linux/drivers/md/dm-table.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2001 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
   9
  10#include <linux/module.h>
  11#include <linux/vmalloc.h>
  12#include <linux/blkdev.h>
  13#include <linux/namei.h>
  14#include <linux/ctype.h>
  15#include <linux/string.h>
  16#include <linux/slab.h>
  17#include <linux/interrupt.h>
  18#include <linux/mutex.h>
  19#include <linux/delay.h>
  20#include <linux/atomic.h>
  21#include <linux/blk-mq.h>
  22#include <linux/mount.h>
  23#include <linux/dax.h>
  24
  25#define DM_MSG_PREFIX "table"
  26
  27#define MAX_DEPTH 16
  28#define NODE_SIZE L1_CACHE_BYTES
  29#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
  30#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
  31
  32struct dm_table {
  33        struct mapped_device *md;
  34        enum dm_queue_mode type;
  35
  36        /* btree table */
  37        unsigned int depth;
  38        unsigned int counts[MAX_DEPTH]; /* in nodes */
  39        sector_t *index[MAX_DEPTH];
  40
  41        unsigned int num_targets;
  42        unsigned int num_allocated;
  43        sector_t *highs;
  44        struct dm_target *targets;
  45
  46        struct target_type *immutable_target_type;
  47
  48        bool integrity_supported:1;
  49        bool singleton:1;
  50        unsigned integrity_added:1;
  51
  52        /*
  53         * Indicates the rw permissions for the new logical
  54         * device.  This should be a combination of FMODE_READ
  55         * and FMODE_WRITE.
  56         */
  57        fmode_t mode;
  58
  59        /* a list of devices used by this table */
  60        struct list_head devices;
  61
  62        /* events get handed up using this callback */
  63        void (*event_fn)(void *);
  64        void *event_context;
  65
  66        struct dm_md_mempools *mempools;
  67
  68        struct list_head target_callbacks;
  69};
  70
  71/*
  72 * Similar to ceiling(log_size(n))
  73 */
  74static unsigned int int_log(unsigned int n, unsigned int base)
  75{
  76        int result = 0;
  77
  78        while (n > 1) {
  79                n = dm_div_up(n, base);
  80                result++;
  81        }
  82
  83        return result;
  84}
  85
  86/*
  87 * Calculate the index of the child node of the n'th node k'th key.
  88 */
  89static inline unsigned int get_child(unsigned int n, unsigned int k)
  90{
  91        return (n * CHILDREN_PER_NODE) + k;
  92}
  93
  94/*
  95 * Return the n'th node of level l from table t.
  96 */
  97static inline sector_t *get_node(struct dm_table *t,
  98                                 unsigned int l, unsigned int n)
  99{
 100        return t->index[l] + (n * KEYS_PER_NODE);
 101}
 102
 103/*
 104 * Return the highest key that you could lookup from the n'th
 105 * node on level l of the btree.
 106 */
 107static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
 108{
 109        for (; l < t->depth - 1; l++)
 110                n = get_child(n, CHILDREN_PER_NODE - 1);
 111
 112        if (n >= t->counts[l])
 113                return (sector_t) - 1;
 114
 115        return get_node(t, l, n)[KEYS_PER_NODE - 1];
 116}
 117
 118/*
 119 * Fills in a level of the btree based on the highs of the level
 120 * below it.
 121 */
 122static int setup_btree_index(unsigned int l, struct dm_table *t)
 123{
 124        unsigned int n, k;
 125        sector_t *node;
 126
 127        for (n = 0U; n < t->counts[l]; n++) {
 128                node = get_node(t, l, n);
 129
 130                for (k = 0U; k < KEYS_PER_NODE; k++)
 131                        node[k] = high(t, l + 1, get_child(n, k));
 132        }
 133
 134        return 0;
 135}
 136
 137void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
 138{
 139        unsigned long size;
 140        void *addr;
 141
 142        /*
 143         * Check that we're not going to overflow.
 144         */
 145        if (nmemb > (ULONG_MAX / elem_size))
 146                return NULL;
 147
 148        size = nmemb * elem_size;
 149        addr = vzalloc(size);
 150
 151        return addr;
 152}
 153EXPORT_SYMBOL(dm_vcalloc);
 154
 155/*
 156 * highs, and targets are managed as dynamic arrays during a
 157 * table load.
 158 */
 159static int alloc_targets(struct dm_table *t, unsigned int num)
 160{
 161        sector_t *n_highs;
 162        struct dm_target *n_targets;
 163
 164        /*
 165         * Allocate both the target array and offset array at once.
 166         * Append an empty entry to catch sectors beyond the end of
 167         * the device.
 168         */
 169        n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
 170                                          sizeof(sector_t));
 171        if (!n_highs)
 172                return -ENOMEM;
 173
 174        n_targets = (struct dm_target *) (n_highs + num);
 175
 176        memset(n_highs, -1, sizeof(*n_highs) * num);
 177        vfree(t->highs);
 178
 179        t->num_allocated = num;
 180        t->highs = n_highs;
 181        t->targets = n_targets;
 182
 183        return 0;
 184}
 185
 186int dm_table_create(struct dm_table **result, fmode_t mode,
 187                    unsigned num_targets, struct mapped_device *md)
 188{
 189        struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
 190
 191        if (!t)
 192                return -ENOMEM;
 193
 194        INIT_LIST_HEAD(&t->devices);
 195        INIT_LIST_HEAD(&t->target_callbacks);
 196
 197        if (!num_targets)
 198                num_targets = KEYS_PER_NODE;
 199
 200        num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
 201
 202        if (!num_targets) {
 203                kfree(t);
 204                return -ENOMEM;
 205        }
 206
 207        if (alloc_targets(t, num_targets)) {
 208                kfree(t);
 209                return -ENOMEM;
 210        }
 211
 212        t->type = DM_TYPE_NONE;
 213        t->mode = mode;
 214        t->md = md;
 215        *result = t;
 216        return 0;
 217}
 218
 219static void free_devices(struct list_head *devices, struct mapped_device *md)
 220{
 221        struct list_head *tmp, *next;
 222
 223        list_for_each_safe(tmp, next, devices) {
 224                struct dm_dev_internal *dd =
 225                    list_entry(tmp, struct dm_dev_internal, list);
 226                DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
 227                       dm_device_name(md), dd->dm_dev->name);
 228                dm_put_table_device(md, dd->dm_dev);
 229                kfree(dd);
 230        }
 231}
 232
 233void dm_table_destroy(struct dm_table *t)
 234{
 235        unsigned int i;
 236
 237        if (!t)
 238                return;
 239
 240        /* free the indexes */
 241        if (t->depth >= 2)
 242                vfree(t->index[t->depth - 2]);
 243
 244        /* free the targets */
 245        for (i = 0; i < t->num_targets; i++) {
 246                struct dm_target *tgt = t->targets + i;
 247
 248                if (tgt->type->dtr)
 249                        tgt->type->dtr(tgt);
 250
 251                dm_put_target_type(tgt->type);
 252        }
 253
 254        vfree(t->highs);
 255
 256        /* free the device list */
 257        free_devices(&t->devices, t->md);
 258
 259        dm_free_md_mempools(t->mempools);
 260
 261        kfree(t);
 262}
 263
 264/*
 265 * See if we've already got a device in the list.
 266 */
 267static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
 268{
 269        struct dm_dev_internal *dd;
 270
 271        list_for_each_entry (dd, l, list)
 272                if (dd->dm_dev->bdev->bd_dev == dev)
 273                        return dd;
 274
 275        return NULL;
 276}
 277
 278/*
 279 * If possible, this checks an area of a destination device is invalid.
 280 */
 281static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
 282                                  sector_t start, sector_t len, void *data)
 283{
 284        struct request_queue *q;
 285        struct queue_limits *limits = data;
 286        struct block_device *bdev = dev->bdev;
 287        sector_t dev_size =
 288                i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
 289        unsigned short logical_block_size_sectors =
 290                limits->logical_block_size >> SECTOR_SHIFT;
 291        char b[BDEVNAME_SIZE];
 292
 293        /*
 294         * Some devices exist without request functions,
 295         * such as loop devices not yet bound to backing files.
