1
2
3
4
5
6
7
8
9
10
11
12
13#include <linux/err.h>
14#include <linux/kernel.h>
15#include <linux/reboot.h>
16#include <linux/platform_data/emif_plat.h>
17#include <linux/io.h>
18#include <linux/device.h>
19#include <linux/platform_device.h>
20#include <linux/interrupt.h>
21#include <linux/slab.h>
22#include <linux/of.h>
23#include <linux/debugfs.h>
24#include <linux/seq_file.h>
25#include <linux/module.h>
26#include <linux/list.h>
27#include <linux/spinlock.h>
28#include <linux/pm.h>
29#include <memory/jedec_ddr.h>
30#include "emif.h"
31#include "of_memory.h"
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58struct emif_data {
59 u8 duplicate;
60 u8 temperature_level;
61 u8 lpmode;
62 struct list_head node;
63 unsigned long irq_state;
64 void __iomem *base;
65 struct device *dev;
66 const struct lpddr2_addressing *addressing;
67 struct emif_regs *regs_cache[EMIF_MAX_NUM_FREQUENCIES];
68 struct emif_regs *curr_regs;
69 struct emif_platform_data *plat_data;
70 struct dentry *debugfs_root;
71 struct device_node *np_ddr;
72};
73
74static struct emif_data *emif1;
75static spinlock_t emif_lock;
76static unsigned long irq_state;
77static u32 t_ck;
78static LIST_HEAD(device_list);
79
80#ifdef CONFIG_DEBUG_FS
81static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
82 struct emif_regs *regs)
83{
84 u32 type = emif->plat_data->device_info->type;
85 u32 ip_rev = emif->plat_data->ip_rev;
86
87 seq_printf(s, "EMIF register cache dump for %dMHz\n",
88 regs->freq/1000000);
89
90 seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
91 seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
92 seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
93 seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
94
95 if (ip_rev == EMIF_4D) {
96 seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
97 regs->read_idle_ctrl_shdw_normal);
98 seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
99 regs->read_idle_ctrl_shdw_volt_ramp);
100 } else if (ip_rev == EMIF_4D5) {
101 seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
102 regs->dll_calib_ctrl_shdw_normal);
103 seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
104 regs->dll_calib_ctrl_shdw_volt_ramp);
105 }
106
107 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
108 seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
109 regs->ref_ctrl_shdw_derated);
110 seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
111 regs->sdram_tim1_shdw_derated);
112 seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
113 regs->sdram_tim3_shdw_derated);
114 }
115}
116
117static int emif_regdump_show(struct seq_file *s, void *unused)
118{
119 struct emif_data *emif = s->private;
120 struct emif_regs **regs_cache;
121 int i;
122
123 if (emif->duplicate)
124 regs_cache = emif1->regs_cache;
125 else
126 regs_cache = emif->regs_cache;
127
128 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
129 do_emif_regdump_show(s, emif, regs_cache[i]);
130 seq_putc(s, '\n');
131 }
132
133 return 0;
134}
135
136static int emif_regdump_open(struct inode *inode, struct file *file)
137{
138 return single_open(file, emif_regdump_show, inode->i_private);
139}
140
141static const struct file_operations emif_regdump_fops = {
142 .open = emif_regdump_open,
143 .read = seq_read,
144 .release = single_release,
145};
146
147static int emif_mr4_show(struct seq_file *s, void *unused)
148{
149 struct emif_data *emif = s->private;
150
151 seq_printf(s, "MR4=%d\n", emif->temperature_level);
152 return 0;
153}
154
155static int emif_mr4_open(struct inode *inode, struct file *file)
156{
157 return single_open(file, emif_mr4_show, inode->i_private);
158}
159
160static const struct file_operations emif_mr4_fops = {
161 .open = emif_mr4_open,
162 .read = seq_read,
163 .release = single_release,
164};
165
166static int __init_or_module emif_debugfs_init(struct emif_data *emif)
167{
168 struct dentry *dentry;
169 int ret;
170
171 dentry = debugfs_create_dir(dev_name(emif->dev), NULL);
172 if (!dentry) {
173 ret = -ENOMEM;
174 goto err0;
175 }
176 emif->debugfs_root = dentry;
177
178 dentry = debugfs_create_file("regcache_dump", S_IRUGO,
179 emif->debugfs_root, emif, &emif_regdump_fops);
180 if (!dentry) {
181 ret = -ENOMEM;
182 goto err1;
183 }
184
185 dentry = debugfs_create_file("mr4", S_IRUGO,
186 emif->debugfs_root, emif, &emif_mr4_fops);
187 if (!dentry) {
188 ret = -ENOMEM;
189 goto err1;
190 }
191
192 return 0;
193err1:
194 debugfs_remove_recursive(emif->debugfs_root);
195err0:
196 return ret;
197}
198
199static void __exit emif_debugfs_exit(struct emif_data *emif)
200{
201 debugfs_remove_recursive(emif->debugfs_root);
202 emif->debugfs_root = NULL;
203}
204#else
205static inline int __init_or_module emif_debugfs_init(struct emif_data *emif)
206{
207 return 0;
208}
209
210static inline void __exit emif_debugfs_exit(struct emif_data *emif)
211{
212}
213#endif
214
215
216
217
218static void set_ddr_clk_period(u32 freq)
219{
220
221 t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq);
222}
223
224
225
226
227
228
229
230static u32 get_emif_bus_width(struct emif_data *emif)
231{
232 u32 width;
233 void __iomem *base = emif->base;
234
235 width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
236 >> NARROW_MODE_SHIFT;
237 width = width == 0 ? 32 : 16;
238
239 return width;
240}
241
242
243
244
245static u32 get_cl(struct emif_data *emif)
246{
247 u32 cl;
248 void __iomem *base = emif->base;
249
250 cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT;
251
252 return cl;
253}
254
255static void set_lpmode(struct emif_data *emif, u8 lpmode)
256{
257 u32 temp;
258 void __iomem *base = emif->base;
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286 if ((emif->plat_data->ip_rev == EMIF_4D) &&
287 (EMIF_LP_MODE_PWR_DN == lpmode)) {
288 WARN_ONCE(1,
289 "REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by"
290 "erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n");
291
