linux/drivers/net/can/m_can/m_can.c
<<
>>
Prefs
   1/*
   2 * CAN bus driver for Bosch M_CAN controller
   3 *
   4 * Copyright (C) 2014 Freescale Semiconductor, Inc.
   5 *      Dong Aisheng <b29396@freescale.com>
   6 *
   7 * Bosch M_CAN user manual can be obtained from:
   8 * http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/
   9 * mcan_users_manual_v302.pdf
  10 *
  11 * This file is licensed under the terms of the GNU General Public
  12 * License version 2. This program is licensed "as is" without any
  13 * warranty of any kind, whether express or implied.
  14 */
  15
  16#include <linux/clk.h>
  17#include <linux/delay.h>
  18#include <linux/interrupt.h>
  19#include <linux/io.h>
  20#include <linux/kernel.h>
  21#include <linux/module.h>
  22#include <linux/netdevice.h>
  23#include <linux/of.h>
  24#include <linux/of_device.h>
  25#include <linux/platform_device.h>
  26#include <linux/pm_runtime.h>
  27#include <linux/iopoll.h>
  28#include <linux/can/dev.h>
  29#include <linux/pinctrl/consumer.h>
  30
  31/* napi related */
  32#define M_CAN_NAPI_WEIGHT       64
  33
  34/* message ram configuration data length */
  35#define MRAM_CFG_LEN    8
  36
  37/* registers definition */
  38enum m_can_reg {
  39        M_CAN_CREL      = 0x0,
  40        M_CAN_ENDN      = 0x4,
  41        M_CAN_CUST      = 0x8,
  42        M_CAN_DBTP      = 0xc,
  43        M_CAN_TEST      = 0x10,
  44        M_CAN_RWD       = 0x14,
  45        M_CAN_CCCR      = 0x18,
  46        M_CAN_NBTP      = 0x1c,
  47        M_CAN_TSCC      = 0x20,
  48        M_CAN_TSCV      = 0x24,
  49        M_CAN_TOCC      = 0x28,
  50        M_CAN_TOCV      = 0x2c,
  51        M_CAN_ECR       = 0x40,
  52        M_CAN_PSR       = 0x44,
  53/* TDCR Register only available for version >=3.1.x */
  54        M_CAN_TDCR      = 0x48,
  55        M_CAN_IR        = 0x50,
  56        M_CAN_IE        = 0x54,
  57        M_CAN_ILS       = 0x58,
  58        M_CAN_ILE       = 0x5c,
  59        M_CAN_GFC       = 0x80,
  60        M_CAN_SIDFC     = 0x84,
  61        M_CAN_XIDFC     = 0x88,
  62        M_CAN_XIDAM     = 0x90,
  63        M_CAN_HPMS      = 0x94,
  64        M_CAN_NDAT1     = 0x98,
  65        M_CAN_NDAT2     = 0x9c,
  66        M_CAN_RXF0C     = 0xa0,
  67        M_CAN_RXF0S     = 0xa4,
  68        M_CAN_RXF0A     = 0xa8,
  69        M_CAN_RXBC      = 0xac,
  70        M_CAN_RXF1C     = 0xb0,
  71        M_CAN_RXF1S     = 0xb4,
  72        M_CAN_RXF1A     = 0xb8,
  73        M_CAN_RXESC     = 0xbc,
  74        M_CAN_TXBC      = 0xc0,
  75        M_CAN_TXFQS     = 0xc4,
  76        M_CAN_TXESC     = 0xc8,
  77        M_CAN_TXBRP     = 0xcc,
  78        M_CAN_TXBAR     = 0xd0,
  79        M_CAN_TXBCR     = 0xd4,
  80        M_CAN_TXBTO     = 0xd8,
  81        M_CAN_TXBCF     = 0xdc,
  82        M_CAN_TXBTIE    = 0xe0,
  83        M_CAN_TXBCIE    = 0xe4,
  84        M_CAN_TXEFC     = 0xf0,
  85        M_CAN_TXEFS     = 0xf4,
  86        M_CAN_TXEFA     = 0xf8,
  87};
  88
  89/* m_can lec values */
  90enum m_can_lec_type {
  91        LEC_NO_ERROR = 0,
  92        LEC_STUFF_ERROR,
  93        LEC_FORM_ERROR,
  94        LEC_ACK_ERROR,
  95        LEC_BIT1_ERROR,
  96        LEC_BIT0_ERROR,
  97        LEC_CRC_ERROR,
  98        LEC_UNUSED,
  99};
 100
 101enum m_can_mram_cfg {
 102        MRAM_SIDF = 0,
 103        MRAM_XIDF,
 104        MRAM_RXF0,
 105        MRAM_RXF1,
 106        MRAM_RXB,
 107        MRAM_TXE,
 108        MRAM_TXB,
 109        MRAM_CFG_NUM,
 110};
 111
 112/* Core Release Register (CREL) */
 113#define CREL_REL_SHIFT          28
 114#define CREL_REL_MASK           (0xF << CREL_REL_SHIFT)
 115#define CREL_STEP_SHIFT         24
 116#define CREL_STEP_MASK          (0xF << CREL_STEP_SHIFT)
 117#define CREL_SUBSTEP_SHIFT      20
 118#define CREL_SUBSTEP_MASK       (0xF << CREL_SUBSTEP_SHIFT)
 119
 120/* Data Bit Timing & Prescaler Register (DBTP) */
 121#define DBTP_TDC                BIT(23)
 122#define DBTP_DBRP_SHIFT         16
 123#define DBTP_DBRP_MASK          (0x1f << DBTP_DBRP_SHIFT)
 124#define DBTP_DTSEG1_SHIFT       8
 125#define DBTP_DTSEG1_MASK        (0x1f << DBTP_DTSEG1_SHIFT)
 126#define DBTP_DTSEG2_SHIFT       4
 127#define DBTP_DTSEG2_MASK        (0xf << DBTP_DTSEG2_SHIFT)
 128#define DBTP_DSJW_SHIFT         0
 129#define DBTP_DSJW_MASK          (0xf << DBTP_DSJW_SHIFT)
 130
 131/* Transmitter Delay Compensation Register (TDCR) */
 132#define TDCR_TDCO_SHIFT         8
 133#define TDCR_TDCO_MASK          (0x7F << TDCR_TDCO_SHIFT)
 134#define TDCR_TDCF_SHIFT         0
 135#define TDCR_TDCF_MASK          (0x7F << TDCR_TDCF_SHIFT)
 136
 137/* Test Register (TEST) */
 138#define TEST_LBCK               BIT(4)
 139
 140/* CC Control Register(CCCR) */
 141#define CCCR_CMR_MASK           0x3
 142#define CCCR_CMR_SHIFT          10
 143#define CCCR_CMR_CANFD          0x1
 144#define CCCR_CMR_CANFD_BRS      0x2
 145#define CCCR_CMR_CAN            0x3
 146#define CCCR_CME_MASK           0x3
 147#define CCCR_CME_SHIFT          8
 148#define CCCR_CME_CAN            0
 149#define CCCR_CME_CANFD          0x1
 150#define CCCR_CME_CANFD_BRS      0x2
 151#define CCCR_TXP                BIT(14)
 152#define CCCR_TEST               BIT(7)
 153#define CCCR_MON                BIT(5)
 154#define CCCR_CSR                BIT(4)
 155#define CCCR_CSA                BIT(3)
 156#define CCCR_ASM                BIT(2)
 157#define CCCR_CCE                BIT(1)
 158#define CCCR_INIT               BIT(0)
 159#define CCCR_CANFD              0x10
 160/* for version >=3.1.x */
 161#define CCCR_EFBI               BIT(13)
 162#define CCCR_PXHD               BIT(12)
 163#define CCCR_BRSE               BIT(9)
 164#define CCCR_FDOE               BIT(8)
 165/* only for version >=3.2.x */
