linux/drivers/memory/emif.c
<<
>>
Prefs
   1/*
   2 * EMIF driver
   3 *
   4 * Copyright (C) 2012 Texas Instruments, Inc.
   5 *
   6 * Aneesh V <aneesh@ti.com>
   7 * Santosh Shilimkar <santosh.shilimkar@ti.com>
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 */
  13#include <linux/err.h>
  14#include <linux/kernel.h>
  15#include <linux/reboot.h>
  16#include <linux/platform_data/emif_plat.h>
  17#include <linux/io.h>
  18#include <linux/device.h>
  19#include <linux/platform_device.h>
  20#include <linux/interrupt.h>
  21#include <linux/slab.h>
  22#include <linux/of.h>
  23#include <linux/debugfs.h>
  24#include <linux/seq_file.h>
  25#include <linux/module.h>
  26#include <linux/list.h>
  27#include <linux/spinlock.h>
  28#include <linux/pm.h>
  29#include <memory/jedec_ddr.h>
  30#include "emif.h"
  31#include "of_memory.h"
  32
  33/**
  34 * struct emif_data - Per device static data for driver's use
  35 * @duplicate:                  Whether the DDR devices attached to this EMIF
  36 *                              instance are exactly same as that on EMIF1. In
  37 *                              this case we can save some memory and processing
  38 * @temperature_level:          Maximum temperature of LPDDR2 devices attached
  39 *                              to this EMIF - read from MR4 register. If there
  40 *                              are two devices attached to this EMIF, this
  41 *                              value is the maximum of the two temperature
  42 *                              levels.
  43 * @node:                       node in the device list
  44 * @base:                       base address of memory-mapped IO registers.
  45 * @dev:                        device pointer.
  46 * @addressing                  table with addressing information from the spec
  47 * @regs_cache:                 An array of 'struct emif_regs' that stores
  48 *                              calculated register values for different
  49 *                              frequencies, to avoid re-calculating them on
  50 *                              each DVFS transition.
  51 * @curr_regs:                  The set of register values used in the last
  52 *                              frequency change (i.e. corresponding to the
  53 *                              frequency in effect at the moment)
  54 * @plat_data:                  Pointer to saved platform data.
  55 * @debugfs_root:               dentry to the root folder for EMIF in debugfs
  56 * @np_ddr:                     Pointer to ddr device tree node
  57 */
  58struct emif_data {
  59        u8                              duplicate;
  60        u8                              temperature_level;
  61        u8                              lpmode;
  62        struct list_head                node;
  63        unsigned long                   irq_state;
  64        void __iomem                    *base;
  65        struct device                   *dev;
  66        const struct lpddr2_addressing  *addressing;
  67        struct emif_regs                *regs_cache[EMIF_MAX_NUM_FREQUENCIES];
  68        struct emif_regs                *curr_regs;
  69        struct emif_platform_data       *plat_data;
  70        struct dentry                   *debugfs_root;
  71        struct device_node              *np_ddr;
  72};
  73
  74static struct emif_data *emif1;
  75static spinlock_t       emif_lock;
  76static unsigned long    irq_state;
  77static u32              t_ck; /* DDR clock period in ps */
  78static LIST_HEAD(device_list);
  79
  80#ifdef CONFIG_DEBUG_FS
  81static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
  82        struct emif_regs *regs)
  83{
  84        u32 type = emif->plat_data->device_info->type;
  85        u32 ip_rev = emif->plat_data->ip_rev;
  86
  87        seq_printf(s, "EMIF register cache dump for %dMHz\n",
  88                regs->freq/1000000);
  89
  90        seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
  91        seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
  92        seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
  93        seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
  94
  95        if (ip_rev == EMIF_4D) {
  96                seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
  97                        regs->read_idle_ctrl_shdw_normal);
  98                seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
  99                        regs->read_idle_ctrl_shdw_volt_ramp);
 100        } else if (ip_rev == EMIF_4D5) {
 101                seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
 102                        regs->dll_calib_ctrl_shdw_normal);
 103                seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
 104                        regs->dll_calib_ctrl_shdw_volt_ramp);
 105        }
 106
 107        if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
 108                seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
 109                        regs->ref_ctrl_shdw_derated);
 110                seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
 111                        regs->sdram_tim1_shdw_derated);
 112                seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
 113                        regs->sdram_tim3_shdw_derated);
 114        }
 115}
 116
 117static int emif_regdump_show(struct seq_file *s, void *unused)
 118{
 119        struct emif_data        *emif   = s->private;
 120        struct emif_regs        **regs_cache;
 121        int                     i;
 122
 123        if (emif->duplicate)
 124                regs_cache = emif1->regs_cache;
 125        else
 126                regs_cache = emif->regs_cache;
 127
 128        for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
 129                do_emif_regdump_show(s, emif, regs_cache[i]);
 130                seq_putc(s, '\n');
 131        }
 132
 133        return 0;
 134}
 135
 136static int emif_regdump_open(struct inode *inode, struct file *file)
 137{
 138        return single_open(file, emif_regdump_show, inode->i_private);
 139}
 140
 141static const struct file_operations emif_regdump_fops = {
 142        .open                   = emif_regdump_open,
 143        .read                   = seq_read,
 144        .release                = single_release,
 145};
 146
 147static int emif_mr4_show(struct seq_file *s, void *unused)
 148{
 149        struct emif_data *emif = s->private;
 150
 151        seq_printf(s, "MR4=%d\n", emif->temperature_level);
 152        return 0;
 153}
 154
 155static int emif_mr4_open(struct inode *inode, struct file *file)
 156{
 157        return single_open(file, emif_mr4_show, inode->i_private);
 158}
 159
 160static const struct file_operations emif_mr4_fops = {
 161        .open                   = emif_mr4_open,
 162        .read                   = seq_read,
 163        .release                = single_release,
 164};
 165
 166static int __init_or_module emif_debugfs_init(struct emif_data *emif)
 167{
 168        struct dentry   *dentry;
 169        int             ret;
 170
 171        dentry = debugfs_create_dir(dev_name(emif->dev), NULL);
 172        if (!dentry) {
 173                ret = -ENOMEM;
 174                goto err0;
 175        }
 176        emif->debugfs_root = dentry;
 177
 178        dentry = debugfs_create_file("regcache_dump", S_IRUGO,
 179                        emif->debugfs_root, emif, &emif_regdump_fops);
 180        if (!dentry) {
 181                ret = -ENOMEM;
 182                goto err1;
 183        }
 184
 185        dentry = debugfs_create_file("mr4", S_IRUGO,
 186                        emif->debugfs_root, emif, &emif_mr4_fops);
 187        if (!dentry) {
 188                ret = -ENOMEM;
 189                goto err1;
 190        }
 191
 192        return 0;
 193err1:
 194        debugfs_remove_recursive(emif->debugfs_root);
 195err0:
 196        return ret;
 197}
 198
 199static void __exit emif_debugfs_exit(struct emif_data *emif)
 200{
 201        debugfs_remove_recursive(emif->debugfs_root);
 202        emif->debugfs_root = NULL;
 203}
 204#else
 205static inline int __init_or_module emif_debugfs_init(struct emif_data *emif)
 206{
 207        return 0;
 208}
 209
 210static inline void __exit emif_debugfs_exit(struct emif_data *emif)
 211{
 212}
 213#endif
 214
 215/*
 216 * Calculate the period of DDR clock from frequency value
 217 */
 218static void set_ddr_clk_period(u32 freq)
 219{
 220        /* Divide 10^12 by frequency to get period in ps */
 221        t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq);
 222}
 223
 224/*
 225 * Get bus width used by EMIF. Note that this may be different from the
 226 * bus width of the DDR devices used. For instance two 16-bit DDR devices
 227 * may be connected to a given CS of EMIF. In this case bus width as far
 228 * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
 229 */
 230static u32 get_emif_bus_width(struct emif_data *emif)
 231{
 232        u32             width;
 233        void __iomem    *base = emif->base;
 234
 235        width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
 236                        >> NARROW_MODE_SHIFT;
 237        width = width == 0 ? 32 : 16;
 238
 239        return width;
 240}
 241
 242/*
 243 * Get the CL from SDRAM_CONFIG register
 244 */
 245static u32 get_cl(struct emif_data *emif)
 246{
 247        u32             cl;
 248        void __iomem    *base = emif->base;
 249
 250        cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT;
 251
 252        return cl;
 253}
 254
 255static void set_lpmode(struct emif_data *emif, u8 lpmode)
 256{
 257        u32 temp;
 258        void __iomem *base = emif->base;
 259
 260        /*
 261         * Workaround for errata i743 - LPDDR2 Power-Down State is Not
 262         * Efficient
 263         *
 264         * i743 DESCRIPTION:
 265         * The EMIF supports power-down state for low power. The EMIF
 266         * automatically puts the SDRAM into power-down after the memory is
 267         * not accessed for a defined number of cycles and the
 268         * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set to 0x4.