292 lpmode = EMIF_LP_MODE_SELF_REFRESH;
293 }
294
295 temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
296 temp &= ~LP_MODE_MASK;
297 temp |= (lpmode << LP_MODE_SHIFT);
298 writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
299}
300
301static void do_freq_update(void)
302{
303 struct emif_data *emif;
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328 list_for_each_entry(emif, &device_list, node) {
329 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
330 set_lpmode(emif, EMIF_LP_MODE_DISABLE);
331 }
332
333
334
335
336
337
338
339 list_for_each_entry(emif, &device_list, node) {
340 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
341 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
342 }
343}
344
345
346static const struct lpddr2_addressing *get_addressing_table(
347 const struct ddr_device_info *device_info)
348{
349 u32 index, type, density;
350
351 type = device_info->type;
352 density = device_info->density;
353
354 switch (type) {
355 case DDR_TYPE_LPDDR2_S4:
356 index = density - 1;
357 break;
358 case DDR_TYPE_LPDDR2_S2:
359 switch (density) {
360 case DDR_DENSITY_1Gb:
361 case DDR_DENSITY_2Gb:
362 index = density + 3;
363 break;
364 default:
365 index = density - 1;
366 }
367 break;
368 default:
369 return NULL;
370 }
371
372 return &lpddr2_jedec_addressing_table[index];
373}
374
375
376
377
378
379static const struct lpddr2_timings *get_timings_table(struct emif_data *emif,
380 u32 freq)
381{
382 u32 i, min, max, freq_nearest;
383 const struct lpddr2_timings *timings = NULL;
384 const struct lpddr2_timings *timings_arr = emif->plat_data->timings;
385 struct device *dev = emif->dev;
386
387
388 freq_nearest = 1000000000;
389
390
391
392
393
394
395 for (i = 0; i < emif->plat_data->timings_arr_size; i++) {
396 max = timings_arr[i].max_freq;
397 min = timings_arr[i].min_freq;
398 if ((freq >= min) && (freq <= max) && (max < freq_nearest)) {
399 freq_nearest = max;
400 timings = &timings_arr[i];
401 }
402 }
403
404 if (!timings)
405 dev_err(dev, "%s: couldn't find timings for - %dHz\n",
406 __func__, freq);
407
408 dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n",
409 __func__, freq, freq_nearest);
410
411 return timings;
412}
413
414static u32 get_sdram_ref_ctrl_shdw(u32 freq,
415 const struct lpddr2_addressing *addressing)
416{
417 u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi;
418
419
420 freq_khz = freq / 1000;
421 t_refi = addressing->tREFI_ns / 100;
422
423
424
425
426
427 val = t_refi * freq_khz / 10000;
428 ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT;
429
430 return ref_ctrl_shdw;
431}
432
433static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings,
434 const struct lpddr2_min_tck *min_tck,
435 const struct lpddr2_addressing *addressing)
436{
437 u32 tim1 = 0, val = 0;
438
439 val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
440 tim1 |= val << T_WTR_SHIFT;
441
442 if (addressing->num_banks == B8)
443 val = DIV_ROUND_UP(timings->tFAW, t_ck*4);
444 else
445 val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck));
446 tim1 |= (val - 1) << T_RRD_SHIFT;
447
448 val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1;
449 tim1 |= val << T_RC_SHIFT;
450
451 val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck));
452 tim1 |= (val - 1) << T_RAS_SHIFT;
453
454 val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
455 tim1 |= val << T_WR_SHIFT;
456
457 val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1;
458 tim1 |= val << T_RCD_SHIFT;
459
460 val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1;
461 tim1 |= val << T_RP_SHIFT;
462
463 return tim1;
464}
465
466static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings,
467 const struct lpddr2_min_tck *min_tck,
468 const struct lpddr2_addressing *addressing)
469{
470 u32 tim1 = 0, val = 0;
471
472 val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
473 tim1 = val << T_WTR_SHIFT;
474
475
476
477
478
479 if (addressing->num_banks == B8) {
480 val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1;
481 } else {
482 val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck);
483 val = max(min_tck->tRRD, val) - 1;
484 }
485 tim1 |= val << T_RRD_SHIFT;
486
487 val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck);
488 tim1 |= (val - 1) << T_RC_SHIFT;
489
490 val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck);
491 val = max(min_tck->tRASmin, val) - 1;
492 tim1 |= val << T_RAS_SHIFT;
493
494 val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
495 tim1 |= val << T_WR_SHIFT;
496
497 val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck));
498 tim1 |= (val - 1) << T_RCD_SHIFT;
499
500 val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck));
501 tim1 |= (val - 1) << T_RP_SHIFT;
502
503 return tim1;
504}
505
506static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings,
507 const struct lpddr2_min_tck *min_tck,
508 const struct lpddr2_addressing *addressing,
509 u32 type)
510{
511 u32 tim2 = 0, val = 0;
512
513 val = min_tck->tCKE - 1;
514 tim2 |= val << T_CKE_SHIFT;
515
516 val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1;
517 tim2 |= val << T_RTP_SHIFT;
518
519
520 val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1;
521 tim2 |= val << T_XSNR_SHIFT;
522
523
524 tim2 |= val << T_XSRD_SHIFT;
525
526 val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1;
527 tim2 |= val << T_XP_SHIFT;
528
529 return tim2;
530}
531
532static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings,
533 const struct lpddr2_min_tck *min_tck,
534 const struct lpddr2_addressing *addressing,
535 u32 type, u32 ip_rev, u32 derated)
536{
537 u32 tim3 = 0, val = 0, t_dqsck;
538
539 val = timings->tRAS_max_ns / addressing->tREFI_ns - 1;
540 val = val > 0xF ? 0xF : val;
541 tim3 |= val << T_RAS_MAX_SHIFT;
542
543 val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1;
544 tim3 |= val << T_RFC_SHIFT;
545
546 t_dqsck = (derated == EMIF_DERATED_TIMINGS) ?
