linux/arch/x86/lib/insn-eval.c
<<
>>
Prefs
   1/*
   2 * Utility functions for x86 operand and address decoding
   3 *
   4 * Copyright (C) Intel Corporation 2017
   5 */
   6#include <linux/kernel.h>
   7#include <linux/string.h>
   8#include <linux/ratelimit.h>
   9#include <linux/mmu_context.h>
  10#include <asm/desc_defs.h>
  11#include <asm/desc.h>
  12#include <asm/inat.h>
  13#include <asm/insn.h>
  14#include <asm/insn-eval.h>
  15#include <asm/ldt.h>
  16#include <asm/vm86.h>
  17
  18#undef pr_fmt
  19#define pr_fmt(fmt) "insn: " fmt
  20
  21enum reg_type {
  22        REG_TYPE_RM = 0,
  23        REG_TYPE_INDEX,
  24        REG_TYPE_BASE,
  25};
  26
  27/**
  28 * is_string_insn() - Determine if instruction is a string instruction
  29 * @insn:       Instruction containing the opcode to inspect
  30 *
  31 * Returns:
  32 *
  33 * true if the instruction, determined by the opcode, is any of the
  34 * string instructions as defined in the Intel Software Development manual.
  35 * False otherwise.
  36 */
  37static bool is_string_insn(struct insn *insn)
  38{
  39        insn_get_opcode(insn);
  40
  41        /* All string instructions have a 1-byte opcode. */
  42        if (insn->opcode.nbytes != 1)
  43                return false;
  44
  45        switch (insn->opcode.bytes[0]) {
  46        case 0x6c ... 0x6f:     /* INS, OUTS */
  47        case 0xa4 ... 0xa7:     /* MOVS, CMPS */
  48        case 0xaa ... 0xaf:     /* STOS, LODS, SCAS */
  49                return true;
  50        default:
  51                return false;
  52        }
  53}
  54
  55/**
  56 * get_seg_reg_override_idx() - obtain segment register override index
  57 * @insn:       Valid instruction with segment override prefixes
  58 *
  59 * Inspect the instruction prefixes in @insn and find segment overrides, if any.
  60 *
  61 * Returns:
  62 *
  63 * A constant identifying the segment register to use, among CS, SS, DS,
  64 * ES, FS, or GS. INAT_SEG_REG_DEFAULT is returned if no segment override
  65 * prefixes were found.
  66 *
  67 * -EINVAL in case of error.
  68 */
  69static int get_seg_reg_override_idx(struct insn *insn)
  70{
  71        int idx = INAT_SEG_REG_DEFAULT;
  72        int num_overrides = 0, i;
  73
  74        insn_get_prefixes(insn);
  75
  76        /* Look for any segment override prefixes. */
  77        for (i = 0; i < insn->prefixes.nbytes; i++) {
  78                insn_attr_t attr;
  79
  80                attr = inat_get_opcode_attribute(insn->prefixes.bytes[i]);
  81                switch (attr) {
  82                case INAT_MAKE_PREFIX(INAT_PFX_CS):
  83                        idx = INAT_SEG_REG_CS;
  84                        num_overrides++;
  85                        break;
  86                case INAT_MAKE_PREFIX(INAT_PFX_SS):
  87                        idx = INAT_SEG_REG_SS;
  88                        num_overrides++;
  89                        break;
  90                case INAT_MAKE_PREFIX(INAT_PFX_DS):
  91                        idx = INAT_SEG_REG_DS;
  92                        num_overrides++;
  93                        break;
  94                case INAT_MAKE_PREFIX(INAT_PFX_ES):
  95                        idx = INAT_SEG_REG_ES;
  96                        num_overrides++;
  97                        break;
  98                case INAT_MAKE_PREFIX(INAT_PFX_FS):
  99                        idx = INAT_SEG_REG_FS;
 100                        num_overrides++;
 101                        break;
 102                case INAT_MAKE_PREFIX(INAT_PFX_GS):
 103                        idx = INAT_SEG_REG_GS;
 104                        num_overrides++;
 105                        break;
 106                /* No default action needed. */
 107                }
 108        }
 109
 110        /* More than one segment override prefix leads to undefined behavior. */
 111        if (num_overrides > 1)
 112                return -EINVAL;
 113
 114        return idx;
 115}
 116
 117/**
 118 * check_seg_overrides() - check if segment override prefixes are allowed
 119 * @insn:       Valid instruction with segment override prefixes
 120 * @regoff:     Operand offset, in pt_regs, for which the check is performed
 121 *
 122 * For a particular register used in register-indirect addressing, determine if
 123 * segment override prefixes can be used. Specifically, no overrides are allowed
 124 * for rDI if used with a string instruction.
 125 *
 126 * Returns:
 127 *
 128 * True if segment override prefixes can be used with the register indicated
 129 * in @regoff. False if otherwise.
 130 */
 131static bool check_seg_overrides(struct insn *insn, int regoff)
 132{
 133        if (regoff == offsetof(struct pt_regs, di) && is_string_insn(insn))
 134                return false;
 135
 136        return true;
 137}
 138
 139/**
 140 * resolve_default_seg() - resolve default segment register index for an operand
 141 * @insn:       Instruction with opcode and address size. Must be valid.
 142 * @regs:       Register values as seen when entering kernel mode
 143 * @off:        Operand offset, in pt_regs, for which resolution is needed
 144 *
 145 * Resolve the default segment register index associated with the instruction
 146 * operand register indicated by @off. Such index is resolved based on defaults
 147 * described in the Intel Software Development Manual.
 148 *
 149 * Returns:
 150 *
 151 * If in protected mode, a constant identifying the segment register to use,
 152 * among CS, SS, ES or DS. If in long mode, INAT_SEG_REG_IGNORE.
 153 *
 154 * -EINVAL in case of error.
 155 */
 156static int resolve_default_seg(struct insn *insn, struct pt_regs *regs, int off)
 157{
 158        if (user_64bit_mode(regs))
 159                return INAT_SEG_REG_IGNORE;
 160        /*
 161         * Resolve the default segment register as described in Section 3.7.4
 162         * of the Intel Software Development Manual Vol. 1:
 163         *
 164         *  + DS for all references involving r[ABCD]X, and rSI.
 165         *  + If used in a string instruction, ES for rDI. Otherwise, DS.
 166         *  + AX, CX and DX are not valid register operands in 16-bit address
 167         *    encodings but are valid for 32-bit and 64-bit encodings.