 269         * As the EMIF supports automatic output impedance calibration, a ZQ
 270         * calibration long command is issued every time it exits active
 271         * power-down and precharge power-down modes. The EMIF waits and
 272         * blocks any other command during this calibration.
 273         * The EMIF does not allow selective disabling of ZQ calibration upon
 274         * exit of power-down mode. Due to very short periods of power-down
 275         * cycles, ZQ calibration overhead creates bandwidth issues and
 276         * increases overall system power consumption. On the other hand,
 277         * issuing ZQ calibration long commands when exiting self-refresh is
 278         * still required.
 279         *
 280         * WORKAROUND
 281         * Because there is no power consumption benefit of the power-down due
 282         * to the calibration and there is a performance risk, the guideline
 283         * is to not allow power-down state and, therefore, to not have set
 284         * the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field to 0x4.
 285         */
 286        if ((emif->plat_data->ip_rev == EMIF_4D) &&
 287            (EMIF_LP_MODE_PWR_DN == lpmode)) {
 288                WARN_ONCE(1,
 289                          "REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by"
 290                          "erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n");
 291                /* rollback LP_MODE to Self-refresh mode */
 292                lpmode = EMIF_LP_MODE_SELF_REFRESH;
 293        }
 294
 295        temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
 296        temp &= ~LP_MODE_MASK;
 297        temp |= (lpmode << LP_MODE_SHIFT);
 298        writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
 299}
 300
 301static void do_freq_update(void)
 302{
 303        struct emif_data *emif;
 304
 305        /*
 306         * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
 307         *
 308         * i728 DESCRIPTION:
 309         * The EMIF automatically puts the SDRAM into self-refresh mode
 310         * after the EMIF has not performed accesses during
 311         * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
 312         * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
 313         * to 0x2. If during a small window the following three events
 314         * occur:
 315         * - The SR_TIMING counter expires
 316         * - And frequency change is requested
 317         * - And OCP access is requested
 318         * Then it causes instable clock on the DDR interface.
 319         *
 320         * WORKAROUND
 321         * To avoid the occurrence of the three events, the workaround
 322         * is to disable the self-refresh when requesting a frequency
 323         * change. Before requesting a frequency change the software must
 324         * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
 325         * frequency change has been done, the software can reprogram
 326         * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
 327         */
 328        list_for_each_entry(emif, &device_list, node) {
 329                if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
 330                        set_lpmode(emif, EMIF_LP_MODE_DISABLE);
 331        }
 332
 333        /*
 334         * TODO: Do FREQ_UPDATE here when an API
 335         * is available for this as part of the new
 336         * clock framework
 337         */
 338
 339        list_for_each_entry(emif, &device_list, node) {
 340                if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
 341                        set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
 342        }
 343}
 344
 345/* Find addressing table entry based on the device's type and density */
 346static const struct lpddr2_addressing *get_addressing_table(
 347        const struct ddr_device_info *device_info)
 348{
 349        u32             index, type, density;
 350
 351        type = device_info->type;
 352        density = device_info->density;
 353
 354        switch (type) {
 355        case DDR_TYPE_LPDDR2_S4:
 356                index = density - 1;
 357                break;
 358        case DDR_TYPE_LPDDR2_S2:
 359                switch (density) {
 360                case DDR_DENSITY_1Gb:
 361                case DDR_DENSITY_2Gb:
 362                        index = density + 3;
 363                        break;
 364                default:
 365                        index = density - 1;
 366                }
 367                break;
 368        default:
 369                return NULL;
 370        }
 371
 372        return &lpddr2_jedec_addressing_table[index];
 373}
 374
 375/*
 376 * Find the the right timing table from the array of timing
 377 * tables of the device using DDR clock frequency
 378 */
 379static const struct lpddr2_timings *get_timings_table(struct emif_data *emif,
 380                u32 freq)
 381{
 382        u32                             i, min, max, freq_nearest;
 383        const struct lpddr2_timings     *timings = NULL;
 384        const struct lpddr2_timings     *timings_arr = emif->plat_data->timings;
 385        struct                          device *dev = emif->dev;
 386
 387        /* Start with a very high frequency - 1GHz */
 388        freq_nearest = 1000000000;
 389
 390        /*
 391         * Find the timings table such that:
 392         *  1. the frequency range covers the required frequency(safe) AND
 393         *  2. the max_freq is closest to the required frequency(optimal)
 394         */
 395        for (i = 0; i < emif->plat_data->timings_arr_size; i++) {
 396                max = timings_arr[i].max_freq;
 397                min = timings_arr[i].min_freq;
 398                if ((freq >= min) && (freq <= max) && (max < freq_nearest)) {
 399                        freq_nearest = max;
 400                        timings = &timings_arr[i];
 401                }
 402        }
 403
 404        if (!timings)
 405                dev_err(dev, "%s: couldn't find timings for - %dHz\n",
 406                        __func__, freq);
 407
 408        dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n",
 409                __func__, freq, freq_nearest);
 410
 411        return timings;
 412}
 413
 414static u32 get_sdram_ref_ctrl_shdw(u32 freq,
 415                const struct lpddr2_addressing *addressing)
 416{
 417        u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi;
 418
 419        /* Scale down frequency and t_refi to avoid overflow */
 420        freq_khz = freq / 1000;
 421        t_refi = addressing->tREFI_ns / 100;
 422
 423        /*
 424         * refresh rate to be set is 'tREFI(in us) * freq in MHz
 425         * division by 10000 to account for change in units
 426         */
 427        val = t_refi * freq_khz / 10000;
 428        ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT;
 429
 430        return ref_ctrl_shdw;
 431}
 432
 433static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings,
 434                const struct lpddr2_min_tck *min_tck,
 435                const struct lpddr2_addressing *addressing)
 436{
 437        u32 tim1 = 0, val = 0;
 438
 439        val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
 440        tim1 |= val << T_WTR_SHIFT;
 441
 442        if (addressing->num_banks == B8)
 443                val = DIV_ROUND_UP(timings->tFAW, t_ck*4);
 444        else
 445                val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck));
 446        tim1 |= (val - 1) << T_RRD_SHIFT;
 447
 448        val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1;
 449        tim1 |= val << T_RC_SHIFT;
 450
 451        val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck));
 452        tim1 |= (val - 1) << T_RAS_SHIFT;
 453
 454        val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
 455        tim1 |= val << T_WR_SHIFT;
 456
 457        val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1;
 458        tim1 |= val << T_RCD_SHIFT;
 459
 460        val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1;
 461        tim1 |= val << T_RP_SHIFT;
 462
 463        return tim1;
 464}
 465
 466static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings,
 467                const struct lpddr2_min_tck *min_tck,
 468                const struct lpddr2_addressing *addressing)
 469{
 470        u32 tim1 = 0, val = 0;
 471
 472        val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
 473        tim1 = val << T_WTR_SHIFT;
 474
 475        /*
 476         * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps
 477         * to tFAW for de-rating
 478         */
 479        if (addressing->num_banks == B8) {
 480                val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1;
 481        } else {
 482                val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck);
 483                val = max(min_tck->tRRD, val) - 1;
 484        }
 485        tim1 |= val << T_RRD_SHIFT;
 486
 487        val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck);
 488        tim1 |= (val - 1) << T_RC_SHIFT;
 489
 490        val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck);
 491        val = max(min_tck->tRASmin, val) - 1;
 492        tim1 |= val << T_RAS_SHIFT;
 493
 494        val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
 495        tim1 |= val << T_WR_SHIFT;
 496
