1
2
3
4
5
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/of.h>
11#include <linux/of_device.h>
12#include <linux/cpumask.h>
13#include <linux/slab.h>
14#include <linux/interrupt.h>
15#include <linux/crypto.h>
16#include <crypto/md5.h>
17#include <crypto/sha.h>
18#include <crypto/aes.h>
19#include <crypto/des.h>
20#include <linux/mutex.h>
21#include <linux/delay.h>
22#include <linux/sched.h>
23
24#include <crypto/internal/hash.h>
25#include <crypto/scatterwalk.h>
26#include <crypto/algapi.h>
27
28#include <asm/hypervisor.h>
29#include <asm/mdesc.h>
30
31#include "n2_core.h"
32
33#define DRV_MODULE_NAME "n2_crypto"
34#define DRV_MODULE_VERSION "0.2"
35#define DRV_MODULE_RELDATE "July 28, 2011"
36
37static const char version[] =
38 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
39
40MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
41MODULE_DESCRIPTION("Niagara2 Crypto driver");
42MODULE_LICENSE("GPL");
43MODULE_VERSION(DRV_MODULE_VERSION);
44
45#define N2_CRA_PRIORITY 200
46
47static DEFINE_MUTEX(spu_lock);
48
49struct spu_queue {
50 cpumask_t sharing;
51 unsigned long qhandle;
52
53 spinlock_t lock;
54 u8 q_type;
55 void *q;
56 unsigned long head;
57 unsigned long tail;
58 struct list_head jobs;
59
60 unsigned long devino;
61
62 char irq_name[32];
63 unsigned int irq;
64
65 struct list_head list;
66};
67
68struct spu_qreg {
69 struct spu_queue *queue;
70 unsigned long type;
71};
72
73static struct spu_queue **cpu_to_cwq;
74static struct spu_queue **cpu_to_mau;
75
76static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
77{
78 if (q->q_type == HV_NCS_QTYPE_MAU) {
79 off += MAU_ENTRY_SIZE;
80 if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
81 off = 0;
82 } else {
83 off += CWQ_ENTRY_SIZE;
84 if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
85 off = 0;
86 }
87 return off;
88}
89
90struct n2_request_common {
91 struct list_head entry;
92 unsigned int offset;
93};
94#define OFFSET_NOT_RUNNING (~(unsigned int)0)
95
96
97
98
99
100static inline bool job_finished(struct spu_queue *q, unsigned int offset,
101 unsigned long old_head, unsigned long new_head)
102{
103 if (old_head <= new_head) {
104 if (offset > old_head && offset <= new_head)
105 return true;
106 } else {
107 if (offset > old_head || offset <= new_head)
108 return true;
109 }
110 return false;
111}
112
113
114
115
116
117
118static irqreturn_t cwq_intr(int irq, void *dev_id)
119{
120 unsigned long off, new_head, hv_ret;
121 struct spu_queue *q = dev_id;
122
123 pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
124 smp_processor_id(), q->qhandle);
125
126 spin_lock(&q->lock);
127
128 hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
129
130 pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
131 smp_processor_id(), new_head, hv_ret);
132
133 for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
134
135 }
136
137 hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
138 if (hv_ret == HV_EOK)
139 q->head = new_head;
140
141 spin_unlock(&q->lock);
142
143 return IRQ_HANDLED;
144}
145
146static irqreturn_t mau_intr(int irq, void *dev_id)
147{
148 struct spu_queue *q = dev_id;
149 unsigned long head, hv_ret;
150
151 spin_lock(&q->lock);
152
153 pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
154 smp_processor_id(), q->qhandle);
155
156 hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
157
158 pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
159 smp_processor_id(), head, hv_ret);
160
161 sun4v_ncs_sethead_marker(q->qhandle, head);
162
163 spin_unlock(&q->lock);
164
165 return IRQ_HANDLED;
166}
167
168static void *spu_queue_next(struct spu_queue *q, void *cur)
169{
170 return q->q + spu_next_offset(q, cur - q->q);
171}
172
173static int spu_queue_num_free(struct spu_queue *q)
174{
175 unsigned long head = q->head;
176 unsigned long tail = q->tail;
177 unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
178 unsigned long diff;
179
180 if (head > tail)
181 diff = head - tail;
182 else
183 diff = (end - tail) + head;
184
185 return (diff / CWQ_ENTRY_SIZE) - 1;
186}
187
188static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
189{
190 int avail = spu_queue_num_free(q);
191
192 if (avail >= num_entries)
193 return q->q + q->tail;
194
195 return NULL;
196}
197
198static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
199{
200 unsigned long hv_ret, new_tail;
201
202 new_tail = spu_next_offset(q, last - q->q);
203
204 hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
205 if (hv_ret == HV_EOK)
206 q->tail = new_tail;
207 return hv_ret;
208}
209
210static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
211 int enc_type, int auth_type,
212 unsigned int hash_len,
213 bool sfas, bool sob, bool eob, bool encrypt,
214 int opcode)
215{
216 u64 word = (len - 1) & CONTROL_LEN;
217
218 word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
219 word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
220 word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
221 if (sfas)
222 word |= CONTROL_STORE_FINAL_AUTH_STATE;
223 if (sob)
224 word |= CONTROL_START_OF_BLOCK;
225 if (eob)
226 word |= CONTROL_END_OF_BLOCK;
227 if (encrypt)
228 word |= CONTROL_ENCRYPT;
229 if (hmac_key_len)
230 word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
231 if (hash_len)
232 word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
233
234 return word;
235}
236
237#if 0
238static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
239{
240 if (this_len >= 64 ||
241 qp->head != qp->tail)
242 return true;
243 return false;
244}
245#endif
246
247struct n2_ahash_alg {
248 struct list_head entry;
249 const u8 *hash_zero;
250 const u32 *hash_init;
251 u8 hw_op_hashsz;
252 u8 digest_size;
253 u8 auth_type;
254 u8 hmac_type;
255 struct ahash_alg alg;
256};
257
258static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
259{
260 struct crypto_alg *alg = tfm->__crt_alg;
261 struct ahash_alg *ahash_alg;
262
263 ahash_alg = container_of(alg, struct ahash_alg, halg.base);
264
265 return container_of(ahash_alg, struct n2_ahash_alg, alg);
266}
267
268struct n2_hmac_alg {
269 const char *child_alg;
270 struct n2_ahash_alg derived;
271};
272
273static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
274{
275 struct crypto_alg *alg = tfm->__crt_alg;
276 struct ahash_alg *ahash_alg;
277
278 ahash_alg = container_of(alg, struct ahash_alg, halg.base);
279
280 return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
281}
282
283struct n2_hash_ctx {
284 struct crypto_ahash *fallback_tfm;
285};
286
287#define N2_HASH_KEY_MAX 32
288
289struct n2_hmac_ctx {
290 struct n2_hash_ctx base;
291
292 struct crypto_shash *child_shash;
293
294 int hash_key_len;
295 unsigned char hash_key[N2_HASH_KEY_MAX];
296};
297
298struct n2_hash_req_ctx {
299 union {
300 struct md5_state md5;
301 struct sha1_state sha1;
302 struct sha256_state sha256;
303 } u;
304
305 struct ahash_request fallback_req;
306};
307
308static int n2_hash_async_init(struct ahash_request *req)
309{
310 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
311 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
