto exit;
6758        }
6759
6760        if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
6761                ipat = VMX_EPT_IPAT_BIT;
6762                cache = MTRR_TYPE_WRBACK;
6763                goto exit;
6764        }
6765
6766        if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
6767                ipat = VMX_EPT_IPAT_BIT;
6768                if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
6769                        cache = MTRR_TYPE_WRBACK;
6770                else
6771                        cache = MTRR_TYPE_UNCACHABLE;
6772                goto exit;
6773        }
6774
6775        cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
6776
6777exit:
6778        return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
6779}
6780
6781static int vmx_get_lpage_level(void)
6782{
6783        if (enable_ept && !cpu_has_vmx_ept_1g_page())
6784                return PT_DIRECTORY_LEVEL;
6785        else
6786                /* For shadow and EPT supported 1GB page */
6787                return PT_PDPE_LEVEL;
6788}
6789
6790static void vmcs_set_secondary_exec_control(u32 new_ctl)
6791{
6792        /*
6793         * These bits in the secondary execution controls field
6794         * are dynamic, the others are mostly based on the hypervisor
6795         * architecture and the guest's CPUID.  Do not touch the
6796         * dynamic bits.
6797         */
6798        u32 mask =
6799                SECONDARY_EXEC_SHADOW_VMCS |
6800                SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6801                SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6802                SECONDARY_EXEC_DESC;
6803
6804        u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6805
6806        vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6807                     (new_ctl & ~mask) | (cur_ctl & mask));
6808}
6809
6810/*
6811 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
6812 * (indicating "allowed-1") if they are supported in the guest's CPUID.
6813 */
6814static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
6815{
6816        struct vcpu_vmx *vmx = to_vmx(vcpu);
6817        struct kvm_cpuid_entry2 *entry;
6818
6819        vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
6820        vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
6821
6822#define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {            \
6823        if (entry && (entry->_reg & (_cpuid_mask)))                     \
6824                vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);     \
6825} while (0)
6826
6827        entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
6828        cr4_fixed1_update(X86_CR4_VME,        edx, bit(X86_FEATURE_VME));
6829        cr4_fixed1_update(X86_CR4_PVI,        edx, bit(X86_FEATURE_VME));
6830        cr4_fixed1_update(X86_CR4_TSD,        edx, bit(X86_FEATURE_TSC));
6831        cr4_fixed1_update(X86_CR4_DE,         edx, bit(X86_FEATURE_DE));
6832        cr4_fixed1_update(X86_CR4_PSE,        edx, bit(X86_FEATURE_PSE));
6833        cr4_fixed1_update(X86_CR4_PAE,        edx, bit(X86_FEATURE_PAE));
6834        cr4_fixed1_update(X86_CR4_MCE,        edx, bit(X86_FEATURE_MCE));
6835        cr4_fixed1_update(X86_CR4_PGE,        edx, bit(X86_FEATURE_PGE));
6836        cr4_fixed1_update(X86_CR4_OSFXSR,     edx, bit(X86_FEATURE_FXSR));
6837        cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
6838        cr4_fixed1_update(X86_CR4_VMXE,       ecx, bit(X86_FEATURE_VMX));
6839        cr4_fixed1_update(X86_CR4_SMXE,       ecx, bit(X86_FEATURE_SMX));
6840        cr4_fixed1_update(X86_CR4_PCIDE,      ecx, bit(X86_FEATURE_PCID));
6841        cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, bit(X86_FEATURE_XSAVE));
6842
6843        entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
6844        cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, bit(X86_FEATURE_FSGSBASE));
6845        cr4_fixed1_update(X86_CR4_SMEP,       ebx, bit(X86_FEATURE_SMEP));
6846        cr4_fixed1_update(X86_CR4_SMAP,       ebx, bit(X86_FEATURE_SMAP));
6847        cr4_fixed1_update(X86_CR4_PKE,        ecx, bit(X86_FEATURE_PKU));
6848        cr4_fixed1_update(X86_CR4_UMIP,       ecx, bit(X86_FEATURE_UMIP));
6849
6850#undef cr4_fixed1_update
6851}
6852
6853static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
6854{
6855        struct vcpu_vmx *vmx = to_vmx(vcpu);
6856
6857        if (kvm_mpx_supported()) {
6858                bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
6859
6860                if (mpx_enabled) {
6861                        vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
6862                        vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
6863                } else {
6864                        vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
6865                        vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
6866                }
6867        }
6868}
6869
6870static bool guest_cpuid_has_pmu(struct kvm_vcpu *vcpu)
6871{
6872        struct kvm_cpuid_entry2 *entry;
6873        union cpuid10_eax eax;
6874
6875        entry = kvm_find_cpuid_entry(vcpu, 0xa, 0);
6876        if (!entry)
6877                return false;
6878
6879        eax.full = entry->eax;
6880        return (eax.split.version_id > 0);
6881}
6882
6883static void nested_vmx_procbased_ctls_update(struct kvm_vcpu *vcpu)
6884{
6885        struct vcpu_vmx *vmx = to_vmx(vcpu);
6886        bool pmu_enabled = guest_cpuid_has_pmu(vcpu);