547 timings->tDQSCK_max_derated : timings->tDQSCK_max;
548 if (ip_rev == EMIF_4D5)
549 val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1;
550 else
551 val = DIV_ROUND_UP(t_dqsck, t_ck) - 1;
552
553 tim3 |= val << T_TDQSCKMAX_SHIFT;
554
555 val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1;
556 tim3 |= val << ZQ_ZQCS_SHIFT;
557
558 val = DIV_ROUND_UP(timings->tCKESR, t_ck);
559 val = max(min_tck->tCKESR, val) - 1;
560 tim3 |= val << T_CKESR_SHIFT;
561
562 if (ip_rev == EMIF_4D5) {
563 tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT;
564
565 val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1;
566 tim3 |= val << T_PDLL_UL_SHIFT;
567 }
568
569 return tim3;
570}
571
572static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
573 bool cs1_used, bool cal_resistors_per_cs)
574{
575 u32 zq = 0, val = 0;
576
577 val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
578 zq |= val << ZQ_REFINTERVAL_SHIFT;
579
580 val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
581 zq |= val << ZQ_ZQCL_MULT_SHIFT;
582
583 val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
584 zq |= val << ZQ_ZQINIT_MULT_SHIFT;
585
586 zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;
587
588 if (cal_resistors_per_cs)
589 zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
590 else
591 zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;
592
593 zq |= ZQ_CS0EN_MASK;
594
595 val = cs1_used ? 1 : 0;
596 zq |= val << ZQ_CS1EN_SHIFT;
597
598 return zq;
599}
600
601static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
602 const struct emif_custom_configs *custom_configs, bool cs1_used,
603 u32 sdram_io_width, u32 emif_bus_width)
604{
605 u32 alert = 0, interval, devcnt;
606
607 if (custom_configs && (custom_configs->mask &
608 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
609 interval = custom_configs->temp_alert_poll_interval_ms;
610 else
611 interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;
612
613 interval *= 1000000;
614 interval /= addressing->tREFI_ns;
615 alert |= (interval << TA_REFINTERVAL_SHIFT);
616
617
618
619
620
621
622 emif_bus_width = __fls(emif_bus_width) - 1;
623 devcnt = emif_bus_width - sdram_io_width;
624 alert |= devcnt << TA_DEVCNT_SHIFT;
625
626
627 alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
628
629 alert |= 1 << TA_SFEXITEN_SHIFT;
630 alert |= 1 << TA_CS0EN_SHIFT;
631 alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
632
633 return alert;
634}
635
636static u32 get_read_idle_ctrl_shdw(u8 volt_ramp)
637{
638 u32 idle = 0, val = 0;
639
640
641
642
643
644 if (volt_ramp)
645 val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1;
646 else
647 val = 0x1FF;
648
649
650
651
652
653 idle |= val << DLL_CALIB_INTERVAL_SHIFT;
654 idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT;
655
656 return idle;
657}
658
659static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp)
660{
661 u32 calib = 0, val = 0;
662
663 if (volt_ramp == DDR_VOLTAGE_RAMPING)
664 val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1;
665 else
666 val = 0;
667
668 calib |= val << DLL_CALIB_INTERVAL_SHIFT;
669 calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT;
670
671 return calib;
672}
673
674static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings,
675 u32 freq, u8 RL)
676{
677 u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0;
678
679 val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1;
680 phy |= val << READ_LATENCY_SHIFT_4D;
681
682 if (freq <= 100000000)
683 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY;
684 else if (freq <= 200000000)
685 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY;
686 else
687 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY;
688
689 phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D;
690
691 return phy;
692}
693
694static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl)
695{
696 u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay;
697
698
699
700
701
702 if (freq >= 265000000 && freq < 267000000)
703 half_delay = 0;
704 else
705 half_delay = 1;
706
707 phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5;
708 phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS,
709 t_ck) - 1) << READ_LATENCY_SHIFT_4D5);
710
711 return phy;
712}
713
714static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void)
715{
716 u32 fifo_we_slave_ratio;
717
718 fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
719 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
720
721 return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 |
722 fifo_we_slave_ratio << 22;
723}
724
725static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void)
726{
727 u32 fifo_we_slave_ratio;
728
729 fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
730 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
731
732 return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 |
733 fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23;
734}
735
736static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void)
737{
738 u32 fifo_we_slave_ratio;
739
740 fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
741 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
742
743 return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 |
744 fifo_we_slave_ratio << 13;
745}
746
747static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
748{
749 u32 pwr_mgmt_ctrl = 0, timeout;
750 u32 lpmode = EMIF_LP_MODE_SELF_REFRESH;
751 u32 timeout_perf = EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
752 u32 timeout_pwr = EMIF_LP_MODE_TIMEOUT_POWER;