312 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
313
314 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
315 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
316
317 return crypto_ahash_init(&rctx->fallback_req);
318}
319
320static int n2_hash_async_update(struct ahash_request *req)
321{
322 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
323 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
324 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
325
326 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
327 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
328 rctx->fallback_req.nbytes = req->nbytes;
329 rctx->fallback_req.src = req->src;
330
331 return crypto_ahash_update(&rctx->fallback_req);
332}
333
334static int n2_hash_async_final(struct ahash_request *req)
335{
336 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
337 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
338 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
339
340 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
341 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
342 rctx->fallback_req.result = req->result;
343
344 return crypto_ahash_final(&rctx->fallback_req);
345}
346
347static int n2_hash_async_finup(struct ahash_request *req)
348{
349 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
350 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
351 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
352
353 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
354 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
355 rctx->fallback_req.nbytes = req->nbytes;
356 rctx->fallback_req.src = req->src;
357 rctx->fallback_req.result = req->result;
358
359 return crypto_ahash_finup(&rctx->fallback_req);
360}
361
362static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
363{
364 return -ENOSYS;
365}
366
367static int n2_hash_async_noexport(struct ahash_request *req, void *out)
368{
369 return -ENOSYS;
370}
371
372static int n2_hash_cra_init(struct crypto_tfm *tfm)
373{
374 const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
375 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
376 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
377 struct crypto_ahash *fallback_tfm;
378 int err;
379
380 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
381 CRYPTO_ALG_NEED_FALLBACK);
382 if (IS_ERR(fallback_tfm)) {
383 pr_warning("Fallback driver '%s' could not be loaded!\n",
384 fallback_driver_name);
385 err = PTR_ERR(fallback_tfm);
386 goto out;
387 }
388
389 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
390 crypto_ahash_reqsize(fallback_tfm)));
391
392 ctx->fallback_tfm = fallback_tfm;
393 return 0;
394
395out:
396 return err;
397}
398
399static void n2_hash_cra_exit(struct crypto_tfm *tfm)
400{
401 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
402 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
403
404 crypto_free_ahash(ctx->fallback_tfm);
405}
406
407static int n2_hmac_cra_init(struct crypto_tfm *tfm)
408{
409 const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
410 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
411 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
412 struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
413 struct crypto_ahash *fallback_tfm;
414 struct crypto_shash *child_shash;
415 int err;
416
417 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
418 CRYPTO_ALG_NEED_FALLBACK);
419 if (IS_ERR(fallback_tfm)) {
420 pr_warning("Fallback driver '%s' could not be loaded!\n",
421 fallback_driver_name);
422 err = PTR_ERR(fallback_tfm);
423 goto out;
424 }
425
426 child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
427 if (IS_ERR(child_shash)) {
428 pr_warning("Child shash '%s' could not be loaded!\n",
429 n2alg->child_alg);
430 err = PTR_ERR(child_shash);
431 goto out_free_fallback;
432 }
433
434 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
435 crypto_ahash_reqsize(fallback_tfm)));
436
437 ctx->child_shash = child_shash;
438 ctx->base.fallback_tfm = fallback_tfm;
439 return 0;
440
441out_free_fallback:
442 crypto_free_ahash(fallback_tfm);
443
444out:
445 return err;
446}
447
448static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
449{
450 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
451 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
452
453 crypto_free_ahash(ctx->base.fallback_tfm);
454 crypto_free_shash(ctx->child_shash);
455}
456
457static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
458 unsigned int keylen)
459{
460 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
461 struct crypto_shash *child_shash = ctx->child_shash;
462 struct crypto_ahash *fallback_tfm;
463 SHASH_DESC_ON_STACK(shash, child_shash);
464 int err, bs, ds;
465
466 fallback_tfm = ctx->base.fallback_tfm;
467 err = crypto_ahash_setkey(fallback_tfm, key, keylen);
468 if (err)
469 return err;
470
471 shash->tfm = child_shash;
472 shash->flags = crypto_ahash_get_flags(tfm) &
473 CRYPTO_TFM_REQ_MAY_SLEEP;
474
475 bs = crypto_shash_blocksize(child_shash);
476 ds = crypto_shash_digestsize(child_shash);
477 BUG_ON(ds > N2_HASH_KEY_MAX);
478 if (keylen > bs) {
479 err = crypto_shash_digest(shash, key, keylen,
480 ctx->hash_key);
481 if (err)
482 return err;
483 keylen = ds;
484 } else if (keylen <= N2_HASH_KEY_MAX)
485 memcpy(ctx->hash_key, key, keylen);
486
487 ctx->hash_key_len = keylen;
488
489 return err;
490}
491
492static unsigned long wait_for_tail(struct spu_queue *qp)
493{
494 unsigned long head, hv_ret;
495
496 do {
497 hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
498 if (hv_ret != HV_EOK) {
499 pr_err("Hypervisor error on gethead\n");
500 break;
501 }
502 if (head == qp->tail) {
503 qp->head = head;
504 break;
505 }
506 } while (1);
507 return hv_ret;
508}
509
510static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
511 struct cwq_initial_entry *ent)
512{
513 unsigned long hv_ret = spu_queue_submit(qp, ent);
514
515 if (hv_ret == HV_EOK)
516 hv_ret = wait_for_tail(qp);
517
518 return hv_ret;
519}
520
521static int n2_do_async_digest(struct ahash_request *req,
522 unsigned int auth_type, unsigned int digest_size,
523 unsigned int result_size, void *hash_loc,
524 unsigned long auth_key, unsigned int auth_key_len)
525{
526 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
527 struct cwq_initial_entry *ent;
528 struct crypto_hash_walk walk;
529 struct spu_queue *qp;
530 unsigned long flags;
531 int err = -ENODEV;
532 int nbytes, cpu;
533
534
535
536
537 if (unlikely(req->nbytes > (1 << 16))) {
538 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
539 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
540
541 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
542 rctx->fallback_req.base.flags =
543 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
544 rctx->fallback_req.nbytes = req->nbytes;
545 rctx->fallback_req.src = req->src;
546 rctx->fallback_req.result = req->result;
547
548 return crypto_ahash_digest(&rctx->fallback_req);
549 }
550
551 nbytes = crypto_hash_walk_first(req, &walk);
552
553 cpu = get_cpu();
554 qp = cpu_to_cwq[cpu];
555 if (!qp)
556 goto out;