6887
6888        if (pmu_enabled)
6889                vmx->nested.msrs.procbased_ctls_high |= CPU_BASED_RDPMC_EXITING;
6890        else
6891                vmx->nested.msrs.procbased_ctls_high &= ~CPU_BASED_RDPMC_EXITING;
6892}
6893
6894static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
6895{
6896        struct vcpu_vmx *vmx = to_vmx(vcpu);
6897        struct kvm_cpuid_entry2 *best = NULL;
6898        int i;
6899
6900        for (i = 0; i < PT_CPUID_LEAVES; i++) {
6901                best = kvm_find_cpuid_entry(vcpu, 0x14, i);
6902                if (!best)
6903                        return;
6904                vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
6905                vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
6906                vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
6907                vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
6908        }
6909
6910        /* Get the number of configurable Address Ranges for filtering */
6911        vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
6912                                                PT_CAP_num_address_ranges);
6913
6914        /* Initialize and clear the no dependency bits */
6915        vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
6916                        RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
6917
6918        /*
6919         * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
6920         * will inject an #GP
6921         */
6922        if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
6923                vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
6924
6925        /*
6926         * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
6927         * PSBFreq can be set
6928         */
6929        if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
6930                vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
6931                                RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
6932
6933        /*
6934         * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
6935         * MTCFreq can be set
6936         */
6937        if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
6938                vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
6939                                RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
6940
6941        /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
6942        if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
6943                vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
6944                                                        RTIT_CTL_PTW_EN);
6945
6946        /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
6947        if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
6948                vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
6949
6950        /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
6951        if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
6952                vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
6953
6954        /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
6955        if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
6956                vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
6957
6958        /* unmask address range configure area */
6959        for (i = 0; i < vmx->pt_desc.addr_range; i++)
6960                vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
6961}
6962
6963static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
6964{
6965        struct vcpu_vmx *vmx = to_vmx(vcpu);
6966
6967        if (cpu_has_secondary_exec_ctrls()) {
6968                vmx_compute_secondary_exec_control(vmx);
6969                vmcs_set_secondary_exec_control(vmx->secondary_exec_control);
6970        }
6971
6972        if (nested_vmx_allowed(vcpu))
6973                to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
6974                        FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6975        else
6976                to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
6977                        ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6978
6979        if (nested_vmx_allowed(vcpu)) {
6980                nested_vmx_cr_fixed1_bits_update(vcpu);
6981                nested_vmx_entry_exit_ctls_update(vcpu);
6982                nested_vmx_procbased_ctls_update(vcpu);
6983        }
6984
6985        if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
6986                        guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
6987                update_intel_pt_cfg(vcpu);
6988}
6989
6990static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
6991{
6992        if (func == 1 && nested)
6993                entry->ecx |= bit(X86_FEATURE_VMX);
6994}
6995
6996static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
6997{
6998        to_vmx(vcpu)->req_immediate_exit = true;
6999}
7000
7001static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7002                               struct x86_instruction_info *info,
7003                               enum x86_intercept_stage stage)
7004{
7005        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7006        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7007
7008        /*
7009         * RDPID causes #UD if disabled through secondary execution controls.
7010         * Because it is marked as EmulateOnUD, we need to intercept it here.