 296         * Forbid the use of such devices.
 297         */
 298        q = bdev_get_queue(bdev);
 299        if (!q || !q->make_request_fn) {
 300                DMWARN("%s: %s is not yet initialised: "
 301                       "start=%llu, len=%llu, dev_size=%llu",
 302                       dm_device_name(ti->table->md), bdevname(bdev, b),
 303                       (unsigned long long)start,
 304                       (unsigned long long)len,
 305                       (unsigned long long)dev_size);
 306                return 1;
 307        }
 308
 309        if (!dev_size)
 310                return 0;
 311
 312        if ((start >= dev_size) || (start + len > dev_size)) {
 313                DMWARN("%s: %s too small for target: "
 314                       "start=%llu, len=%llu, dev_size=%llu",
 315                       dm_device_name(ti->table->md), bdevname(bdev, b),
 316                       (unsigned long long)start,
 317                       (unsigned long long)len,
 318                       (unsigned long long)dev_size);
 319                return 1;
 320        }
 321
 322        /*
 323         * If the target is mapped to zoned block device(s), check
 324         * that the zones are not partially mapped.
 325         */
 326        if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
 327                unsigned int zone_sectors = bdev_zone_sectors(bdev);
 328
 329                if (start & (zone_sectors - 1)) {
 330                        DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
 331                               dm_device_name(ti->table->md),
 332                               (unsigned long long)start,
 333                               zone_sectors, bdevname(bdev, b));
 334                        return 1;
 335                }
 336
 337                /*
 338                 * Note: The last zone of a zoned block device may be smaller
 339                 * than other zones. So for a target mapping the end of a
 340                 * zoned block device with such a zone, len would not be zone
 341                 * aligned. We do not allow such last smaller zone to be part
 342                 * of the mapping here to ensure that mappings with multiple
 343                 * devices do not end up with a smaller zone in the middle of
 344                 * the sector range.
 345                 */
 346                if (len & (zone_sectors - 1)) {
 347                        DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
 348                               dm_device_name(ti->table->md),
 349                               (unsigned long long)len,
 350                               zone_sectors, bdevname(bdev, b));
 351                        return 1;
 352                }
 353        }
 354
 355        if (logical_block_size_sectors <= 1)
 356                return 0;
 357
 358        if (start & (logical_block_size_sectors - 1)) {
 359                DMWARN("%s: start=%llu not aligned to h/w "
 360                       "logical block size %u of %s",
 361                       dm_device_name(ti->table->md),
 362                       (unsigned long long)start,
 363                       limits->logical_block_size, bdevname(bdev, b));
 364                return 1;
 365        }
 366
 367        if (len & (logical_block_size_sectors - 1)) {
 368                DMWARN("%s: len=%llu not aligned to h/w "
 369                       "logical block size %u of %s",
 370                       dm_device_name(ti->table->md),
 371                       (unsigned long long)len,
 372                       limits->logical_block_size, bdevname(bdev, b));
 373                return 1;
 374        }
 375
 376        return 0;
 377}
 378
 379/*
 380 * This upgrades the mode on an already open dm_dev, being
 381 * careful to leave things as they were if we fail to reopen the
 382 * device and not to touch the existing bdev field in case
 383 * it is accessed concurrently inside dm_table_any_congested().
 384 */
 385static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
 386                        struct mapped_device *md)
 387{
 388        int r;
 389        struct dm_dev *old_dev, *new_dev;
 390
 391        old_dev = dd->dm_dev;
 392
 393        r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
 394                                dd->dm_dev->mode | new_mode, &new_dev);
 395        if (r)
 396                return r;
 397
 398        dd->dm_dev = new_dev;
 399        dm_put_table_device(md, old_dev);
 400
 401        return 0;
 402}
 403
 404/*
 405 * Convert the path to a device
 406 */
 407dev_t dm_get_dev_t(const char *path)
 408{
 409        dev_t dev;
 410        struct block_device *bdev;
 411
 412        bdev = lookup_bdev(path);
 413        if (IS_ERR(bdev))
 414                dev = name_to_dev_t(path);
 415        else {
 416                dev = bdev->bd_dev;
 417                bdput(bdev);
 418        }
 419
 420        return dev;
 421}
 422EXPORT_SYMBOL_GPL(dm_get_dev_t);
 423
 424/*
 425 * Add a device to the list, or just increment the usage count if
 426 * it's already present.
 427 */
 428int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
 429                  struct dm_dev **result)
 430{
 431        int r;
 432        dev_t dev;
 433        struct dm_dev_internal *dd;
 434        struct dm_table *t = ti->table;
 435
 436        BUG_ON(!t);
 437
 438        dev = dm_get_dev_t(path);
 439        if (!dev)
 440                return -ENODEV;
 441
 442        dd = find_device(&t->devices, dev);
 443        if (!dd) {
 444                dd = kmalloc(sizeof(*dd), GFP_KERNEL);
 445                if (!dd)
 446                        return -ENOMEM;
 447
 448                if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
 449                        kfree(dd);
 450                        return r;
 451                }
 452
 453                refcount_set(&dd->count, 1);
 454                list_add(&dd->list, &t->devices);
 455                goto out;
 456
 457        } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
 458                r = upgrade_mode(dd, mode, t->md);
 459                if (r)
 460                        return r;
 461        }
 462        refcount_inc(&dd->count);
 463out:
 464        *result = dd->dm_dev;
 465        return 0;
 466}
 467EXPORT_SYMBOL(dm_get_device);
 468
 469static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
 470                                sector_t start, sector_t len, void *data)
 471{
 472        struct queue_limits *limits = data;
 473        struct block_device *bdev = dev->bdev;
 474        struct request_queue *q = bdev_get_queue(bdev);
 475        char b[BDEVNAME_SIZE];
 476
 477        if (unlikely(!q)) {
 478                DMWARN("%s: Cannot set limits for nonexistent device %s",
 479                       dm_device_name(ti->table->md), bdevname(bdev, b));
 480                return 0;
 481        }
 482
 483        if (bdev_stack_limits(limits, bdev, start) < 0)
 484                DMWARN("%s: adding target device %s caused an alignment inconsistency: "
 485                       "physical_block_size=%u, logical_block_size=%u, "
 486                       "alignment_offset=%u, start=%llu",
 487                       dm_device_name(ti->table->md), bdevname(bdev, b),
 488                       q->limits.physical_block_size,
 489                       q->limits.logical_block_size,
 490                       q->limits.alignment_offset,
 491                       (unsigned long long) start << SECTOR_SHIFT);
 492
 493        limits->zoned = blk_queue_zoned_model(q);
 494
 495        return 0;
 496}
 497
 498/*
 499 * Decrement a device's use count and remove it if necessary.
 500 */
 501void dm_put_device(struct dm_target *ti, struct dm_dev *d)
 502{
 503        int found = 0;
 504        struct list_head *devices = &ti->table->devices;
 505        struct dm_dev_internal *dd;
 506
 507        list_for_each_entry(dd, devices, list) {
 508                if (dd->dm_dev == d) {
 509                        found = 1;
 510                        break;
 511                }
 512        }
 513        if (!found) {
 514                DMWARN("%s: device %s not in table devices list",
 515                       dm_device_name(ti->table->md), d->name);
 516                return;
 517        }
 518        if (refcount_dec_and_test(&dd->count)) {
 519                dm_put_table_device(ti->table->md, d);
 520                list_del(&dd->list);
 521                kfree(dd);
 522        }
 523}
 524EXPORT_SYMBOL(dm_put_device);
 525
 526/*
 527 * Checks to see if the target joins onto the end of the table.