557
558 spin_lock_irqsave(&qp->lock, flags);
559
560
561
562
563 ent = qp->q + qp->tail;
564
565 ent->control = control_word_base(nbytes, auth_key_len, 0,
566 auth_type, digest_size,
567 false, true, false, false,
568 OPCODE_INPLACE_BIT |
569 OPCODE_AUTH_MAC);
570 ent->src_addr = __pa(walk.data);
571 ent->auth_key_addr = auth_key;
572 ent->auth_iv_addr = __pa(hash_loc);
573 ent->final_auth_state_addr = 0UL;
574 ent->enc_key_addr = 0UL;
575 ent->enc_iv_addr = 0UL;
576 ent->dest_addr = __pa(hash_loc);
577
578 nbytes = crypto_hash_walk_done(&walk, 0);
579 while (nbytes > 0) {
580 ent = spu_queue_next(qp, ent);
581
582 ent->control = (nbytes - 1);
583 ent->src_addr = __pa(walk.data);
584 ent->auth_key_addr = 0UL;
585 ent->auth_iv_addr = 0UL;
586 ent->final_auth_state_addr = 0UL;
587 ent->enc_key_addr = 0UL;
588 ent->enc_iv_addr = 0UL;
589 ent->dest_addr = 0UL;
590
591 nbytes = crypto_hash_walk_done(&walk, 0);
592 }
593 ent->control |= CONTROL_END_OF_BLOCK;
594
595 if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
596 err = -EINVAL;
597 else
598 err = 0;
599
600 spin_unlock_irqrestore(&qp->lock, flags);
601
602 if (!err)
603 memcpy(req->result, hash_loc, result_size);
604out:
605 put_cpu();
606
607 return err;
608}
609
610static int n2_hash_async_digest(struct ahash_request *req)
611{
612 struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
613 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
614 int ds;
615
616 ds = n2alg->digest_size;
617 if (unlikely(req->nbytes == 0)) {
618 memcpy(req->result, n2alg->hash_zero, ds);
619 return 0;
620 }
621 memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
622
623 return n2_do_async_digest(req, n2alg->auth_type,
624 n2alg->hw_op_hashsz, ds,
625 &rctx->u, 0UL, 0);
626}
627
628static int n2_hmac_async_digest(struct ahash_request *req)
629{
630 struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
631 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
632 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
633 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
634 int ds;
635
636 ds = n2alg->derived.digest_size;
637 if (unlikely(req->nbytes == 0) ||
638 unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
639 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
640 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
641
642 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
643 rctx->fallback_req.base.flags =
644 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
645 rctx->fallback_req.nbytes = req->nbytes;
646 rctx->fallback_req.src = req->src;
647 rctx->fallback_req.result = req->result;
648
649 return crypto_ahash_digest(&rctx->fallback_req);
650 }
651 memcpy(&rctx->u, n2alg->derived.hash_init,
652 n2alg->derived.hw_op_hashsz);
653
654 return n2_do_async_digest(req, n2alg->derived.hmac_type,
655 n2alg->derived.hw_op_hashsz, ds,
656 &rctx->u,
657 __pa(&ctx->hash_key),
658 ctx->hash_key_len);
659}
660
661struct n2_cipher_context {
662 int key_len;
663 int enc_type;
664 union {
665 u8 aes[AES_MAX_KEY_SIZE];
666 u8 des[DES_KEY_SIZE];
667 u8 des3[3 * DES_KEY_SIZE];
668 u8 arc4[258];
669 } key;
670};
671
672#define N2_CHUNK_ARR_LEN 16
673
674struct n2_crypto_chunk {
675 struct list_head entry;
676 unsigned long iv_paddr : 44;
677 unsigned long arr_len : 20;
678 unsigned long dest_paddr;
679 unsigned long dest_final;
680 struct {
681 unsigned long src_paddr : 44;
682 unsigned long src_len : 20;
683 } arr[N2_CHUNK_ARR_LEN];
684};
685
686struct n2_request_context {
687 struct ablkcipher_walk walk;
688 struct list_head chunk_list;
689 struct n2_crypto_chunk chunk;
690 u8 temp_iv[16];
691};
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712struct n2_cipher_alg {
713 struct list_head entry;
714 u8 enc_type;
715 struct crypto_alg alg;
716};
717
718static inline struct n2_cipher_alg *n2_cipher_alg(struct crypto_tfm *tfm)
719{
720 struct crypto_alg *alg = tfm->__crt_alg;
721
722 return container_of(alg, struct n2_cipher_alg, alg);
723}
724
725struct n2_cipher_request_context {
726 struct ablkcipher_walk walk;
727};
728
729static int n2_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
730 unsigned int keylen)
731{
732 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
733 struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
734 struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
735
736 ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
737
738 switch (keylen) {
739 case AES_KEYSIZE_128:
740 ctx->enc_type |= ENC_TYPE_ALG_AES128;
741 break;
742 case AES_KEYSIZE_192:
743 ctx->enc_type |= ENC_TYPE_ALG_AES192;
744 break;
745 case AES_KEYSIZE_256:
746 ctx->enc_type |= ENC_TYPE_ALG_AES256;
747 break;
748 default:
749 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
750 return -EINVAL;
751 }
752
753 ctx->key_len = keylen;
754 memcpy(ctx->key.aes, key, keylen);
755 return 0;
756}
757
758static int n2_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
759 unsigned int keylen)
760{
761 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
762 struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
763 struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
764 u32 tmp[DES_EXPKEY_WORDS];
765 int err;
766
767 ctx->enc_type = n2alg->enc_type;
768
769 if (keylen != DES_KEY_SIZE) {
770 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
771 return -EINVAL;
772 }
773
774 err = des_ekey(tmp, key);
775 if (err == 0 && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
776 tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
777 return -EINVAL;
778 }
779
780 ctx->key_len = keylen;
781 memcpy(ctx->key.des, key, keylen);
782 return 0;
783}
784
785static int n2_3des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
786 unsigned int keylen)
787{
788 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
789 struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
790 struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
791 u32 flags;
792 int err;
793
794 flags = crypto_ablkcipher_get_flags(cipher);
795 err = __des3_verify_key(&flags, key);
796 if (unlikely(err)) {
797 crypto_ablkcipher_set_flags(cipher, flags);
798 return err;
799 }
800
801 ctx->enc_type = n2alg->enc_type;
802
803 ctx->key_len = keylen;
804 memcpy(ctx->key.des3, key, keylen);
805 return 0;
806}
807
808static int n2_arc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
809 unsigned int keylen)
810{
811 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
812 struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
813 struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
814 u8 *s = ctx->key.arc4;
815 u8 *x = s + 256;
816 u8 *y = x + 1;
817 int i, j, k;
818
819 ctx->enc_type = n2alg->enc_type;
820
821 j = k = 0;
822 *x = 0;
823 *y = 0;
824 for (i = 0; i < 256; i++)
825 s[i] = i;
826 for (i = 0; i < 256; i++) {
827 u8 a = s[i];
828 j = (j + key[k] + a) & 0xff;
829 s[i] = s[j];
830 s[j] = a;
831 if (++k >= keylen)
832 k = 0;
833 }
834
835 return 0;
836}
837
838static inline int cipher_descriptor_len(int nbytes, unsigned int block_size)
839{
840 int this_len = nbytes;
841
842 this_len -= (nbytes & (block_size - 1));