7011         */
7012        if (info->intercept == x86_intercept_rdtscp &&
7013            !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
7014                ctxt->exception.vector = UD_VECTOR;
7015                ctxt->exception.error_code_valid = false;
7016                return X86EMUL_PROPAGATE_FAULT;
7017        }
7018
7019        /* TODO: check more intercepts... */
7020        return X86EMUL_CONTINUE;
7021}
7022
7023#ifdef CONFIG_X86_64
7024/* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7025static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7026                                  u64 divisor, u64 *result)
7027{
7028        u64 low = a << shift, high = a >> (64 - shift);
7029
7030        /* To avoid the overflow on divq */
7031        if (high >= divisor)
7032                return 1;
7033
7034        /* Low hold the result, high hold rem which is discarded */
7035        asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7036            "rm" (divisor), "0" (low), "1" (high));
7037        *result = low;
7038
7039        return 0;
7040}
7041
7042static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
7043{
7044        struct vcpu_vmx *vmx;
7045        u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7046        struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7047
7048        if (kvm_mwait_in_guest(vcpu->kvm))
7049                return -EOPNOTSUPP;
7050
7051        vmx = to_vmx(vcpu);
7052        tscl = rdtsc();
7053        guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7054        delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7055        lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7056                                                    ktimer->timer_advance_ns);
7057
7058        if (delta_tsc > lapic_timer_advance_cycles)
7059                delta_tsc -= lapic_timer_advance_cycles;
7060        else
7061                delta_tsc = 0;
7062
7063        /* Convert to host delta tsc if tsc scaling is enabled */
7064        if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7065                        u64_shl_div_u64(delta_tsc,
7066                                kvm_tsc_scaling_ratio_frac_bits,
7067                                vcpu->arch.tsc_scaling_ratio,
7068                                &delta_tsc))
7069                return -ERANGE;
7070
7071        /*
7072         * If the delta tsc can't fit in the 32 bit after the multi shift,
7073         * we can't use the preemption timer.
7074         * It's possible that it fits on later vmentries, but checking
7075         * on every vmentry is costly so we just use an hrtimer.
7076         */
7077        if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7078                return -ERANGE;
7079
7080        vmx->hv_deadline_tsc = tscl + delta_tsc;
7081        return delta_tsc == 0;
7082}
7083
7084static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7085{
7086        to_vmx(vcpu)->hv_deadline_tsc = -1;
7087}
7088#endif
7089
7090static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7091{
7092        if (!kvm_pause_in_guest(vcpu->kvm))
7093                shrink_ple_window(vcpu);
7094}
7095
7096static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7097                                     struct kvm_memory_slot *slot)
7098{
7099        kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7100        kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7101}
7102
7103static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7104                                       struct kvm_memory_slot *slot)
7105{
7106        kvm_mmu_slot_set_dirty(kvm, slot);
7107}
7108
7109static void vmx_flush_log_dirty(struct kvm *kvm)
7110{
7111        kvm_flush_pml_buffers(kvm);
7112}
7113
7114static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
7115{
7116        struct vmcs12 *vmcs12;
7117        struct vcpu_vmx *vmx = to_vmx(vcpu);
7118        gpa_t gpa;
7119        struct page *page = NULL;
7120        u64 *pml_address;
7121
7122        if (is_guest_mode(vcpu)) {
7123                WARN_ON_ONCE(vmx->nested.pml_full);
7124
7125                /*
7126                 * Check if PML is enabled for the nested guest.
7127                 * Whether eptp bit 6 is set is already checked
7128                 * as part of A/D emulation.
7129                 */
7130                vmcs12 = get_vmcs12(vcpu);
7131                if (!nested_cpu_has_pml(vmcs12))
7132                        return 0;
7133
7134                if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
7135                        vmx->nested.pml_full = true;
7136                        return 1;
7137                }
7138
7139                gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
7140
7141                page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address);
7142                if (is_error_page(page))
7143                        return 0;
7144
7145                pml_address = kmap(page);
7146                pml_address[vmcs12->guest_pml_index--] = gpa;
7147                kunmap(page);
7148                kvm_release_page_clean(page);
7149        }
7150
7151        return 0;
7152}
7153
7154static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7155                                           struct kvm_memory_slot *memslot,
7156                                           gfn_t offset, unsigned long mask)
7157{
7158        kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7159}
7160
7161static void __pi_post_block(struct kvm_vcpu *vcpu)
7162{
7163        struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7164        struct pi_desc old, new;
7165        unsigned int dest;
7166
7167        do {
7168                old.control = new.control = pi_desc->control;
7169                WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
7170                     "Wakeup handler not enabled while the VCPU is blocked\n");
7171
7172                dest = cpu_physical_id(vcpu->cpu);
7173
7174                if (x2apic_enabled())
7175                        new.ndst = dest;
7176                else
7177                        new.ndst = (dest << 8) & 0xFF00;
7178
7179                /* set 'NV' to 'notification vector' */
7180                new.nv = POSTED_INTR_VECTOR;
7181        } while (cmpxchg64(&pi_desc->control, old.control,
7182                           new.control) != old.control);
7183
7184        if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
7185                spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7186                list_del(&vcpu->blocked_vcpu_list);
7187                spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7188                vcpu->pre_pcpu = -1;
7189        }
7190}
7191
7192/*
7193 * This routine does the following things for vCPU which is going
7194 * to be blocked if VT-d PI is enabled.
7195 * - Store the vCPU to the wakeup list, so when interrupts happen
7196 *   we can find the right vCPU to wake up.