 168         *  + -EDOM is reserved to identify for cases in which no register
 169         *    is used (i.e., displacement-only addressing). Use DS.
 170         *  + SS for rSP or rBP.
 171         *  + CS for rIP.
 172         */
 173
 174        switch (off) {
 175        case offsetof(struct pt_regs, ax):
 176        case offsetof(struct pt_regs, cx):
 177        case offsetof(struct pt_regs, dx):
 178                /* Need insn to verify address size. */
 179                if (insn->addr_bytes == 2)
 180                        return -EINVAL;
 181
 182        case -EDOM:
 183        case offsetof(struct pt_regs, bx):
 184        case offsetof(struct pt_regs, si):
 185                return INAT_SEG_REG_DS;
 186
 187        case offsetof(struct pt_regs, di):
 188                if (is_string_insn(insn))
 189                        return INAT_SEG_REG_ES;
 190                return INAT_SEG_REG_DS;
 191
 192        case offsetof(struct pt_regs, bp):
 193        case offsetof(struct pt_regs, sp):
 194                return INAT_SEG_REG_SS;
 195
 196        case offsetof(struct pt_regs, ip):
 197                return INAT_SEG_REG_CS;
 198
 199        default:
 200                return -EINVAL;
 201        }
 202}
 203
 204/**
 205 * resolve_seg_reg() - obtain segment register index
 206 * @insn:       Instruction with operands
 207 * @regs:       Register values as seen when entering kernel mode
 208 * @regoff:     Operand offset, in pt_regs, used to deterimine segment register
 209 *
 210 * Determine the segment register associated with the operands and, if
 211 * applicable, prefixes and the instruction pointed by @insn.
 212 *
 213 * The segment register associated to an operand used in register-indirect
 214 * addressing depends on:
 215 *
 216 * a) Whether running in long mode (in such a case segments are ignored, except
 217 * if FS or GS are used).
 218 *
 219 * b) Whether segment override prefixes can be used. Certain instructions and
 220 *    registers do not allow override prefixes.
 221 *
 222 * c) Whether segment overrides prefixes are found in the instruction prefixes.
 223 *
 224 * d) If there are not segment override prefixes or they cannot be used, the
 225 *    default segment register associated with the operand register is used.
 226 *
 227 * The function checks first if segment override prefixes can be used with the
 228 * operand indicated by @regoff. If allowed, obtain such overridden segment
 229 * register index. Lastly, if not prefixes were found or cannot be used, resolve
 230 * the segment register index to use based on the defaults described in the
 231 * Intel documentation. In long mode, all segment register indexes will be
 232 * ignored, except if overrides were found for FS or GS. All these operations
 233 * are done using helper functions.
 234 *
 235 * The operand register, @regoff, is represented as the offset from the base of
 236 * pt_regs.
 237 *
 238 * As stated, the main use of this function is to determine the segment register
 239 * index based on the instruction, its operands and prefixes. Hence, @insn
 240 * must be valid. However, if @regoff indicates rIP, we don't need to inspect
 241 * @insn at all as in this case CS is used in all cases. This case is checked
 242 * before proceeding further.
 243 *
 244 * Please note that this function does not return the value in the segment
 245 * register (i.e., the segment selector) but our defined index. The segment
 246 * selector needs to be obtained using get_segment_selector() and passing the
 247 * segment register index resolved by this function.
 248 *
 249 * Returns:
 250 *
 251 * An index identifying the segment register to use, among CS, SS, DS,
 252 * ES, FS, or GS. INAT_SEG_REG_IGNORE is returned if running in long mode.
 253 *
 254 * -EINVAL in case of error.
 255 */
 256static int resolve_seg_reg(struct insn *insn, struct pt_regs *regs, int regoff)
 257{
 258        int idx;
 259
 260        /*
 261         * In the unlikely event of having to resolve the segment register
 262         * index for rIP, do it first. Segment override prefixes should not
 263         * be used. Hence, it is not necessary to inspect the instruction,
 264         * which may be invalid at this point.
 265         */
 266        if (regoff == offsetof(struct pt_regs, ip)) {
 267                if (user_64bit_mode(regs))
 268                        return INAT_SEG_REG_IGNORE;
 269                else
 270                        return INAT_SEG_REG_CS;
 271        }
 272
 273        if (!insn)
 274                return -EINVAL;
 275
 276        if (!check_seg_overrides(insn, regoff))
 277                return resolve_default_seg(insn, regs, regoff);
 278
 279        idx = get_seg_reg_override_idx(insn);
 280        if (idx < 0)
 281                return idx;
 282
 283        if (idx == INAT_SEG_REG_DEFAULT)
 284                return resolve_default_seg(insn, regs, regoff);
 285
 286        /*
 287         * In long mode, segment override prefixes are ignored, except for
 288         * overrides for FS and GS.
 289         */
 290        if (user_64bit_mode(regs)) {
 291                if (idx != INAT_SEG_REG_FS &&
 292                    idx != INAT_SEG_REG_GS)
 293                        idx = INAT_SEG_REG_IGNORE;
 294        }
 295
 296        return idx;
 297}
 298
 299/**
 300 * get_segment_selector() - obtain segment selector
 301 * @regs:               Register values as seen when entering kernel mode
 302 * @seg_reg_idx:        Segment register index to use
 303 *
 304 * Obtain the segment selector from any of the CS, SS, DS, ES, FS, GS segment
 305 * registers. In CONFIG_X86_32, the segment is obtained from either pt_regs or
 306 * kernel_vm86_regs as applicable. In CONFIG_X86_64, CS and SS are obtained
 307 * from pt_regs. DS, ES, FS and GS are obtained by reading the actual CPU
 308 * registers. This done for only for completeness as in CONFIG_X86_64 segment
 309 * registers are ignored.
 310 *
 311 * Returns:
 312 *
 313 * Value of the segment selector, including null when running in
 314 * long mode.
 315 *
 316 * -EINVAL on error.