753 u32 freq_threshold = EMIF_LP_MODE_FREQ_THRESHOLD;
754 u32 mask;
755 u8 shift;
756
757 struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
758
759 if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
760 lpmode = cust_cfgs->lpmode;
761 timeout_perf = cust_cfgs->lpmode_timeout_performance;
762 timeout_pwr = cust_cfgs->lpmode_timeout_power;
763 freq_threshold = cust_cfgs->lpmode_freq_threshold;
764 }
765
766
767 timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
768
769
770
771
772
773
774 if (timeout < 16) {
775 timeout = 0;
776 } else {
777 if (timeout & (timeout - 1))
778 timeout <<= 1;
779 timeout = __fls(timeout) - 3;
780 }
781
782 switch (lpmode) {
783 case EMIF_LP_MODE_CLOCK_STOP:
784 shift = CS_TIM_SHIFT;
785 mask = CS_TIM_MASK;
786 break;
787 case EMIF_LP_MODE_SELF_REFRESH:
788
789 if (timeout < 6)
790 timeout = 6;
791
792 shift = SR_TIM_SHIFT;
793 mask = SR_TIM_MASK;
794 break;
795 case EMIF_LP_MODE_PWR_DN:
796 shift = PD_TIM_SHIFT;
797 mask = PD_TIM_MASK;
798 break;
799 case EMIF_LP_MODE_DISABLE:
800 default:
801 mask = 0;
802 shift = 0;
803 break;
804 }
805
806 if (lpmode != EMIF_LP_MODE_DISABLE && timeout > mask >> shift) {
807 pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n",
808 lpmode,
809 timeout_perf,
810 timeout_pwr,
811 freq_threshold);
812 WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n",
813 timeout, mask >> shift);
814 timeout = mask >> shift;
815 }
816
817
818 pwr_mgmt_ctrl = (timeout << shift) & mask;
819
820 pwr_mgmt_ctrl |= (SR_TIM_MASK | CS_TIM_MASK | PD_TIM_MASK) &
821 ~mask;
822
823
824 if (ip_rev == EMIF_4D5)
825 pwr_mgmt_ctrl &= ~CS_TIM_MASK;
826
827 pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
828
829 return pwr_mgmt_ctrl;
830}
831
832
833
834
835
836
837
838static void get_temperature_level(struct emif_data *emif)
839{
840 u32 temp, temperature_level;
841 void __iomem *base;
842
843 base = emif->base;
844
845
846 writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
847 temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
848 temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
849 MR4_SDRAM_REF_RATE_SHIFT;
850
851 if (emif->plat_data->device_info->cs1_used) {
852 writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
853 temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
854 temp = (temp & MR4_SDRAM_REF_RATE_MASK)
855 >> MR4_SDRAM_REF_RATE_SHIFT;
856 temperature_level = max(temp, temperature_level);
857 }
858
859
860 if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
861 temperature_level = SDRAM_TEMP_NOMINAL;
862
863
864 if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
865 emif->temperature_level = temperature_level;
866}
867
868
869
870
871
872static void setup_registers(struct emif_data *emif, struct emif_regs *regs)
873{
874 void __iomem *base = emif->base;
875
876 writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW);
877 writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW);
878 writel(regs->pwr_mgmt_ctrl_shdw,
879 base + EMIF_POWER_MANAGEMENT_CTRL_SHDW);
880
881
882 if (emif->plat_data->ip_rev != EMIF_4D5)
883 return;
884 writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW);
885 writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW);
886 writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW);
887}
888
889
890
891
892
893static void setup_volt_sensitive_regs(struct emif_data *emif,
894 struct emif_regs *regs, u32 volt_state)
895{
896 u32 calib_ctrl;
897 void __iomem *base = emif->base;
898
899
900
901
902
903
904
905 if (volt_state == DDR_VOLTAGE_RAMPING)
906 calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp;
907 else
908 calib_ctrl = regs->dll_calib_ctrl_shdw_normal;
909
910 writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW);
911}
912
913
914
915
916
917
918
919
920
921static void setup_temperature_sensitive_regs(struct emif_data *emif,
922 struct emif_regs *regs)
923{
924 u32 tim1, tim3, ref_ctrl, type;
925 void __iomem *base = emif->base;
926 u32 temperature;
927
928 type = emif->plat_data->device_info->type;
929
930 tim1 = regs->sdram_tim1_shdw;
931 tim3 = regs->sdram_tim3_shdw;
932 ref_ctrl = regs->ref_ctrl_shdw;
933
934
935 if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
936 goto out;
937
938 temperature = emif->temperature_level;
939 if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
940 ref_ctrl = regs->ref_ctrl_shdw_derated;
941 } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
942 tim1 = regs->sdram_tim1_shdw_derated;
943 tim3 = regs->sdram_tim3_shdw_derated;
944 ref_ctrl = regs->ref_ctrl_shdw_derated;
945 }
946
947out:
948 writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
949 writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
950 writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
951}
952
953static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
954{
955 u32 old_temp_level;
956 irqreturn_t ret = IRQ_HANDLED;
957 struct emif_custom_configs *custom_configs;
958
959 spin_lock_irqsave(&emif_lock, irq_state);
960 old_temp_level = emif->temperature_level;
961 get_temperature_level(emif);
962
963 if (unlikely(emif->temperature_level == old_temp_level)) {
964 goto out;
965 } else if (!emif->curr_regs) {
966 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
967 goto out;
968 }
969
970 custom_configs = emif->plat_data->custom_configs;
971
972
973
974
975
976 if (custom_configs && !(custom_configs->mask &
977 EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART)) {
978 if (emif->temperature_level >= SDRAM_TEMP_HIGH_DERATE_REFRESH) {
979 dev_err(emif->dev,
980 "%s:NOT Extended temperature capable memory."