7197 * - Change the Posted-interrupt descriptor as below:
7198 *      'NDST' <-- vcpu->pre_pcpu
7199 *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
7200 * - If 'ON' is set during this process, which means at least one
7201 *   interrupt is posted for this vCPU, we cannot block it, in
7202 *   this case, return 1, otherwise, return 0.
7203 *
7204 */
7205static int pi_pre_block(struct kvm_vcpu *vcpu)
7206{
7207        unsigned int dest;
7208        struct pi_desc old, new;
7209        struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7210
7211        if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
7212                !irq_remapping_cap(IRQ_POSTING_CAP)  ||
7213                !kvm_vcpu_apicv_active(vcpu))
7214                return 0;
7215
7216        WARN_ON(irqs_disabled());
7217        local_irq_disable();
7218        if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
7219                vcpu->pre_pcpu = vcpu->cpu;
7220                spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7221                list_add_tail(&vcpu->blocked_vcpu_list,
7222                              &per_cpu(blocked_vcpu_on_cpu,
7223                                       vcpu->pre_pcpu));
7224                spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7225        }
7226
7227        do {
7228                old.control = new.control = pi_desc->control;
7229
7230                WARN((pi_desc->sn == 1),
7231                     "Warning: SN field of posted-interrupts "
7232                     "is set before blocking\n");
7233
7234                /*
7235                 * Since vCPU can be preempted during this process,
7236                 * vcpu->cpu could be different with pre_pcpu, we
7237                 * need to set pre_pcpu as the destination of wakeup
7238                 * notification event, then we can find the right vCPU
7239                 * to wakeup in wakeup handler if interrupts happen
7240                 * when the vCPU is in blocked state.
7241                 */
7242                dest = cpu_physical_id(vcpu->pre_pcpu);
7243
7244                if (x2apic_enabled())
7245                        new.ndst = dest;
7246                else
7247                        new.ndst = (dest << 8) & 0xFF00;
7248
7249                /* set 'NV' to 'wakeup vector' */
7250                new.nv = POSTED_INTR_WAKEUP_VECTOR;
7251        } while (cmpxchg64(&pi_desc->control, old.control,
7252                           new.control) != old.control);
7253
7254        /* We should not block the vCPU if an interrupt is posted for it.  */
7255        if (pi_test_on(pi_desc) == 1)
7256                __pi_post_block(vcpu);
7257
7258        local_irq_enable();
7259        return (vcpu->pre_pcpu == -1);
7260}
7261
7262static int vmx_pre_block(struct kvm_vcpu *vcpu)
7263{
7264        if (pi_pre_block(vcpu))
7265                return 1;
7266
7267        if (kvm_lapic_hv_timer_in_use(vcpu))
7268                kvm_lapic_switch_to_sw_timer(vcpu);
7269
7270        return 0;
7271}
7272
7273static void pi_post_block(struct kvm_vcpu *vcpu)
7274{
7275        if (vcpu->pre_pcpu == -1)
7276                return;
7277
7278        WARN_ON(irqs_disabled());
7279        local_irq_disable();
7280        __pi_post_block(vcpu);
7281        local_irq_enable();
7282}
7283
7284static void vmx_post_block(struct kvm_vcpu *vcpu)
7285{
7286        if (kvm_x86_ops->set_hv_timer)
7287                kvm_lapic_switch_to_hv_timer(vcpu);
7288
7289        pi_post_block(vcpu);
7290}
7291
7292/*
7293 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
7294 *
7295 * @kvm: kvm
7296 * @host_irq: host irq of the interrupt
7297 * @guest_irq: gsi of the interrupt
7298 * @set: set or unset PI
7299 * returns 0 on success, < 0 on failure
7300 */
7301static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
7302                              uint32_t guest_irq, bool set)
7303{
7304        struct kvm_kernel_irq_routing_entry *e;
7305        struct kvm_irq_routing_table *irq_rt;
7306        struct kvm_lapic_irq irq;
7307        struct kvm_vcpu *vcpu;
7308        struct vcpu_data vcpu_info;
7309        int idx, ret = 0;
7310
7311        if (!kvm_arch_has_assigned_device(kvm) ||
7312                !irq_remapping_cap(IRQ_POSTING_CAP) ||
7313                !kvm_vcpu_apicv_active(kvm->vcpus[0]))
7314                return 0;
7315
7316        idx = srcu_read_lock(&kvm->irq_srcu);
7317        irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
7318        if (guest_irq >= irq_rt->nr_rt_entries ||
7319            hlist_empty(&irq_rt->map[guest_irq])) {
7320                pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
7321                             guest_irq, irq_rt->nr_rt_entries);
7322                goto out;
7323        }
7324
7325        hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
7326                if (e->type != KVM_IRQ_ROUTING_MSI)
7327                        continue;
7328                /*
7329                 * VT-d PI cannot support posting multicast/broadcast
7330                 * interrupts to a vCPU, we still use interrupt remapping
7331                 * for these kind of interrupts.