 528 */
 529static int adjoin(struct dm_table *table, struct dm_target *ti)
 530{
 531        struct dm_target *prev;
 532
 533        if (!table->num_targets)
 534                return !ti->begin;
 535
 536        prev = &table->targets[table->num_targets - 1];
 537        return (ti->begin == (prev->begin + prev->len));
 538}
 539
 540/*
 541 * Used to dynamically allocate the arg array.
 542 *
 543 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
 544 * process messages even if some device is suspended. These messages have a
 545 * small fixed number of arguments.
 546 *
 547 * On the other hand, dm-switch needs to process bulk data using messages and
 548 * excessive use of GFP_NOIO could cause trouble.
 549 */
 550static char **realloc_argv(unsigned *size, char **old_argv)
 551{
 552        char **argv;
 553        unsigned new_size;
 554        gfp_t gfp;
 555
 556        if (*size) {
 557                new_size = *size * 2;
 558                gfp = GFP_KERNEL;
 559        } else {
 560                new_size = 8;
 561                gfp = GFP_NOIO;
 562        }
 563        argv = kmalloc_array(new_size, sizeof(*argv), gfp);
 564        if (argv && old_argv) {
 565                memcpy(argv, old_argv, *size * sizeof(*argv));
 566                *size = new_size;
 567        }
 568
 569        kfree(old_argv);
 570        return argv;
 571}
 572
 573/*
 574 * Destructively splits up the argument list to pass to ctr.
 575 */
 576int dm_split_args(int *argc, char ***argvp, char *input)
 577{
 578        char *start, *end = input, *out, **argv = NULL;
 579        unsigned array_size = 0;
 580
 581        *argc = 0;
 582
 583        if (!input) {
 584                *argvp = NULL;
 585                return 0;
 586        }
 587
 588        argv = realloc_argv(&array_size, argv);
 589        if (!argv)
 590                return -ENOMEM;
 591
 592        while (1) {
 593                /* Skip whitespace */
 594                start = skip_spaces(end);
 595
 596                if (!*start)
 597                        break;  /* success, we hit the end */
 598
 599                /* 'out' is used to remove any back-quotes */
 600                end = out = start;
 601                while (*end) {
 602                        /* Everything apart from '\0' can be quoted */
 603                        if (*end == '\\' && *(end + 1)) {
 604                                *out++ = *(end + 1);
 605                                end += 2;
 606                                continue;
 607                        }
 608
 609                        if (isspace(*end))
 610                                break;  /* end of token */
 611
 612                        *out++ = *end++;
 613                }
 614
 615                /* have we already filled the array ? */
 616                if ((*argc + 1) > array_size) {
 617                        argv = realloc_argv(&array_size, argv);
 618                        if (!argv)
 619                                return -ENOMEM;
 620                }
 621
 622                /* we know this is whitespace */
 623                if (*end)
 624                        end++;
 625
 626                /* terminate the string and put it in the array */
 627                *out = '\0';
 628                argv[*argc] = start;
 629                (*argc)++;
 630        }
 631
 632        *argvp = argv;
 633        return 0;
 634}
 635
 636/*
 637 * Impose necessary and sufficient conditions on a devices's table such
 638 * that any incoming bio which respects its logical_block_size can be
 639 * processed successfully.  If it falls across the boundary between
 640 * two or more targets, the size of each piece it gets split into must
 641 * be compatible with the logical_block_size of the target processing it.
 642 */
 643static int validate_hardware_logical_block_alignment(struct dm_table *table,
 644                                                 struct queue_limits *limits)
 645{
 646        /*
 647         * This function uses arithmetic modulo the logical_block_size
 648         * (in units of 512-byte sectors).
 649         */
 650        unsigned short device_logical_block_size_sects =
 651                limits->logical_block_size >> SECTOR_SHIFT;
 652
 653        /*
 654         * Offset of the start of the next table entry, mod logical_block_size.
 655         */
 656        unsigned short next_target_start = 0;
 657
 658        /*
 659         * Given an aligned bio that extends beyond the end of a
 660         * target, how many sectors must the next target handle?
 661         */
 662        unsigned short remaining = 0;
 663
 664        struct dm_target *uninitialized_var(ti);
 665        struct queue_limits ti_limits;
 666        unsigned i;
 667
 668        /*
 669         * Check each entry in the table in turn.
 670         */
 671        for (i = 0; i < dm_table_get_num_targets(table); i++) {
 672                ti = dm_table_get_target(table, i);
 673
 674                blk_set_stacking_limits(&ti_limits);
 675
 676                /* combine all target devices' limits */
 677                if (ti->type->iterate_devices)
 678                        ti->type->iterate_devices(ti, dm_set_device_limits,
 679                                                  &ti_limits);
 680
 681                /*
 682                 * If the remaining sectors fall entirely within this
 683                 * table entry are they compatible with its logical_block_size?
 684                 */
 685                if (remaining < ti->len &&
 686                    remaining & ((ti_limits.logical_block_size >>
 687                                  SECTOR_SHIFT) - 1))
 688                        break;  /* Error */
 689
 690                next_target_start =
 691                    (unsigned short) ((next_target_start + ti->len) &
 692                                      (device_logical_block_size_sects - 1));
 693                remaining = next_target_start ?
 694                    device_logical_block_size_sects - next_target_start : 0;
 695        }
 696
 697        if (remaining) {
 698                DMWARN("%s: table line %u (start sect %llu len %llu) "
 699                       "not aligned to h/w logical block size %u",
 700                       dm_device_name(table->md), i,
 701                       (unsigned long long) ti->begin,
 702                       (unsigned long long) ti->len,
 703                       limits->logical_block_size);
 704                return -EINVAL;
 705        }
 706
 707        return 0;
 708}
 709
 710int dm_table_add_target(struct dm_table *t, const char *type,
 711                        sector_t start, sector_t len, char *params)
 712{
 713        int r = -EINVAL, argc;
 714        char **argv;
 715        struct dm_target *tgt;
 716
 717        if (t->singleton) {
 718                DMERR("%s: target type %s must appear alone in table",
 719                      dm_device_name(t->md), t->targets->type->name);
 720                return -EINVAL;
 721        }
 722
 723        BUG_ON(t->num_targets >= t->num_allocated);
 724
 725        tgt = t->targets + t->num_targets;
 726        memset(tgt, 0, sizeof(*tgt));
 727
 728        if (!len) {
 729                DMERR("%s: zero-length target", dm_device_name(t->md));
 730                return -EINVAL;
 731        }
 732
 733        tgt->type = dm_get_target_type(type);
 734        if (!tgt->type) {
 735                DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
 736                return -EINVAL;
 737        }
 738
 739        if (dm_target_needs_singleton(tgt->type)) {
 740                if (t->num_targets) {
 741                        tgt->error = "singleton target type must appear alone in table";
 742                        goto bad;
 743                }
 744                t->singleton = true;
 745        }
 746
 747        if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
 748                tgt->error = "target type may not be included in a read-only table";
 749                goto bad;
 750        }
 751
 752        if (t->immutable_target_type) {
 753                if (t->immutable_target_type != tgt->type) {
 754                        tgt->error = "immutable target type cannot be mixed with other target types";
 755                        goto bad;
 756                }
 757        } else if (dm_target_is_immutable(tgt->type)) {
 758                if (t->num_targets) {
 759                        tgt->error = "immutable target type cannot be mixed with other target types";
 760                        goto bad;
 761                }
 762                t->immutable_target_type = tgt->type;
 763        }
 764
 765        if (dm_target_has_integrity(tgt->type))
 766                t->integrity_added = 1;
 767
 768        tgt->table = t;
 769        tgt->begin = start;
 770        tgt->len = len;
 771        tgt->error = "Unknown error";
 772
 773        /*
 774         * Does this target adjoin the previous one ?