981 "Converting MR4=0x%02x as shutdown event\n",
982 __func__, emif->temperature_level);
983
984
985
986
987 emif->temperature_level = SDRAM_TEMP_VERY_HIGH_SHUTDOWN;
988 ret = IRQ_WAKE_THREAD;
989 goto out;
990 }
991 }
992
993 if (emif->temperature_level < old_temp_level ||
994 emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
995
996
997
998
999
1000 ret = IRQ_WAKE_THREAD;
1001 } else {
1002
1003 setup_temperature_sensitive_regs(emif, emif->curr_regs);
1004 do_freq_update();
1005 }
1006
1007out:
1008 spin_unlock_irqrestore(&emif_lock, irq_state);
1009 return ret;
1010}
1011
1012static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
1013{
1014 u32 interrupts;
1015 struct emif_data *emif = dev_id;
1016 void __iomem *base = emif->base;
1017 struct device *dev = emif->dev;
1018 irqreturn_t ret = IRQ_HANDLED;
1019
1020
1021 interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1022 writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1023
1024
1025
1026
1027
1028
1029 if (interrupts & TA_SYS_MASK)
1030 ret = handle_temp_alert(base, emif);
1031
1032 if (interrupts & ERR_SYS_MASK)
1033 dev_err(dev, "Access error from SYS port - %x\n", interrupts);
1034
1035 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1036
1037 interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
1038 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
1039
1040 if (interrupts & ERR_LL_MASK)
1041 dev_err(dev, "Access error from LL port - %x\n",
1042 interrupts);
1043 }
1044
1045 return ret;
1046}
1047
1048static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
1049{
1050 struct emif_data *emif = dev_id;
1051
1052 if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
1053 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1054
1055
1056 if (pm_power_off) {
1057 kernel_power_off();
1058 } else {
1059 WARN(1, "FIXME: NO pm_power_off!!! trying restart\n");
1060 kernel_restart("SDRAM Over-temp Emergency restart");
1061 }
1062 return IRQ_HANDLED;
1063 }
1064
1065 spin_lock_irqsave(&emif_lock, irq_state);
1066
1067 if (emif->curr_regs) {
1068 setup_temperature_sensitive_regs(emif, emif->curr_regs);
1069 do_freq_update();
1070 } else {
1071 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
1072 }
1073
1074 spin_unlock_irqrestore(&emif_lock, irq_state);
1075
1076 return IRQ_HANDLED;
1077}
1078
1079static void clear_all_interrupts(struct emif_data *emif)
1080{
1081 void __iomem *base = emif->base;
1082
1083 writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
1084 base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1085 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1086 writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
1087 base + EMIF_LL_OCP_INTERRUPT_STATUS);
1088}
1089
1090static void disable_and_clear_all_interrupts(struct emif_data *emif)
1091{
1092 void __iomem *base = emif->base;
1093
1094
1095 writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
1096 base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
1097 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1098 writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
1099 base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);
1100
1101
1102 clear_all_interrupts(emif);
1103}
1104
1105static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq)
1106{
1107 u32 interrupts, type;
1108 void __iomem *base = emif->base;
1109
1110 type = emif->plat_data->device_info->type;
1111
1112 clear_all_interrupts(emif);
1113
1114
1115 interrupts = EN_ERR_SYS_MASK;
1116 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
1117 interrupts |= EN_TA_SYS_MASK;
1118 writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
1119
1120
1121 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1122
1123 interrupts = EN_ERR_LL_MASK;
1124 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
1125 }
1126
1127
1128 return devm_request_threaded_irq(emif->dev, irq,
1129 emif_interrupt_handler,
1130 emif_threaded_isr,
1131 0, dev_name(emif->dev),
1132 emif);
1133
1134}
1135
1136static void __init_or_module emif_onetime_settings(struct emif_data *emif)
1137{
1138 u32 pwr_mgmt_ctrl, zq, temp_alert_cfg;
1139 void __iomem *base = emif->base;
1140 const struct lpddr2_addressing *addressing;
1141 const struct ddr_device_info *device_info;
1142
1143 device_info = emif->plat_data->device_info;
1144 addressing = get_addressing_table(device_info);
1145
1146
1147
1148
1149
1150
1151 pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
1152 emif->plat_data->ip_rev);
1153 emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
1154 writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
1155
1156
1157 zq = get_zq_config_reg(addressing, device_info->cs1_used,
1158 device_info->cal_resistors_per_cs);
1159 writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);
1160
1161
1162 get_temperature_level(emif);
1163 if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
1164 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1165
1166
1167 temp_alert_cfg = get_temp_alert_config(addressing,
1168 emif->plat_data->custom_configs, device_info->cs1_used,
1169 device_info->io_width, get_emif_bus_width(emif));
1170 writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
1171
1172
1173
1174
1175
1176 if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
1177 return;
1178 writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
1179 writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
1180 writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
1181 writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
1182 writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
1183 writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
1184 writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
1185 writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
1186 writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
1187 writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
1188 writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
1189 writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
1190 writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
1191 writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
1192 writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
1193 writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
1194 writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