7332                 *
7333                 * For lowest-priority interrupts, we only support
7334                 * those with single CPU as the destination, e.g. user
7335                 * configures the interrupts via /proc/irq or uses
7336                 * irqbalance to make the interrupts single-CPU.
7337                 *
7338                 * We will support full lowest-priority interrupt later.
7339                 */
7340
7341                kvm_set_msi_irq(kvm, e, &irq);
7342                if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
7343                        /*
7344                         * Make sure the IRTE is in remapped mode if
7345                         * we don't handle it in posted mode.
7346                         */
7347                        ret = irq_set_vcpu_affinity(host_irq, NULL);
7348                        if (ret < 0) {
7349                                printk(KERN_INFO
7350                                   "failed to back to remapped mode, irq: %u\n",
7351                                   host_irq);
7352                                goto out;
7353                        }
7354
7355                        continue;
7356                }
7357
7358                vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
7359                vcpu_info.vector = irq.vector;
7360
7361                trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
7362                                vcpu_info.vector, vcpu_info.pi_desc_addr, set);
7363
7364                if (set)
7365                        ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
7366                else
7367                        ret = irq_set_vcpu_affinity(host_irq, NULL);
7368
7369                if (ret < 0) {
7370                        printk(KERN_INFO "%s: failed to update PI IRTE\n",
7371                                        __func__);
7372                        goto out;
7373                }
7374        }
7375
7376        ret = 0;
7377out:
7378        srcu_read_unlock(&kvm->irq_srcu, idx);
7379        return ret;
7380}
7381
7382static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7383{
7384        if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7385                to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7386                        FEATURE_CONTROL_LMCE;
7387        else
7388                to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7389                        ~FEATURE_CONTROL_LMCE;
7390}
7391
7392static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
7393{
7394        /* we need a nested vmexit to enter SMM, postpone if run is pending */
7395        if (to_vmx(vcpu)->nested.nested_run_pending)
7396                return 0;
7397        return 1;
7398}
7399
7400static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7401{
7402        struct vcpu_vmx *vmx = to_vmx(vcpu);
7403
7404        vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7405        if (vmx->nested.smm.guest_mode)
7406                nested_vmx_vmexit(vcpu, -1, 0, 0);
7407
7408        vmx->nested.smm.vmxon = vmx->nested.vmxon;
7409        vmx->nested.vmxon = false;
7410        vmx_clear_hlt(vcpu);
7411        return 0;
7412}
7413
7414static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7415{
7416        struct vcpu_vmx *vmx = to_vmx(vcpu);
7417        int ret;
7418
7419        if (vmx->nested.smm.vmxon) {
7420                vmx->nested.vmxon = true;
7421                vmx->nested.smm.vmxon = false;
7422        }
7423
7424        if (vmx->nested.smm.guest_mode) {
7425                ret = nested_vmx_enter_non_root_mode(vcpu, false);
7426                if (ret)
7427                        return ret;
7428
7429                vmx->nested.smm.guest_mode = false;
7430        }
7431        return 0;
7432}
7433
7434static int enable_smi_window(struct kvm_vcpu *vcpu)
7435{
7436        return 0;
7437}
7438
7439static bool vmx_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7440{
7441        return 0;
7442}
7443
7444static __init int hardware_setup(void)
7445{
7446        unsigned long host_bndcfgs;
7447        int r, i;
7448
7449        rdmsrl_safe(MSR_EFER, &host_efer);
7450
7451        for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
7452                kvm_define_shared_msr(i, vmx_msr_index[i]);
7453
7454        if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7455                return -EIO;
7456
7457        if (boot_cpu_has(X86_FEATURE_NX))
7458                kvm_enable_efer_bits(EFER_NX);
7459
7460        if (boot_cpu_has(X86_FEATURE_MPX)) {
7461                rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7462                WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7463        }
7464
7465        if (boot_cpu_has(X86_FEATURE_XSAVES))
7466                rdmsrl(MSR_IA32_XSS, host_xss);
7467
7468        if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7469            !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7470                enable_vpid = 0;
7471
7472        if (!cpu_has_vmx_ept() ||
7473            !cpu_has_vmx_ept_4levels() ||
7474            !cpu_has_vmx_ept_mt_wb() ||
7475            !cpu_has_vmx_invept_global())
7476                enable_ept = 0;
7477
7478        if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7479                enable_ept_ad_bits = 0;
7480
7481        if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7482                enable_unrestricted_guest = 0;
7483
7484        if (!cpu_has_vmx_flexpriority())
7485                flexpriority_enabled = 0;
7486
7487        if (!cpu_has_virtual_nmis())
7488                enable_vnmi = 0;
7489
7490        /*
7491         * set_apic_access_page_addr() is used to reload apic access
7492         * page upon invalidation.  No need to do anything if not
7493         * using the APIC_ACCESS_ADDR VMCS field.