 166#define CCCR_NISO               BIT(15)
 167
 168/* Nominal Bit Timing & Prescaler Register (NBTP) */
 169#define NBTP_NSJW_SHIFT         25
 170#define NBTP_NSJW_MASK          (0x7f << NBTP_NSJW_SHIFT)
 171#define NBTP_NBRP_SHIFT         16
 172#define NBTP_NBRP_MASK          (0x1ff << NBTP_NBRP_SHIFT)
 173#define NBTP_NTSEG1_SHIFT       8
 174#define NBTP_NTSEG1_MASK        (0xff << NBTP_NTSEG1_SHIFT)
 175#define NBTP_NTSEG2_SHIFT       0
 176#define NBTP_NTSEG2_MASK        (0x7f << NBTP_NTSEG2_SHIFT)
 177
 178/* Error Counter Register(ECR) */
 179#define ECR_RP                  BIT(15)
 180#define ECR_REC_SHIFT           8
 181#define ECR_REC_MASK            (0x7f << ECR_REC_SHIFT)
 182#define ECR_TEC_SHIFT           0
 183#define ECR_TEC_MASK            0xff
 184
 185/* Protocol Status Register(PSR) */
 186#define PSR_BO          BIT(7)
 187#define PSR_EW          BIT(6)
 188#define PSR_EP          BIT(5)
 189#define PSR_LEC_MASK    0x7
 190
 191/* Interrupt Register(IR) */
 192#define IR_ALL_INT      0xffffffff
 193
 194/* Renamed bits for versions > 3.1.x */
 195#define IR_ARA          BIT(29)
 196#define IR_PED          BIT(28)
 197#define IR_PEA          BIT(27)
 198
 199/* Bits for version 3.0.x */
 200#define IR_STE          BIT(31)
 201#define IR_FOE          BIT(30)
 202#define IR_ACKE         BIT(29)
 203#define IR_BE           BIT(28)
 204#define IR_CRCE         BIT(27)
 205#define IR_WDI          BIT(26)
 206#define IR_BO           BIT(25)
 207#define IR_EW           BIT(24)
 208#define IR_EP           BIT(23)
 209#define IR_ELO          BIT(22)
 210#define IR_BEU          BIT(21)
 211#define IR_BEC          BIT(20)
 212#define IR_DRX          BIT(19)
 213#define IR_TOO          BIT(18)
 214#define IR_MRAF         BIT(17)
 215#define IR_TSW          BIT(16)
 216#define IR_TEFL         BIT(15)
 217#define IR_TEFF         BIT(14)
 218#define IR_TEFW         BIT(13)
 219#define IR_TEFN         BIT(12)
 220#define IR_TFE          BIT(11)
 221#define IR_TCF          BIT(10)
 222#define IR_TC           BIT(9)
 223#define IR_HPM          BIT(8)
 224#define IR_RF1L         BIT(7)
 225#define IR_RF1F         BIT(6)
 226#define IR_RF1W         BIT(5)
 227#define IR_RF1N         BIT(4)
 228#define IR_RF0L         BIT(3)
 229#define IR_RF0F         BIT(2)
 230#define IR_RF0W         BIT(1)
 231#define IR_RF0N         BIT(0)
 232#define IR_ERR_STATE    (IR_BO | IR_EW | IR_EP)
 233
 234/* Interrupts for version 3.0.x */
 235#define IR_ERR_LEC_30X  (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
 236#define IR_ERR_BUS_30X  (IR_ERR_LEC_30X | IR_WDI | IR_ELO | IR_BEU | \
 237                         IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
 238                         IR_RF1L | IR_RF0L)
 239#define IR_ERR_ALL_30X  (IR_ERR_STATE | IR_ERR_BUS_30X)
 240/* Interrupts for version >= 3.1.x */
 241#define IR_ERR_LEC_31X  (IR_PED | IR_PEA)
 242#define IR_ERR_BUS_31X      (IR_ERR_LEC_31X | IR_WDI | IR_ELO | IR_BEU | \
 243                         IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
 244                         IR_RF1L | IR_RF0L)
 245#define IR_ERR_ALL_31X  (IR_ERR_STATE | IR_ERR_BUS_31X)
 246
 247/* Interrupt Line Select (ILS) */
 248#define ILS_ALL_INT0    0x0
 249#define ILS_ALL_INT1    0xFFFFFFFF
 250
 251/* Interrupt Line Enable (ILE) */
 252#define ILE_EINT1       BIT(1)
 253#define ILE_EINT0       BIT(0)
 254
 255/* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
 256#define RXFC_FWM_SHIFT  24
 257#define RXFC_FWM_MASK   (0x7f << RXFC_FWM_SHIFT)
 258#define RXFC_FS_SHIFT   16
 259#define RXFC_FS_MASK    (0x7f << RXFC_FS_SHIFT)
 260
 261/* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
 262#define RXFS_RFL        BIT(25)
 263#define RXFS_FF         BIT(24)
 264#define RXFS_FPI_SHIFT  16
 265#define RXFS_FPI_MASK   0x3f0000
 266#define RXFS_FGI_SHIFT  8
 267#define RXFS_FGI_MASK   0x3f00
 268#define RXFS_FFL_MASK   0x7f
 269
 270/* Rx Buffer / FIFO Element Size Configuration (RXESC) */
 271#define M_CAN_RXESC_8BYTES      0x0
 272#define M_CAN_RXESC_64BYTES     0x777
 273
 274/* Tx Buffer Configuration(TXBC) */
 275#define TXBC_NDTB_SHIFT         16
 276#define TXBC_NDTB_MASK          (0x3f << TXBC_NDTB_SHIFT)
 277#define TXBC_TFQS_SHIFT         24
 278#define TXBC_TFQS_MASK          (0x3f << TXBC_TFQS_SHIFT)
 279
 280/* Tx FIFO/Queue Status (TXFQS) */
 281#define TXFQS_TFQF              BIT(21)
 282#define TXFQS_TFQPI_SHIFT       16
 283#define TXFQS_TFQPI_MASK        (0x1f << TXFQS_TFQPI_SHIFT)
 284#define TXFQS_TFGI_SHIFT        8
 285#define TXFQS_TFGI_MASK         (0x1f << TXFQS_TFGI_SHIFT)
 286#define TXFQS_TFFL_SHIFT        0
 287#define TXFQS_TFFL_MASK         (0x3f << TXFQS_TFFL_SHIFT)
 288
 289/* Tx Buffer Element Size Configuration(TXESC) */
 290#define TXESC_TBDS_8BYTES       0x0
 291#define TXESC_TBDS_64BYTES      0x7
 292
 293/* Tx Event FIFO Configuration (TXEFC) */
 294#define TXEFC_EFS_SHIFT         16
 295#define TXEFC_EFS_MASK          (0x3f << TXEFC_EFS_SHIFT)
 296
 297/* Tx Event FIFO Status (TXEFS) */
 298#define TXEFS_TEFL              BIT(25)
 299#define TXEFS_EFF               BIT(24)
 300#define TXEFS_EFGI_SHIFT        8
 301#define TXEFS_EFGI_MASK         (0x1f << TXEFS_EFGI_SHIFT)
 302#define TXEFS_EFFL_SHIFT        0
 303#define TXEFS_EFFL_MASK         (0x3f << TXEFS_EFFL_SHIFT)
 304
 305/* Tx Event FIFO Acknowledge (TXEFA) */
 306#define TXEFA_EFAI_SHIFT        0
 307#define TXEFA_EFAI_MASK         (0x1f << TXEFA_EFAI_SHIFT)
 308
 309/* Message RAM Configuration (in bytes) */
 310#define SIDF_ELEMENT_SIZE       4
 311#define XIDF_ELEMENT_SIZE       8
 312#define RXF0_ELEMENT_SIZE       72
 313#define RXF1_ELEMENT_SIZE       72
 314#define RXB_ELEMENT_SIZE        72
 315#define TXE_ELEMENT_SIZE        8