1195 writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
1196 writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
1197 writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
1198 writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
1199}
1200
1201static void get_default_timings(struct emif_data *emif)
1202{
1203 struct emif_platform_data *pd = emif->plat_data;
1204
1205 pd->timings = lpddr2_jedec_timings;
1206 pd->timings_arr_size = ARRAY_SIZE(lpddr2_jedec_timings);
1207
1208 dev_warn(emif->dev, "%s: using default timings\n", __func__);
1209}
1210
1211static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
1212 u32 ip_rev, struct device *dev)
1213{
1214 int valid;
1215
1216 valid = (type == DDR_TYPE_LPDDR2_S4 ||
1217 type == DDR_TYPE_LPDDR2_S2)
1218 && (density >= DDR_DENSITY_64Mb
1219 && density <= DDR_DENSITY_8Gb)
1220 && (io_width >= DDR_IO_WIDTH_8
1221 && io_width <= DDR_IO_WIDTH_32);
1222
1223
1224 switch (ip_rev) {
1225 case EMIF_4D:
1226 valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
1227 break;
1228 case EMIF_4D5:
1229 valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
1230 break;
1231 default:
1232 valid = 0;
1233 }
1234
1235 if (!valid)
1236 dev_err(dev, "%s: invalid DDR details\n", __func__);
1237 return valid;
1238}
1239
1240static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
1241 struct device *dev)
1242{
1243 int valid = 1;
1244
1245 if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
1246 (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
1247 valid = cust_cfgs->lpmode_freq_threshold &&
1248 cust_cfgs->lpmode_timeout_performance &&
1249 cust_cfgs->lpmode_timeout_power;
1250
1251 if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
1252 valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
1253
1254 if (!valid)
1255 dev_warn(dev, "%s: invalid custom configs\n", __func__);
1256
1257 return valid;
1258}
1259
1260#if defined(CONFIG_OF)
1261static void __init_or_module of_get_custom_configs(struct device_node *np_emif,
1262 struct emif_data *emif)
1263{
1264 struct emif_custom_configs *cust_cfgs = NULL;
1265 int len;
1266 const __be32 *lpmode, *poll_intvl;
1267
1268 lpmode = of_get_property(np_emif, "low-power-mode", &len);
1269 poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len);
1270
1271 if (lpmode || poll_intvl)
1272 cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs),
1273 GFP_KERNEL);
1274
1275 if (!cust_cfgs)
1276 return;
1277
1278 if (lpmode) {
1279 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE;
1280 cust_cfgs->lpmode = be32_to_cpup(lpmode);
1281 of_property_read_u32(np_emif,
1282 "low-power-mode-timeout-performance",
1283 &cust_cfgs->lpmode_timeout_performance);
1284 of_property_read_u32(np_emif,
1285 "low-power-mode-timeout-power",
1286 &cust_cfgs->lpmode_timeout_power);
1287 of_property_read_u32(np_emif,
1288 "low-power-mode-freq-threshold",
1289 &cust_cfgs->lpmode_freq_threshold);
1290 }
1291
1292 if (poll_intvl) {
1293 cust_cfgs->mask |=
1294 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL;
1295 cust_cfgs->temp_alert_poll_interval_ms =
1296 be32_to_cpup(poll_intvl);
1297 }
1298
1299 if (of_find_property(np_emif, "extended-temp-part", &len))
1300 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART;
1301
1302 if (!is_custom_config_valid(cust_cfgs, emif->dev)) {
1303 devm_kfree(emif->dev, cust_cfgs);
1304 return;
1305 }
1306
1307 emif->plat_data->custom_configs = cust_cfgs;
1308}
1309
1310static void __init_or_module of_get_ddr_info(struct device_node *np_emif,
1311 struct device_node *np_ddr,
1312 struct ddr_device_info *dev_info)
1313{
1314 u32 density = 0, io_width = 0;
1315 int len;
1316
1317 if (of_find_property(np_emif, "cs1-used", &len))
1318 dev_info->cs1_used = true;
1319
1320 if (of_find_property(np_emif, "cal-resistor-per-cs", &len))
1321 dev_info->cal_resistors_per_cs = true;
1322
1323 if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s4"))
1324 dev_info->type = DDR_TYPE_LPDDR2_S4;
1325 else if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s2"))
1326 dev_info->type = DDR_TYPE_LPDDR2_S2;
1327
1328 of_property_read_u32(np_ddr, "density", &density);
1329 of_property_read_u32(np_ddr, "io-width", &io_width);
1330
1331
1332 if (density & (density - 1))
1333 dev_info->density = 0;
1334 else
1335 dev_info->density = __fls(density) - 5;
1336
1337
1338 if (io_width & (io_width - 1))
1339 dev_info->io_width = 0;
1340 else
1341 dev_info->io_width = __fls(io_width) - 1;
1342}
1343
1344static struct emif_data * __init_or_module of_get_memory_device_details(
1345 struct device_node *np_emif, struct device *dev)
1346{
1347 struct emif_data *emif = NULL;
1348 struct ddr_device_info *dev_info = NULL;
1349 struct emif_platform_data *pd = NULL;
1350 struct device_node *np_ddr;
1351 int len;
1352
1353 np_ddr = of_parse_phandle(np_emif, "device-handle", 0);
1354 if (!np_ddr)
1355 goto error;
1356 emif = devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL);
1357 pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1358 dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1359
1360 if (!emif || !pd || !dev_info) {
1361 dev_err(dev, "%s: Out of memory!!\n",
1362 __func__);
1363 goto error;
1364 }
1365
1366 emif->plat_data = pd;
1367 pd->device_info = dev_info;
1368 emif->dev = dev;
1369 emif->np_ddr = np_ddr;
1370 emif->temperature_level = SDRAM_TEMP_NOMINAL;
1371
1372 if (of_device_is_compatible(np_emif, "ti,emif-4d"))
1373 emif->plat_data->ip_rev = EMIF_4D;
1374 else if (of_device_is_compatible(np_emif, "ti,emif-4d5"))
1375 emif->plat_data->ip_rev = EMIF_4D5;
1376
1377 of_property_read_u32(np_emif, "phy-type", &pd->phy_type);
1378
1379 if (of_find_property(np_emif, "hw-caps-ll-interface", &len))
1380 pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE;
1381
1382 of_get_ddr_info(np_emif, np_ddr, dev_info);
1383 if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density,
1384 pd->device_info->io_width, pd->phy_type, pd->ip_rev,
1385 emif->dev)) {
1386 dev_err(dev, "%s: invalid device data!!\n", __func__);
1387 goto error;
1388 }
1389
1390
1391
1392
1393
1394
1395 if (emif1 && emif1->np_ddr == np_ddr) {
1396 emif->duplicate = true;
1397 goto out;
1398 } else if (emif1) {
1399 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1400 __func__);
1401 }
1402
1403 of_get_custom_configs(np_emif, emif);