7494         */
7495        if (!flexpriority_enabled)
7496                kvm_x86_ops->set_apic_access_page_addr = NULL;
7497
7498        if (!cpu_has_vmx_tpr_shadow())
7499                kvm_x86_ops->update_cr8_intercept = NULL;
7500
7501        if (enable_ept && !cpu_has_vmx_ept_2m_page())
7502                kvm_disable_largepages();
7503
7504#if IS_ENABLED(CONFIG_HYPERV)
7505        if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7506            && enable_ept) {
7507                kvm_x86_ops->tlb_remote_flush = hv_remote_flush_tlb;
7508                kvm_x86_ops->tlb_remote_flush_with_range =
7509                                hv_remote_flush_tlb_with_range;
7510        }
7511#endif
7512
7513        if (!cpu_has_vmx_ple()) {
7514                ple_gap = 0;
7515                ple_window = 0;
7516                ple_window_grow = 0;
7517                ple_window_max = 0;
7518                ple_window_shrink = 0;
7519        }
7520
7521        if (!cpu_has_vmx_apicv()) {
7522                enable_apicv = 0;
7523                kvm_x86_ops->sync_pir_to_irr = NULL;
7524        }
7525
7526        if (cpu_has_vmx_tsc_scaling()) {
7527                kvm_has_tsc_control = true;
7528                kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7529                kvm_tsc_scaling_ratio_frac_bits = 48;
7530        }
7531
7532        set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7533
7534        if (enable_ept)
7535                vmx_enable_tdp();
7536        else
7537                kvm_disable_tdp();
7538
7539        /*
7540         * Only enable PML when hardware supports PML feature, and both EPT
7541         * and EPT A/D bit features are enabled -- PML depends on them to work.
7542         */
7543        if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7544                enable_pml = 0;
7545
7546        if (!enable_pml) {
7547                kvm_x86_ops->slot_enable_log_dirty = NULL;
7548                kvm_x86_ops->slot_disable_log_dirty = NULL;
7549                kvm_x86_ops->flush_log_dirty = NULL;
7550                kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
7551        }
7552
7553        if (!cpu_has_vmx_preemption_timer())
7554                kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit;
7555
7556        if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
7557                u64 vmx_msr;
7558
7559                rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7560                cpu_preemption_timer_multi =
7561                        vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7562        } else {
7563                kvm_x86_ops->set_hv_timer = NULL;
7564                kvm_x86_ops->cancel_hv_timer = NULL;
7565        }
7566
7567        kvm_set_posted_intr_wakeup_handler(wakeup_handler);
7568
7569        kvm_mce_cap_supported |= MCG_LMCE_P;
7570
7571        if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7572                return -EINVAL;
7573        if (!enable_ept || !cpu_has_vmx_intel_pt())
7574                pt_mode = PT_MODE_SYSTEM;
7575
7576        if (nested) {
7577                r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7578                if (r)
7579                        return r;
7580        }
7581
7582        r = alloc_kvm_area();
7583        if (r)
7584                nested_vmx_hardware_unsetup();
7585        return r;
7586}
7587
7588static __exit void hardware_unsetup(void)
7589{
7590        if (nested)
7591                nested_vmx_hardware_unsetup();
7592
7593        free_kvm_area();
7594}
7595
7596static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
7597        .cpu_has_kvm_support = cpu_has_kvm_support,
7598        .disabled_by_bios = vmx_disabled_by_bios,
7599        .hardware_setup = hardware_setup,
7600        .hardware_unsetup = hardware_unsetup,
7601        .check_processor_compatibility = vmx_check_processor_compat,
7602        .hardware_enable = hardware_enable,
7603        .hardware_disable = hardware_disable,
7604        .cpu_has_accelerated_tpr = report_flexpriority,
7605        .has_emulated_msr = vmx_has_emulated_msr,
7606
7607        .vm_init = vmx_vm_init,
7608        .vm_alloc = vmx_vm_alloc,
7609        .vm_free = vmx_vm_free,
7610
7611        .vcpu_create = vmx_create_vcpu,
7612        .vcpu_free = vmx_free_vcpu,
7613        .vcpu_reset = vmx_vcpu_reset,
7614
7615        .prepare_guest_switch = vmx_prepare_switch_to_guest,
7616        .vcpu_load = vmx_vcpu_load,
7617        .vcpu_put = vmx_vcpu_put,