 497        val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck));
 498        tim1 |= (val - 1) << T_RCD_SHIFT;
 499
 500        val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck));
 501        tim1 |= (val - 1) << T_RP_SHIFT;
 502
 503        return tim1;
 504}
 505
 506static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings,
 507                const struct lpddr2_min_tck *min_tck,
 508                const struct lpddr2_addressing *addressing,
 509                u32 type)
 510{
 511        u32 tim2 = 0, val = 0;
 512
 513        val = min_tck->tCKE - 1;
 514        tim2 |= val << T_CKE_SHIFT;
 515
 516        val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1;
 517        tim2 |= val << T_RTP_SHIFT;
 518
 519        /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */
 520        val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1;
 521        tim2 |= val << T_XSNR_SHIFT;
 522
 523        /* XSRD same as XSNR for LPDDR2 */
 524        tim2 |= val << T_XSRD_SHIFT;
 525
 526        val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1;
 527        tim2 |= val << T_XP_SHIFT;
 528
 529        return tim2;
 530}
 531
 532static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings,
 533                const struct lpddr2_min_tck *min_tck,
 534                const struct lpddr2_addressing *addressing,
 535                u32 type, u32 ip_rev, u32 derated)
 536{
 537        u32 tim3 = 0, val = 0, t_dqsck;
 538
 539        val = timings->tRAS_max_ns / addressing->tREFI_ns - 1;
 540        val = val > 0xF ? 0xF : val;
 541        tim3 |= val << T_RAS_MAX_SHIFT;
 542
 543        val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1;
 544        tim3 |= val << T_RFC_SHIFT;
 545
 546        t_dqsck = (derated == EMIF_DERATED_TIMINGS) ?
 547                timings->tDQSCK_max_derated : timings->tDQSCK_max;
 548        if (ip_rev == EMIF_4D5)
 549                val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1;
 550        else
 551                val = DIV_ROUND_UP(t_dqsck, t_ck) - 1;
 552
 553        tim3 |= val << T_TDQSCKMAX_SHIFT;
 554
 555        val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1;
 556        tim3 |= val << ZQ_ZQCS_SHIFT;
 557
 558        val = DIV_ROUND_UP(timings->tCKESR, t_ck);
 559        val = max(min_tck->tCKESR, val) - 1;
 560        tim3 |= val << T_CKESR_SHIFT;
 561
 562        if (ip_rev == EMIF_4D5) {
 563                tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT;
 564
 565                val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1;
 566                tim3 |= val << T_PDLL_UL_SHIFT;
 567        }
 568
 569        return tim3;
 570}
 571
 572static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
 573                bool cs1_used, bool cal_resistors_per_cs)
 574{
 575        u32 zq = 0, val = 0;
 576
 577        val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
 578        zq |= val << ZQ_REFINTERVAL_SHIFT;
 579
 580        val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
 581        zq |= val << ZQ_ZQCL_MULT_SHIFT;
 582
 583        val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
 584        zq |= val << ZQ_ZQINIT_MULT_SHIFT;
 585
 586        zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;
 587
 588        if (cal_resistors_per_cs)
 589                zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
 590        else
 591                zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;
 592
 593        zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */
 594
 595        val = cs1_used ? 1 : 0;
 596        zq |= val << ZQ_CS1EN_SHIFT;
 597
 598        return zq;
 599}
 600
 601static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
 602                const struct emif_custom_configs *custom_configs, bool cs1_used,
 603                u32 sdram_io_width, u32 emif_bus_width)
 604{
 605        u32 alert = 0, interval, devcnt;
 606
 607        if (custom_configs && (custom_configs->mask &
 608                                EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
 609                interval = custom_configs->temp_alert_poll_interval_ms;
 610        else
 611                interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;
 612
 613        interval *= 1000000;                    /* Convert to ns */
 614        interval /= addressing->tREFI_ns;       /* Convert to refresh cycles */
 615        alert |= (interval << TA_REFINTERVAL_SHIFT);
 616
 617        /*
 618         * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
 619         * also to this form and subtract to get TA_DEVCNT, which is
 620         * in log2(x) form.
 621         */
 622        emif_bus_width = __fls(emif_bus_width) - 1;
 623        devcnt = emif_bus_width - sdram_io_width;
 624        alert |= devcnt << TA_DEVCNT_SHIFT;
 625
 626        /* DEVWDT is in 'log2(x) - 3' form */
 627        alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
 628
 629        alert |= 1 << TA_SFEXITEN_SHIFT;
 630        alert |= 1 << TA_CS0EN_SHIFT;
 631        alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
 632
 633        return alert;
 634}
 635
 636static u32 get_read_idle_ctrl_shdw(u8 volt_ramp)
 637{
 638        u32 idle = 0, val = 0;
 639
 640        /*
 641         * Maximum value in normal conditions and increased frequency
 642         * when voltage is ramping
 643         */
 644        if (volt_ramp)
 645                val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1;
 646        else
 647                val = 0x1FF;
 648
 649        /*
 650         * READ_IDLE_CTRL register in EMIF4D has same offset and fields
 651         * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts
 652         */
 653        idle |= val << DLL_CALIB_INTERVAL_SHIFT;
 654        idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT;
 655
 656        return idle;
 657}
 658
 659static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp)
 660{
 661        u32 calib = 0, val = 0;
 662
 663        if (volt_ramp == DDR_VOLTAGE_RAMPING)
 664                val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1;
 665        else
 666                val = 0; /* Disabled when voltage is stable */
 667
 668        calib |= val << DLL_CALIB_INTERVAL_SHIFT;
 669        calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT;
 670
 671        return calib;
 672}
 673
 674static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings,
 675        u32 freq, u8 RL)
 676{
 677        u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0;
 678
 679        val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1;
 680        phy |= val << READ_LATENCY_SHIFT_4D;
 681
 682        if (freq <= 100000000)
 683                val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY;
 684        else if (freq <= 200000000)
 685                val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY;
 686        else
 687                val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY;
 688
 689        phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D;
 690
 691        return phy;
 692}
 693
 694static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl)
 695{
 696        u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay;
 697
 698        /*
 699         * DLL operates at 266 MHz. If DDR frequency is near 266 MHz,
 700         * half-delay is not needed else set half-delay
 701         */
 702        if (freq >= 265000000 && freq < 267000000)
 703                half_delay = 0;
 704        else
 705                half_delay = 1;
 706
 707        phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5;
 708        phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS,
 709                        t_ck) - 1) << READ_LATENCY_SHIFT_4D5);
 710
 711        return phy;
 712}
 713
 714static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void)
 715{
 716        u32 fifo_we_slave_ratio;
 717
 718        fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
 719                EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
 720
 721        return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 |
 722                fifo_we_slave_ratio << 22;
 723}
 724
 725static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void)
 726{
 727        u32 fifo_we_slave_ratio;
 728
 729        fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
 730                EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
 731
 732        return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 |
 733                fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23;
 734}
 735
 736static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void)
 737{
 738        u32 fifo_we_slave_ratio;
 739
 740        fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
 741                EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
 742
 743        return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 |
 744                fifo_we_slave_ratio << 13;
 745}
 746
 747static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
 748{
 749        u32 pwr_mgmt_ctrl       = 0, timeout;
 750        u32 lpmode              = EMIF_LP_MODE_SELF_REFRESH;
 751        u32 timeout_perf        = EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
 752        u32 timeout_pwr         = EMIF_LP_MODE_TIMEOUT_POWER;
 753        u32 freq_threshold      = EMIF_LP_MODE_FREQ_THRESHOLD;