 316#define TXB_ELEMENT_SIZE        72
 317
 318/* Message RAM Elements */
 319#define M_CAN_FIFO_ID           0x0
 320#define M_CAN_FIFO_DLC          0x4
 321#define M_CAN_FIFO_DATA(n)      (0x8 + ((n) << 2))
 322
 323/* Rx Buffer Element */
 324/* R0 */
 325#define RX_BUF_ESI              BIT(31)
 326#define RX_BUF_XTD              BIT(30)
 327#define RX_BUF_RTR              BIT(29)
 328/* R1 */
 329#define RX_BUF_ANMF             BIT(31)
 330#define RX_BUF_FDF              BIT(21)
 331#define RX_BUF_BRS              BIT(20)
 332
 333/* Tx Buffer Element */
 334/* T0 */
 335#define TX_BUF_ESI              BIT(31)
 336#define TX_BUF_XTD              BIT(30)
 337#define TX_BUF_RTR              BIT(29)
 338/* T1 */
 339#define TX_BUF_EFC              BIT(23)
 340#define TX_BUF_FDF              BIT(21)
 341#define TX_BUF_BRS              BIT(20)
 342#define TX_BUF_MM_SHIFT         24
 343#define TX_BUF_MM_MASK          (0xff << TX_BUF_MM_SHIFT)
 344
 345/* Tx event FIFO Element */
 346/* E1 */
 347#define TX_EVENT_MM_SHIFT       TX_BUF_MM_SHIFT
 348#define TX_EVENT_MM_MASK        (0xff << TX_EVENT_MM_SHIFT)
 349
 350/* address offset and element number for each FIFO/Buffer in the Message RAM */
 351struct mram_cfg {
 352        u16 off;
 353        u8  num;
 354};
 355
 356/* m_can private data structure */
 357struct m_can_priv {
 358        struct can_priv can;    /* must be the first member */
 359        struct napi_struct napi;
 360        struct net_device *dev;
 361        struct device *device;
 362        struct clk *hclk;
 363        struct clk *cclk;
 364        void __iomem *base;
 365        u32 irqstatus;
 366        int version;
 367
 368        /* message ram configuration */
 369        void __iomem *mram_base;
 370        struct mram_cfg mcfg[MRAM_CFG_NUM];
 371};
 372
 373static inline u32 m_can_read(const struct m_can_priv *priv, enum m_can_reg reg)
 374{
 375        return readl(priv->base + reg);
 376}
 377
 378static inline void m_can_write(const struct m_can_priv *priv,
 379                               enum m_can_reg reg, u32 val)
 380{
 381        writel(val, priv->base + reg);
 382}
 383
 384static inline u32 m_can_fifo_read(const struct m_can_priv *priv,
 385                                  u32 fgi, unsigned int offset)
 386{
 387        return readl(priv->mram_base + priv->mcfg[MRAM_RXF0].off +
 388                     fgi * RXF0_ELEMENT_SIZE + offset);
 389}
 390
 391static inline void m_can_fifo_write(const struct m_can_priv *priv,
 392                                    u32 fpi, unsigned int offset, u32 val)
 393{
 394        writel(val, priv->mram_base + priv->mcfg[MRAM_TXB].off +
 395               fpi * TXB_ELEMENT_SIZE + offset);
 396}
 397
 398static inline u32 m_can_txe_fifo_read(const struct m_can_priv *priv,
 399                                      u32 fgi,
 400                                      u32 offset) {
 401        return readl(priv->mram_base + priv->mcfg[MRAM_TXE].off +
 402                        fgi * TXE_ELEMENT_SIZE + offset);
 403}
 404
 405static inline bool m_can_tx_fifo_full(const struct m_can_priv *priv)
 406{
 407                return !!(m_can_read(priv, M_CAN_TXFQS) & TXFQS_TFQF);
 408}
 409
 410static inline void m_can_config_endisable(const struct m_can_priv *priv,
 411                                          bool enable)
 412{
 413        u32 cccr = m_can_read(priv, M_CAN_CCCR);
 414        u32 timeout = 10;
 415        u32 val = 0;
 416
 417        if (enable) {
 418                /* enable m_can configuration */
 419                m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT);
 420                udelay(5);
 421                /* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
 422                m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
 423        } else {
 424                m_can_write(priv, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
 425        }
 426
 427        /* there's a delay for module initialization */
 428        if (enable)
 429                val = CCCR_INIT | CCCR_CCE;
 430
 431        while ((m_can_read(priv, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
 432                if (timeout == 0) {
 433                        netdev_warn(priv->dev, "Failed to init module\n");
 434                        return;
 435                }
 436                timeout--;
 437                udelay(1);
 438        }
 439}
 440
 441static inline void m_can_enable_all_interrupts(const struct m_can_priv *priv)
 442{
 443        /* Only interrupt line 0 is used in this driver */
 444        m_can_write(priv, M_CAN_ILE, ILE_EINT0);
 445}
 446
 447static inline void m_can_disable_all_interrupts(const struct m_can_priv *priv)
 448{
 449        m_can_write(priv, M_CAN_ILE, 0x0);
 450}
 451
 452static void m_can_read_fifo(struct net_device *dev, u32 rxfs)
 453{
 454        struct net_device_stats *stats = &dev->stats;
 455        struct m_can_priv *priv = netdev_priv(dev);
 456        struct canfd_frame *cf;
 457        struct sk_buff *skb;
 458        u32 id, fgi, dlc;
 459        int i;
 460
 461        /* calculate the fifo get index for where to read data */
 462        fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_SHIFT;
 463        dlc = m_can_fifo_read(priv, fgi, M_CAN_FIFO_DLC);
 464        if (dlc & RX_BUF_FDF)
 465                skb = alloc_canfd_skb(dev, &cf);
 466        else
 467                skb = alloc_can_skb(dev, (struct can_frame **)&cf);
 468        if (!skb) {
 469                stats->rx_dropped++;
 470                return;
 471        }
 472
 473        if (dlc & RX_BUF_FDF)
 474                cf->len = can_dlc2len((dlc >> 16) & 0x0F);
 475        else
 476                cf->len = get_can_dlc((dlc >> 16) & 0x0F);