 317 */
 318static short get_segment_selector(struct pt_regs *regs, int seg_reg_idx)
 319{
 320#ifdef CONFIG_X86_64
 321        unsigned short sel;
 322
 323        switch (seg_reg_idx) {
 324        case INAT_SEG_REG_IGNORE:
 325                return 0;
 326        case INAT_SEG_REG_CS:
 327                return (unsigned short)(regs->cs & 0xffff);
 328        case INAT_SEG_REG_SS:
 329                return (unsigned short)(regs->ss & 0xffff);
 330        case INAT_SEG_REG_DS:
 331                savesegment(ds, sel);
 332                return sel;
 333        case INAT_SEG_REG_ES:
 334                savesegment(es, sel);
 335                return sel;
 336        case INAT_SEG_REG_FS:
 337                savesegment(fs, sel);
 338                return sel;
 339        case INAT_SEG_REG_GS:
 340                savesegment(gs, sel);
 341                return sel;
 342        default:
 343                return -EINVAL;
 344        }
 345#else /* CONFIG_X86_32 */
 346        struct kernel_vm86_regs *vm86regs = (struct kernel_vm86_regs *)regs;
 347
 348        if (v8086_mode(regs)) {
 349                switch (seg_reg_idx) {
 350                case INAT_SEG_REG_CS:
 351                        return (unsigned short)(regs->cs & 0xffff);
 352                case INAT_SEG_REG_SS:
 353                        return (unsigned short)(regs->ss & 0xffff);
 354                case INAT_SEG_REG_DS:
 355                        return vm86regs->ds;
 356                case INAT_SEG_REG_ES:
 357                        return vm86regs->es;
 358                case INAT_SEG_REG_FS:
 359                        return vm86regs->fs;
 360                case INAT_SEG_REG_GS:
 361                        return vm86regs->gs;
 362                case INAT_SEG_REG_IGNORE:
 363                        /* fall through */
 364                default:
 365                        return -EINVAL;
 366                }
 367        }
 368
 369        switch (seg_reg_idx) {
 370        case INAT_SEG_REG_CS:
 371                return (unsigned short)(regs->cs & 0xffff);
 372        case INAT_SEG_REG_SS:
 373                return (unsigned short)(regs->ss & 0xffff);
 374        case INAT_SEG_REG_DS:
 375                return (unsigned short)(regs->ds & 0xffff);
 376        case INAT_SEG_REG_ES:
 377                return (unsigned short)(regs->es & 0xffff);
 378        case INAT_SEG_REG_FS:
 379                return (unsigned short)(regs->fs & 0xffff);
 380        case INAT_SEG_REG_GS:
 381                /*
 382                 * GS may or may not be in regs as per CONFIG_X86_32_LAZY_GS.
 383                 * The macro below takes care of both cases.
 384                 */
 385                return get_user_gs(regs);
 386        case INAT_SEG_REG_IGNORE:
 387                /* fall through */
 388        default:
 389                return -EINVAL;
 390        }
 391#endif /* CONFIG_X86_64 */
 392}
 393
 394static int get_reg_offset(struct insn *insn, struct pt_regs *regs,
 395                          enum reg_type type)
 396{
 397        int regno = 0;
 398
 399        static const int regoff[] = {
 400                offsetof(struct pt_regs, ax),
 401                offsetof(struct pt_regs, cx),
 402                offsetof(struct pt_regs, dx),
 403                offsetof(struct pt_regs, bx),
 404                offsetof(struct pt_regs, sp),
 405                offsetof(struct pt_regs, bp),
 406                offsetof(struct pt_regs, si),
 407                offsetof(struct pt_regs, di),
 408#ifdef CONFIG_X86_64
 409                offsetof(struct pt_regs, r8),
 410                offsetof(struct pt_regs, r9),
 411                offsetof(struct pt_regs, r10),
 412                offsetof(struct pt_regs, r11),
 413                offsetof(struct pt_regs, r12),
 414                offsetof(struct pt_regs, r13),
 415                offsetof(struct pt_regs, r14),
 416                offsetof(struct pt_regs, r15),
 417#endif
 418        };
 419        int nr_registers = ARRAY_SIZE(regoff);
 420        /*
 421         * Don't possibly decode a 32-bit instructions as
 422         * reading a 64-bit-only register.
 423         */
 424        if (IS_ENABLED(CONFIG_X86_64) && !insn->x86_64)
 425                nr_registers -= 8;
 426
 427        switch (type) {
 428        case REG_TYPE_RM:
 429                regno = X86_MODRM_RM(insn->modrm.value);
 430
 431                /*
 432                 * ModRM.mod == 0 and ModRM.rm == 5 means a 32-bit displacement
 433                 * follows the ModRM byte.
 434                 */
 435                if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
 436                        return -EDOM;
 437
 438                if (X86_REX_B(insn->rex_prefix.value))
 439                        regno += 8;
 440                break;
 441
 442        case REG_TYPE_INDEX:
 443                regno = X86_SIB_INDEX(insn->sib.value);
 444                if (X86_REX_X(insn->rex_prefix.value))
 445                        regno += 8;
 446
 447                /*
 448                 * If ModRM.mod != 3 and SIB.index = 4 the scale*index
 449                 * portion of the address computation is null. This is
 450                 * true only if REX.X is 0. In such a case, the SIB index
 451                 * is used in the address computation.
 452                 */
 453                if (X86_MODRM_MOD(insn->modrm.value) != 3 && regno == 4)
 454                        return -EDOM;
 455                break;
 456
 457        case REG_TYPE_BASE:
 458                regno = X86_SIB_BASE(insn->sib.value);
 459                /*
 460                 * If ModRM.mod is 0 and SIB.base == 5, the base of the
 461                 * register-indirect addressing is 0. In this case, a
 462                 * 32-bit displacement follows the SIB byte.
 463                 */
 464                if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
 465                        return -EDOM;
 466
 467                if (X86_REX_B(insn->rex_prefix.value))
 468                        regno += 8;
 469                break;
 470
 471        default:
 472                pr_err_ratelimited("invalid register type: %d\n", type);
 473                return -EINVAL;
 474        }
 475
 476        if (regno >= nr_registers) {
 477                WARN_ONCE(1, "decoded an instruction with an invalid register");
 478                return -EINVAL;
 479        }
 480        return regoff[regno];
 481}
 482
 483/**
 484 * get_reg_offset_16() - Obtain offset of register indicated by instruction
 485 * @insn:       Instruction containing ModRM byte
 486 * @regs:       Register values as seen when entering kernel mode
 487 * @offs1:      Offset of the first operand register
 488 * @offs2:      Offset of the second opeand register, if applicable
 489 *
 490 * Obtain the offset, in pt_regs, of the registers indicated by the ModRM byte
 491 * in @insn. This function is to be used with 16-bit address encodings. The
 492 * @offs1 and @offs2 will be written with the offset of the two registers
 493 * indicated by the instruction. In cases where any of the registers is not
 494 * referenced by the instruction, the value will be set to -EDOM.