1404 emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev,
1405 emif->plat_data->device_info->type,
1406 &emif->plat_data->timings_arr_size);
1407
1408 emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev);
1409 goto out;
1410
1411error:
1412 return NULL;
1413out:
1414 return emif;
1415}
1416
1417#else
1418
1419static struct emif_data * __init_or_module of_get_memory_device_details(
1420 struct device_node *np_emif, struct device *dev)
1421{
1422 return NULL;
1423}
1424#endif
1425
1426static struct emif_data *__init_or_module get_device_details(
1427 struct platform_device *pdev)
1428{
1429 u32 size;
1430 struct emif_data *emif = NULL;
1431 struct ddr_device_info *dev_info;
1432 struct emif_custom_configs *cust_cfgs;
1433 struct emif_platform_data *pd;
1434 struct device *dev;
1435 void *temp;
1436
1437 pd = pdev->dev.platform_data;
1438 dev = &pdev->dev;
1439
1440 if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
1441 pd->device_info->density, pd->device_info->io_width,
1442 pd->phy_type, pd->ip_rev, dev))) {
1443 dev_err(dev, "%s: invalid device data\n", __func__);
1444 goto error;
1445 }
1446
1447 emif = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
1448 temp = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1449 dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1450
1451 if (!emif || !pd || !dev_info) {
1452 dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__);
1453 goto error;
1454 }
1455
1456 memcpy(temp, pd, sizeof(*pd));
1457 pd = temp;
1458 memcpy(dev_info, pd->device_info, sizeof(*dev_info));
1459
1460 pd->device_info = dev_info;
1461 emif->plat_data = pd;
1462 emif->dev = dev;
1463 emif->temperature_level = SDRAM_TEMP_NOMINAL;
1464
1465
1466
1467
1468
1469
1470
1471 emif->duplicate = emif1 && (memcmp(dev_info,
1472 emif1->plat_data->device_info,
1473 sizeof(struct ddr_device_info)) == 0);
1474
1475 if (emif->duplicate) {
1476 pd->timings = NULL;
1477 pd->min_tck = NULL;
1478 goto out;
1479 } else if (emif1) {
1480 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1481 __func__);
1482 }
1483
1484
1485
1486
1487
1488 cust_cfgs = pd->custom_configs;
1489 if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
1490 temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
1491 if (temp)
1492 memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
1493 else
1494 dev_warn(dev, "%s:%d: allocation error\n", __func__,
1495 __LINE__);
1496 pd->custom_configs = temp;
1497 }
1498
1499
1500
1501
1502
1503 size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
1504 if (pd->timings) {
1505 temp = devm_kzalloc(dev, size, GFP_KERNEL);
1506 if (temp) {
1507 memcpy(temp, pd->timings, size);
1508 pd->timings = temp;
1509 } else {
1510 dev_warn(dev, "%s:%d: allocation error\n", __func__,
1511 __LINE__);
1512 get_default_timings(emif);
1513 }
1514 } else {
1515 get_default_timings(emif);
1516 }
1517
1518 if (pd->min_tck) {
1519 temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
1520 if (temp) {
1521 memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
1522 pd->min_tck = temp;
1523 } else {
1524 dev_warn(dev, "%s:%d: allocation error\n", __func__,
1525 __LINE__);
1526 pd->min_tck = &lpddr2_jedec_min_tck;
1527 }
1528 } else {
1529 pd->min_tck = &lpddr2_jedec_min_tck;
1530 }
1531
1532out:
1533 return emif;
1534
1535error:
1536 return NULL;
1537}
1538
1539static int __init_or_module emif_probe(struct platform_device *pdev)
1540{
1541 struct emif_data *emif;
1542 struct resource *res;
1543 int irq;
1544
1545 if (pdev->dev.of_node)
1546 emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev);
1547 else
1548 emif = get_device_details(pdev);
1549
1550 if (!emif) {
1551 pr_err("%s: error getting device data\n", __func__);
1552 goto error;
1553 }
1554
1555 list_add(&emif->node, &device_list);
1556 emif->addressing = get_addressing_table(emif->plat_data->device_info);
1557
1558
1559 emif->dev = &pdev->dev;
1560 platform_set_drvdata(pdev, emif);
1561
1562 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1563 emif->base = devm_ioremap_resource(emif->dev, res);
1564 if (IS_ERR(emif->base))
1565 goto error;
1566
1567 irq = platform_get_irq(pdev, 0);
1568 if (irq < 0) {
1569 dev_err(emif->dev, "%s: error getting IRQ resource - %d\n",
1570 __func__, irq);
1571 goto error;
1572 }
1573
1574 emif_onetime_settings(emif);
1575 emif_debugfs_init(emif);
1576 disable_and_clear_all_interrupts(emif);
1577 setup_interrupts(emif, irq);
1578
1579
1580 if (!emif1) {
1581 emif1 = emif;
1582 spin_lock_init(&emif_lock);
1583
1584
1585
1586
1587
1588
1589 }
1590
1591 dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
1592 __func__, emif->base, irq);
1593
1594 return 0;
1595error:
1596 return -ENODEV;
1597}
1598
1599static int __exit emif_remove(struct platform_device *pdev)
1600{
1601 struct emif_data *emif = platform_get_drvdata(pdev);
1602
1603 emif_debugfs_exit(emif);
1604
1605 return 0;
1606}
1607
1608static void emif_shutdown(struct platform_device *pdev)
1609{
1610 struct emif_data *emif = platform_get_drvdata(pdev);
1611
1612 disable_and_clear_all_interrupts(emif);
1613}
1614
1615static int get_emif_reg_values(struct emif_data *emif, u32 freq,
1616 struct emif_regs *regs)
1617{
1618 u32 cs1_used, ip_rev, phy_type;
1619 u32 cl, type;
1620 const struct lpddr2_timings *timings;
1621 const struct lpddr2_min_tck *min_tck;
1622 const struct ddr_device_info *device_info;
1623 const struct lpddr2_addressing *addressing;
1624 struct emif_data *emif_for_calc;
1625 struct device *dev;
1626 const struct emif_custom_configs *custom_configs;
1627
1628 dev = emif->dev;
1629
1630
1631
1632
1633 emif_for_calc = emif->duplicate ? emif1 : emif;
1634 timings = get_timings_table(emif_for_calc, freq);
1635 addressing = emif_for_calc->addressing;
1636 if (!timings || !addressing) {
1637 dev_err(dev, "%s: not enough data available for %dHz",
1638 __func__, freq);
1639 return -1;
1640 }
1641
1642 device_info = emif_for_calc->plat_data->device_info;
1643 type = device_info->type;
1644 cs1_used = device_info->cs1_used;
1645 ip_rev = emif_for_calc->plat_data->ip_rev;
1646 phy_type = emif_for_calc->plat_data->phy_type;
1647
1648 min_tck = emif_for_calc->plat_data->min_tck;
1649 custom_configs = emif_for_calc->plat_data->custom_configs;
1650
1651 set_ddr_clk_period(freq);
1652
1653 regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing);