 477
 478        id = m_can_fifo_read(priv, fgi, M_CAN_FIFO_ID);
 479        if (id & RX_BUF_XTD)
 480                cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
 481        else
 482                cf->can_id = (id >> 18) & CAN_SFF_MASK;
 483
 484        if (id & RX_BUF_ESI) {
 485                cf->flags |= CANFD_ESI;
 486                netdev_dbg(dev, "ESI Error\n");
 487        }
 488
 489        if (!(dlc & RX_BUF_FDF) && (id & RX_BUF_RTR)) {
 490                cf->can_id |= CAN_RTR_FLAG;
 491        } else {
 492                if (dlc & RX_BUF_BRS)
 493                        cf->flags |= CANFD_BRS;
 494
 495                for (i = 0; i < cf->len; i += 4)
 496                        *(u32 *)(cf->data + i) =
 497                                m_can_fifo_read(priv, fgi,
 498                                                M_CAN_FIFO_DATA(i / 4));
 499        }
 500
 501        /* acknowledge rx fifo 0 */
 502        m_can_write(priv, M_CAN_RXF0A, fgi);
 503
 504        stats->rx_packets++;
 505        stats->rx_bytes += cf->len;
 506
 507        netif_receive_skb(skb);
 508}
 509
 510static int m_can_do_rx_poll(struct net_device *dev, int quota)
 511{
 512        struct m_can_priv *priv = netdev_priv(dev);
 513        u32 pkts = 0;
 514        u32 rxfs;
 515
 516        rxfs = m_can_read(priv, M_CAN_RXF0S);
 517        if (!(rxfs & RXFS_FFL_MASK)) {
 518                netdev_dbg(dev, "no messages in fifo0\n");
 519                return 0;
 520        }
 521
 522        while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
 523                if (rxfs & RXFS_RFL)
 524                        netdev_warn(dev, "Rx FIFO 0 Message Lost\n");
 525
 526                m_can_read_fifo(dev, rxfs);
 527
 528                quota--;
 529                pkts++;
 530                rxfs = m_can_read(priv, M_CAN_RXF0S);
 531        }
 532
 533        if (pkts)
 534                can_led_event(dev, CAN_LED_EVENT_RX);
 535
 536        return pkts;
 537}
 538
 539static int m_can_handle_lost_msg(struct net_device *dev)
 540{
 541        struct net_device_stats *stats = &dev->stats;
 542        struct sk_buff *skb;
 543        struct can_frame *frame;
 544
 545        netdev_err(dev, "msg lost in rxf0\n");
 546
 547        stats->rx_errors++;
 548        stats->rx_over_errors++;
 549
 550        skb = alloc_can_err_skb(dev, &frame);
 551        if (unlikely(!skb))
 552                return 0;
 553
 554        frame->can_id |= CAN_ERR_CRTL;
 555        frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
 556
 557        netif_receive_skb(skb);
 558
 559        return 1;
 560}
 561
 562static int m_can_handle_lec_err(struct net_device *dev,
 563                                enum m_can_lec_type lec_type)
 564{
 565        struct m_can_priv *priv = netdev_priv(dev);
 566        struct net_device_stats *stats = &dev->stats;
 567        struct can_frame *cf;
 568        struct sk_buff *skb;
 569
 570        priv->can.can_stats.bus_error++;
 571        stats->rx_errors++;
 572
 573        /* propagate the error condition to the CAN stack */
 574        skb = alloc_can_err_skb(dev, &cf);
 575        if (unlikely(!skb))
 576                return 0;
 577
 578        /* check for 'last error code' which tells us the
 579         * type of the last error to occur on the CAN bus
 580         */
 581        cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
 582
 583        switch (lec_type) {
 584        case LEC_STUFF_ERROR:
 585                netdev_dbg(dev, "stuff error\n");
 586                cf->data[2] |= CAN_ERR_PROT_STUFF;
 587                break;
 588        case LEC_FORM_ERROR:
 589                netdev_dbg(dev, "form error\n");
 590                cf->data[2] |= CAN_ERR_PROT_FORM;
 591                break;
 592        case LEC_ACK_ERROR:
 593                netdev_dbg(dev, "ack error\n");
 594                cf->data[3] = CAN_ERR_PROT_LOC_ACK;
 595                break;
 596        case LEC_BIT1_ERROR:
 597                netdev_dbg(dev, "bit1 error\n");
 598                cf->data[2] |= CAN_ERR_PROT_BIT1;
 599                break;
 600        case LEC_BIT0_ERROR:
 601                netdev_dbg(dev, "bit0 error\n");
 602                cf->data[2] |= CAN_ERR_PROT_BIT0;
 603                break;
 604        case LEC_CRC_ERROR:
 605                netdev_dbg(dev, "CRC error\n");
 606                cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
 607                break;
 608        default:
 609                break;
 610        }
 611
 612        stats->rx_packets++;
 613        stats->rx_bytes += cf->can_dlc;
 614        netif_receive_skb(skb);
 615
 616        return 1;
 617}
 618
 619static int __m_can_get_berr_counter(const struct net_device *dev,
 620                                    struct can_berr_counter *bec)
 621{
 622        struct m_can_priv *priv = netdev_priv(dev);
 623        unsigned int ecr;
 624
 625        ecr = m_can_read(priv, M_CAN_ECR);
 626        bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT;
 627        bec->txerr = (ecr & ECR_TEC_MASK) >> ECR_TEC_SHIFT;
 628
 629        return 0;
 630}
 631
 632static int m_can_clk_start(struct m_can_priv *priv)
 633{
 634        int err;
 635
 636        err = pm_runtime_get_sync(priv->device);
 637        if (err < 0) {
 638                pm_runtime_put_noidle(priv->device);
 639                return err;
 640        }
 641
 642        return 0;
 643}
 644
 645static void m_can_clk_stop(struct m_can_priv *priv)
 646{
 647        pm_runtime_put_sync(priv->device);
 648}
 649
 650static int m_can_get_berr_counter(const struct net_device *dev,
 651                                  struct can_berr_counter *bec)
 652{