 495 *
 496 * Returns:
 497 *
 498 * 0 on success, -EINVAL on error.
 499 */
 500static int get_reg_offset_16(struct insn *insn, struct pt_regs *regs,
 501                             int *offs1, int *offs2)
 502{
 503        /*
 504         * 16-bit addressing can use one or two registers. Specifics of
 505         * encodings are given in Table 2-1. "16-Bit Addressing Forms with the
 506         * ModR/M Byte" of the Intel Software Development Manual.
 507         */
 508        static const int regoff1[] = {
 509                offsetof(struct pt_regs, bx),
 510                offsetof(struct pt_regs, bx),
 511                offsetof(struct pt_regs, bp),
 512                offsetof(struct pt_regs, bp),
 513                offsetof(struct pt_regs, si),
 514                offsetof(struct pt_regs, di),
 515                offsetof(struct pt_regs, bp),
 516                offsetof(struct pt_regs, bx),
 517        };
 518
 519        static const int regoff2[] = {
 520                offsetof(struct pt_regs, si),
 521                offsetof(struct pt_regs, di),
 522                offsetof(struct pt_regs, si),
 523                offsetof(struct pt_regs, di),
 524                -EDOM,
 525                -EDOM,
 526                -EDOM,
 527                -EDOM,
 528        };
 529
 530        if (!offs1 || !offs2)
 531                return -EINVAL;
 532
 533        /* Operand is a register, use the generic function. */
 534        if (X86_MODRM_MOD(insn->modrm.value) == 3) {
 535                *offs1 = insn_get_modrm_rm_off(insn, regs);
 536                *offs2 = -EDOM;
 537                return 0;
 538        }
 539
 540        *offs1 = regoff1[X86_MODRM_RM(insn->modrm.value)];
 541        *offs2 = regoff2[X86_MODRM_RM(insn->modrm.value)];
 542
 543        /*
 544         * If ModRM.mod is 0 and ModRM.rm is 110b, then we use displacement-
 545         * only addressing. This means that no registers are involved in
 546         * computing the effective address. Thus, ensure that the first
 547         * register offset is invalild. The second register offset is already
 548         * invalid under the aforementioned conditions.
 549         */
 550        if ((X86_MODRM_MOD(insn->modrm.value) == 0) &&
 551            (X86_MODRM_RM(insn->modrm.value) == 6))
 552                *offs1 = -EDOM;
 553
 554        return 0;
 555}
 556
 557/**
 558 * get_desc() - Obtain contents of a segment descriptor
 559 * @out:        Segment descriptor contents on success
 560 * @sel:        Segment selector
 561 *
 562 * Given a segment selector, obtain a pointer to the segment descriptor.
 563 * Both global and local descriptor tables are supported.
 564 *
 565 * Returns:
 566 *
 567 * True on success, false on failure.
 568 *
 569 * NULL on error.
 570 */
 571static bool get_desc(struct desc_struct *out, unsigned short sel)
 572{
 573        struct desc_ptr gdt_desc = {0, 0};
 574        unsigned long desc_base;
 575
 576#ifdef CONFIG_MODIFY_LDT_SYSCALL
 577        if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT) {
 578                bool success = false;
 579                struct ldt_struct *ldt;
 580
 581                /* Bits [15:3] contain the index of the desired entry. */
 582                sel >>= 3;
 583
 584                mutex_lock(&current->active_mm->context.lock);
 585                ldt = current->active_mm->context.ldt;
 586                if (ldt && sel < ldt->nr_entries) {
 587                        *out = ldt->entries[sel];
 588                        success = true;
 589                }
 590
 591                mutex_unlock(&current->active_mm->context.lock);
 592
 593                return success;
 594        }
 595#endif
 596        native_store_gdt(&gdt_desc);
 597
 598        /*
 599         * Segment descriptors have a size of 8 bytes. Thus, the index is
 600         * multiplied by 8 to obtain the memory offset of the desired descriptor
 601         * from the base of the GDT. As bits [15:3] of the segment selector
 602         * contain the index, it can be regarded as multiplied by 8 already.
 603         * All that remains is to clear bits [2:0].
 604         */
 605        desc_base = sel & ~(SEGMENT_RPL_MASK | SEGMENT_TI_MASK);
 606
 607        if (desc_base > gdt_desc.size)
 608                return false;
 609
 610        *out = *(struct desc_struct *)(gdt_desc.address + desc_base);
 611        return true;
 612}
 613
 614/**
 615 * insn_get_seg_base() - Obtain base address of segment descriptor.
 616 * @regs:               Register values as seen when entering kernel mode
 617 * @seg_reg_idx:        Index of the segment register pointing to seg descriptor
 618 *
 619 * Obtain the base address of the segment as indicated by the segment descriptor
 620 * pointed by the segment selector. The segment selector is obtained from the
 621 * input segment register index @seg_reg_idx.
 622 *
 623 * Returns:
 624 *
 625 * In protected mode, base address of the segment. Zero in long mode,
 626 * except when FS or GS are used. In virtual-8086 mode, the segment
 627 * selector shifted 4 bits to the right.
 628 *
 629 * -1L in case of error.
 630 */
 631unsigned long insn_get_seg_base(struct pt_regs *regs, int seg_reg_idx)
 632{
 633        struct desc_struct desc;
 634        short sel;
 635
 636        sel = get_segment_selector(regs, seg_reg_idx);
 637        if (sel < 0)
 638                return -1L;
 639
 640        if (v8086_mode(regs))
 641                /*
 642                 * Base is simply the segment selector shifted 4
 643                 * bits to the right.
 644                 */
 645                return (unsigned long)(sel << 4);
 646
 647        if (user_64bit_mode(regs)) {
 648                /*
 649                 * Only FS or GS will have a base address, the rest of
 650                 * the segments' bases are forced to 0.
 651                 */
 652                unsigned long base;
 653
 654                if (seg_reg_idx == INAT_SEG_REG_FS)
 655                        rdmsrl(MSR_FS_BASE, base);
 656                else if (seg_reg_idx == INAT_SEG_REG_GS)
 657                        /*
 658                         * swapgs was called at the kernel entry point. Thus,
 659                         * MSR_KERNEL_GS_BASE will have the user-space GS base.