 754        u32 mask;
 755        u8 shift;
 756
 757        struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
 758
 759        if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
 760                lpmode          = cust_cfgs->lpmode;
 761                timeout_perf    = cust_cfgs->lpmode_timeout_performance;
 762                timeout_pwr     = cust_cfgs->lpmode_timeout_power;
 763                freq_threshold  = cust_cfgs->lpmode_freq_threshold;
 764        }
 765
 766        /* Timeout based on DDR frequency */
 767        timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
 768
 769        /*
 770         * The value to be set in register is "log2(timeout) - 3"
 771         * if timeout < 16 load 0 in register
 772         * if timeout is not a power of 2, round to next highest power of 2
 773         */
 774        if (timeout < 16) {
 775                timeout = 0;
 776        } else {
 777                if (timeout & (timeout - 1))
 778                        timeout <<= 1;
 779                timeout = __fls(timeout) - 3;
 780        }
 781
 782        switch (lpmode) {
 783        case EMIF_LP_MODE_CLOCK_STOP:
 784                shift = CS_TIM_SHIFT;
 785                mask = CS_TIM_MASK;
 786                break;
 787        case EMIF_LP_MODE_SELF_REFRESH:
 788                /* Workaround for errata i735 */
 789                if (timeout < 6)
 790                        timeout = 6;
 791
 792                shift = SR_TIM_SHIFT;
 793                mask = SR_TIM_MASK;
 794                break;
 795        case EMIF_LP_MODE_PWR_DN:
 796                shift = PD_TIM_SHIFT;
 797                mask = PD_TIM_MASK;
 798                break;
 799        case EMIF_LP_MODE_DISABLE:
 800        default:
 801                mask = 0;
 802                shift = 0;
 803                break;
 804        }
 805        /* Round to maximum in case of overflow, BUT warn! */
 806        if (lpmode != EMIF_LP_MODE_DISABLE && timeout > mask >> shift) {
 807                pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n",
 808                       lpmode,
 809                       timeout_perf,
 810                       timeout_pwr,
 811                       freq_threshold);
 812                WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n",
 813                     timeout, mask >> shift);
 814                timeout = mask >> shift;
 815        }
 816
 817        /* Setup required timing */
 818        pwr_mgmt_ctrl = (timeout << shift) & mask;
 819        /* setup a default mask for rest of the modes */
 820        pwr_mgmt_ctrl |= (SR_TIM_MASK | CS_TIM_MASK | PD_TIM_MASK) &
 821                          ~mask;
 822
 823        /* No CS_TIM in EMIF_4D5 */
 824        if (ip_rev == EMIF_4D5)
 825                pwr_mgmt_ctrl &= ~CS_TIM_MASK;
 826
 827        pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
 828
 829        return pwr_mgmt_ctrl;
 830}
 831
 832/*
 833 * Get the temperature level of the EMIF instance:
 834 * Reads the MR4 register of attached SDRAM parts to find out the temperature
 835 * level. If there are two parts attached(one on each CS), then the temperature
 836 * level for the EMIF instance is the higher of the two temperatures.
 837 */
 838static void get_temperature_level(struct emif_data *emif)
 839{
 840        u32             temp, temperature_level;
 841        void __iomem    *base;
 842
 843        base = emif->base;
 844
 845        /* Read mode register 4 */
 846        writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
 847        temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
 848        temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
 849                                MR4_SDRAM_REF_RATE_SHIFT;
 850
 851        if (emif->plat_data->device_info->cs1_used) {
 852                writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
 853                temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
 854                temp = (temp & MR4_SDRAM_REF_RATE_MASK)
 855                                >> MR4_SDRAM_REF_RATE_SHIFT;
 856                temperature_level = max(temp, temperature_level);
 857        }
 858
 859        /* treat everything less than nominal(3) in MR4 as nominal */
 860        if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
 861                temperature_level = SDRAM_TEMP_NOMINAL;
 862
 863        /* if we get reserved value in MR4 persist with the existing value */
 864        if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
 865                emif->temperature_level = temperature_level;
 866}
 867
 868/*
 869 * Program EMIF shadow registers that are not dependent on temperature
 870 * or voltage
 871 */
 872static void setup_registers(struct emif_data *emif, struct emif_regs *regs)
 873{
 874        void __iomem    *base = emif->base;
 875
 876        writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW);
 877        writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW);
 878        writel(regs->pwr_mgmt_ctrl_shdw,
 879               base + EMIF_POWER_MANAGEMENT_CTRL_SHDW);
 880
 881        /* Settings specific for EMIF4D5 */
 882        if (emif->plat_data->ip_rev != EMIF_4D5)
 883                return;
 884        writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW);
 885        writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW);
 886        writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW);
 887}
 888
 889/*
 890 * When voltage ramps dll calibration and forced read idle should
 891 * happen more often
 892 */
 893static void setup_volt_sensitive_regs(struct emif_data *emif,
 894                struct emif_regs *regs, u32 volt_state)
 895{
 896        u32             calib_ctrl;
 897        void __iomem    *base = emif->base;
 898
 899        /*
 900         * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as
 901         * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_*
 902         * is an alias of the respective read_idle_ctrl_shdw_* (members of
 903         * a union). So, the below code takes care of both cases
 904         */
 905        if (volt_state == DDR_VOLTAGE_RAMPING)
 906                calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp;
 907        else
 908                calib_ctrl = regs->dll_calib_ctrl_shdw_normal;
 909
 910        writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW);
 911}
 912
 913/*
 914 * setup_temperature_sensitive_regs() - set the timings for temperature
 915 * sensitive registers. This happens once at initialisation time based
 916 * on the temperature at boot time and subsequently based on the temperature
 917 * alert interrupt. Temperature alert can happen when the temperature
 918 * increases or drops. So this function can have the effect of either
 919 * derating the timings or going back to nominal values.
 920 */
 921static void setup_temperature_sensitive_regs(struct emif_data *emif,
 922                struct emif_regs *regs)
 923{
 924        u32             tim1, tim3, ref_ctrl, type;
 925        void __iomem    *base = emif->base;
 926        u32             temperature;
 927
 928        type = emif->plat_data->device_info->type;
 929
 930        tim1 = regs->sdram_tim1_shdw;
 931        tim3 = regs->sdram_tim3_shdw;
 932        ref_ctrl = regs->ref_ctrl_shdw;
 933
 934        /* No de-rating for non-lpddr2 devices */
 935        if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
 936                goto out;
 937
 938        temperature = emif->temperature_level;
 939        if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
 940                ref_ctrl = regs->ref_ctrl_shdw_derated;
 941        } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
 942                tim1 = regs->sdram_tim1_shdw_derated;
 943                tim3 = regs->sdram_tim3_shdw_derated;
 944                ref_ctrl = regs->ref_ctrl_shdw_derated;
 945        }
 946
 947out:
 948        writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
 949        writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
 950        writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
 951}
 952
 953static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
 954{
 955        u32             old_temp_level;
 956        irqreturn_t     ret = IRQ_HANDLED;
 957        struct emif_custom_configs *custom_configs;
 958
 959        spin_lock_irqsave(&emif_lock, irq_state);
 960        old_temp_level = emif->temperature_level;
 961        get_temperature_level(emif);
 962
 963        if (unlikely(emif->temperature_level == old_temp_level)) {
 964                goto out;
 965        } else if (!emif->curr_regs) {
 966                dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
 967                goto out;
 968        }
 969
 970        custom_configs = emif->plat_data->custom_configs;
 971
 972        /*
 973         * IF we detect higher than "nominal rating" from DDR sensor
 974         * on an unsupported DDR part, shutdown system
 975         */
 976        if (custom_configs && !(custom_configs->mask &
 977                                EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART)) {
 978                if (emif->temperature_level >= SDRAM_TEMP_HIGH_DERATE_REFRESH) {
 979                        dev_err(emif->dev,
 980                                "%s:NOT Extended temperature capable memory."