 775         */
 776        if (!adjoin(t, tgt)) {
 777                tgt->error = "Gap in table";
 778                goto bad;
 779        }
 780
 781        r = dm_split_args(&argc, &argv, params);
 782        if (r) {
 783                tgt->error = "couldn't split parameters (insufficient memory)";
 784                goto bad;
 785        }
 786
 787        r = tgt->type->ctr(tgt, argc, argv);
 788        kfree(argv);
 789        if (r)
 790                goto bad;
 791
 792        t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
 793
 794        if (!tgt->num_discard_bios && tgt->discards_supported)
 795                DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
 796                       dm_device_name(t->md), type);
 797
 798        return 0;
 799
 800 bad:
 801        DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
 802        dm_put_target_type(tgt->type);
 803        return r;
 804}
 805
 806/*
 807 * Target argument parsing helpers.
 808 */
 809static int validate_next_arg(const struct dm_arg *arg,
 810                             struct dm_arg_set *arg_set,
 811                             unsigned *value, char **error, unsigned grouped)
 812{
 813        const char *arg_str = dm_shift_arg(arg_set);
 814        char dummy;
 815
 816        if (!arg_str ||
 817            (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
 818            (*value < arg->min) ||
 819            (*value > arg->max) ||
 820            (grouped && arg_set->argc < *value)) {
 821                *error = arg->error;
 822                return -EINVAL;
 823        }
 824
 825        return 0;
 826}
 827
 828int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
 829                unsigned *value, char **error)
 830{
 831        return validate_next_arg(arg, arg_set, value, error, 0);
 832}
 833EXPORT_SYMBOL(dm_read_arg);
 834
 835int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
 836                      unsigned *value, char **error)
 837{
 838        return validate_next_arg(arg, arg_set, value, error, 1);
 839}
 840EXPORT_SYMBOL(dm_read_arg_group);
 841
 842const char *dm_shift_arg(struct dm_arg_set *as)
 843{
 844        char *r;
 845
 846        if (as->argc) {
 847                as->argc--;
 848                r = *as->argv;
 849                as->argv++;
 850                return r;
 851        }
 852
 853        return NULL;
 854}
 855EXPORT_SYMBOL(dm_shift_arg);
 856
 857void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
 858{
 859        BUG_ON(as->argc < num_args);
 860        as->argc -= num_args;
 861        as->argv += num_args;
 862}
 863EXPORT_SYMBOL(dm_consume_args);
 864
 865static bool __table_type_bio_based(enum dm_queue_mode table_type)
 866{
 867        return (table_type == DM_TYPE_BIO_BASED ||
 868                table_type == DM_TYPE_DAX_BIO_BASED ||
 869                table_type == DM_TYPE_NVME_BIO_BASED);
 870}
 871
 872static bool __table_type_request_based(enum dm_queue_mode table_type)
 873{
 874        return table_type == DM_TYPE_REQUEST_BASED;
 875}
 876
 877void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
 878{
 879        t->type = type;
 880}
 881EXPORT_SYMBOL_GPL(dm_table_set_type);
 882
 883/* validate the dax capability of the target device span */
 884static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
 885                                       sector_t start, sector_t len, void *data)
 886{
 887        int blocksize = *(int *) data;
 888
 889        return generic_fsdax_supported(dev->dax_dev, dev->bdev, blocksize,
 890                        start, len);
 891}
 892
 893bool dm_table_supports_dax(struct dm_table *t, int blocksize)
 894{
 895        struct dm_target *ti;
 896        unsigned i;
 897
 898        /* Ensure that all targets support DAX. */
 899        for (i = 0; i < dm_table_get_num_targets(t); i++) {
 900                ti = dm_table_get_target(t, i);
 901
 902                if (!ti->type->direct_access)
 903                        return false;
 904
 905                if (!ti->type->iterate_devices ||
 906                    !ti->type->iterate_devices(ti, device_supports_dax,
 907                            &blocksize))
 908                        return false;
 909        }
 910
 911        return true;
 912}
 913
 914static bool dm_table_does_not_support_partial_completion(struct dm_table *t);
 915
 916struct verify_rq_based_data {
 917        unsigned sq_count;
 918        unsigned mq_count;
 919};
 920
 921static int device_is_rq_based(struct dm_target *ti, struct dm_dev *dev,
 922                              sector_t start, sector_t len, void *data)
 923{
 924        struct request_queue *q = bdev_get_queue(dev->bdev);
 925        struct verify_rq_based_data *v = data;
 926
 927        if (queue_is_mq(q))
 928                v->mq_count++;
 929        else
 930                v->sq_count++;
 931
 932        return queue_is_mq(q);
 933}
 934
 935static int dm_table_determine_type(struct dm_table *t)
 936{
 937        unsigned i;
 938        unsigned bio_based = 0, request_based = 0, hybrid = 0;
 939        struct verify_rq_based_data v = {.sq_count = 0, .mq_count = 0};
 940        struct dm_target *tgt;
 941        struct list_head *devices = dm_table_get_devices(t);
 942        enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
 943
 944        if (t->type != DM_TYPE_NONE) {
 945                /* target already set the table's type */
 946                if (t->type == DM_TYPE_BIO_BASED) {
 947                        /* possibly upgrade to a variant of bio-based */
 948                        goto verify_bio_based;
 949                }
 950                BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
 951                BUG_ON(t->type == DM_TYPE_NVME_BIO_BASED);
 952                goto verify_rq_based;
 953        }
 954
 955        for (i = 0; i < t->num_targets; i++) {
 956                tgt = t->targets + i;
 957                if (dm_target_hybrid(tgt))
 958                        hybrid = 1;
 959                else if (dm_target_request_based(tgt))
 960                        request_based = 1;
 961                else
 962                        bio_based = 1;
 963
 964                if (bio_based && request_based) {
 965                        DMERR("Inconsistent table: different target types"
 966                              " can't be mixed up");
 967                        return -EINVAL;
 968                }
 969        }
 970
 971        if (hybrid && !bio_based && !request_based) {
 972                /*
 973                 * The targets can work either way.
 974                 * Determine the type from the live device.
 975                 * Default to bio-based if device is new.
 976                 */
 977                if (__table_type_request_based(live_md_type))
 978                        request_based = 1;
 979                else
 980                        bio_based = 1;
 981        }
 982
 983        if (bio_based) {
 984verify_bio_based:
 985                /* We must use this table as bio-based */
 986                t->type = DM_TYPE_BIO_BASED;
 987                if (dm_table_supports_dax(t, PAGE_SIZE) ||
 988                    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
 989                        t->type = DM_TYPE_DAX_BIO_BASED;
 990                } else {
 991                        /* Check if upgrading to NVMe bio-based is valid or required */
 992                        tgt = dm_table_get_immutable_target(t);
 993                        if (tgt && !tgt->max_io_len && dm_table_does_not_support_partial_completion(t)) {
 994                                t->type = DM_TYPE_NVME_BIO_BASED;
 995                                goto verify_rq_based; /* must be stacked directly on NVMe (blk-mq) */
 996                        } else if (list_empty(devices) && live_md_type == DM_TYPE_NVME_BIO_BASED) {
 997                                t->type = DM_TYPE_NVME_BIO_BASED;
 998                        }
 999                }
1000                return 0;
1001        }
1002
1003        BUG_ON(!request_based); /* No targets in this table */
1004
1005        t->type = DM_TYPE_REQUEST_BASED;
1006
1007verify_rq_based:
1008        /*
1009         * Request-based dm supports only tables that have a single target now.
1010         * To support multiple targets, request splitting support is needed,
1011         * and that needs lots of changes in the block-layer.
1012         * (e.g. request completion process for partial completion.)