 653        struct m_can_priv *priv = netdev_priv(dev);
 654        int err;
 655
 656        err = m_can_clk_start(priv);
 657        if (err)
 658                return err;
 659
 660        __m_can_get_berr_counter(dev, bec);
 661
 662        m_can_clk_stop(priv);
 663
 664        return 0;
 665}
 666
 667static int m_can_handle_state_change(struct net_device *dev,
 668                                     enum can_state new_state)
 669{
 670        struct m_can_priv *priv = netdev_priv(dev);
 671        struct net_device_stats *stats = &dev->stats;
 672        struct can_frame *cf;
 673        struct sk_buff *skb;
 674        struct can_berr_counter bec;
 675        unsigned int ecr;
 676
 677        switch (new_state) {
 678        case CAN_STATE_ERROR_ACTIVE:
 679                /* error warning state */
 680                priv->can.can_stats.error_warning++;
 681                priv->can.state = CAN_STATE_ERROR_WARNING;
 682                break;
 683        case CAN_STATE_ERROR_PASSIVE:
 684                /* error passive state */
 685                priv->can.can_stats.error_passive++;
 686                priv->can.state = CAN_STATE_ERROR_PASSIVE;
 687                break;
 688        case CAN_STATE_BUS_OFF:
 689                /* bus-off state */
 690                priv->can.state = CAN_STATE_BUS_OFF;
 691                m_can_disable_all_interrupts(priv);
 692                priv->can.can_stats.bus_off++;
 693                can_bus_off(dev);
 694                break;
 695        default:
 696                break;
 697        }
 698
 699        /* propagate the error condition to the CAN stack */
 700        skb = alloc_can_err_skb(dev, &cf);
 701        if (unlikely(!skb))
 702                return 0;
 703
 704        __m_can_get_berr_counter(dev, &bec);
 705
 706        switch (new_state) {
 707        case CAN_STATE_ERROR_ACTIVE:
 708                /* error warning state */
 709                cf->can_id |= CAN_ERR_CRTL;
 710                cf->data[1] = (bec.txerr > bec.rxerr) ?
 711                        CAN_ERR_CRTL_TX_WARNING :
 712                        CAN_ERR_CRTL_RX_WARNING;
 713                cf->data[6] = bec.txerr;
 714                cf->data[7] = bec.rxerr;
 715                break;
 716        case CAN_STATE_ERROR_PASSIVE:
 717                /* error passive state */
 718                cf->can_id |= CAN_ERR_CRTL;
 719                ecr = m_can_read(priv, M_CAN_ECR);
 720                if (ecr & ECR_RP)
 721                        cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
 722                if (bec.txerr > 127)
 723                        cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
 724                cf->data[6] = bec.txerr;
 725                cf->data[7] = bec.rxerr;
 726                break;
 727        case CAN_STATE_BUS_OFF:
 728                /* bus-off state */
 729                cf->can_id |= CAN_ERR_BUSOFF;
 730                break;
 731        default:
 732                break;
 733        }
 734
 735        stats->rx_packets++;
 736        stats->rx_bytes += cf->can_dlc;
 737        netif_receive_skb(skb);
 738
 739        return 1;
 740}
 741
 742static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
 743{
 744        struct m_can_priv *priv = netdev_priv(dev);
 745        int work_done = 0;
 746
 747        if ((psr & PSR_EW) &&
 748            (priv->can.state != CAN_STATE_ERROR_WARNING)) {
 749                netdev_dbg(dev, "entered error warning state\n");
 750                work_done += m_can_handle_state_change(dev,
 751                                                       CAN_STATE_ERROR_WARNING);
 752        }
 753
 754        if ((psr & PSR_EP) &&
 755            (priv->can.state != CAN_STATE_ERROR_PASSIVE)) {
 756                netdev_dbg(dev, "entered error passive state\n");
 757                work_done += m_can_handle_state_change(dev,
 758                                                       CAN_STATE_ERROR_PASSIVE);
 759        }
 760
 761        if ((psr & PSR_BO) &&
 762            (priv->can.state != CAN_STATE_BUS_OFF)) {
 763                netdev_dbg(dev, "entered error bus off state\n");
 764                work_done += m_can_handle_state_change(dev,
 765                                                       CAN_STATE_BUS_OFF);
 766        }
 767
 768        return work_done;
 769}
 770
 771static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
 772{
 773        if (irqstatus & IR_WDI)
 774                netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
 775        if (irqstatus & IR_ELO)
 776                netdev_err(dev, "Error Logging Overflow\n");
 777        if (irqstatus & IR_BEU)
 778                netdev_err(dev, "Bit Error Uncorrected\n");
 779        if (irqstatus & IR_BEC)
 780                netdev_err(dev, "Bit Error Corrected\n");
 781        if (irqstatus & IR_TOO)
 782                netdev_err(dev, "Timeout reached\n");
 783        if (irqstatus & IR_MRAF)
 784                netdev_err(dev, "Message RAM access failure occurred\n");
 785}
 786
 787static inline bool is_lec_err(u32 psr)
 788{
 789        psr &= LEC_UNUSED;
 790
 791        return psr && (psr != LEC_UNUSED);
 792}
 793
 794static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
 795                                   u32 psr)
 796{
 797        struct m_can_priv *priv = netdev_priv(dev);
 798        int work_done = 0;
 799
 800        if (irqstatus & IR_RF0L)
 801                work_done += m_can_handle_lost_msg(dev);
 802
 803        /* handle lec errors on the bus */
 804        if ((priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
 805            is_lec_err(psr))
 806                work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);
 807