1654 regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck,
1655 addressing);
1656 regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck,
1657 addressing, type);
1658 regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck,
1659 addressing, type, ip_rev, EMIF_NORMAL_TIMINGS);
1660
1661 cl = get_cl(emif);
1662
1663 if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) {
1664 regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d(
1665 timings, freq, cl);
1666 } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) {
1667 regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl);
1668 regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5();
1669 regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5();
1670 regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5();
1671 } else {
1672 return -1;
1673 }
1674
1675
1676 regs->pwr_mgmt_ctrl_shdw =
1677 get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) &
1678 (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK);
1679
1680 if (ip_rev & EMIF_4D) {
1681 regs->read_idle_ctrl_shdw_normal =
1682 get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE);
1683
1684 regs->read_idle_ctrl_shdw_volt_ramp =
1685 get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1686 } else if (ip_rev & EMIF_4D5) {
1687 regs->dll_calib_ctrl_shdw_normal =
1688 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE);
1689
1690 regs->dll_calib_ctrl_shdw_volt_ramp =
1691 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1692 }
1693
1694 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
1695 regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4,
1696 addressing);
1697
1698 regs->sdram_tim1_shdw_derated =
1699 get_sdram_tim_1_shdw_derated(timings, min_tck,
1700 addressing);
1701
1702 regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings,
1703 min_tck, addressing, type, ip_rev,
1704 EMIF_DERATED_TIMINGS);
1705 }
1706
1707 regs->freq = freq;
1708
1709 return 0;
1710}
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726static struct emif_regs *get_regs(struct emif_data *emif, u32 freq)
1727{
1728 int i;
1729 struct emif_regs **regs_cache;
1730 struct emif_regs *regs = NULL;
1731 struct device *dev;
1732
1733 dev = emif->dev;
1734 if (emif->curr_regs && emif->curr_regs->freq == freq) {
1735 dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq);
1736 return emif->curr_regs;
1737 }
1738
1739 if (emif->duplicate)
1740 regs_cache = emif1->regs_cache;
1741 else
1742 regs_cache = emif->regs_cache;
1743
1744 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
1745 if (regs_cache[i]->freq == freq) {
1746 regs = regs_cache[i];
1747 dev_dbg(dev,
1748 "%s: reg dump found in reg cache for %u Hz\n",
1749 __func__, freq);
1750 break;
1751 }
1752 }
1753
1754
1755
1756
1757
1758 if (!regs) {
1759 regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC);
1760 if (!regs)
1761 return NULL;
1762
1763 if (get_emif_reg_values(emif, freq, regs)) {
1764 devm_kfree(emif->dev, regs);
1765 return NULL;
1766 }
1767
1768
1769
1770
1771
1772
1773 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++)
1774 ;
1775
1776 if (i >= EMIF_MAX_NUM_FREQUENCIES) {
1777 dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n",
1778 __func__);
1779 i = EMIF_MAX_NUM_FREQUENCIES - 1;
1780 devm_kfree(emif->dev, regs_cache[i]);
1781 }
1782 regs_cache[i] = regs;
1783 }
1784
1785 return regs;
1786}
1787
1788static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state)
1789{
1790 dev_dbg(emif->dev, "%s: voltage notification : %d", __func__,
1791 volt_state);
1792
1793 if (!emif->curr_regs) {
1794 dev_err(emif->dev,
1795 "%s: volt-notify before registers are ready: %d\n",
1796 __func__, volt_state);
1797 return;
1798 }
1799
1800 setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state);
1801}
1802
1803
1804
1805
1806
1807
1808
1809static void __attribute__((unused)) volt_notify_handling(u32 volt_state)
1810{
1811 struct emif_data *emif;
1812
1813 spin_lock_irqsave(&emif_lock, irq_state);
1814
1815 list_for_each_entry(emif, &device_list, node)
1816 do_volt_notify_handling(emif, volt_state);
1817 do_freq_update();
1818
1819 spin_unlock_irqrestore(&emif_lock, irq_state);
1820}
1821
1822static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq)
1823{
1824 struct emif_regs *regs;
1825
1826 regs = get_regs(emif, new_freq);
1827 if (!regs)
1828 return;
1829
1830 emif->curr_regs = regs;
1831
1832
1833
1834
1835
1836
1837
1838 dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz",
1839 __func__, new_freq);
1840 setup_registers(emif, regs);
1841 setup_temperature_sensitive_regs(emif, regs);
1842 setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE);
1843
1844
1845
1846
1847
1848 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1849 set_lpmode(emif, EMIF_LP_MODE_DISABLE);
1850}
1851
1852
1853
1854
1855
1856
1857
1858static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq)
1859{
1860 struct emif_data *emif;
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881 spin_lock_irqsave(&emif_lock, irq_state);
1882
1883 list_for_each_entry(emif, &device_list, node)
1884 do_freq_pre_notify_handling(emif, new_freq);
1885}
1886
1887static void do_freq_post_notify_handling(struct emif_data *emif)
1888{
1889
1890
1891
1892
1893 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1894 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
1895}
1896
1897
1898
1899
1900
1901
1902
1903static void __attribute__((unused)) freq_post_notify_handling(void)
1904{
1905 struct emif_data *emif;
1906
1907 list_for_each_entry(emif, &device_list, node)
1908 do_freq_post_notify_handling(emif);
1909
1910
1911
1912
1913
1914 spin_unlock_irqrestore(&emif_lock, irq_state);
1915}
1916
1917#if defined(CONFIG_OF)
1918static const struct of_device_id emif_of_match[] = {
1919 { .compatible = "ti,emif-4d" },
1920 { .compatible = "ti,emif-4d5" },
1921 {},
1922};
1923MODULE_DEVICE_TABLE(of, emif_of_match);
1924#endif
1925
1926static struct platform_driver emif_driver = {
1927 .remove = __exit_p(emif_remove),
1928 .shutdown = emif_shutdown,
1929 .driver = {
1930 .name = "emif",
1931 .of_match_table = of_match_ptr(emif_of_match),
1932 },
1933};
1934
1935module_platform_driver_probe(emif_driver, emif_probe);
1936
1937MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1938MODULE_LICENSE("GPL");
1939MODULE_ALIAS("platform:emif");
1940MODULE_AUTHOR("Texas Instruments Inc");
1941