1013         */
1014        if (t->num_targets > 1) {
1015                DMERR("%s DM doesn't support multiple targets",
1016                      t->type == DM_TYPE_NVME_BIO_BASED ? "nvme bio-based" : "request-based");
1017                return -EINVAL;
1018        }
1019
1020        if (list_empty(devices)) {
1021                int srcu_idx;
1022                struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
1023
1024                /* inherit live table's type */
1025                if (live_table)
1026                        t->type = live_table->type;
1027                dm_put_live_table(t->md, srcu_idx);
1028                return 0;
1029        }
1030
1031        tgt = dm_table_get_immutable_target(t);
1032        if (!tgt) {
1033                DMERR("table load rejected: immutable target is required");
1034                return -EINVAL;
1035        } else if (tgt->max_io_len) {
1036                DMERR("table load rejected: immutable target that splits IO is not supported");
1037                return -EINVAL;
1038        }
1039
1040        /* Non-request-stackable devices can't be used for request-based dm */
1041        if (!tgt->type->iterate_devices ||
1042            !tgt->type->iterate_devices(tgt, device_is_rq_based, &v)) {
1043                DMERR("table load rejected: including non-request-stackable devices");
1044                return -EINVAL;
1045        }
1046        if (v.sq_count > 0) {
1047                DMERR("table load rejected: not all devices are blk-mq request-stackable");
1048                return -EINVAL;
1049        }
1050
1051        return 0;
1052}
1053
1054enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1055{
1056        return t->type;
1057}
1058
1059struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1060{
1061        return t->immutable_target_type;
1062}
1063
1064struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1065{
1066        /* Immutable target is implicitly a singleton */
1067        if (t->num_targets > 1 ||
1068            !dm_target_is_immutable(t->targets[0].type))
1069                return NULL;
1070
1071        return t->targets;
1072}
1073
1074struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1075{
1076        struct dm_target *ti;
1077        unsigned i;
1078
1079        for (i = 0; i < dm_table_get_num_targets(t); i++) {
1080                ti = dm_table_get_target(t, i);
1081                if (dm_target_is_wildcard(ti->type))
1082                        return ti;
1083        }
1084
1085        return NULL;
1086}
1087
1088bool dm_table_bio_based(struct dm_table *t)
1089{
1090        return __table_type_bio_based(dm_table_get_type(t));
1091}
1092
1093bool dm_table_request_based(struct dm_table *t)
1094{
1095        return __table_type_request_based(dm_table_get_type(t));
1096}
1097
1098static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1099{
1100        enum dm_queue_mode type = dm_table_get_type(t);
1101        unsigned per_io_data_size = 0;
1102        unsigned min_pool_size = 0;
1103        struct dm_target *ti;
1104        unsigned i;
1105
1106        if (unlikely(type == DM_TYPE_NONE)) {
1107                DMWARN("no table type is set, can't allocate mempools");
1108                return -EINVAL;
1109        }
1110
1111        if (__table_type_bio_based(type))
1112                for (i = 0; i < t->num_targets; i++) {
1113                        ti = t->targets + i;
1114                        per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1115                        min_pool_size = max(min_pool_size, ti->num_flush_bios);
1116                }
1117
1118        t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1119                                           per_io_data_size, min_pool_size);
1120        if (!t->mempools)
1121                return -ENOMEM;
1122
1123        return 0;
1124}
1125
1126void dm_table_free_md_mempools(struct dm_table *t)
1127{
1128        dm_free_md_mempools(t->mempools);
1129        t->mempools = NULL;
1130}
1131
1132struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1133{
1134        return t->mempools;
1135}
1136
1137static int setup_indexes(struct dm_table *t)
1138{
1139        int i;
1140        unsigned int total = 0;
1141        sector_t *indexes;
1142
1143        /* allocate the space for *all* the indexes */
1144        for (i = t->depth - 2; i >= 0; i--) {
1145                t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1146                total += t->counts[i];
1147        }
1148
1149        indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1150        if (!indexes)
1151                return -ENOMEM;
1152
1153        /* set up internal nodes, bottom-up */
1154        for (i = t->depth - 2; i >= 0; i--) {
1155                t->index[i] = indexes;
1156                indexes += (KEYS_PER_NODE * t->counts[i]);
1157                setup_btree_index(i, t);
1158        }
1159
1160        return 0;
1161}
1162
1163/*
1164 * Builds the btree to index the map.
1165 */
1166static int dm_table_build_index(struct dm_table *t)
1167{
1168        int r = 0;
1169        unsigned int leaf_nodes;
1170
1171        /* how many indexes will the btree have ? */
1172        leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1173        t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1174
1175        /* leaf layer has already been set up */
1176        t->counts[t->depth - 1] = leaf_nodes;
1177        t->index[t->depth - 1] = t->highs;
1178
1179        if (t->depth >= 2)
1180                r = setup_indexes(t);
1181
1182        return r;
1183}
1184
1185static bool integrity_profile_exists(struct gendisk *disk)
1186{
1187        return !!blk_get_integrity(disk);
1188}
1189
1190/*
1191 * Get a disk whose integrity profile reflects the table's profile.
1192 * Returns NULL if integrity support was inconsistent or unavailable.
1193 */
1194static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1195{
1196        struct list_head *devices = dm_table_get_devices(t);
1197        struct dm_dev_internal *dd = NULL;
1198        struct gendisk *prev_disk = NULL, *template_disk = NULL;
1199        unsigned i;
1200
1201        for (i = 0; i < dm_table_get_num_targets(t); i++) {
1202                struct dm_target *ti = dm_table_get_target(t, i);
1203                if (!dm_target_passes_integrity(ti->type))
1204                        goto no_integrity;
1205        }
1206
1207        list_for_each_entry(dd, devices, list) {
1208                template_disk = dd->dm_dev->bdev->bd_disk;
1209                if (!integrity_profile_exists(template_disk))
1210                        goto no_integrity;
1211                else if (prev_disk &&
1212                         blk_integrity_compare(prev_disk, template_disk) < 0)
1213                        goto no_integrity;
1214                prev_disk = template_disk;
1215        }
1216
1217        return template_disk;
1218
1219no_integrity:
1220        if (prev_disk)
1221                DMWARN("%s: integrity not set: %s and %s profile mismatch",
1222                       dm_device_name(t->md),
1223                       prev_disk->disk_name,
1224                       template_disk->disk_name);
1225        return NULL;
1226}
1227
1228/*
1229 * Register the mapped device for blk_integrity support if the
1230 * underlying devices have an integrity profile.  But all devices may
1231 * not have matching profiles (checking all devices isn't reliable
1232 * during table load because this table may use other DM device(s) which
1233 * must be resumed before they will have an initialized integity
1234 * profile).  Consequently, stacked DM devices force a 2 stage integrity
1235 * profile validation: First pass during table load, final pass during
1236 * resume.
1237 */
1238static int dm_table_register_integrity(struct dm_table *t)
1239{
1240        struct mapped_device *md = t->md;
1241        struct gendisk *template_disk = NULL;
1242
1243        /* If target handles integrity itself do not register it here. */
1244        if (t->integrity_added)
1245                return 0;
1246
1247        template_disk = dm_table_get_integrity_disk(t);
1248        if (!template_disk)
1249                return 0;
1250
1251        if (!integrity_profile_exists(dm_disk(md))) {
1252                t->integrity_supported = true;
1253                /*
1254                 * Register integrity profile during table load; we can do
1255                 * this because the final profile must match during resume.
1256                 */
1257                blk_integrity_register(dm_disk(md),
1258                                       blk_get_integrity(template_disk));
1259                return 0;
1260        }
1261
1262        /*
1263         * If DM device already has an initialized integrity
1264         * profile the new profile should not conflict.
1265         */
1266        if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1267                DMWARN("%s: conflict with existing integrity profile: "
1268                       "%s profile mismatch",
1269                       dm_device_name(t->md),
1270                       template_disk->disk_name);
1271                return 1;
1272        }
1273
1274        /* Preserve existing integrity profile */
1275        t->integrity_supported = true;
1276        return 0;
1277}
1278
1279/*
1280 * Prepares the table for use by building the indices,
1281 * setting the type, and allocating mempools.