 808        /* other unproccessed error interrupts */
 809        m_can_handle_other_err(dev, irqstatus);
 810
 811        return work_done;
 812}
 813
 814static int m_can_poll(struct napi_struct *napi, int quota)
 815{
 816        struct net_device *dev = napi->dev;
 817        struct m_can_priv *priv = netdev_priv(dev);
 818        int work_done = 0;
 819        u32 irqstatus, psr;
 820
 821        irqstatus = priv->irqstatus | m_can_read(priv, M_CAN_IR);
 822        if (!irqstatus)
 823                goto end;
 824
 825        psr = m_can_read(priv, M_CAN_PSR);
 826        if (irqstatus & IR_ERR_STATE)
 827                work_done += m_can_handle_state_errors(dev, psr);
 828
 829        if (irqstatus & IR_ERR_BUS_30X)
 830                work_done += m_can_handle_bus_errors(dev, irqstatus, psr);
 831
 832        if (irqstatus & IR_RF0N)
 833                work_done += m_can_do_rx_poll(dev, (quota - work_done));
 834
 835        if (work_done < quota) {
 836                napi_complete_done(napi, work_done);
 837                m_can_enable_all_interrupts(priv);
 838        }
 839
 840end:
 841        return work_done;
 842}
 843
 844static void m_can_echo_tx_event(struct net_device *dev)
 845{
 846        u32 txe_count = 0;
 847        u32 m_can_txefs;
 848        u32 fgi = 0;
 849        int i = 0;
 850        unsigned int msg_mark;
 851
 852        struct m_can_priv *priv = netdev_priv(dev);
 853        struct net_device_stats *stats = &dev->stats;
 854
 855        /* read tx event fifo status */
 856        m_can_txefs = m_can_read(priv, M_CAN_TXEFS);
 857
 858        /* Get Tx Event fifo element count */
 859        txe_count = (m_can_txefs & TXEFS_EFFL_MASK)
 860                        >> TXEFS_EFFL_SHIFT;
 861
 862        /* Get and process all sent elements */
 863        for (i = 0; i < txe_count; i++) {
 864                /* retrieve get index */
 865                fgi = (m_can_read(priv, M_CAN_TXEFS) & TXEFS_EFGI_MASK)
 866                        >> TXEFS_EFGI_SHIFT;
 867
 868                /* get message marker */
 869                msg_mark = (m_can_txe_fifo_read(priv, fgi, 4) &
 870                            TX_EVENT_MM_MASK) >> TX_EVENT_MM_SHIFT;
 871
 872                /* ack txe element */
 873                m_can_write(priv, M_CAN_TXEFA, (TXEFA_EFAI_MASK &
 874                                                (fgi << TXEFA_EFAI_SHIFT)));
 875
 876                /* update stats */
 877                stats->tx_bytes += can_get_echo_skb(dev, msg_mark);
 878                stats->tx_packets++;
 879        }
 880}
 881
 882static irqreturn_t m_can_isr(int irq, void *dev_id)
 883{
 884        struct net_device *dev = (struct net_device *)dev_id;
 885        struct m_can_priv *priv = netdev_priv(dev);
 886        struct net_device_stats *stats = &dev->stats;
 887        u32 ir;
 888
 889        ir = m_can_read(priv, M_CAN_IR);
 890        if (!ir)
 891                return IRQ_NONE;
 892
 893        /* ACK all irqs */
 894        if (ir & IR_ALL_INT)
 895                m_can_write(priv, M_CAN_IR, ir);
 896
 897        /* schedule NAPI in case of
 898         * - rx IRQ
 899         * - state change IRQ
 900         * - bus error IRQ and bus error reporting
 901         */
 902        if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
 903                priv->irqstatus = ir;
 904                m_can_disable_all_interrupts(priv);
 905                napi_schedule(&priv->napi);
 906        }
 907
 908        if (priv->version == 30) {
 909                if (ir & IR_TC) {
 910                        /* Transmission Complete Interrupt*/
 911                        stats->tx_bytes += can_get_echo_skb(dev, 0);
 912                        stats->tx_packets++;
 913                        can_led_event(dev, CAN_LED_EVENT_TX);
 914                        netif_wake_queue(dev);
 915                }
 916        } else  {
 917                if (ir & IR_TEFN) {
 918                        /* New TX FIFO Element arrived */
 919                        m_can_echo_tx_event(dev);
 920                        can_led_event(dev, CAN_LED_EVENT_TX);
 921                        if (netif_queue_stopped(dev) &&
 922                            !m_can_tx_fifo_full(priv))
 923                                netif_wake_queue(dev);
 924                }
 925        }
 926
 927        return IRQ_HANDLED;
 928}
 929
 930static const struct can_bittiming_const m_can_bittiming_const_30X = {
 931        .name = KBUILD_MODNAME,
 932        .tseg1_min = 2,         /* Time segment 1 = prop_seg + phase_seg1 */
 933        .tseg1_max = 64,
 934        .tseg2_min = 1,         /* Time segment 2 = phase_seg2 */
 935        .tseg2_max = 16,
 936        .sjw_max = 16,
 937        .brp_min = 1,
 938        .brp_max = 1024,
 939        .brp_inc = 1,
 940};
 941
 942static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
 943        .name = KBUILD_MODNAME,
 944        .tseg1_min = 2,         /* Time segment 1 = prop_seg + phase_seg1 */
 945        .tseg1_max = 16,
 946        .tseg2_min = 1,         /* Time segment 2 = phase_seg2 */
 947        .tseg2_max = 8,
 948        .sjw_max = 4,
 949        .brp_min = 1,
 950        .brp_max = 32,
 951        .brp_inc = 1,
 952};
 953
 954static const struct can_bittiming_const m_can_bittiming_const_31X = {
 955        .name = KBUILD_MODNAME,
 956        .tseg1_min = 2,         /* Time segment 1 = prop_seg + phase_seg1 */
 957        .tseg1_max = 256,
 958        .tseg2_min = 1,         /* Time segment 2 = phase_seg2 */
 959        .tseg2_max = 128,
 960        .sjw_max = 128,
 961        .brp_min = 1,
 962        .brp_max = 512,
 963        .brp_inc = 1,
 964};
 965
 966static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