843 return this_len > (1 << 16) ? (1 << 16) : this_len;
844}
845
846static int __n2_crypt_chunk(struct crypto_tfm *tfm, struct n2_crypto_chunk *cp,
847 struct spu_queue *qp, bool encrypt)
848{
849 struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
850 struct cwq_initial_entry *ent;
851 bool in_place;
852 int i;
853
854 ent = spu_queue_alloc(qp, cp->arr_len);
855 if (!ent) {
856 pr_info("queue_alloc() of %d fails\n",
857 cp->arr_len);
858 return -EBUSY;
859 }
860
861 in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
862
863 ent->control = control_word_base(cp->arr[0].src_len,
864 0, ctx->enc_type, 0, 0,
865 false, true, false, encrypt,
866 OPCODE_ENCRYPT |
867 (in_place ? OPCODE_INPLACE_BIT : 0));
868 ent->src_addr = cp->arr[0].src_paddr;
869 ent->auth_key_addr = 0UL;
870 ent->auth_iv_addr = 0UL;
871 ent->final_auth_state_addr = 0UL;
872 ent->enc_key_addr = __pa(&ctx->key);
873 ent->enc_iv_addr = cp->iv_paddr;
874 ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
875
876 for (i = 1; i < cp->arr_len; i++) {
877 ent = spu_queue_next(qp, ent);
878
879 ent->control = cp->arr[i].src_len - 1;
880 ent->src_addr = cp->arr[i].src_paddr;
881 ent->auth_key_addr = 0UL;
882 ent->auth_iv_addr = 0UL;
883 ent->final_auth_state_addr = 0UL;
884 ent->enc_key_addr = 0UL;
885 ent->enc_iv_addr = 0UL;
886 ent->dest_addr = 0UL;
887 }
888 ent->control |= CONTROL_END_OF_BLOCK;
889
890 return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
891}
892
893static int n2_compute_chunks(struct ablkcipher_request *req)
894{
895 struct n2_request_context *rctx = ablkcipher_request_ctx(req);
896 struct ablkcipher_walk *walk = &rctx->walk;
897 struct n2_crypto_chunk *chunk;
898 unsigned long dest_prev;
899 unsigned int tot_len;
900 bool prev_in_place;
901 int err, nbytes;
902
903 ablkcipher_walk_init(walk, req->dst, req->src, req->nbytes);
904 err = ablkcipher_walk_phys(req, walk);
905 if (err)
906 return err;
907
908 INIT_LIST_HEAD(&rctx->chunk_list);
909
910 chunk = &rctx->chunk;
911 INIT_LIST_HEAD(&chunk->entry);
912
913 chunk->iv_paddr = 0UL;
914 chunk->arr_len = 0;
915 chunk->dest_paddr = 0UL;
916
917 prev_in_place = false;
918 dest_prev = ~0UL;
919 tot_len = 0;
920
921 while ((nbytes = walk->nbytes) != 0) {
922 unsigned long dest_paddr, src_paddr;
923 bool in_place;
924 int this_len;
925
926 src_paddr = (page_to_phys(walk->src.page) +
927 walk->src.offset);
928 dest_paddr = (page_to_phys(walk->dst.page) +
929 walk->dst.offset);
930 in_place = (src_paddr == dest_paddr);
931 this_len = cipher_descriptor_len(nbytes, walk->blocksize);
932
933 if (chunk->arr_len != 0) {
934 if (in_place != prev_in_place ||
935 (!prev_in_place &&
936 dest_paddr != dest_prev) ||
937 chunk->arr_len == N2_CHUNK_ARR_LEN ||
938 tot_len + this_len > (1 << 16)) {
939 chunk->dest_final = dest_prev;
940 list_add_tail(&chunk->entry,
941 &rctx->chunk_list);
942 chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
943 if (!chunk) {
944 err = -ENOMEM;
945 break;
946 }
947 INIT_LIST_HEAD(&chunk->entry);
948 }
949 }
950 if (chunk->arr_len == 0) {
951 chunk->dest_paddr = dest_paddr;
952 tot_len = 0;
953 }
954 chunk->arr[chunk->arr_len].src_paddr = src_paddr;
955 chunk->arr[chunk->arr_len].src_len = this_len;
956 chunk->arr_len++;
957
958 dest_prev = dest_paddr + this_len;
959 prev_in_place = in_place;
960 tot_len += this_len;
961
962 err = ablkcipher_walk_done(req, walk, nbytes - this_len);
963 if (err)
964 break;
965 }
966 if (!err && chunk->arr_len != 0) {
967 chunk->dest_final = dest_prev;
968 list_add_tail(&chunk->entry, &rctx->chunk_list);
969 }
970
971 return err;
972}
973
974static void n2_chunk_complete(struct ablkcipher_request *req, void *final_iv)
975{
976 struct n2_request_context *rctx = ablkcipher_request_ctx(req);
977 struct n2_crypto_chunk *c, *tmp;
978
979 if (final_iv)
980 memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
981
982 ablkcipher_walk_complete(&rctx->walk);
983 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
984 list_del(&c->entry);
985 if (unlikely(c != &rctx->chunk))
986 kfree(c);
987 }
988
989}
990
991static int n2_do_ecb(struct ablkcipher_request *req, bool encrypt)
992{
993 struct n2_request_context *rctx = ablkcipher_request_ctx(req);
994 struct crypto_tfm *tfm = req->base.tfm;
995 int err = n2_compute_chunks(req);
996 struct n2_crypto_chunk *c, *tmp;
997 unsigned long flags, hv_ret;
998 struct spu_queue *qp;
999
1000 if (err)
1001 return err;
1002
1003 qp = cpu_to_cwq[get_cpu()];
1004 err = -ENODEV;
1005 if (!qp)
1006 goto out;
1007
1008 spin_lock_irqsave(&qp->lock, flags);
1009
1010 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
1011 err = __n2_crypt_chunk(tfm, c, qp, encrypt);
1012 if (err)
1013 break;
1014 list_del(&c->entry);
1015 if (unlikely(c != &rctx->chunk))
1016 kfree(c);
1017 }
1018 if (!err) {
1019 hv_ret = wait_for_tail(qp);
1020 if (hv_ret != HV_EOK)
1021 err = -EINVAL;
1022 }
1023
1024 spin_unlock_irqrestore(&qp->lock, flags);
1025
1026out:
1027 put_cpu();
1028
1029 n2_chunk_complete(req, NULL);
1030 return err;
1031}
1032
1033static int n2_encrypt_ecb(struct ablkcipher_request *req)
1034{
1035 return n2_do_ecb(req, true);
1036}
1037
1038static int n2_decrypt_ecb(struct ablkcipher_request *req)
1039{
1040 return n2_do_ecb(req, false);
1041}
1042
1043static int n2_do_chaining(struct ablkcipher_request *req, bool encrypt)
1044{
1045 struct n2_request_context *rctx = ablkcipher_request_ctx(req);
1046 struct crypto_tfm *tfm = req->base.tfm;
1047 unsigned long flags, hv_ret, iv_paddr;
1048 int err = n2_compute_chunks(req);
1049 struct n2_crypto_chunk *c, *tmp;
1050 struct spu_queue *qp;
1051 void *final_iv_addr;
1052
1053 final_iv_addr = NULL;
1054
1055 if (err)
1056 return err;
1057
1058 qp = cpu_to_cwq[get_cpu()];
1059 err = -ENODEV;
1060 if (!qp)
1061 goto out;
1062
1063 spin_lock_irqsave(&qp->lock, flags);
1064
1065 if (encrypt) {
1066 iv_paddr = __pa(rctx->walk.iv);
1067 list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1068 entry) {
1069 c->iv_paddr = iv_paddr;
1070 err = __n2_crypt_chunk(tfm, c, qp, true);
1071 if (err)
1072 break;
1073 iv_paddr = c->dest_final - rctx->walk.blocksize;
1074 list_del(&c->entry);
1075 if (unlikely(c != &rctx->chunk))
1076 kfree(c);
1077 }
1078 final_iv_addr = __va(iv_paddr);
1079 } else {
1080 list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1081 entry) {
1082 if (c == &rctx->chunk) {
1083 iv_paddr = __pa(rctx->walk.iv);
1084 } else {
1085 iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1086 tmp->arr[tmp->arr_len-1].src_len -
1087 rctx->walk.blocksize);
1088 }
1089 if (!final_iv_addr) {
1090 unsigned long pa;
1091
1092 pa = (c->arr[c->arr_len-1].src_paddr +
1093 c->arr[c->arr_len-1].src_len -
1094 rctx->walk.blocksize);
1095 final_iv_addr = rctx->temp_iv;
1096 memcpy(rctx->temp_iv, __va(pa),
1097 rctx->walk.blocksize);
1098 }
1099 c->iv_paddr = iv_paddr;
1100 err = __n2_crypt_chunk(tfm, c, qp, false);
1101 if (err)
1102 break;
1103 list_del(&c->entry);
1104 if (unlikely(c != &rctx->chunk))
1105 kfree(c);
1106 }
1107 }
1108 if (!err) {
1109 hv_ret = wait_for_tail(qp);
1110 if (hv_ret != HV_EOK)
1111 err = -EINVAL;
1112 }