1282 */
1283int dm_table_complete(struct dm_table *t)
1284{
1285        int r;
1286
1287        r = dm_table_determine_type(t);
1288        if (r) {
1289                DMERR("unable to determine table type");
1290                return r;
1291        }
1292
1293        r = dm_table_build_index(t);
1294        if (r) {
1295                DMERR("unable to build btrees");
1296                return r;
1297        }
1298
1299        r = dm_table_register_integrity(t);
1300        if (r) {
1301                DMERR("could not register integrity profile.");
1302                return r;
1303        }
1304
1305        r = dm_table_alloc_md_mempools(t, t->md);
1306        if (r)
1307                DMERR("unable to allocate mempools");
1308
1309        return r;
1310}
1311
1312static DEFINE_MUTEX(_event_lock);
1313void dm_table_event_callback(struct dm_table *t,
1314                             void (*fn)(void *), void *context)
1315{
1316        mutex_lock(&_event_lock);
1317        t->event_fn = fn;
1318        t->event_context = context;
1319        mutex_unlock(&_event_lock);
1320}
1321
1322void dm_table_event(struct dm_table *t)
1323{
1324        /*
1325         * You can no longer call dm_table_event() from interrupt
1326         * context, use a bottom half instead.
1327         */
1328        BUG_ON(in_interrupt());
1329
1330        mutex_lock(&_event_lock);
1331        if (t->event_fn)
1332                t->event_fn(t->event_context);
1333        mutex_unlock(&_event_lock);
1334}
1335EXPORT_SYMBOL(dm_table_event);
1336
1337sector_t dm_table_get_size(struct dm_table *t)
1338{
1339        return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1340}
1341EXPORT_SYMBOL(dm_table_get_size);
1342
1343struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1344{
1345        if (index >= t->num_targets)
1346                return NULL;
1347
1348        return t->targets + index;
1349}
1350
1351/*
1352 * Search the btree for the correct target.
1353 *
1354 * Caller should check returned pointer with dm_target_is_valid()
1355 * to trap I/O beyond end of device.
1356 */
1357struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1358{
1359        unsigned int l, n = 0, k = 0;
1360        sector_t *node;
1361
1362        for (l = 0; l < t->depth; l++) {
1363                n = get_child(n, k);
1364                node = get_node(t, l, n);
1365
1366                for (k = 0; k < KEYS_PER_NODE; k++)
1367                        if (node[k] >= sector)
1368                                break;
1369        }
1370
1371        return &t->targets[(KEYS_PER_NODE * n) + k];
1372}
1373
1374static int count_device(struct dm_target *ti, struct dm_dev *dev,
1375                        sector_t start, sector_t len, void *data)
1376{
1377        unsigned *num_devices = data;
1378
1379        (*num_devices)++;
1380
1381        return 0;
1382}
1383
1384/*
1385 * Check whether a table has no data devices attached using each
1386 * target's iterate_devices method.
1387 * Returns false if the result is unknown because a target doesn't
1388 * support iterate_devices.
1389 */
1390bool dm_table_has_no_data_devices(struct dm_table *table)
1391{
1392        struct dm_target *ti;
1393        unsigned i, num_devices;
1394
1395        for (i = 0; i < dm_table_get_num_targets(table); i++) {
1396                ti = dm_table_get_target(table, i);
1397
1398                if (!ti->type->iterate_devices)
1399                        return false;
1400
1401                num_devices = 0;
1402                ti->type->iterate_devices(ti, count_device, &num_devices);
1403                if (num_devices)
1404                        return false;
1405        }
1406
1407        return true;
1408}
1409
1410static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1411                                 sector_t start, sector_t len, void *data)
1412{
1413        struct request_queue *q = bdev_get_queue(dev->bdev);
1414        enum blk_zoned_model *zoned_model = data;
1415
1416        return q && blk_queue_zoned_model(q) == *zoned_model;
1417}
1418
1419static bool dm_table_supports_zoned_model(struct dm_table *t,
1420                                          enum blk_zoned_model zoned_model)
1421{
1422        struct dm_target *ti;
1423        unsigned i;
1424
1425        for (i = 0; i < dm_table_get_num_targets(t); i++) {
1426                ti = dm_table_get_target(t, i);
1427
1428                if (zoned_model == BLK_ZONED_HM &&
1429                    !dm_target_supports_zoned_hm(ti->type))
1430                        return false;
1431
1432                if (!ti->type->iterate_devices ||
1433                    !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1434                        return false;
1435        }
1436
1437        return true;
1438}
1439
1440static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1441                                       sector_t start, sector_t len, void *data)
1442{
1443        struct request_queue *q = bdev_get_queue(dev->bdev);
1444        unsigned int *zone_sectors = data;
1445
1446        return q && blk_queue_zone_sectors(q) == *zone_sectors;
1447}
1448
1449static bool dm_table_matches_zone_sectors(struct dm_table *t,
1450                                          unsigned int zone_sectors)
1451{
1452        struct dm_target *ti;
1453        unsigned i;
1454
1455        for (i = 0; i < dm_table_get_num_targets(t); i++) {
1456                ti = dm_table_get_target(t, i);
1457
1458                if (!ti->type->iterate_devices ||
1459                    !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1460                        return false;
1461        }
1462
1463        return true;
1464}
1465
1466static int validate_hardware_zoned_model(struct dm_table *table,
1467                                         enum blk_zoned_model zoned_model,
1468                                         unsigned int zone_sectors)
1469{
1470        if (zoned_model == BLK_ZONED_NONE)
1471                return 0;
1472
1473        if (!dm_table_supports_zoned_model(table, zoned_model)) {
1474                DMERR("%s: zoned model is not consistent across all devices",
1475                      dm_device_name(table->md));
1476                return -EINVAL;
1477        }
1478
1479        /* Check zone size validity and compatibility */
1480        if (!zone_sectors || !is_power_of_2(zone_sectors))
1481                return -EINVAL;
1482
1483        if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1484                DMERR("%s: zone sectors is not consistent across all devices",
1485                      dm_device_name(table->md));
1486                return -EINVAL;
1487        }
1488
1489        return 0;
1490}
1491
1492/*
1493 * Establish the new table's queue_limits and validate them.
1494 */
1495int dm_calculate_queue_limits(struct dm_table *table,
1496                              struct queue_limits *limits)
1497{
1498        struct dm_target *ti;
1499        struct queue_limits ti_limits;
1500        unsigned i;
1501        enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1502        unsigned int zone_sectors = 0;
1503
1504        blk_set_stacking_limits(limits);
1505
1506        for (i = 0; i < dm_table_get_num_targets(table); i++) {
1507                blk_set_stacking_limits(&ti_limits);
1508
1509                ti = dm_table_get_target(table, i);
1510
1511                if (!ti->type->iterate_devices)
1512                        goto combine_limits;
1513
1514                /*
1515                 * Combine queue limits of all the devices this target uses.
1516                 */
1517                ti->type->iterate_devices(ti, dm_set_device_limits,
1518                                          &ti_limits);
1519
1520                if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1521                        /*
1522                         * After stacking all limits, validate all devices
1523                         * in table support this zoned model and zone sectors.
1524                         */
1525                        zoned_model = ti_limits.zoned;
1526                        zone_sectors = ti_limits.chunk_sectors;
1527                }
1528
1529                /* Set I/O hints portion of queue limits */
1530                if (ti->type->io_hints)
1531                        ti->type->io_hints(ti, &ti_limits);
1532
1533                /*
1534                 * Check each device area is consistent with the target's
1535                 * overall queue limits.
1536                 */
1537                if (ti->type->iterate_devices(ti, device_area_is_invalid,
1538                                              &ti_limits))
1539                        return -EINVAL;
1540
1541combine_limits:
1542                /*
1543                 * Merge this target's queue limits into the overall limits
1544                 * for the table.
1545                 */
1546                if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1547                        DMWARN("%s: adding target device "
1548                               "(start sect %llu len %llu) "
1549                               "caused an alignment inconsistency",
1550                               dm_device_name(table->md),
1551                               (unsigned long long) ti->begin,
1552                               (unsigned long long) ti->len);
1553
1554                /*
1555                 * FIXME: this should likely be moved to blk_stack_limits(), would
1556                 * also eliminate limits->zoned stacking hack in dm_set_device_limits()
1557                 */
1558                if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1559                        /*
1560                         * By default, the stacked limits zoned model is set to
1561                         * BLK_ZONED_NONE in blk_set_stacking_limits(). Update
1562                         * this model using the first target model reported
1563                         * that is not BLK_ZONED_NONE. This will be either the
1564                         * first target device zoned model or the model reported
1565                         * by the target .io_hints.