 967        .name = KBUILD_MODNAME,
 968        .tseg1_min = 1,         /* Time segment 1 = prop_seg + phase_seg1 */
 969        .tseg1_max = 32,
 970        .tseg2_min = 1,         /* Time segment 2 = phase_seg2 */
 971        .tseg2_max = 16,
 972        .sjw_max = 16,
 973        .brp_min = 1,
 974        .brp_max = 32,
 975        .brp_inc = 1,
 976};
 977
 978static int m_can_set_bittiming(struct net_device *dev)
 979{
 980        struct m_can_priv *priv = netdev_priv(dev);
 981        const struct can_bittiming *bt = &priv->can.bittiming;
 982        const struct can_bittiming *dbt = &priv->can.data_bittiming;
 983        u16 brp, sjw, tseg1, tseg2;
 984        u32 reg_btp;
 985
 986        brp = bt->brp - 1;
 987        sjw = bt->sjw - 1;
 988        tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
 989        tseg2 = bt->phase_seg2 - 1;
 990        reg_btp = (brp << NBTP_NBRP_SHIFT) | (sjw << NBTP_NSJW_SHIFT) |
 991                (tseg1 << NBTP_NTSEG1_SHIFT) | (tseg2 << NBTP_NTSEG2_SHIFT);
 992        m_can_write(priv, M_CAN_NBTP, reg_btp);
 993
 994        if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
 995                reg_btp = 0;
 996                brp = dbt->brp - 1;
 997                sjw = dbt->sjw - 1;
 998                tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
 999                tseg2 = dbt->phase_seg2 - 1;
1000
1001                /* TDC is only needed for bitrates beyond 2.5 MBit/s.
1002                 * This is mentioned in the "Bit Time Requirements for CAN FD"
1003                 * paper presented at the International CAN Conference 2013
1004                 */
1005                if (dbt->bitrate > 2500000) {
1006                        u32 tdco, ssp;
1007
1008                        /* Use the same value of secondary sampling point
1009                         * as the data sampling point
1010                         */
1011                        ssp = dbt->sample_point;
1012
1013                        /* Equation based on Bosch's M_CAN User Manual's
1014                         * Transmitter Delay Compensation Section
1015                         */
1016                        tdco = (priv->can.clock.freq / 1000) *
1017                               ssp / dbt->bitrate;
1018
1019                        /* Max valid TDCO value is 127 */
1020                        if (tdco > 127) {
1021                                netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
1022                                            tdco);
1023                                tdco = 127;
1024                        }
1025
1026                        reg_btp |= DBTP_TDC;
1027                        m_can_write(priv, M_CAN_TDCR,
1028                                    tdco << TDCR_TDCO_SHIFT);
1029                }
1030
1031                reg_btp |= (brp << DBTP_DBRP_SHIFT) |
1032                           (sjw << DBTP_DSJW_SHIFT) |
1033                           (tseg1 << DBTP_DTSEG1_SHIFT) |
1034                           (tseg2 << DBTP_DTSEG2_SHIFT);
1035
1036                m_can_write(priv, M_CAN_DBTP, reg_btp);
1037        }
1038
1039        return 0;
1040}
1041
1042/* Configure M_CAN chip:
1043 * - set rx buffer/fifo element size
1044 * - configure rx fifo
1045 * - accept non-matching frame into fifo 0
1046 * - configure tx buffer
1047 *              - >= v3.1.x: TX FIFO is used
1048 * - configure mode
1049 * - setup bittiming
1050 */
1051static void m_can_chip_config(struct net_device *dev)
1052{
1053        struct m_can_priv *priv = netdev_priv(dev);
1054        u32 cccr, test;
1055
1056        m_can_config_endisable(priv, true);
1057
1058        /* RX Buffer/FIFO Element Size 64 bytes data field */
1059        m_can_write(priv, M_CAN_RXESC, M_CAN_RXESC_64BYTES);
1060
1061        /* Accept Non-matching Frames Into FIFO 0 */
1062        m_can_write(priv, M_CAN_GFC, 0x0);
1063
1064        if (priv->version == 30) {
1065                /* only support one Tx Buffer currently */
1066                m_can_write(priv, M_CAN_TXBC, (1 << TXBC_NDTB_SHIFT) |
1067                                priv->mcfg[MRAM_TXB].off);
1068        } else {
1069                /* TX FIFO is used for newer IP Core versions */
1070                m_can_write(priv, M_CAN_TXBC,
1071                            (priv->mcfg[MRAM_TXB].num << TXBC_TFQS_SHIFT) |
1072                            (priv->mcfg[MRAM_TXB].off));
1073        }
1074
1075        /* support 64 bytes payload */
1076        m_can_write(priv, M_CAN_TXESC, TXESC_TBDS_64BYTES);
1077
1078        /* TX Event FIFO */
1079        if (priv->version == 30) {
1080                m_can_write(priv, M_CAN_TXEFC, (1 << TXEFC_EFS_SHIFT) |
1081                                priv->mcfg[MRAM_TXE].off);
1082        } else {
1083                /* Full TX Event FIFO is used */
1084                m_can_write(priv, M_CAN_TXEFC,
1085                            ((priv->mcfg[MRAM_TXE].num << TXEFC_EFS_SHIFT)
1086                             & TXEFC_EFS_MASK) |
1087                            priv->mcfg[MRAM_TXE].off);
1088        }
1089
1090        /* rx fifo configuration, blocking mode, fifo size 1 */
1091        m_can_write(priv, M_CAN_RXF0C,
1092                    (priv->mcfg[MRAM_RXF0].num << RXFC_FS_SHIFT) |
1093                     priv->mcfg[MRAM_RXF0].off);
1094
1095        m_can_write(priv, M_CAN_RXF1C,
1096                    (priv->mcfg[MRAM_RXF1].num << RXFC_FS_SHIFT) |
1097                     priv->mcfg[MRAM_RXF1].off);
1098
1099        cccr = m_can_read(priv, M_CAN_CCCR);
1100        test = m_can_read(priv, M_CAN_TEST);
1101        test &= ~TEST_LBCK;
1102        if (priv->version == 30) {
1103        /* Version 3.0.x */
1104
1105                cccr &= ~(CCCR_TEST | CCCR_MON |