1113
1114 spin_unlock_irqrestore(&qp->lock, flags);
1115
1116out:
1117 put_cpu();
1118
1119 n2_chunk_complete(req, err ? NULL : final_iv_addr);
1120 return err;
1121}
1122
1123static int n2_encrypt_chaining(struct ablkcipher_request *req)
1124{
1125 return n2_do_chaining(req, true);
1126}
1127
1128static int n2_decrypt_chaining(struct ablkcipher_request *req)
1129{
1130 return n2_do_chaining(req, false);
1131}
1132
1133struct n2_cipher_tmpl {
1134 const char *name;
1135 const char *drv_name;
1136 u8 block_size;
1137 u8 enc_type;
1138 struct ablkcipher_alg ablkcipher;
1139};
1140
1141static const struct n2_cipher_tmpl cipher_tmpls[] = {
1142
1143 { .name = "ecb(arc4)",
1144 .drv_name = "ecb-arc4",
1145 .block_size = 1,
1146 .enc_type = (ENC_TYPE_ALG_RC4_STREAM |
1147 ENC_TYPE_CHAINING_ECB),
1148 .ablkcipher = {
1149 .min_keysize = 1,
1150 .max_keysize = 256,
1151 .setkey = n2_arc4_setkey,
1152 .encrypt = n2_encrypt_ecb,
1153 .decrypt = n2_decrypt_ecb,
1154 },
1155 },
1156
1157
1158 { .name = "ecb(des)",
1159 .drv_name = "ecb-des",
1160 .block_size = DES_BLOCK_SIZE,
1161 .enc_type = (ENC_TYPE_ALG_DES |
1162 ENC_TYPE_CHAINING_ECB),
1163 .ablkcipher = {
1164 .min_keysize = DES_KEY_SIZE,
1165 .max_keysize = DES_KEY_SIZE,
1166 .setkey = n2_des_setkey,
1167 .encrypt = n2_encrypt_ecb,
1168 .decrypt = n2_decrypt_ecb,
1169 },
1170 },
1171 { .name = "cbc(des)",
1172 .drv_name = "cbc-des",
1173 .block_size = DES_BLOCK_SIZE,
1174 .enc_type = (ENC_TYPE_ALG_DES |
1175 ENC_TYPE_CHAINING_CBC),
1176 .ablkcipher = {
1177 .ivsize = DES_BLOCK_SIZE,
1178 .min_keysize = DES_KEY_SIZE,
1179 .max_keysize = DES_KEY_SIZE,
1180 .setkey = n2_des_setkey,
1181 .encrypt = n2_encrypt_chaining,
1182 .decrypt = n2_decrypt_chaining,
1183 },
1184 },
1185 { .name = "cfb(des)",
1186 .drv_name = "cfb-des",
1187 .block_size = DES_BLOCK_SIZE,
1188 .enc_type = (ENC_TYPE_ALG_DES |
1189 ENC_TYPE_CHAINING_CFB),
1190 .ablkcipher = {
1191 .min_keysize = DES_KEY_SIZE,
1192 .max_keysize = DES_KEY_SIZE,
1193 .setkey = n2_des_setkey,
1194 .encrypt = n2_encrypt_chaining,
1195 .decrypt = n2_decrypt_chaining,
1196 },
1197 },
1198
1199
1200 { .name = "ecb(des3_ede)",
1201 .drv_name = "ecb-3des",
1202 .block_size = DES_BLOCK_SIZE,
1203 .enc_type = (ENC_TYPE_ALG_3DES |
1204 ENC_TYPE_CHAINING_ECB),
1205 .ablkcipher = {
1206 .min_keysize = 3 * DES_KEY_SIZE,
1207 .max_keysize = 3 * DES_KEY_SIZE,
1208 .setkey = n2_3des_setkey,
1209 .encrypt = n2_encrypt_ecb,
1210 .decrypt = n2_decrypt_ecb,
1211 },
1212 },
1213 { .name = "cbc(des3_ede)",
1214 .drv_name = "cbc-3des",
1215 .block_size = DES_BLOCK_SIZE,
1216 .enc_type = (ENC_TYPE_ALG_3DES |
1217 ENC_TYPE_CHAINING_CBC),
1218 .ablkcipher = {
1219 .ivsize = DES_BLOCK_SIZE,
1220 .min_keysize = 3 * DES_KEY_SIZE,
1221 .max_keysize = 3 * DES_KEY_SIZE,
1222 .setkey = n2_3des_setkey,
1223 .encrypt = n2_encrypt_chaining,
1224 .decrypt = n2_decrypt_chaining,
1225 },
1226 },
1227 { .name = "cfb(des3_ede)",
1228 .drv_name = "cfb-3des",
1229 .block_size = DES_BLOCK_SIZE,
1230 .enc_type = (ENC_TYPE_ALG_3DES |
1231 ENC_TYPE_CHAINING_CFB),
1232 .ablkcipher = {
1233 .min_keysize = 3 * DES_KEY_SIZE,
1234 .max_keysize = 3 * DES_KEY_SIZE,
1235 .setkey = n2_3des_setkey,
1236 .encrypt = n2_encrypt_chaining,
1237 .decrypt = n2_decrypt_chaining,
1238 },
1239 },
1240
1241 { .name = "ecb(aes)",
1242 .drv_name = "ecb-aes",
1243 .block_size = AES_BLOCK_SIZE,
1244 .enc_type = (ENC_TYPE_ALG_AES128 |
1245 ENC_TYPE_CHAINING_ECB),
1246 .ablkcipher = {
1247 .min_keysize = AES_MIN_KEY_SIZE,
1248 .max_keysize = AES_MAX_KEY_SIZE,
1249 .setkey = n2_aes_setkey,
1250 .encrypt = n2_encrypt_ecb,
1251 .decrypt = n2_decrypt_ecb,
1252 },
1253 },
1254 { .name = "cbc(aes)",
1255 .drv_name = "cbc-aes",
1256 .block_size = AES_BLOCK_SIZE,
1257 .enc_type = (ENC_TYPE_ALG_AES128 |
1258 ENC_TYPE_CHAINING_CBC),
1259 .ablkcipher = {
1260 .ivsize = AES_BLOCK_SIZE,
1261 .min_keysize = AES_MIN_KEY_SIZE,
1262 .max_keysize = AES_MAX_KEY_SIZE,
1263 .setkey = n2_aes_setkey,
1264 .encrypt = n2_encrypt_chaining,
1265 .decrypt = n2_decrypt_chaining,
1266 },
1267 },
1268 { .name = "ctr(aes)",
1269 .drv_name = "ctr-aes",
1270 .block_size = AES_BLOCK_SIZE,
1271 .enc_type = (ENC_TYPE_ALG_AES128 |
1272 ENC_TYPE_CHAINING_COUNTER),
1273 .ablkcipher = {
1274 .ivsize = AES_BLOCK_SIZE,
1275 .min_keysize = AES_MIN_KEY_SIZE,
1276 .max_keysize = AES_MAX_KEY_SIZE,
1277 .setkey = n2_aes_setkey,
1278 .encrypt = n2_encrypt_chaining,
1279 .decrypt = n2_encrypt_chaining,
1280 },
1281 },
1282
1283};
1284#define NUM_CIPHER_TMPLS ARRAY_SIZE(cipher_tmpls)
1285
1286static LIST_HEAD(cipher_algs);
1287
1288struct n2_hash_tmpl {
1289 const char *name;
1290 const u8 *hash_zero;
1291 const u32 *hash_init;
1292 u8 hw_op_hashsz;
1293 u8 digest_size;
1294 u8 block_size;
1295 u8 auth_type;
1296 u8 hmac_type;
1297};
1298
1299static const u32 md5_init[MD5_HASH_WORDS] = {
1300 cpu_to_le32(MD5_H0),
1301 cpu_to_le32(MD5_H1),
1302 cpu_to_le32(MD5_H2),
1303 cpu_to_le32(MD5_H3),
1304};
1305static const u32 sha1_init[SHA1_DIGEST_SIZE / 4] = {
1306 SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1307};
1308static const u32 sha256_init[SHA256_DIGEST_SIZE / 4] = {
1309 SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1310 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1311};
1312static const u32 sha224_init[SHA256_DIGEST_SIZE / 4] = {
1313 SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1314 SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1315};
1316
1317static const struct n2_hash_tmpl hash_tmpls[] = {
1318 { .name = "md5",
1319 .hash_zero = md5_zero_message_hash,
1320 .hash_init = md5_init,
1321 .auth_type = AUTH_TYPE_MD5,
1322 .hmac_type = AUTH_TYPE_HMAC_MD5,
1323 .hw_op_hashsz = MD5_DIGEST_SIZE,
1324 .digest_size = MD5_DIGEST_SIZE,
1325 .block_size = MD5_HMAC_BLOCK_SIZE },
1326 { .name = "sha1",
1327 .hash_zero = sha1_zero_message_hash,
1328 .hash_init = sha1_init,
1329 .auth_type = AUTH_TYPE_SHA1,
1330 .hmac_type = AUTH_TYPE_HMAC_SHA1,
1331 .hw_op_hashsz = SHA1_DIGEST_SIZE,
1332 .digest_size = SHA1_DIGEST_SIZE,
1333 .block_size = SHA1_BLOCK_SIZE },
1334 { .name = "sha256",
1335 .hash_zero = sha256_zero_message_hash,
1336 .hash_init = sha256_init,
1337 .auth_type = AUTH_TYPE_SHA256,
1338 .hmac_type = AUTH_TYPE_HMAC_SHA256,
1339 .hw_op_hashsz = SHA256_DIGEST_SIZE,
1340 .digest_size = SHA256_DIGEST_SIZE,
1341 .block_size = SHA256_BLOCK_SIZE },
1342 { .name = "sha224",
1343 .hash_zero = sha224_zero_message_hash,
1344 .hash_init = sha224_init,
1345 .auth_type = AUTH_TYPE_SHA256,
1346 .hmac_type = AUTH_TYPE_RESERVED,
1347 .hw_op_hashsz = SHA256_DIGEST_SIZE,
1348 .digest_size = SHA224_DIGEST_SIZE,
1349 .block_size = SHA224_BLOCK_SIZE },
1350};
1351#define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1352
1353static LIST_HEAD(ahash_algs);
1354static LIST_HEAD(hmac_algs);
1355
1356static int algs_registered;
1357
1358static void __n2_unregister_algs(void)
1359{
1360 struct n2_cipher_alg *cipher, *cipher_tmp;
1361 struct n2_ahash_alg *alg, *alg_tmp;
1362 struct n2_hmac_alg *hmac, *hmac_tmp;
1363
1364 list_for_each_entry_safe(cipher, cipher_tmp, &cipher_algs, entry) {