7618
7619        .update_bp_intercept = update_exception_bitmap,
7620        .get_msr_feature = vmx_get_msr_feature,
7621        .get_msr = vmx_get_msr,
7622        .set_msr = vmx_set_msr,
7623        .get_segment_base = vmx_get_segment_base,
7624        .get_segment = vmx_get_segment,
7625        .set_segment = vmx_set_segment,
7626        .get_cpl = vmx_get_cpl,
7627        .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7628        .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7629        .decache_cr3 = vmx_decache_cr3,
7630        .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7631        .set_cr0 = vmx_set_cr0,
7632        .set_cr3 = vmx_set_cr3,
7633        .set_cr4 = vmx_set_cr4,
7634        .set_efer = vmx_set_efer,
7635        .get_idt = vmx_get_idt,
7636        .set_idt = vmx_set_idt,
7637        .get_gdt = vmx_get_gdt,
7638        .set_gdt = vmx_set_gdt,
7639        .get_dr6 = vmx_get_dr6,
7640        .set_dr6 = vmx_set_dr6,
7641        .set_dr7 = vmx_set_dr7,
7642        .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7643        .cache_reg = vmx_cache_reg,
7644        .get_rflags = vmx_get_rflags,
7645        .set_rflags = vmx_set_rflags,
7646
7647        .tlb_flush = vmx_flush_tlb,
7648        .tlb_flush_gva = vmx_flush_tlb_gva,
7649
7650        .run = vmx_vcpu_run,
7651        .handle_exit = vmx_handle_exit,
7652        .skip_emulated_instruction = skip_emulated_instruction,
7653        .set_interrupt_shadow = vmx_set_interrupt_shadow,
7654        .get_interrupt_shadow = vmx_get_interrupt_shadow,
7655        .patch_hypercall = vmx_patch_hypercall,
7656        .set_irq = vmx_inject_irq,
7657        .set_nmi = vmx_inject_nmi,
7658        .queue_exception = vmx_queue_exception,
7659        .cancel_injection = vmx_cancel_injection,
7660        .interrupt_allowed = vmx_interrupt_allowed,
7661        .nmi_allowed = vmx_nmi_allowed,
7662        .get_nmi_mask = vmx_get_nmi_mask,
7663        .set_nmi_mask = vmx_set_nmi_mask,
7664        .enable_nmi_window = enable_nmi_window,
7665        .enable_irq_window = enable_irq_window,
7666        .update_cr8_intercept = update_cr8_intercept,
7667        .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7668        .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7669        .get_enable_apicv = vmx_get_enable_apicv,
7670        .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7671        .load_eoi_exitmap = vmx_load_eoi_exitmap,
7672        .apicv_post_state_restore = vmx_apicv_post_state_restore,
7673        .hwapic_irr_update = vmx_hwapic_irr_update,
7674        .hwapic_isr_update = vmx_hwapic_isr_update,
7675        .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7676        .sync_pir_to_irr = vmx_sync_pir_to_irr,
7677        .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7678
7679        .set_tss_addr = vmx_set_tss_addr,
7680        .set_identity_map_addr = vmx_set_identity_map_addr,
7681        .get_tdp_level = get_ept_level,
7682        .get_mt_mask = vmx_get_mt_mask,
7683
7684        .get_exit_info = vmx_get_exit_info,
7685
7686        .get_lpage_level = vmx_get_lpage_level,
7687
7688        .cpuid_update = vmx_cpuid_update,
7689
7690        .rdtscp_supported = vmx_rdtscp_supported,
7691        .invpcid_supported = vmx_invpcid_supported,
7692
7693        .set_supported_cpuid = vmx_set_supported_cpuid,
7694
7695        .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7696
7697        .read_l1_tsc_offset = vmx_read_l1_tsc_offset,
7698        .write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7699
7700        .set_tdp_cr3 = vmx_set_cr3,
7701
7702        .check_intercept = vmx_check_intercept,
7703        .handle_external_intr = vmx_handle_external_intr,
7704        .mpx_supported = vmx_mpx_supported,
7705        .xsaves_supported = vmx_xsaves_supported,
7706        .umip_emulated = vmx_umip_emulated,
7707        .pt_supported = vmx_pt_supported,
7708
7709        .request_immediate_exit = vmx_request_immediate_exit,
7710
7711        .sched_in = vmx_sched_in,
7712
7713        .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7714        .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7715        .flush_log_dirty = vmx_flush_log_dirty,
7716        .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7717        .write_log_dirty = vmx_write_pml_buffer,
7718
7719        .pre_block = vmx_pre_block,
7720        .post_block = vmx_post_block,
7721
7722        .pmu_ops = &intel_pmu_ops,
7723
7724        .update_pi_irte = vmx_update_pi_irte,