 660                         */
 661                        rdmsrl(MSR_KERNEL_GS_BASE, base);
 662                else
 663                        base = 0;
 664                return base;
 665        }
 666
 667        /* In protected mode the segment selector cannot be null. */
 668        if (!sel)
 669                return -1L;
 670
 671        if (!get_desc(&desc, sel))
 672                return -1L;
 673
 674        return get_desc_base(&desc);
 675}
 676
 677/**
 678 * get_seg_limit() - Obtain the limit of a segment descriptor
 679 * @regs:               Register values as seen when entering kernel mode
 680 * @seg_reg_idx:        Index of the segment register pointing to seg descriptor
 681 *
 682 * Obtain the limit of the segment as indicated by the segment descriptor
 683 * pointed by the segment selector. The segment selector is obtained from the
 684 * input segment register index @seg_reg_idx.
 685 *
 686 * Returns:
 687 *
 688 * In protected mode, the limit of the segment descriptor in bytes.
 689 * In long mode and virtual-8086 mode, segment limits are not enforced. Thus,
 690 * limit is returned as -1L to imply a limit-less segment.
 691 *
 692 * Zero is returned on error.
 693 */
 694static unsigned long get_seg_limit(struct pt_regs *regs, int seg_reg_idx)
 695{
 696        struct desc_struct desc;
 697        unsigned long limit;
 698        short sel;
 699
 700        sel = get_segment_selector(regs, seg_reg_idx);
 701        if (sel < 0)
 702                return 0;
 703
 704        if (user_64bit_mode(regs) || v8086_mode(regs))
 705                return -1L;
 706
 707        if (!sel)
 708                return 0;
 709
 710        if (!get_desc(&desc, sel))
 711                return 0;
 712
 713        /*
 714         * If the granularity bit is set, the limit is given in multiples
 715         * of 4096. This also means that the 12 least significant bits are
 716         * not tested when checking the segment limits. In practice,
 717         * this means that the segment ends in (limit << 12) + 0xfff.
 718         */
 719        limit = get_desc_limit(&desc);
 720        if (desc.g)
 721                limit = (limit << 12) + 0xfff;
 722
 723        return limit;
 724}
 725
 726/**
 727 * insn_get_code_seg_params() - Obtain code segment parameters
 728 * @regs:       Structure with register values as seen when entering kernel mode
 729 *
 730 * Obtain address and operand sizes of the code segment. It is obtained from the
 731 * selector contained in the CS register in regs. In protected mode, the default
 732 * address is determined by inspecting the L and D bits of the segment
 733 * descriptor. In virtual-8086 mode, the default is always two bytes for both
 734 * address and operand sizes.
 735 *
 736 * Returns:
 737 *
 738 * An int containing ORed-in default parameters on success.
 739 *
 740 * -EINVAL on error.
 741 */
 742int insn_get_code_seg_params(struct pt_regs *regs)
 743{
 744        struct desc_struct desc;
 745        short sel;
 746
 747        if (v8086_mode(regs))
 748                /* Address and operand size are both 16-bit. */
 749                return INSN_CODE_SEG_PARAMS(2, 2);
 750
 751        sel = get_segment_selector(regs, INAT_SEG_REG_CS);
 752        if (sel < 0)
 753                return sel;
 754
 755        if (!get_desc(&desc, sel))
 756                return -EINVAL;
 757
 758        /*
 759         * The most significant byte of the Type field of the segment descriptor
 760         * determines whether a segment contains data or code. If this is a data
 761         * segment, return error.
 762         */
 763        if (!(desc.type & BIT(3)))
 764                return -EINVAL;
 765
 766        switch ((desc.l << 1) | desc.d) {
 767        case 0: /*
 768                 * Legacy mode. CS.L=0, CS.D=0. Address and operand size are
 769                 * both 16-bit.
 770                 */
 771                return INSN_CODE_SEG_PARAMS(2, 2);
 772        case 1: /*
 773                 * Legacy mode. CS.L=0, CS.D=1. Address and operand size are
 774                 * both 32-bit.
 775                 */
 776                return INSN_CODE_SEG_PARAMS(4, 4);
 777        case 2: /*
 778                 * IA-32e 64-bit mode. CS.L=1, CS.D=0. Address size is 64-bit;
 779                 * operand size is 32-bit.
 780                 */
 781                return INSN_CODE_SEG_PARAMS(4, 8);
 782        case 3: /* Invalid setting. CS.L=1, CS.D=1 */
 783                /* fall through */
 784        default:
 785                return -EINVAL;
 786        }
 787}
 788
 789/**
 790 * insn_get_modrm_rm_off() - Obtain register in r/m part of the ModRM byte
 791 * @insn:       Instruction containing the ModRM byte
 792 * @regs:       Register values as seen when entering kernel mode
 793 *
 794 * Returns:
 795 *
 796 * The register indicated by the r/m part of the ModRM byte. The
 797 * register is obtained as an offset from the base of pt_regs. In specific
 798 * cases, the returned value can be -EDOM to indicate that the particular value
 799 * of ModRM does not refer to a register and shall be ignored.
 800 */
 801int insn_get_modrm_rm_off(struct insn *insn, struct pt_regs *regs)
 802{
 803        return get_reg_offset(insn, regs, REG_TYPE_RM);
 804}
 805
 806/**
 807 * get_seg_base_limit() - obtain base address and limit of a segment
 808 * @insn:       Instruction. Must be valid.
 809 * @regs:       Register values as seen when entering kernel mode
 810 * @regoff:     Operand offset, in pt_regs, used to resolve segment descriptor
 811 * @base:       Obtained segment base
 812 * @limit:      Obtained segment limit
 813 *
 814 * Obtain the base address and limit of the segment associated with the operand
 815 * @regoff and, if any or allowed, override prefixes in @insn. This function is
 816 * different from insn_get_seg_base() as the latter does not resolve the segment
 817 * associated with the instruction operand. If a limit is not needed (e.g.,
 818 * when running in long mode), @limit can be NULL.
 819 *
 820 * Returns:
 821 *
 822 * 0 on success. @base and @limit will contain the base address and of the
 823 * resolved segment, respectively.
 824 *
 825 * -EINVAL on error.