 981                                "Converting MR4=0x%02x as shutdown event\n",
 982                                __func__, emif->temperature_level);
 983                        /*
 984                         * Temperature far too high - do kernel_power_off()
 985                         * from thread context
 986                         */
 987                        emif->temperature_level = SDRAM_TEMP_VERY_HIGH_SHUTDOWN;
 988                        ret = IRQ_WAKE_THREAD;
 989                        goto out;
 990                }
 991        }
 992
 993        if (emif->temperature_level < old_temp_level ||
 994                emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
 995                /*
 996                 * Temperature coming down - defer handling to thread OR
 997                 * Temperature far too high - do kernel_power_off() from
 998                 * thread context
 999                 */
1000                ret = IRQ_WAKE_THREAD;
1001        } else {
1002                /* Temperature is going up - handle immediately */
1003                setup_temperature_sensitive_regs(emif, emif->curr_regs);
1004                do_freq_update();
1005        }
1006
1007out:
1008        spin_unlock_irqrestore(&emif_lock, irq_state);
1009        return ret;
1010}
1011
1012static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
1013{
1014        u32                     interrupts;
1015        struct emif_data        *emif = dev_id;
1016        void __iomem            *base = emif->base;
1017        struct device           *dev = emif->dev;
1018        irqreturn_t             ret = IRQ_HANDLED;
1019
1020        /* Save the status and clear it */
1021        interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1022        writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1023
1024        /*
1025         * Handle temperature alert
1026         * Temperature alert should be same for all ports
1027         * So, it's enough to process it only for one of the ports
1028         */
1029        if (interrupts & TA_SYS_MASK)
1030                ret = handle_temp_alert(base, emif);
1031
1032        if (interrupts & ERR_SYS_MASK)
1033                dev_err(dev, "Access error from SYS port - %x\n", interrupts);
1034
1035        if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1036                /* Save the status and clear it */
1037                interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
1038                writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
1039
1040                if (interrupts & ERR_LL_MASK)
1041                        dev_err(dev, "Access error from LL port - %x\n",
1042                                interrupts);
1043        }
1044
1045        return ret;
1046}
1047
1048static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
1049{
1050        struct emif_data        *emif = dev_id;
1051
1052        if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
1053                dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1054
1055                /* If we have Power OFF ability, use it, else try restarting */
1056                if (pm_power_off) {
1057                        kernel_power_off();
1058                } else {
1059                        WARN(1, "FIXME: NO pm_power_off!!! trying restart\n");
1060                        kernel_restart("SDRAM Over-temp Emergency restart");
1061                }
1062                return IRQ_HANDLED;
1063        }
1064
1065        spin_lock_irqsave(&emif_lock, irq_state);
1066
1067        if (emif->curr_regs) {
1068                setup_temperature_sensitive_regs(emif, emif->curr_regs);
1069                do_freq_update();
1070        } else {
1071                dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
1072        }
1073
1074        spin_unlock_irqrestore(&emif_lock, irq_state);
1075
1076        return IRQ_HANDLED;
1077}
1078
1079static void clear_all_interrupts(struct emif_data *emif)
1080{
1081        void __iomem    *base = emif->base;
1082
1083        writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
1084                base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1085        if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1086                writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
1087                        base + EMIF_LL_OCP_INTERRUPT_STATUS);
1088}
1089
1090static void disable_and_clear_all_interrupts(struct emif_data *emif)
1091{
1092        void __iomem            *base = emif->base;
1093
1094        /* Disable all interrupts */
1095        writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
1096                base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
1097        if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1098                writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
1099                        base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);
1100
1101        /* Clear all interrupts */
1102        clear_all_interrupts(emif);
1103}
1104
1105static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq)
1106{
1107        u32             interrupts, type;
1108        void __iomem    *base = emif->base;
1109
1110        type = emif->plat_data->device_info->type;
1111
1112        clear_all_interrupts(emif);
1113
1114        /* Enable interrupts for SYS interface */
1115        interrupts = EN_ERR_SYS_MASK;
1116        if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
1117                interrupts |= EN_TA_SYS_MASK;
1118        writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
1119
1120        /* Enable interrupts for LL interface */
1121        if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1122                /* TA need not be enabled for LL */
1123                interrupts = EN_ERR_LL_MASK;
1124                writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
1125        }
1126
1127        /* setup IRQ handlers */
1128        return devm_request_threaded_irq(emif->dev, irq,
1129                                    emif_interrupt_handler,
1130                                    emif_threaded_isr,
1131                                    0, dev_name(emif->dev),
1132                                    emif);
1133
1134}
1135
1136static void __init_or_module emif_onetime_settings(struct emif_data *emif)
1137{
1138        u32                             pwr_mgmt_ctrl, zq, temp_alert_cfg;
1139        void __iomem                    *base = emif->base;
1140        const struct lpddr2_addressing  *addressing;
1141        const struct ddr_device_info    *device_info;
1142
1143        device_info = emif->plat_data->device_info;
1144        addressing = get_addressing_table(device_info);
1145
1146        /*
1147         * Init power management settings
1148         * We don't know the frequency yet. Use a high frequency
1149         * value for a conservative timeout setting
1150         */
1151        pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
1152                        emif->plat_data->ip_rev);
1153        emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
1154        writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
1155
1156        /* Init ZQ calibration settings */
1157        zq = get_zq_config_reg(addressing, device_info->cs1_used,
1158                device_info->cal_resistors_per_cs);
1159        writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);
1160
1161        /* Check temperature level temperature level*/
1162        get_temperature_level(emif);
1163        if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
1164                dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1165
1166        /* Init temperature polling */
1167        temp_alert_cfg = get_temp_alert_config(addressing,
1168                emif->plat_data->custom_configs, device_info->cs1_used,
1169                device_info->io_width, get_emif_bus_width(emif));
1170        writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
1171
1172        /*
1173         * Program external PHY control registers that are not frequency
1174         * dependent
1175         */
1176        if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
1177                return;
1178        writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
1179        writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
1180        writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
1181        writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
1182        writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
1183        writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
1184        writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
1185        writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
1186        writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
1187        writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
1188        writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
1189        writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
1190        writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
1191        writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
1192        writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
1193        writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
1194        writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
1195        writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
1196        writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
1197        writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
1198        writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
1199}
1200
1201static void get_default_timings(struct emif_data *emif)
1202{
1203        struct emif_platform_data *pd = emif->plat_data;
1204
1205        pd->timings             = lpddr2_jedec_timings;
1206        pd->timings_arr_size    = ARRAY_SIZE(lpddr2_jedec_timings);
1207
1208        dev_warn(emif->dev, "%s: using default timings\n", __func__);
1209}
1210
1211static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
1212                u32 ip_rev, struct device *dev)
1213{
1214        int valid;
1215
1216        valid = (type == DDR_TYPE_LPDDR2_S4 ||
1217                        type == DDR_TYPE_LPDDR2_S2)