1365 crypto_unregister_alg(&cipher->alg);
1366 list_del(&cipher->entry);
1367 kfree(cipher);
1368 }
1369 list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1370 crypto_unregister_ahash(&hmac->derived.alg);
1371 list_del(&hmac->derived.entry);
1372 kfree(hmac);
1373 }
1374 list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1375 crypto_unregister_ahash(&alg->alg);
1376 list_del(&alg->entry);
1377 kfree(alg);
1378 }
1379}
1380
1381static int n2_cipher_cra_init(struct crypto_tfm *tfm)
1382{
1383 tfm->crt_ablkcipher.reqsize = sizeof(struct n2_request_context);
1384 return 0;
1385}
1386
1387static int __n2_register_one_cipher(const struct n2_cipher_tmpl *tmpl)
1388{
1389 struct n2_cipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1390 struct crypto_alg *alg;
1391 int err;
1392
1393 if (!p)
1394 return -ENOMEM;
1395
1396 alg = &p->alg;
1397
1398 snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1399 snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1400 alg->cra_priority = N2_CRA_PRIORITY;
1401 alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1402 CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
1403 alg->cra_blocksize = tmpl->block_size;
1404 p->enc_type = tmpl->enc_type;
1405 alg->cra_ctxsize = sizeof(struct n2_cipher_context);
1406 alg->cra_type = &crypto_ablkcipher_type;
1407 alg->cra_u.ablkcipher = tmpl->ablkcipher;
1408 alg->cra_init = n2_cipher_cra_init;
1409 alg->cra_module = THIS_MODULE;
1410
1411 list_add(&p->entry, &cipher_algs);
1412 err = crypto_register_alg(alg);
1413 if (err) {
1414 pr_err("%s alg registration failed\n", alg->cra_name);
1415 list_del(&p->entry);
1416 kfree(p);
1417 } else {
1418 pr_info("%s alg registered\n", alg->cra_name);
1419 }
1420 return err;
1421}
1422
1423static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1424{
1425 struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1426 struct ahash_alg *ahash;
1427 struct crypto_alg *base;
1428 int err;
1429
1430 if (!p)
1431 return -ENOMEM;
1432
1433 p->child_alg = n2ahash->alg.halg.base.cra_name;
1434 memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1435 INIT_LIST_HEAD(&p->derived.entry);
1436
1437 ahash = &p->derived.alg;
1438 ahash->digest = n2_hmac_async_digest;
1439 ahash->setkey = n2_hmac_async_setkey;
1440
1441 base = &ahash->halg.base;
1442 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1443 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1444
1445 base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1446 base->cra_init = n2_hmac_cra_init;
1447 base->cra_exit = n2_hmac_cra_exit;
1448
1449 list_add(&p->derived.entry, &hmac_algs);
1450 err = crypto_register_ahash(ahash);
1451 if (err) {
1452 pr_err("%s alg registration failed\n", base->cra_name);
1453 list_del(&p->derived.entry);
1454 kfree(p);
1455 } else {
1456 pr_info("%s alg registered\n", base->cra_name);
1457 }
1458 return err;
1459}
1460
1461static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1462{
1463 struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1464 struct hash_alg_common *halg;
1465 struct crypto_alg *base;
1466 struct ahash_alg *ahash;
1467 int err;
1468
1469 if (!p)
1470 return -ENOMEM;
1471
1472 p->hash_zero = tmpl->hash_zero;
1473 p->hash_init = tmpl->hash_init;
1474 p->auth_type = tmpl->auth_type;
1475 p->hmac_type = tmpl->hmac_type;
1476 p->hw_op_hashsz = tmpl->hw_op_hashsz;
1477 p->digest_size = tmpl->digest_size;
1478
1479 ahash = &p->alg;
1480 ahash->init = n2_hash_async_init;
1481 ahash->update = n2_hash_async_update;
1482 ahash->final = n2_hash_async_final;
1483 ahash->finup = n2_hash_async_finup;
1484 ahash->digest = n2_hash_async_digest;
1485 ahash->export = n2_hash_async_noexport;
1486 ahash->import = n2_hash_async_noimport;
1487
1488 halg = &ahash->halg;
1489 halg->digestsize = tmpl->digest_size;
1490
1491 base = &halg->base;
1492 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1493 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1494 base->cra_priority = N2_CRA_PRIORITY;
1495 base->cra_flags = CRYPTO_ALG_TYPE_AHASH |
1496 CRYPTO_ALG_KERN_DRIVER_ONLY |
1497 CRYPTO_ALG_NEED_FALLBACK;
1498 base->cra_blocksize = tmpl->block_size;
1499 base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1500 base->cra_module = THIS_MODULE;
1501 base->cra_init = n2_hash_cra_init;
1502 base->cra_exit = n2_hash_cra_exit;
1503
1504 list_add(&p->entry, &ahash_algs);
1505 err = crypto_register_ahash(ahash);
1506 if (err) {
1507 pr_err("%s alg registration failed\n", base->cra_name);
1508 list_del(&p->entry);
1509 kfree(p);
1510 } else {
1511 pr_info("%s alg registered\n", base->cra_name);
1512 }
1513 if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1514 err = __n2_register_one_hmac(p);
1515 return err;
1516}
1517
1518static int n2_register_algs(void)
1519{
1520 int i, err = 0;
1521
1522 mutex_lock(&spu_lock);
1523 if (algs_registered++)
1524 goto out;
1525
1526 for (i = 0; i < NUM_HASH_TMPLS; i++) {
1527 err = __n2_register_one_ahash(&hash_tmpls[i]);
1528 if (err) {
1529 __n2_unregister_algs();
1530 goto out;
1531 }
1532 }
1533 for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1534 err = __n2_register_one_cipher(&cipher_tmpls[i]);
1535 if (err) {
1536 __n2_unregister_algs();
1537 goto out;
1538 }
1539 }
1540
1541out:
1542 mutex_unlock(&spu_lock);
1543 return err;
1544}
1545
1546static void n2_unregister_algs(void)
1547{
1548 mutex_lock(&spu_lock);
1549 if (!--algs_registered)
1550 __n2_unregister_algs();
1551 mutex_unlock(&spu_lock);
1552}
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1565 unsigned long dev_ino)
1566{
1567 const unsigned int *dev_intrs;
1568 unsigned int intr;
1569 int i;
1570
1571 for (i = 0; i < ip->num_intrs; i++) {
1572 if (ip->ino_table[i].ino == dev_ino)
1573 break;
1574 }
1575 if (i == ip->num_intrs)
1576 return -ENODEV;
1577
1578 intr = ip->ino_table[i].intr;
1579
1580 dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1581 if (!dev_intrs)
1582 return -ENODEV;
1583
1584 for (i = 0; i < dev->archdata.num_irqs; i++) {
1585 if (dev_intrs[i] == intr)
1586 return i;
1587 }
1588
1589 return -ENODEV;
1590}
1591
1592static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1593 const char *irq_name, struct spu_queue *p,
1594 irq_handler_t handler)
1595{
1596 unsigned long herr;
1597 int index;
1598
1599 herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1600 if (herr)
1601 return -EINVAL;
1602
1603 index = find_devino_index(dev, ip, p->devino);
1604 if (index < 0)
1605 return index;
1606
1607 p->irq = dev->archdata.irqs[index];
1608
1609 sprintf(p->irq_name, "%s-%d", irq_name, index);
1610
1611 return request_irq(p->irq, handler, 0, p->irq_name, p);
1612}
1613
1614static struct kmem_cache *queue_cache[2];
1615
1616static void *new_queue(unsigned long q_type)
1617{
1618 return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1619}
1620
1621static void free_queue(void *p, unsigned long q_type)
1622{
1623 kmem_cache_free(queue_cache[q_type - 1], p);
1624}
1625
1626static int queue_cache_init(void)
1627{
1628 if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1629 queue_cache[HV_NCS_QTYPE_MAU - 1] =
1630 kmem_cache_create("mau_queue",