 826 */
 827static int get_seg_base_limit(struct insn *insn, struct pt_regs *regs,
 828                              int regoff, unsigned long *base,
 829                              unsigned long *limit)
 830{
 831        int seg_reg_idx;
 832
 833        if (!base)
 834                return -EINVAL;
 835
 836        seg_reg_idx = resolve_seg_reg(insn, regs, regoff);
 837        if (seg_reg_idx < 0)
 838                return seg_reg_idx;
 839
 840        *base = insn_get_seg_base(regs, seg_reg_idx);
 841        if (*base == -1L)
 842                return -EINVAL;
 843
 844        if (!limit)
 845                return 0;
 846
 847        *limit = get_seg_limit(regs, seg_reg_idx);
 848        if (!(*limit))
 849                return -EINVAL;
 850
 851        return 0;
 852}
 853
 854/**
 855 * get_eff_addr_reg() - Obtain effective address from register operand
 856 * @insn:       Instruction. Must be valid.
 857 * @regs:       Register values as seen when entering kernel mode
 858 * @regoff:     Obtained operand offset, in pt_regs, with the effective address
 859 * @eff_addr:   Obtained effective address
 860 *
 861 * Obtain the effective address stored in the register operand as indicated by
 862 * the ModRM byte. This function is to be used only with register addressing
 863 * (i.e.,  ModRM.mod is 3). The effective address is saved in @eff_addr. The
 864 * register operand, as an offset from the base of pt_regs, is saved in @regoff;
 865 * such offset can then be used to resolve the segment associated with the
 866 * operand. This function can be used with any of the supported address sizes
 867 * in x86.
 868 *
 869 * Returns:
 870 *
 871 * 0 on success. @eff_addr will have the effective address stored in the
 872 * operand indicated by ModRM. @regoff will have such operand as an offset from
 873 * the base of pt_regs.
 874 *
 875 * -EINVAL on error.
 876 */
 877static int get_eff_addr_reg(struct insn *insn, struct pt_regs *regs,
 878                            int *regoff, long *eff_addr)
 879{
 880        insn_get_modrm(insn);
 881
 882        if (!insn->modrm.nbytes)
 883                return -EINVAL;
 884
 885        if (X86_MODRM_MOD(insn->modrm.value) != 3)
 886                return -EINVAL;
 887
 888        *regoff = get_reg_offset(insn, regs, REG_TYPE_RM);
 889        if (*regoff < 0)
 890                return -EINVAL;
 891
 892        /* Ignore bytes that are outside the address size. */
 893        if (insn->addr_bytes == 2)
 894                *eff_addr = regs_get_register(regs, *regoff) & 0xffff;
 895        else if (insn->addr_bytes == 4)
 896                *eff_addr = regs_get_register(regs, *regoff) & 0xffffffff;
 897        else /* 64-bit address */
 898                *eff_addr = regs_get_register(regs, *regoff);
 899
 900        return 0;
 901}
 902
 903/**
 904 * get_eff_addr_modrm() - Obtain referenced effective address via ModRM
 905 * @insn:       Instruction. Must be valid.
 906 * @regs:       Register values as seen when entering kernel mode
 907 * @regoff:     Obtained operand offset, in pt_regs, associated with segment
 908 * @eff_addr:   Obtained effective address
 909 *
 910 * Obtain the effective address referenced by the ModRM byte of @insn. After
 911 * identifying the registers involved in the register-indirect memory reference,
 912 * its value is obtained from the operands in @regs. The computed address is
 913 * stored @eff_addr. Also, the register operand that indicates the associated
 914 * segment is stored in @regoff, this parameter can later be used to determine
 915 * such segment.
 916 *
 917 * Returns:
 918 *
 919 * 0 on success. @eff_addr will have the referenced effective address. @regoff
 920 * will have a register, as an offset from the base of pt_regs, that can be used
 921 * to resolve the associated segment.
 922 *
 923 * -EINVAL on error.
 924 */
 925static int get_eff_addr_modrm(struct insn *insn, struct pt_regs *regs,
 926                              int *regoff, long *eff_addr)
 927{
 928        long tmp;
 929
 930        if (insn->addr_bytes != 8 && insn->addr_bytes != 4)
 931                return -EINVAL;
 932
 933        insn_get_modrm(insn);
 934
 935        if (!insn->modrm.nbytes)
 936                return -EINVAL;
 937
 938        if (X86_MODRM_MOD(insn->modrm.value) > 2)
 939                return -EINVAL;
 940
 941        *regoff = get_reg_offset(insn, regs, REG_TYPE_RM);
 942
 943        /*
 944         * -EDOM means that we must ignore the address_offset. In such a case,
 945         * in 64-bit mode the effective address relative to the rIP of the
 946         * following instruction.
 947         */
 948        if (*regoff == -EDOM) {
 949                if (user_64bit_mode(regs))
 950                        tmp = regs->ip + insn->length;
 951                else
 952                        tmp = 0;
 953        } else if (*regoff < 0) {
 954                return -EINVAL;
 955        } else {
 956                tmp = regs_get_register(regs, *regoff);
 957        }
 958
 959        if (insn->addr_bytes == 4) {
 960                int addr32 = (int)(tmp & 0xffffffff) + insn->displacement.value;
 961
 962                *eff_addr = addr32 & 0xffffffff;
 963        } else {
 964                *eff_addr = tmp + insn->displacement.value;
 965        }
 966
 967        return 0;
 968}
 969
 970/**
 971 * get_eff_addr_modrm_16() - Obtain referenced effective address via ModRM
 972 * @insn:       Instruction. Must be valid.
 973 * @regs:       Register values as seen when entering kernel mode
 974 * @regoff:     Obtained operand offset, in pt_regs, associated with segment
 975 * @eff_addr:   Obtained effective address
 976 *
 977 * Obtain the 16-bit effective address referenced by the ModRM byte of @insn.
 978 * After identifying the registers involved in the register-indirect memory
 979 * reference, its value is obtained from the operands in @regs. The computed
 980 * address is stored @eff_addr. Also, the register operand that indicates
 981 * the associated segment is stored in @regoff, this parameter can later be used
 982 * to determine such segment.
 983 *
 984 * Returns:
 985 *
 986 * 0 on success. @eff_addr will have the referenced effective address. @regoff
 987 * will have a register, as an offset from the base of pt_regs, that can be used
 988 * to resolve the associated segment.
 989 *
 990 * -EINVAL on error.