1218                && (density >= DDR_DENSITY_64Mb
1219                        && density <= DDR_DENSITY_8Gb)
1220                && (io_width >= DDR_IO_WIDTH_8
1221                        && io_width <= DDR_IO_WIDTH_32);
1222
1223        /* Combinations of EMIF and PHY revisions that we support today */
1224        switch (ip_rev) {
1225        case EMIF_4D:
1226                valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
1227                break;
1228        case EMIF_4D5:
1229                valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
1230                break;
1231        default:
1232                valid = 0;
1233        }
1234
1235        if (!valid)
1236                dev_err(dev, "%s: invalid DDR details\n", __func__);
1237        return valid;
1238}
1239
1240static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
1241                struct device *dev)
1242{
1243        int valid = 1;
1244
1245        if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
1246                (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
1247                valid = cust_cfgs->lpmode_freq_threshold &&
1248                        cust_cfgs->lpmode_timeout_performance &&
1249                        cust_cfgs->lpmode_timeout_power;
1250
1251        if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
1252                valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
1253
1254        if (!valid)
1255                dev_warn(dev, "%s: invalid custom configs\n", __func__);
1256
1257        return valid;
1258}
1259
1260#if defined(CONFIG_OF)
1261static void __init_or_module of_get_custom_configs(struct device_node *np_emif,
1262                struct emif_data *emif)
1263{
1264        struct emif_custom_configs      *cust_cfgs = NULL;
1265        int                             len;
1266        const __be32                    *lpmode, *poll_intvl;
1267
1268        lpmode = of_get_property(np_emif, "low-power-mode", &len);
1269        poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len);
1270
1271        if (lpmode || poll_intvl)
1272                cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs),
1273                        GFP_KERNEL);
1274
1275        if (!cust_cfgs)
1276                return;
1277
1278        if (lpmode) {
1279                cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE;
1280                cust_cfgs->lpmode = be32_to_cpup(lpmode);
1281                of_property_read_u32(np_emif,
1282                                "low-power-mode-timeout-performance",
1283                                &cust_cfgs->lpmode_timeout_performance);
1284                of_property_read_u32(np_emif,
1285                                "low-power-mode-timeout-power",
1286                                &cust_cfgs->lpmode_timeout_power);
1287                of_property_read_u32(np_emif,
1288                                "low-power-mode-freq-threshold",
1289                                &cust_cfgs->lpmode_freq_threshold);
1290        }
1291
1292        if (poll_intvl) {
1293                cust_cfgs->mask |=
1294                                EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL;
1295                cust_cfgs->temp_alert_poll_interval_ms =
1296                                                be32_to_cpup(poll_intvl);
1297        }
1298
1299        if (of_find_property(np_emif, "extended-temp-part", &len))
1300                cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART;
1301
1302        if (!is_custom_config_valid(cust_cfgs, emif->dev)) {
1303                devm_kfree(emif->dev, cust_cfgs);
1304                return;
1305        }
1306
1307        emif->plat_data->custom_configs = cust_cfgs;
1308}
1309
1310static void __init_or_module of_get_ddr_info(struct device_node *np_emif,
1311                struct device_node *np_ddr,
1312                struct ddr_device_info *dev_info)
1313{
1314        u32 density = 0, io_width = 0;
1315        int len;
1316
1317        if (of_find_property(np_emif, "cs1-used", &len))
1318                dev_info->cs1_used = true;
1319
1320        if (of_find_property(np_emif, "cal-resistor-per-cs", &len))
1321                dev_info->cal_resistors_per_cs = true;
1322
1323        if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s4"))
1324                dev_info->type = DDR_TYPE_LPDDR2_S4;
1325        else if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s2"))
1326                dev_info->type = DDR_TYPE_LPDDR2_S2;
1327
1328        of_property_read_u32(np_ddr, "density", &density);
1329        of_property_read_u32(np_ddr, "io-width", &io_width);
1330
1331        /* Convert from density in Mb to the density encoding in jedc_ddr.h */
1332        if (density & (density - 1))
1333                dev_info->density = 0;
1334        else
1335                dev_info->density = __fls(density) - 5;
1336
1337        /* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
1338        if (io_width & (io_width - 1))
1339                dev_info->io_width = 0;
1340        else
1341                dev_info->io_width = __fls(io_width) - 1;
1342}
1343
1344static struct emif_data * __init_or_module of_get_memory_device_details(
1345                struct device_node *np_emif, struct device *dev)
1346{
1347        struct emif_data                *emif = NULL;
1348        struct ddr_device_info          *dev_info = NULL;
1349        struct emif_platform_data       *pd = NULL;
1350        struct device_node              *np_ddr;
1351        int                             len;
1352
1353        np_ddr = of_parse_phandle(np_emif, "device-handle", 0);
1354        if (!np_ddr)
1355                goto error;
1356        emif    = devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL);
1357        pd      = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1358        dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1359
1360        if (!emif || !pd || !dev_info) {
1361                dev_err(dev, "%s: Out of memory!!\n",
1362                        __func__);
1363                goto error;
1364        }
1365
1366        emif->plat_data         = pd;
1367        pd->device_info         = dev_info;
1368        emif->dev               = dev;
1369        emif->np_ddr            = np_ddr;
1370        emif->temperature_level = SDRAM_TEMP_NOMINAL;
1371
1372        if (of_device_is_compatible(np_emif, "ti,emif-4d"))
1373                emif->plat_data->ip_rev = EMIF_4D;
1374        else if (of_device_is_compatible(np_emif, "ti,emif-4d5"))
1375                emif->plat_data->ip_rev = EMIF_4D5;
1376
1377        of_property_read_u32(np_emif, "phy-type", &pd->phy_type);
1378
1379        if (of_find_property(np_emif, "hw-caps-ll-interface", &len))
1380                pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE;
1381
1382        of_get_ddr_info(np_emif, np_ddr, dev_info);
1383        if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density,
1384                        pd->device_info->io_width, pd->phy_type, pd->ip_rev,
1385                        emif->dev)) {
1386                dev_err(dev, "%s: invalid device data!!\n", __func__);
1387                goto error;
1388        }
1389        /*
1390         * For EMIF instances other than EMIF1 see if the devices connected
1391         * are exactly same as on EMIF1(which is typically the case). If so,
1392         * mark it as a duplicate of EMIF1. This will save some memory and
1393         * computation.
1394         */
1395        if (emif1 && emif1->np_ddr == np_ddr) {
1396                emif->duplicate = true;
1397                goto out;
1398        } else if (emif1) {
1399                dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1400                        __func__);
1401        }
1402
1403        of_get_custom_configs(np_emif, emif);
1404        emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev,
1405                                        emif->plat_data->device_info->type,
1406                                        &emif->plat_data->timings_arr_size);
1407
1408        emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev);
1409        goto out;
1410
1411error:
1412        return NULL;
1413out:
1414        return emif;
1415}
1416
1417#else
1418
1419static struct emif_data * __init_or_module of_get_memory_device_details(
1420                struct device_node *np_emif, struct device *dev)
1421{
1422        return NULL;
1423}
1424#endif
1425
1426static struct emif_data *__init_or_module get_device_details(
1427                struct platform_device *pdev)
1428{
1429        u32                             size;
1430        struct emif_data                *emif = NULL;
1431        struct ddr_device_info          *dev_info;
1432        struct emif_custom_configs      *cust_cfgs;
1433        struct emif_platform_data       *pd;
1434        struct device                   *dev;
1435        void                            *temp;
1436
1437        pd = pdev->dev.platform_data;
1438        dev = &pdev->dev;
1439
1440        if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
1441                        pd->device_info->density, pd->device_info->io_width,
1442                        pd->phy_type, pd->ip_rev, dev))) {
1443                dev_err(dev, "%s: invalid device data\n", __func__);
1444                goto error;
1445        }
1446
1447        emif    = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
1448        temp    = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1449        dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1450
1451        if (!emif || !pd || !dev_info) {
1452                dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__);
1453                goto error;
1454        }
1455
1456        memcpy(temp, pd, sizeof(*pd));
1457        pd = temp;
1458        memcpy(dev_info, pd->device_info, sizeof(*dev_info));
1459
1460        pd->device_info         = dev_info;
1461        emif->plat_data         = pd;
1462        emif->dev               = dev;
1463        emif->temperature_level = SDRAM_TEMP_NOMINAL;
1464
1465        /*
1466         * For EMIF instances other than EMIF1 see if the devices connected
1467         * are exactly same as on EMIF1(which is typically the case). If so,
1468         * mark it as a duplicate of EMIF1 and skip copying timings data.