1631 (MAU_NUM_ENTRIES *
1632 MAU_ENTRY_SIZE),
1633 MAU_ENTRY_SIZE, 0, NULL);
1634 if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1635 return -ENOMEM;
1636
1637 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1638 queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1639 kmem_cache_create("cwq_queue",
1640 (CWQ_NUM_ENTRIES *
1641 CWQ_ENTRY_SIZE),
1642 CWQ_ENTRY_SIZE, 0, NULL);
1643 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1644 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1645 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1646 return -ENOMEM;
1647 }
1648 return 0;
1649}
1650
1651static void queue_cache_destroy(void)
1652{
1653 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1654 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1655 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1656 queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1657}
1658
1659static long spu_queue_register_workfn(void *arg)
1660{
1661 struct spu_qreg *qr = arg;
1662 struct spu_queue *p = qr->queue;
1663 unsigned long q_type = qr->type;
1664 unsigned long hv_ret;
1665
1666 hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1667 CWQ_NUM_ENTRIES, &p->qhandle);
1668 if (!hv_ret)
1669 sun4v_ncs_sethead_marker(p->qhandle, 0);
1670
1671 return hv_ret ? -EINVAL : 0;
1672}
1673
1674static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1675{
1676 int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1677 struct spu_qreg qr = { .queue = p, .type = q_type };
1678
1679 return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1680}
1681
1682static int spu_queue_setup(struct spu_queue *p)
1683{
1684 int err;
1685
1686 p->q = new_queue(p->q_type);
1687 if (!p->q)
1688 return -ENOMEM;
1689
1690 err = spu_queue_register(p, p->q_type);
1691 if (err) {
1692 free_queue(p->q, p->q_type);
1693 p->q = NULL;
1694 }
1695
1696 return err;
1697}
1698
1699static void spu_queue_destroy(struct spu_queue *p)
1700{
1701 unsigned long hv_ret;
1702
1703 if (!p->q)
1704 return;
1705
1706 hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1707
1708 if (!hv_ret)
1709 free_queue(p->q, p->q_type);
1710}
1711
1712static void spu_list_destroy(struct list_head *list)
1713{
1714 struct spu_queue *p, *n;
1715
1716 list_for_each_entry_safe(p, n, list, list) {
1717 int i;
1718
1719 for (i = 0; i < NR_CPUS; i++) {
1720 if (cpu_to_cwq[i] == p)
1721 cpu_to_cwq[i] = NULL;
1722 }
1723
1724 if (p->irq) {
1725 free_irq(p->irq, p);
1726 p->irq = 0;
1727 }
1728 spu_queue_destroy(p);
1729 list_del(&p->list);
1730 kfree(p);
1731 }
1732}
1733
1734
1735
1736
1737static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1738 struct platform_device *dev,
1739 u64 node, struct spu_queue *p,
1740 struct spu_queue **table)
1741{
1742 u64 arc;
1743
1744 mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1745 u64 tgt = mdesc_arc_target(mdesc, arc);
1746 const char *name = mdesc_node_name(mdesc, tgt);
1747 const u64 *id;
1748
1749 if (strcmp(name, "cpu"))
1750 continue;
1751 id = mdesc_get_property(mdesc, tgt, "id", NULL);
1752 if (table[*id] != NULL) {
1753 dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1754 dev->dev.of_node);
1755 return -EINVAL;
1756 }
1757 cpumask_set_cpu(*id, &p->sharing);
1758 table[*id] = p;
1759 }
1760 return 0;
1761}
1762
1763
1764static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1765 struct platform_device *dev, struct mdesc_handle *mdesc,
1766 u64 node, const char *iname, unsigned long q_type,
1767 irq_handler_t handler, struct spu_queue **table)
1768{
1769 struct spu_queue *p;
1770 int err;
1771
1772 p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1773 if (!p) {
1774 dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1775 dev->dev.of_node);
1776 return -ENOMEM;
1777 }
1778
1779 cpumask_clear(&p->sharing);
1780 spin_lock_init(&p->lock);
1781 p->q_type = q_type;
1782 INIT_LIST_HEAD(&p->jobs);
1783 list_add(&p->list, list);
1784
1785 err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1786 if (err)
1787 return err;
1788
1789 err = spu_queue_setup(p);
1790 if (err)
1791 return err;
1792
1793 return spu_map_ino(dev, ip, iname, p, handler);
1794}
1795
1796static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1797 struct spu_mdesc_info *ip, struct list_head *list,
1798 const char *exec_name, unsigned long q_type,
1799 irq_handler_t handler, struct spu_queue **table)
1800{
1801 int err = 0;
1802 u64 node;
1803
1804 mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1805 const char *type;
1806
1807 type = mdesc_get_property(mdesc, node, "type", NULL);
1808 if (!type || strcmp(type, exec_name))
1809 continue;
1810
1811 err = handle_exec_unit(ip, list, dev, mdesc, node,
1812 exec_name, q_type, handler, table);
1813 if (err) {
1814 spu_list_destroy(list);
1815 break;
1816 }
1817 }
1818
1819 return err;
1820}
1821
1822static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1823 struct spu_mdesc_info *ip)
1824{
1825 const u64 *ino;
1826 int ino_len;
1827 int i;
1828
1829 ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1830 if (!ino) {
1831 printk("NO 'ino'\n");
1832 return -ENODEV;
1833 }
1834
1835 ip->num_intrs = ino_len / sizeof(u64);
1836 ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1837 ip->num_intrs),
1838 GFP_KERNEL);
1839 if (!ip->ino_table)
1840 return -ENOMEM;
1841
1842 for (i = 0; i < ip->num_intrs; i++) {
1843 struct ino_blob *b = &ip->ino_table[i];
1844 b->intr = i + 1;
1845 b->ino = ino[i];
1846 }
1847
1848 return 0;
1849}
1850
1851static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1852 struct platform_device *dev,
1853 struct spu_mdesc_info *ip,
1854 const char *node_name)
1855{
1856 const unsigned int *reg;
1857 u64 node;
1858
1859 reg = of_get_property(dev->dev.of_node, "reg", NULL);
1860 if (!reg)
1861 return -ENODEV;
1862
1863 mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1864 const char *name;
1865 const u64 *chdl;
1866
1867 name = mdesc_get_property(mdesc, node, "name", NULL);
1868 if (!name || strcmp(name, node_name))
1869 continue;
1870 chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1871 if (!chdl || (*chdl != *reg))
1872 continue;
1873 ip->cfg_handle = *chdl;
1874 return get_irq_props(mdesc, node, ip);
1875 }
1876
1877 return -ENODEV;
1878}
1879
1880static unsigned long n2_spu_hvapi_major;
1881static unsigned long n2_spu_hvapi_minor;
1882
1883static int n2_spu_hvapi_register(void)
1884{
1885 int err;
1886
1887 n2_spu_hvapi_major = 2;
1888 n2_spu_hvapi_minor = 0;
1889
1890 err = sun4v_hvapi_register(HV_GRP_NCS,
1891 n2_spu_hvapi_major,
1892 &n2_spu_hvapi_minor);
1893
1894 if (!err)
1895 pr_info("Registered NCS HVAPI version %lu.%lu\n",
1896 n2_spu_hvapi_major,
1897 n2_spu_hvapi_minor);
1898
1899 return err;
1900}
1901
1902static void n2_spu_hvapi_unregister(void)
1903{
1904 sun4v_hvapi_unregister(HV_GRP_NCS);
1905}
1906
1907static int global_ref;
1908
1909static int grab_global_resources(void)
1910{
1911 int err = 0;
1912
1913 mutex_lock(&spu_lock);
1914
1915 if (global_ref++)
1916 goto out;
1917
1918 err = n2_spu_hvapi_register();
1919 if (err)
1920 goto out;
1921
1922 err = queue_cache_init();