 991 */
 992static int get_eff_addr_modrm_16(struct insn *insn, struct pt_regs *regs,
 993                                 int *regoff, short *eff_addr)
 994{
 995        int addr_offset1, addr_offset2, ret;
 996        short addr1 = 0, addr2 = 0, displacement;
 997
 998        if (insn->addr_bytes != 2)
 999                return -EINVAL;
1000
1001        insn_get_modrm(insn);
1002
1003        if (!insn->modrm.nbytes)
1004                return -EINVAL;
1005
1006        if (X86_MODRM_MOD(insn->modrm.value) > 2)
1007                return -EINVAL;
1008
1009        ret = get_reg_offset_16(insn, regs, &addr_offset1, &addr_offset2);
1010        if (ret < 0)
1011                return -EINVAL;
1012
1013        /*
1014         * Don't fail on invalid offset values. They might be invalid because
1015         * they cannot be used for this particular value of ModRM. Instead, use
1016         * them in the computation only if they contain a valid value.
1017         */
1018        if (addr_offset1 != -EDOM)
1019                addr1 = regs_get_register(regs, addr_offset1) & 0xffff;
1020
1021        if (addr_offset2 != -EDOM)
1022                addr2 = regs_get_register(regs, addr_offset2) & 0xffff;
1023
1024        displacement = insn->displacement.value & 0xffff;
1025        *eff_addr = addr1 + addr2 + displacement;
1026
1027        /*
1028         * The first operand register could indicate to use of either SS or DS
1029         * registers to obtain the segment selector.  The second operand
1030         * register can only indicate the use of DS. Thus, the first operand
1031         * will be used to obtain the segment selector.
1032         */
1033        *regoff = addr_offset1;
1034
1035        return 0;
1036}
1037
1038/**
1039 * get_eff_addr_sib() - Obtain referenced effective address via SIB
1040 * @insn:       Instruction. Must be valid.
1041 * @regs:       Register values as seen when entering kernel mode
1042 * @regoff:     Obtained operand offset, in pt_regs, associated with segment
1043 * @eff_addr:   Obtained effective address
1044 *
1045 * Obtain the effective address referenced by the SIB byte of @insn. After
1046 * identifying the registers involved in the indexed, register-indirect memory
1047 * reference, its value is obtained from the operands in @regs. The computed
1048 * address is stored @eff_addr. Also, the register operand that indicates the
1049 * associated segment is stored in @regoff, this parameter can later be used to
1050 * determine such segment.
1051 *
1052 * Returns:
1053 *
1054 * 0 on success. @eff_addr will have the referenced effective address.
1055 * @base_offset will have a register, as an offset from the base of pt_regs,
1056 * that can be used to resolve the associated segment.
1057 *
1058 * -EINVAL on error.
1059 */
1060static int get_eff_addr_sib(struct insn *insn, struct pt_regs *regs,
1061                            int *base_offset, long *eff_addr)
1062{
1063        long base, indx;
1064        int indx_offset;
1065
1066        if (insn->addr_bytes != 8 && insn->addr_bytes != 4)
1067                return -EINVAL;
1068
1069        insn_get_modrm(insn);
1070
1071        if (!insn->modrm.nbytes)
1072                return -EINVAL;
1073
1074        if (X86_MODRM_MOD(insn->modrm.value) > 2)
1075                return -EINVAL;
1076
1077        insn_get_sib(insn);
1078
1079        if (!insn->sib.nbytes)
1080                return -EINVAL;
1081
1082        *base_offset = get_reg_offset(insn, regs, REG_TYPE_BASE);
1083        indx_offset = get_reg_offset(insn, regs, REG_TYPE_INDEX);
1084
1085        /*
1086         * Negative values in the base and index offset means an error when
1087         * decoding the SIB byte. Except -EDOM, which means that the registers
1088         * should not be used in the address computation.
1089         */
1090        if (*base_offset == -EDOM)
1091                base = 0;
1092        else if (*base_offset < 0)
1093                return -EINVAL;
1094        else
1095                base = regs_get_register(regs, *base_offset);
1096
1097        if (indx_offset == -EDOM)
1098                indx = 0;
1099        else if (indx_offset < 0)
1100                return -EINVAL;
1101        else
1102                indx = regs_get_register(regs, indx_offset);
1103
1104        if (insn->addr_bytes == 4) {
1105                int addr32, base32, idx32;
1106
1107                base32 = base & 0xffffffff;
1108                idx32 = indx & 0xffffffff;
1109
1110                addr32 = base32 + idx32 * (1 << X86_SIB_SCALE(insn->sib.value));
1111                addr32 += insn->displacement.value;
1112
1113                *eff_addr = addr32 & 0xffffffff;
1114        } else {
1115                *eff_addr = base + indx * (1 << X86_SIB_SCALE(insn->sib.value));
1116                *eff_addr += insn->displacement.value;
1117        }
1118
1119        return 0;
1120}
1121
1122/**
1123 * get_addr_ref_16() - Obtain the 16-bit address referred by instruction
1124 * @insn:       Instruction containing ModRM byte and displacement
1125 * @regs:       Register values as seen when entering kernel mode
1126 *
1127 * This function is to be used with 16-bit address encodings. Obtain the memory
1128 * address referred by the instruction's ModRM and displacement bytes. Also, the
1129 * segment used as base is determined by either any segment override prefixes in
1130 * @insn or the default segment of the registers involved in the address
1131 * computation. In protected mode, segment limits are enforced.
1132 *
1133 * Returns:
1134 *
1135 * Linear address referenced by the instruction operands on success.
1136 *
1137 * -1L on error.
1138 */
1139static void __user *get_addr_ref_16(struct insn *insn, struct pt_regs *regs)
1140{
1141        unsigned long linear_addr = -1L, seg_base, seg_limit;
1142        int ret, regoff;
1143        short eff_addr;
1144        long tmp;
1145
1146        insn_get_modrm(insn);
1147        insn_get_displacement(insn);
1148
1149        if (insn->addr_bytes != 2)
1150                goto out;
1151
1152        if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1153                ret = get_eff_addr_reg(insn, regs, &regoff, &tmp);
1154                if (ret)
1155                        goto out;
1156
1157                eff_addr = tmp;
1158        } else {
1159                ret = get_eff_addr_modrm_16(insn, regs, &regoff, &eff_addr);
1160                if (ret)
1161                        goto out;
1162        }
1163
1164        ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
1165        if (ret)
1166                goto out;
1167
1168        /*
1169         * Before computing the linear address, make sure the effective address
1170         * is within the limits of the segment. In virtual-8086 mode, segment
1171         * limits are not enforced. In such a case, the segment limit is -1L to
1172         * reflect this fact.