1469         * This will save some memory and some computation later.
1470         */
1471        emif->duplicate = emif1 && (memcmp(dev_info,
1472                emif1->plat_data->device_info,
1473                sizeof(struct ddr_device_info)) == 0);
1474
1475        if (emif->duplicate) {
1476                pd->timings = NULL;
1477                pd->min_tck = NULL;
1478                goto out;
1479        } else if (emif1) {
1480                dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1481                        __func__);
1482        }
1483
1484        /*
1485         * Copy custom configs - ignore allocation error, if any, as
1486         * custom_configs is not very critical
1487         */
1488        cust_cfgs = pd->custom_configs;
1489        if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
1490                temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
1491                if (temp)
1492                        memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
1493                else
1494                        dev_warn(dev, "%s:%d: allocation error\n", __func__,
1495                                __LINE__);
1496                pd->custom_configs = temp;
1497        }
1498
1499        /*
1500         * Copy timings and min-tck values from platform data. If it is not
1501         * available or if memory allocation fails, use JEDEC defaults
1502         */
1503        size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
1504        if (pd->timings) {
1505                temp = devm_kzalloc(dev, size, GFP_KERNEL);
1506                if (temp) {
1507                        memcpy(temp, pd->timings, size);
1508                        pd->timings = temp;
1509                } else {
1510                        dev_warn(dev, "%s:%d: allocation error\n", __func__,
1511                                __LINE__);
1512                        get_default_timings(emif);
1513                }
1514        } else {
1515                get_default_timings(emif);
1516        }
1517
1518        if (pd->min_tck) {
1519                temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
1520                if (temp) {
1521                        memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
1522                        pd->min_tck = temp;
1523                } else {
1524                        dev_warn(dev, "%s:%d: allocation error\n", __func__,
1525                                __LINE__);
1526                        pd->min_tck = &lpddr2_jedec_min_tck;
1527                }
1528        } else {
1529                pd->min_tck = &lpddr2_jedec_min_tck;
1530        }
1531
1532out:
1533        return emif;
1534
1535error:
1536        return NULL;
1537}
1538
1539static int __init_or_module emif_probe(struct platform_device *pdev)
1540{
1541        struct emif_data        *emif;
1542        struct resource         *res;
1543        int                     irq;
1544
1545        if (pdev->dev.of_node)
1546                emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev);
1547        else
1548                emif = get_device_details(pdev);
1549
1550        if (!emif) {
1551                pr_err("%s: error getting device data\n", __func__);
1552                goto error;
1553        }
1554
1555        list_add(&emif->node, &device_list);
1556        emif->addressing = get_addressing_table(emif->plat_data->device_info);
1557
1558        /* Save pointers to each other in emif and device structures */
1559        emif->dev = &pdev->dev;
1560        platform_set_drvdata(pdev, emif);
1561
1562        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1563        emif->base = devm_ioremap_resource(emif->dev, res);
1564        if (IS_ERR(emif->base))
1565                goto error;
1566
1567        irq = platform_get_irq(pdev, 0);
1568        if (irq < 0) {
1569                dev_err(emif->dev, "%s: error getting IRQ resource - %d\n",
1570                        __func__, irq);
1571                goto error;
1572        }
1573
1574        emif_onetime_settings(emif);
1575        emif_debugfs_init(emif);
1576        disable_and_clear_all_interrupts(emif);
1577        setup_interrupts(emif, irq);
1578
1579        /* One-time actions taken on probing the first device */
1580        if (!emif1) {
1581                emif1 = emif;
1582                spin_lock_init(&emif_lock);
1583
1584                /*
1585                 * TODO: register notifiers for frequency and voltage
1586                 * change here once the respective frameworks are
1587                 * available
1588                 */
1589        }
1590
1591        dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
1592                __func__, emif->base, irq);
1593
1594        return 0;
1595error:
1596        return -ENODEV;
1597}
1598
1599static int __exit emif_remove(struct platform_device *pdev)
1600{
1601        struct emif_data *emif = platform_get_drvdata(pdev);
1602
1603        emif_debugfs_exit(emif);
1604
1605        return 0;
1606}
1607
1608static void emif_shutdown(struct platform_device *pdev)
1609{
1610        struct emif_data        *emif = platform_get_drvdata(pdev);
1611
1612        disable_and_clear_all_interrupts(emif);
1613}
1614
1615static int get_emif_reg_values(struct emif_data *emif, u32 freq,
1616                struct emif_regs *regs)
1617{
1618        u32                             cs1_used, ip_rev, phy_type;
1619        u32                             cl, type;
1620        const struct lpddr2_timings     *timings;
1621        const struct lpddr2_min_tck     *min_tck;
1622        const struct ddr_device_info    *device_info;
1623        const struct lpddr2_addressing  *addressing;
1624        struct emif_data                *emif_for_calc;
1625        struct device                   *dev;
1626        const struct emif_custom_configs *custom_configs;
1627
1628        dev = emif->dev;
1629        /*
1630         * If the devices on this EMIF instance is duplicate of EMIF1,
1631         * use EMIF1 details for the calculation
1632         */
1633        emif_for_calc   = emif->duplicate ? emif1 : emif;
1634        timings         = get_timings_table(emif_for_calc, freq);
1635        addressing      = emif_for_calc->addressing;
1636        if (!timings || !addressing) {
1637                dev_err(dev, "%s: not enough data available for %dHz",
1638                        __func__, freq);
1639                return -1;
1640        }
1641
1642        device_info     = emif_for_calc->plat_data->device_info;
1643        type            = device_info->type;
1644        cs1_used        = device_info->cs1_used;
1645        ip_rev          = emif_for_calc->plat_data->ip_rev;
1646        phy_type        = emif_for_calc->plat_data->phy_type;
1647
1648        min_tck         = emif_for_calc->plat_data->min_tck;
1649        custom_configs  = emif_for_calc->plat_data->custom_configs;
1650
1651        set_ddr_clk_period(freq);
1652
1653        regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing);
1654        regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck,
1655                        addressing);
1656        regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck,
1657                        addressing, type);
1658        regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck,
1659                addressing, type, ip_rev, EMIF_NORMAL_TIMINGS);
1660
1661        cl = get_cl(emif);
1662
1663        if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) {
1664                regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d(
1665                        timings, freq, cl);
1666        } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) {
1667                regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl);
1668                regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5();
1669                regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5();
1670                regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5();
1671        } else {
1672                return -1;
1673        }
1674
1675        /* Only timeout values in pwr_mgmt_ctrl_shdw register */
1676        regs->pwr_mgmt_ctrl_shdw =
1677                get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) &
1678                (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK);
1679
1680        if (ip_rev & EMIF_4D) {
1681                regs->read_idle_ctrl_shdw_normal =
1682                        get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE);
1683
1684                regs->read_idle_ctrl_shdw_volt_ramp =
1685                        get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1686        } else if (ip_rev & EMIF_4D5) {
1687                regs->dll_calib_ctrl_shdw_normal =
1688                        get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE);
1689
1690                regs->dll_calib_ctrl_shdw_volt_ramp =
1691                        get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1692        }
1693
1694        if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
1695                regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4,
1696                        addressing);
1697
1698                regs->sdram_tim1_shdw_derated =
1699                        get_sdram_tim_1_shdw_derated(timings, min_tck,
1700                                addressing);
1701
1702                regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings,
1703                        min_tck, addressing, type, ip_rev,
1704                        EMIF_DERATED_TIMINGS);
1705        }
1706
1707        regs->freq = freq;
1708
1709        return 0;
1710}
1711
1712/*
1713 * get_regs() - gets the cached emif_regs structure for a given EMIF instance
1714 * given frequency(freq):
1715 *
1716 * As an optimisation, every EMIF instance other than EMIF1 shares the
1717 * register cache with EMIF1 if the devices connected on this instance
1718 * are same as that on EMIF1(indicated by the duplicate flag)
1719 *
1720 * If we do not have an entry corresponding to the frequency given, we
1721 * allocate a new entry and calculate the values
1722 *
1723 * Upon finding the right reg dump, save it in curr_regs. It can be
1724 * directly used for thermal de-rating and voltage ramping changes.