1923 if (err)
1924 goto out_hvapi_release;
1925
1926 err = -ENOMEM;
1927 cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1928 GFP_KERNEL);
1929 if (!cpu_to_cwq)
1930 goto out_queue_cache_destroy;
1931
1932 cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1933 GFP_KERNEL);
1934 if (!cpu_to_mau)
1935 goto out_free_cwq_table;
1936
1937 err = 0;
1938
1939out:
1940 if (err)
1941 global_ref--;
1942 mutex_unlock(&spu_lock);
1943 return err;
1944
1945out_free_cwq_table:
1946 kfree(cpu_to_cwq);
1947 cpu_to_cwq = NULL;
1948
1949out_queue_cache_destroy:
1950 queue_cache_destroy();
1951
1952out_hvapi_release:
1953 n2_spu_hvapi_unregister();
1954 goto out;
1955}
1956
1957static void release_global_resources(void)
1958{
1959 mutex_lock(&spu_lock);
1960 if (!--global_ref) {
1961 kfree(cpu_to_cwq);
1962 cpu_to_cwq = NULL;
1963
1964 kfree(cpu_to_mau);
1965 cpu_to_mau = NULL;
1966
1967 queue_cache_destroy();
1968 n2_spu_hvapi_unregister();
1969 }
1970 mutex_unlock(&spu_lock);
1971}
1972
1973static struct n2_crypto *alloc_n2cp(void)
1974{
1975 struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1976
1977 if (np)
1978 INIT_LIST_HEAD(&np->cwq_list);
1979
1980 return np;
1981}
1982
1983static void free_n2cp(struct n2_crypto *np)
1984{
1985 kfree(np->cwq_info.ino_table);
1986 np->cwq_info.ino_table = NULL;
1987
1988 kfree(np);
1989}
1990
1991static void n2_spu_driver_version(void)
1992{
1993 static int n2_spu_version_printed;
1994
1995 if (n2_spu_version_printed++ == 0)
1996 pr_info("%s", version);
1997}
1998
1999static int n2_crypto_probe(struct platform_device *dev)
2000{
2001 struct mdesc_handle *mdesc;
2002 struct n2_crypto *np;
2003 int err;
2004
2005 n2_spu_driver_version();
2006
2007 pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
2008
2009 np = alloc_n2cp();
2010 if (!np) {
2011 dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
2012 dev->dev.of_node);
2013 return -ENOMEM;
2014 }
2015
2016 err = grab_global_resources();
2017 if (err) {
2018 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2019 dev->dev.of_node);
2020 goto out_free_n2cp;
2021 }
2022
2023 mdesc = mdesc_grab();
2024
2025 if (!mdesc) {
2026 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2027 dev->dev.of_node);
2028 err = -ENODEV;
2029 goto out_free_global;
2030 }
2031 err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
2032 if (err) {
2033 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2034 dev->dev.of_node);
2035 mdesc_release(mdesc);
2036 goto out_free_global;
2037 }
2038
2039 err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
2040 "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
2041 cpu_to_cwq);
2042 mdesc_release(mdesc);
2043
2044 if (err) {
2045 dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
2046 dev->dev.of_node);
2047 goto out_free_global;
2048 }
2049
2050 err = n2_register_algs();
2051 if (err) {
2052 dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
2053 dev->dev.of_node);
2054 goto out_free_spu_list;
2055 }
2056
2057 dev_set_drvdata(&dev->dev, np);
2058
2059 return 0;
2060
2061out_free_spu_list:
2062 spu_list_destroy(&np->cwq_list);
2063
2064out_free_global:
2065 release_global_resources();
2066
2067out_free_n2cp:
2068 free_n2cp(np);
2069
2070 return err;
2071}
2072
2073static int n2_crypto_remove(struct platform_device *dev)
2074{
2075 struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2076
2077 n2_unregister_algs();
2078
2079 spu_list_destroy(&np->cwq_list);
2080
2081 release_global_resources();
2082
2083 free_n2cp(np);
2084
2085 return 0;
2086}
2087
2088static struct n2_mau *alloc_ncp(void)
2089{
2090 struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2091
2092 if (mp)
2093 INIT_LIST_HEAD(&mp->mau_list);
2094
2095 return mp;
2096}
2097
2098static void free_ncp(struct n2_mau *mp)
2099{
2100 kfree(mp->mau_info.ino_table);
2101 mp->mau_info.ino_table = NULL;
2102
2103 kfree(mp);
2104}
2105
2106static int n2_mau_probe(struct platform_device *dev)
2107{
2108 struct mdesc_handle *mdesc;
2109 struct n2_mau *mp;
2110 int err;
2111
2112 n2_spu_driver_version();
2113
2114 pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2115
2116 mp = alloc_ncp();
2117 if (!mp) {
2118 dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2119 dev->dev.of_node);
2120 return -ENOMEM;
2121 }
2122
2123 err = grab_global_resources();
2124 if (err) {
2125 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2126 dev->dev.of_node);
2127 goto out_free_ncp;
2128 }
2129
2130 mdesc = mdesc_grab();
2131
2132 if (!mdesc) {
2133 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2134 dev->dev.of_node);
2135 err = -ENODEV;
2136 goto out_free_global;
2137 }
2138
2139 err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2140 if (err) {
2141 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2142 dev->dev.of_node);
2143 mdesc_release(mdesc);
2144 goto out_free_global;
2145 }
2146
2147 err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2148 "mau", HV_NCS_QTYPE_MAU, mau_intr,
2149 cpu_to_mau);
2150 mdesc_release(mdesc);
2151
2152 if (err) {
2153 dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2154 dev->dev.of_node);
2155 goto out_free_global;
2156 }
2157
2158 dev_set_drvdata(&dev->dev, mp);
2159
2160 return 0;
2161
2162out_free_global:
2163 release_global_resources();
2164
2165out_free_ncp:
2166 free_ncp(mp);
2167
2168 return err;
2169}
2170
2171static int n2_mau_remove(struct platform_device *dev)
2172{
2173 struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2174
2175 spu_list_destroy(&mp->mau_list);
2176
2177 release_global_resources();
2178
2179 free_ncp(mp);
2180
2181 return 0;
2182}
2183
2184static const struct of_device_id n2_crypto_match[] = {
2185 {
2186 .name = "n2cp",
2187 .compatible = "SUNW,n2-cwq",
2188 },
2189 {
2190 .name = "n2cp",
2191 .compatible = "SUNW,vf-cwq",
2192 },
2193 {
2194 .name = "n2cp",
2195 .compatible = "SUNW,kt-cwq",
2196 },
2197 {},
2198};
2199
2200MODULE_DEVICE_TABLE(of, n2_crypto_match);
2201
2202static struct platform_driver n2_crypto_driver = {
2203 .driver = {
2204 .name = "n2cp",
2205 .of_match_table = n2_crypto_match,
2206 },
2207 .probe = n2_crypto_probe,
2208 .remove = n2_crypto_remove,
2209};
2210
2211static const struct of_device_id n2_mau_match[] = {
2212 {
2213 .name = "ncp",
2214 .compatible = "SUNW,n2-mau",
2215 },
2216 {
2217 .name = "ncp",
2218 .compatible = "SUNW,vf-mau",
2219 },
2220 {
2221 .name = "ncp",
2222 .compatible = "SUNW,kt-mau",
2223 },
2224 {},
2225};
2226
2227MODULE_DEVICE_TABLE(of, n2_mau_match);
2228
2229static struct platform_driver n2_mau_driver = {
2230 .driver = {
2231 .name = "ncp",
2232 .of_match_table = n2_mau_match,
2233 },
2234 .probe = n2_mau_probe,
2235 .remove = n2_mau_remove,
2236};
2237
2238static struct platform_driver * const drivers[] = {
2239 &n2_crypto_driver,
2240 &n2_mau_driver,
2241};
2242
2243static int __init n2_init(void)
2244{
2245 return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2246}
2247
2248static void __exit n2_exit(void)
2249{
2250 platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2251}
2252
2253module_init(n2_init);
2254module_exit(n2_exit);
2255