1566                         */
1567                        limits->zoned = ti_limits.zoned;
1568                }
1569        }
1570
1571        /*
1572         * Verify that the zoned model and zone sectors, as determined before
1573         * any .io_hints override, are the same across all devices in the table.
1574         * - this is especially relevant if .io_hints is emulating a disk-managed
1575         *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1576         * BUT...
1577         */
1578        if (limits->zoned != BLK_ZONED_NONE) {
1579                /*
1580                 * ...IF the above limits stacking determined a zoned model
1581                 * validate that all of the table's devices conform to it.
1582                 */
1583                zoned_model = limits->zoned;
1584                zone_sectors = limits->chunk_sectors;
1585        }
1586        if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1587                return -EINVAL;
1588
1589        return validate_hardware_logical_block_alignment(table, limits);
1590}
1591
1592/*
1593 * Verify that all devices have an integrity profile that matches the
1594 * DM device's registered integrity profile.  If the profiles don't
1595 * match then unregister the DM device's integrity profile.
1596 */
1597static void dm_table_verify_integrity(struct dm_table *t)
1598{
1599        struct gendisk *template_disk = NULL;
1600
1601        if (t->integrity_added)
1602                return;
1603
1604        if (t->integrity_supported) {
1605                /*
1606                 * Verify that the original integrity profile
1607                 * matches all the devices in this table.
1608                 */
1609                template_disk = dm_table_get_integrity_disk(t);
1610                if (template_disk &&
1611                    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1612                        return;
1613        }
1614
1615        if (integrity_profile_exists(dm_disk(t->md))) {
1616                DMWARN("%s: unable to establish an integrity profile",
1617                       dm_device_name(t->md));
1618                blk_integrity_unregister(dm_disk(t->md));
1619        }
1620}
1621
1622static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1623                                sector_t start, sector_t len, void *data)
1624{
1625        unsigned long flush = (unsigned long) data;
1626        struct request_queue *q = bdev_get_queue(dev->bdev);
1627
1628        return q && (q->queue_flags & flush);
1629}
1630
1631static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1632{
1633        struct dm_target *ti;
1634        unsigned i;
1635
1636        /*
1637         * Require at least one underlying device to support flushes.
1638         * t->devices includes internal dm devices such as mirror logs
1639         * so we need to use iterate_devices here, which targets
1640         * supporting flushes must provide.
1641         */
1642        for (i = 0; i < dm_table_get_num_targets(t); i++) {
1643                ti = dm_table_get_target(t, i);
1644
1645                if (!ti->num_flush_bios)
1646                        continue;
1647
1648                if (ti->flush_supported)
1649                        return true;
1650
1651                if (ti->type->iterate_devices &&
1652                    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1653                        return true;
1654        }
1655
1656        return false;
1657}
1658
1659static int device_dax_write_cache_enabled(struct dm_target *ti,
1660                                          struct dm_dev *dev, sector_t start,
1661                                          sector_t len, void *data)
1662{
1663        struct dax_device *dax_dev = dev->dax_dev;
1664
1665        if (!dax_dev)
1666                return false;
1667
1668        if (dax_write_cache_enabled(dax_dev))
1669                return true;
1670        return false;
1671}
1672
1673static int dm_table_supports_dax_write_cache(struct dm_table *t)
1674{
1675        struct dm_target *ti;
1676        unsigned i;
1677
1678        for (i = 0; i < dm_table_get_num_targets(t); i++) {
1679                ti = dm_table_get_target(t, i);
1680
1681                if (ti->type->iterate_devices &&
1682                    ti->type->iterate_devices(ti,
1683                                device_dax_write_cache_enabled, NULL))
1684                        return true;
1685        }
1686
1687        return false;
1688}
1689
1690static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1691                            sector_t start, sector_t len, void *data)
1692{
1693        struct request_queue *q = bdev_get_queue(dev->bdev);
1694
1695        return q && blk_queue_nonrot(q);
1696}
1697
1698static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1699                             sector_t start, sector_t len, void *data)
1700{
1701        struct request_queue *q = bdev_get_queue(dev->bdev);
1702
1703        return q && !blk_queue_add_random(q);
1704}
1705
1706static bool dm_table_all_devices_attribute(struct dm_table *t,
1707                                           iterate_devices_callout_fn func)
1708{
1709        struct dm_target *ti;
1710        unsigned i;
1711
1712        for (i = 0; i < dm_table_get_num_targets(t); i++) {
1713                ti = dm_table_get_target(t, i);
1714
1715                if (!ti->type->iterate_devices ||
1716                    !ti->type->iterate_devices(ti, func, NULL))
1717                        return false;
1718        }
1719
1720        return true;
1721}
1722
1723static int device_no_partial_completion(struct dm_target *ti, struct dm_dev *dev,
1724                                        sector_t start, sector_t len, void *data)
1725{
1726        char b[BDEVNAME_SIZE];
1727
1728        /* For now, NVMe devices are the only devices of this class */
1729        return (strncmp(bdevname(dev->bdev, b), "nvme", 4) == 0);
1730}
1731
1732static bool dm_table_does_not_support_partial_completion(struct dm_table *t)
1733{
1734        return dm_table_all_devices_attribute(t, device_no_partial_completion);
1735}
1736
1737static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1738                                         sector_t start, sector_t len, void *data)
1739{
1740        struct request_queue *q = bdev_get_queue(dev->bdev);
1741
1742        return q && !q->limits.max_write_same_sectors;
1743}
1744
1745static bool dm_table_supports_write_same(struct dm_table *t)
1746{
1747        struct dm_target *ti;
1748        unsigned i;
1749
1750        for (i = 0; i < dm_table_get_num_targets(t); i++) {
1751                ti = dm_table_get_target(t, i);
1752
1753                if (!ti->num_write_same_bios)
1754                        return false;
1755
1756                if (!ti->type->iterate_devices ||
1757                    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1758                        return false;
1759        }
1760
1761        return true;
1762}
1763
1764static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1765                                           sector_t start, sector_t len, void *data)
1766{
1767        struct request_queue *q = bdev_get_queue(dev->bdev);
1768
1769        return q && !q->limits.max_write_zeroes_sectors;
1770}
1771
1772static bool dm_table_supports_write_zeroes(struct dm_table *t)
1773{
1774        struct dm_target *ti;
1775        unsigned i = 0;
1776
1777        while (i < dm_table_get_num_targets(t)) {
1778                ti = dm_table_get_target(t, i++);
1779
1780                if (!ti->num_write_zeroes_bios)
1781                        return false;
1782
1783                if (!ti->type->iterate_devices ||
1784                    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1785                        return false;
1786        }
1787
1788        return true;
1789}
1790
1791static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1792                                      sector_t start, sector_t len, void *data)
1793{
1794        struct request_queue *q = bdev_get_queue(dev->bdev);
1795
1796        return q && !blk_queue_discard(q);
1797}
1798
1799static bool dm_table_supports_discards(struct dm_table *t)
1800{
1801        struct dm_target *ti;
1802        unsigned i;
1803
1804        for (i = 0; i < dm_table_get_num_targets(t); i++) {
1805                ti = dm_table_get_target(t, i);
1806
1807                if (!ti->num_discard_bios)
1808                        return false;
1809
1810                /*
1811                 * Either the target provides discard support (as implied by setting
1812                 * 'discards_supported') or it relies on _all_ data devices having
1813                 * discard support.