7725
7726#ifdef CONFIG_X86_64
7727        .set_hv_timer = vmx_set_hv_timer,
7728        .cancel_hv_timer = vmx_cancel_hv_timer,
7729#endif
7730
7731        .setup_mce = vmx_setup_mce,
7732
7733        .smi_allowed = vmx_smi_allowed,
7734        .pre_enter_smm = vmx_pre_enter_smm,
7735        .pre_leave_smm = vmx_pre_leave_smm,
7736        .enable_smi_window = enable_smi_window,
7737
7738        .check_nested_events = NULL,
7739        .get_nested_state = NULL,
7740        .set_nested_state = NULL,
7741        .get_vmcs12_pages = NULL,
7742        .nested_enable_evmcs = NULL,
7743        .nested_get_evmcs_version = NULL,
7744        .need_emulation_on_page_fault = vmx_need_emulation_on_page_fault,
7745};
7746
7747static void vmx_cleanup_l1d_flush(void)
7748{
7749        if (vmx_l1d_flush_pages) {
7750                free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7751                vmx_l1d_flush_pages = NULL;
7752        }
7753        /* Restore state so sysfs ignores VMX */
7754        l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7755}
7756
7757static void vmx_exit(void)
7758{
7759#ifdef CONFIG_KEXEC_CORE
7760        RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7761        synchronize_rcu();
7762#endif
7763
7764        kvm_exit();
7765
7766#if IS_ENABLED(CONFIG_HYPERV)
7767        if (static_branch_unlikely(&enable_evmcs)) {
7768                int cpu;
7769                struct hv_vp_assist_page *vp_ap;
7770                /*
7771                 * Reset everything to support using non-enlightened VMCS
7772                 * access later (e.g. when we reload the module with
7773                 * enlightened_vmcs=0)
7774                 */
7775                for_each_online_cpu(cpu) {
7776                        vp_ap = hv_get_vp_assist_page(cpu);
7777
7778                        if (!vp_ap)
7779                                continue;
7780
7781                        vp_ap->current_nested_vmcs = 0;
7782                        vp_ap->enlighten_vmentry = 0;
7783                }
7784
7785                static_branch_disable(&enable_evmcs);
7786        }
7787#endif
7788        vmx_cleanup_l1d_flush();
7789}
7790module_exit(vmx_exit);
7791
7792static int __init vmx_init(void)
7793{
7794        int r;
7795
7796#if IS_ENABLED(CONFIG_HYPERV)
7797        /*
7798         * Enlightened VMCS usage should be recommended and the host needs
7799         * to support eVMCS v1 or above. We can also disable eVMCS support
7800         * with module parameter.
7801         */
7802        if (enlightened_vmcs &&
7803            ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
7804            (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
7805            KVM_EVMCS_VERSION) {
7806                int cpu;
7807
7808                /* Check that we have assist pages on all online CPUs */
7809                for_each_online_cpu(cpu) {
7810                        if (!hv_get_vp_assist_page(cpu)) {
7811                                enlightened_vmcs = false;
7812                                break;
7813                        }
7814                }
7815
7816                if (enlightened_vmcs) {
7817                        pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
7818                        static_branch_enable(&enable_evmcs);
7819                }
7820        } else {
7821                enlightened_vmcs = false;
7822        }
7823#endif
7824
7825        r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7826                     __alignof__(struct vcpu_vmx), THIS_MODULE);
7827        if (r)
7828                return r;
7829
7830        /*
7831         * Must be called after kvm_init() so enable_ept is properly set
7832         * up. Hand the parameter mitigation value in which was stored in
7833         * the pre module init parser. If no parameter was given, it will
7834         * contain 'auto' which will be turned into the default 'cond'
7835         * mitigation mode.
7836         */
7837        if (boot_cpu_has(X86_BUG_L1TF)) {
7838                r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
7839                if (r) {
7840                        vmx_exit();
7841                        return r;
7842                }
7843        }
7844
7845#ifdef CONFIG_KEXEC_CORE
7846        rcu_assign_pointer(crash_vmclear_loaded_vmcss,
7847                           crash_vmclear_local_loaded_vmcss);
7848#endif
7849        vmx_check_vmcs12_offsets();
7850
7851        return 0;
7852}
7853module_init(vmx_init);
7854