1725 */
1726static struct emif_regs *get_regs(struct emif_data *emif, u32 freq)
1727{
1728        int                     i;
1729        struct emif_regs        **regs_cache;
1730        struct emif_regs        *regs = NULL;
1731        struct device           *dev;
1732
1733        dev = emif->dev;
1734        if (emif->curr_regs && emif->curr_regs->freq == freq) {
1735                dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq);
1736                return emif->curr_regs;
1737        }
1738
1739        if (emif->duplicate)
1740                regs_cache = emif1->regs_cache;
1741        else
1742                regs_cache = emif->regs_cache;
1743
1744        for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
1745                if (regs_cache[i]->freq == freq) {
1746                        regs = regs_cache[i];
1747                        dev_dbg(dev,
1748                                "%s: reg dump found in reg cache for %u Hz\n",
1749                                __func__, freq);
1750                        break;
1751                }
1752        }
1753
1754        /*
1755         * If we don't have an entry for this frequency in the cache create one
1756         * and calculate the values
1757         */
1758        if (!regs) {
1759                regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC);
1760                if (!regs)
1761                        return NULL;
1762
1763                if (get_emif_reg_values(emif, freq, regs)) {
1764                        devm_kfree(emif->dev, regs);
1765                        return NULL;
1766                }
1767
1768                /*
1769                 * Now look for an un-used entry in the cache and save the
1770                 * newly created struct. If there are no free entries
1771                 * over-write the last entry
1772                 */
1773                for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++)
1774                        ;
1775
1776                if (i >= EMIF_MAX_NUM_FREQUENCIES) {
1777                        dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n",
1778                                __func__);
1779                        i = EMIF_MAX_NUM_FREQUENCIES - 1;
1780                        devm_kfree(emif->dev, regs_cache[i]);
1781                }
1782                regs_cache[i] = regs;
1783        }
1784
1785        return regs;
1786}
1787
1788static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state)
1789{
1790        dev_dbg(emif->dev, "%s: voltage notification : %d", __func__,
1791                volt_state);
1792
1793        if (!emif->curr_regs) {
1794                dev_err(emif->dev,
1795                        "%s: volt-notify before registers are ready: %d\n",
1796                        __func__, volt_state);
1797                return;
1798        }
1799
1800        setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state);
1801}
1802
1803/*
1804 * TODO: voltage notify handling should be hooked up to
1805 * regulator framework as soon as the necessary support
1806 * is available in mainline kernel. This function is un-used
1807 * right now.
1808 */
1809static void __attribute__((unused)) volt_notify_handling(u32 volt_state)
1810{
1811        struct emif_data *emif;
1812
1813        spin_lock_irqsave(&emif_lock, irq_state);
1814
1815        list_for_each_entry(emif, &device_list, node)
1816                do_volt_notify_handling(emif, volt_state);
1817        do_freq_update();
1818
1819        spin_unlock_irqrestore(&emif_lock, irq_state);
1820}
1821
1822static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq)
1823{
1824        struct emif_regs *regs;
1825
1826        regs = get_regs(emif, new_freq);
1827        if (!regs)
1828                return;
1829
1830        emif->curr_regs = regs;
1831
1832        /*
1833         * Update the shadow registers:
1834         * Temperature and voltage-ramp sensitive settings are also configured
1835         * in terms of DDR cycles. So, we need to update them too when there
1836         * is a freq change
1837         */
1838        dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz",
1839                __func__, new_freq);
1840        setup_registers(emif, regs);
1841        setup_temperature_sensitive_regs(emif, regs);
1842        setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE);
1843
1844        /*
1845         * Part of workaround for errata i728. See do_freq_update()
1846         * for more details
1847         */
1848        if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1849                set_lpmode(emif, EMIF_LP_MODE_DISABLE);
1850}
1851
1852/*
1853 * TODO: frequency notify handling should be hooked up to
1854 * clock framework as soon as the necessary support is
1855 * available in mainline kernel. This function is un-used
1856 * right now.
1857 */
1858static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq)
1859{
1860        struct emif_data *emif;
1861
1862        /*
1863         * NOTE: we are taking the spin-lock here and releases it
1864         * only in post-notifier. This doesn't look good and
1865         * Sparse complains about it, but this seems to be
1866         * un-avoidable. We need to lock a sequence of events
1867         * that is split between EMIF and clock framework.
1868         *
1869         * 1. EMIF driver updates EMIF timings in shadow registers in the
1870         *    frequency pre-notify callback from clock framework
1871         * 2. clock framework sets up the registers for the new frequency
1872         * 3. clock framework initiates a hw-sequence that updates
1873         *    the frequency EMIF timings synchronously.
1874         *
1875         * All these 3 steps should be performed as an atomic operation
1876         * vis-a-vis similar sequence in the EMIF interrupt handler
1877         * for temperature events. Otherwise, there could be race
1878         * conditions that could result in incorrect EMIF timings for
1879         * a given frequency
1880         */
1881        spin_lock_irqsave(&emif_lock, irq_state);
1882
1883        list_for_each_entry(emif, &device_list, node)
1884                do_freq_pre_notify_handling(emif, new_freq);
1885}
1886
1887static void do_freq_post_notify_handling(struct emif_data *emif)
1888{
1889        /*
1890         * Part of workaround for errata i728. See do_freq_update()
1891         * for more details
1892         */
1893        if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1894                set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
1895}
1896
1897/*
1898 * TODO: frequency notify handling should be hooked up to
1899 * clock framework as soon as the necessary support is
1900 * available in mainline kernel. This function is un-used
1901 * right now.
1902 */
1903static void __attribute__((unused)) freq_post_notify_handling(void)
1904{
1905        struct emif_data *emif;
1906
1907        list_for_each_entry(emif, &device_list, node)
1908                do_freq_post_notify_handling(emif);
1909
1910        /*
1911         * Lock is done in pre-notify handler. See freq_pre_notify_handling()
1912         * for more details
1913         */
1914        spin_unlock_irqrestore(&emif_lock, irq_state);
1915}
1916
1917#if defined(CONFIG_OF)
1918static const struct of_device_id emif_of_match[] = {
1919                { .compatible = "ti,emif-4d" },
1920                { .compatible = "ti,emif-4d5" },
1921                {},
1922};
1923MODULE_DEVICE_TABLE(of, emif_of_match);
1924#endif
1925
1926static struct platform_driver emif_driver = {
1927        .remove         = __exit_p(emif_remove),
1928        .shutdown       = emif_shutdown,
1929        .driver = {
1930                .name = "emif",
1931                .of_match_table = of_match_ptr(emif_of_match),
1932        },
1933};
1934
1935module_platform_driver_probe(emif_driver, emif_probe);
1936
1937MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1938MODULE_LICENSE("GPL");
1939MODULE_ALIAS("platform:emif");
1940MODULE_AUTHOR("Texas Instruments Inc");
1941