1173         */
1174        if ((unsigned long)(eff_addr & 0xffff) > seg_limit)
1175                goto out;
1176
1177        linear_addr = (unsigned long)(eff_addr & 0xffff) + seg_base;
1178
1179        /* Limit linear address to 20 bits */
1180        if (v8086_mode(regs))
1181                linear_addr &= 0xfffff;
1182
1183out:
1184        return (void __user *)linear_addr;
1185}
1186
1187/**
1188 * get_addr_ref_32() - Obtain a 32-bit linear address
1189 * @insn:       Instruction with ModRM, SIB bytes and displacement
1190 * @regs:       Register values as seen when entering kernel mode
1191 *
1192 * This function is to be used with 32-bit address encodings to obtain the
1193 * linear memory address referred by the instruction's ModRM, SIB,
1194 * displacement bytes and segment base address, as applicable. If in protected
1195 * mode, segment limits are enforced.
1196 *
1197 * Returns:
1198 *
1199 * Linear address referenced by instruction and registers on success.
1200 *
1201 * -1L on error.
1202 */
1203static void __user *get_addr_ref_32(struct insn *insn, struct pt_regs *regs)
1204{
1205        unsigned long linear_addr = -1L, seg_base, seg_limit;
1206        int eff_addr, regoff;
1207        long tmp;
1208        int ret;
1209
1210        if (insn->addr_bytes != 4)
1211                goto out;
1212
1213        if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1214                ret = get_eff_addr_reg(insn, regs, &regoff, &tmp);
1215                if (ret)
1216                        goto out;
1217
1218                eff_addr = tmp;
1219
1220        } else {
1221                if (insn->sib.nbytes) {
1222                        ret = get_eff_addr_sib(insn, regs, &regoff, &tmp);
1223                        if (ret)
1224                                goto out;
1225
1226                        eff_addr = tmp;
1227                } else {
1228                        ret = get_eff_addr_modrm(insn, regs, &regoff, &tmp);
1229                        if (ret)
1230                                goto out;
1231
1232                        eff_addr = tmp;
1233                }
1234        }
1235
1236        ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
1237        if (ret)
1238                goto out;
1239
1240        /*
1241         * In protected mode, before computing the linear address, make sure
1242         * the effective address is within the limits of the segment.
1243         * 32-bit addresses can be used in long and virtual-8086 modes if an
1244         * address override prefix is used. In such cases, segment limits are
1245         * not enforced. When in virtual-8086 mode, the segment limit is -1L
1246         * to reflect this situation.
1247         *
1248         * After computed, the effective address is treated as an unsigned
1249         * quantity.
1250         */
1251        if (!user_64bit_mode(regs) && ((unsigned int)eff_addr > seg_limit))
1252                goto out;
1253
1254        /*
1255         * Even though 32-bit address encodings are allowed in virtual-8086
1256         * mode, the address range is still limited to [0x-0xffff].
1257         */
1258        if (v8086_mode(regs) && (eff_addr & ~0xffff))
1259                goto out;
1260
1261        /*
1262         * Data type long could be 64 bits in size. Ensure that our 32-bit
1263         * effective address is not sign-extended when computing the linear
1264         * address.
1265         */
1266        linear_addr = (unsigned long)(eff_addr & 0xffffffff) + seg_base;
1267
1268        /* Limit linear address to 20 bits */
1269        if (v8086_mode(regs))
1270                linear_addr &= 0xfffff;
1271
1272out:
1273        return (void __user *)linear_addr;
1274}
1275
1276/**
1277 * get_addr_ref_64() - Obtain a 64-bit linear address
1278 * @insn:       Instruction struct with ModRM and SIB bytes and displacement
1279 * @regs:       Structure with register values as seen when entering kernel mode
1280 *
1281 * This function is to be used with 64-bit address encodings to obtain the
1282 * linear memory address referred by the instruction's ModRM, SIB,
1283 * displacement bytes and segment base address, as applicable.
1284 *
1285 * Returns:
1286 *
1287 * Linear address referenced by instruction and registers on success.
1288 *
1289 * -1L on error.
1290 */
1291#ifndef CONFIG_X86_64
1292static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs)
1293{
1294        return (void __user *)-1L;
1295}
1296#else
1297static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs)
1298{
1299        unsigned long linear_addr = -1L, seg_base;
1300        int regoff, ret;
1301        long eff_addr;
1302
1303        if (insn->addr_bytes != 8)
1304                goto out;
1305
1306        if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1307                ret = get_eff_addr_reg(insn, regs, &regoff, &eff_addr);
1308                if (ret)
1309                        goto out;
1310
1311        } else {
1312                if (insn->sib.nbytes) {
1313                        ret = get_eff_addr_sib(insn, regs, &regoff, &eff_addr);
1314                        if (ret)
1315                                goto out;
1316                } else {
1317                        ret = get_eff_addr_modrm(insn, regs, &regoff, &eff_addr);
1318                        if (ret)
1319                                goto out;
1320                }
1321
1322        }
1323
1324        ret = get_seg_base_limit(insn, regs, regoff, &seg_base, NULL);
1325        if (ret)
1326                goto out;
1327
1328        linear_addr = (unsigned long)eff_addr + seg_base;
1329
1330out:
1331        return (void __user *)linear_addr;
1332}
1333#endif /* CONFIG_X86_64 */
1334
1335/**
1336 * insn_get_addr_ref() - Obtain the linear address referred by instruction
1337 * @insn:       Instruction structure containing ModRM byte and displacement
1338 * @regs:       Structure with register values as seen when entering kernel mode
1339 *
1340 * Obtain the linear address referred by the instruction's ModRM, SIB and
1341 * displacement bytes, and segment base, as applicable. In protected mode,
1342 * segment limits are enforced.
1343 *
1344 * Returns:
1345 *
1346 * Linear address referenced by instruction and registers on success.
1347 *
1348 * -1L on error.
1349 */
1350void __user *insn_get_addr_ref(struct insn *insn, struct pt_regs *regs)
1351{
1352        if (!insn || !regs)
1353                return (void __user *)-1L;
1354
1355        switch (insn->addr_bytes) {
1356        case 2:
1357                return get_addr_ref_16(insn, regs);
1358        case 4:
1359                return get_addr_ref_32(insn, regs);
1360        case 8:
1361                return get_addr_ref_64(insn, regs);
1362        default:
1363                return (void __user *)-1L;
1364        }
1365}
1366