1814                 */
1815                if (!ti->discards_supported &&
1816                    (!ti->type->iterate_devices ||
1817                     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1818                        return false;
1819        }
1820
1821        return true;
1822}
1823
1824static int device_not_secure_erase_capable(struct dm_target *ti,
1825                                           struct dm_dev *dev, sector_t start,
1826                                           sector_t len, void *data)
1827{
1828        struct request_queue *q = bdev_get_queue(dev->bdev);
1829
1830        return q && !blk_queue_secure_erase(q);
1831}
1832
1833static bool dm_table_supports_secure_erase(struct dm_table *t)
1834{
1835        struct dm_target *ti;
1836        unsigned int i;
1837
1838        for (i = 0; i < dm_table_get_num_targets(t); i++) {
1839                ti = dm_table_get_target(t, i);
1840
1841                if (!ti->num_secure_erase_bios)
1842                        return false;
1843
1844                if (!ti->type->iterate_devices ||
1845                    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1846                        return false;
1847        }
1848
1849        return true;
1850}
1851
1852void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1853                               struct queue_limits *limits)
1854{
1855        bool wc = false, fua = false;
1856
1857        /*
1858         * Copy table's limits to the DM device's request_queue
1859         */
1860        q->limits = *limits;
1861
1862        if (!dm_table_supports_discards(t)) {
1863                blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1864                /* Must also clear discard limits... */
1865                q->limits.max_discard_sectors = 0;
1866                q->limits.max_hw_discard_sectors = 0;
1867                q->limits.discard_granularity = 0;
1868                q->limits.discard_alignment = 0;
1869                q->limits.discard_misaligned = 0;
1870        } else
1871                blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
1872
1873        if (dm_table_supports_secure_erase(t))
1874                blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
1875
1876        if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1877                wc = true;
1878                if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1879                        fua = true;
1880        }
1881        blk_queue_write_cache(q, wc, fua);
1882
1883        if (dm_table_supports_dax(t, PAGE_SIZE))
1884                blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1885        else
1886                blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1887
1888        if (dm_table_supports_dax_write_cache(t))
1889                dax_write_cache(t->md->dax_dev, true);
1890
1891        /* Ensure that all underlying devices are non-rotational. */
1892        if (dm_table_all_devices_attribute(t, device_is_nonrot))
1893                blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1894        else
1895                blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1896
1897        if (!dm_table_supports_write_same(t))
1898                q->limits.max_write_same_sectors = 0;
1899        if (!dm_table_supports_write_zeroes(t))
1900                q->limits.max_write_zeroes_sectors = 0;
1901
1902        dm_table_verify_integrity(t);
1903
1904        /*
1905         * Determine whether or not this queue's I/O timings contribute
1906         * to the entropy pool, Only request-based targets use this.
1907         * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1908         * have it set.
1909         */
1910        if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1911                blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
1912
1913        /*
1914         * For a zoned target, the number of zones should be updated for the
1915         * correct value to be exposed in sysfs queue/nr_zones. For a BIO based
1916         * target, this is all that is needed. For a request based target, the
1917         * queue zone bitmaps must also be updated.
1918         * Use blk_revalidate_disk_zones() to handle this.
1919         */
1920        if (blk_queue_is_zoned(q))
1921                blk_revalidate_disk_zones(t->md->disk);
1922
1923        /* Allow reads to exceed readahead limits */
1924        q->backing_dev_info->io_pages = limits->max_sectors >> (PAGE_SHIFT - 9);
1925}
1926
1927unsigned int dm_table_get_num_targets(struct dm_table *t)
1928{
1929        return t->num_targets;
1930}
1931
1932struct list_head *dm_table_get_devices(struct dm_table *t)
1933{
1934        return &t->devices;
1935}
1936
1937fmode_t dm_table_get_mode(struct dm_table *t)
1938{
1939        return t->mode;
1940}
1941EXPORT_SYMBOL(dm_table_get_mode);
1942
1943enum suspend_mode {
1944        PRESUSPEND,
1945        PRESUSPEND_UNDO,
1946        POSTSUSPEND,
1947};
1948
1949static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1950{
1951        int i = t->num_targets;
1952        struct dm_target *ti = t->targets;
1953
1954        lockdep_assert_held(&t->md->suspend_lock);
1955
1956        while (i--) {
1957                switch (mode) {
1958                case PRESUSPEND:
1959                        if (ti->type->presuspend)
1960                                ti->type->presuspend(ti);
1961                        break;
1962                case PRESUSPEND_UNDO:
1963                        if (ti->type->presuspend_undo)
1964                                ti->type->presuspend_undo(ti);
1965                        break;
1966                case POSTSUSPEND:
1967                        if (ti->type->postsuspend)
1968                                ti->type->postsuspend(ti);
1969                        break;
1970                }
1971                ti++;
1972        }
1973}
1974
1975void dm_table_presuspend_targets(struct dm_table *t)
1976{
1977        if (!t)
1978                return;
1979
1980        suspend_targets(t, PRESUSPEND);
1981}
1982
1983void dm_table_presuspend_undo_targets(struct dm_table *t)
1984{
1985        if (!t)
1986                return;
1987
1988        suspend_targets(t, PRESUSPEND_UNDO);
1989}
1990
1991void dm_table_postsuspend_targets(struct dm_table *t)
1992{
1993        if (!t)
1994                return;
1995
1996        suspend_targets(t, POSTSUSPEND);
1997}
1998
1999int dm_table_resume_targets(struct dm_table *t)
2000{
2001        int i, r = 0;
2002
2003        lockdep_assert_held(&t->md->suspend_lock);
2004
2005        for (i = 0; i < t->num_targets; i++) {
2006                struct dm_target *ti = t->targets + i;
2007
2008                if (!ti->type->preresume)
2009                        continue;
2010
2011                r = ti->type->preresume(ti);
2012                if (r) {
2013                        DMERR("%s: %s: preresume failed, error = %d",
2014                              dm_device_name(t->md), ti->type->name, r);
2015                        return r;
2016                }
2017        }
2018
2019        for (i = 0; i < t->num_targets; i++) {
2020                struct dm_target *ti = t->targets + i;
2021
2022                if (ti->type->resume)
2023                        ti->type->resume(ti);
2024        }
2025
2026        return 0;
2027}
2028
2029void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
2030{
2031        list_add(&cb->list, &t->target_callbacks);
2032}
2033EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
2034
2035int dm_table_any_congested(struct dm_table *t, int bdi_bits)
2036{
2037        struct dm_dev_internal *dd;
2038        struct list_head *devices = dm_table_get_devices(t);
2039        struct dm_target_callbacks *cb;
2040        int r = 0;
2041
2042        list_for_each_entry(dd, devices, list) {
2043                struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
2044                char b[BDEVNAME_SIZE];
2045
2046                if (likely(q))
2047                        r |= bdi_congested(q->backing_dev_info, bdi_bits);
2048                else
2049                        DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
2050                                     dm_device_name(t->md),
2051                                     bdevname(dd->dm_dev->bdev, b));
2052        }
2053
2054        list_for_each_entry(cb, &t->target_callbacks, list)
2055                if (cb->congested_fn)
2056                        r |= cb->congested_fn(cb, bdi_bits);
2057
2058        return r;
2059}
2060
2061struct mapped_device *dm_table_get_md(struct dm_table *t)
2062{
2063        return t->md;
2064}
2065EXPORT_SYMBOL(dm_table_get_md);
2066
2067const char *dm_table_device_name(struct dm_table *t)
2068{
2069        return dm_device_name(t->md);
2070}
2071EXPORT_SYMBOL_GPL(dm_table_device_name);
2072
2073void dm_table_run_md_queue_async(struct dm_table *t)
2074{
2075        struct mapped_device *md;
2076        struct request_queue *queue;
2077
2078        if (!dm_table_request_based(t))
2079                return;
2080
2081        md = dm_table_get_md(t);
2082        queue = dm_get_md_queue(md);
2083        if (queue)
2084                blk_mq_run_hw_queues(queue, true);
2085}
2086EXPORT_SYMBOL(dm_table_run_md_queue_async);
2087
2088