1106                        (CCCR_CMR_MASK << CCCR_CMR_SHIFT) |
1107                        (CCCR_CME_MASK << CCCR_CME_SHIFT));
1108
1109                if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
1110                        cccr |= CCCR_CME_CANFD_BRS << CCCR_CME_SHIFT;
1111
1112        } else {
1113        /* Version 3.1.x or 3.2.x */
1114                cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
1115                          CCCR_NISO);
1116
1117                /* Only 3.2.x has NISO Bit implemented */
1118                if (priv->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1119                        cccr |= CCCR_NISO;
1120
1121                if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
1122                        cccr |= (CCCR_BRSE | CCCR_FDOE);
1123        }
1124
1125        /* Loopback Mode */
1126        if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1127                cccr |= CCCR_TEST | CCCR_MON;
1128                test |= TEST_LBCK;
1129        }
1130
1131        /* Enable Monitoring (all versions) */
1132        if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1133                cccr |= CCCR_MON;
1134
1135        /* Write config */
1136        m_can_write(priv, M_CAN_CCCR, cccr);
1137        m_can_write(priv, M_CAN_TEST, test);
1138
1139        /* Enable interrupts */
1140        m_can_write(priv, M_CAN_IR, IR_ALL_INT);
1141        if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1142                if (priv->version == 30)
1143                        m_can_write(priv, M_CAN_IE, IR_ALL_INT &
1144                                    ~(IR_ERR_LEC_30X));
1145                else
1146                        m_can_write(priv, M_CAN_IE, IR_ALL_INT &
1147                                    ~(IR_ERR_LEC_31X));
1148        else
1149                m_can_write(priv, M_CAN_IE, IR_ALL_INT);
1150
1151        /* route all interrupts to INT0 */
1152        m_can_write(priv, M_CAN_ILS, ILS_ALL_INT0);
1153
1154        /* set bittiming params */
1155        m_can_set_bittiming(dev);
1156
1157        m_can_config_endisable(priv, false);
1158}
1159
1160static void m_can_start(struct net_device *dev)
1161{
1162        struct m_can_priv *priv = netdev_priv(dev);
1163
1164        /* basic m_can configuration */
1165        m_can_chip_config(dev);
1166
1167        priv->can.state = CAN_STATE_ERROR_ACTIVE;
1168
1169        m_can_enable_all_interrupts(priv);
1170}
1171
1172static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1173{
1174        switch (mode) {
1175        case CAN_MODE_START:
1176                m_can_start(dev);
1177                netif_wake_queue(dev);
1178                break;
1179        default:
1180                return -EOPNOTSUPP;
1181        }
1182
1183        return 0;
1184}
1185
1186/* Checks core release number of M_CAN
1187 * returns 0 if an unsupported device is detected
1188 * else it returns the release and step coded as:
1189 * return value = 10 * <release> + 1 * <step>
1190 */
1191static int m_can_check_core_release(void __iomem *m_can_base)
1192{
1193        u32 crel_reg;
1194        u8 rel;
1195        u8 step;
1196        int res;
1197        struct m_can_priv temp_priv = {
1198                .base = m_can_base
1199        };
1200
1201        /* Read Core Release Version and split into version number
1202         * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
1203         */
1204        crel_reg = m_can_read(&temp_priv, M_CAN_CREL);
1205        rel = (u8)((crel_reg & CREL_REL_MASK) >> CREL_REL_SHIFT);
1206        step = (u8)((crel_reg & CREL_STEP_MASK) >> CREL_STEP_SHIFT);
1207
1208        if (rel == 3) {
1209                /* M_CAN v3.x.y: create return value */
1210                res = 30 + step;
1211        } else {
1212                /* Unsupported M_CAN version */
1213                res = 0;
1214        }
1215
1216        return res;
1217}
1218
1219/* Selectable Non ISO support only in version 3.2.x
1220 * This function checks if the bit is writable.
1221 */
1222static bool m_can_niso_supported(const struct m_can_priv *priv)
1223{
1224        u32 cccr_reg, cccr_poll;
1225        int niso_timeout;
1226
1227        m_can_config_endisable(priv, true);
1228        cccr_reg = m_can_read(priv, M_CAN_CCCR);
1229        cccr_reg |= CCCR_NISO;
1230        m_can_write(priv, M_CAN_CCCR, cccr_reg);
1231
1232        niso_timeout = readl_poll_timeout((priv->base + M_CAN_CCCR), cccr_poll,
1233                                          (cccr_poll == cccr_reg), 0, 10);
1234
1235        /* Clear NISO */
1236        cccr_reg &= ~(CCCR_NISO);
1237        m_can_write(priv, M_CAN_CCCR, cccr_reg);
1238
1239        m_can_config_endisable(priv, false);
1240
1241        /* return false if time out (-ETIMEDOUT), else return true */
1242        return !niso_timeout;
1243}
1244
1245static int m_can_dev_setup(struct platform_device *pdev, struct net_device *dev,
1246                           void __iomem *addr)
1247{
1248        struct m_can_priv *priv;
1249        int m_can_version;
1250
1251        m_can_version = m_can_check_core_release(addr);
1252        /* return if unsupported version */
1253        if (!m_can_version) {
1254                dev_err(&pdev->dev, "Unsupported version number: %2d",
1255                        m_can_version);
1256                return -EINVAL;
1257        }
1258
1259        priv = netdev_priv(dev);
1260        netif_napi_add(dev, &priv->napi, m_can_poll, M_CAN_NAPI_WEIGHT);
1261
1262        /* Shared properties of all M_CAN versions */
1263        priv->version = m_can_version;
1264        priv->dev = dev;
1265        priv->base = addr;
1266        priv->can.do_set_mode = m_can_set_mode;
1267        priv->can.do_get_berr_counter = m_can_get_berr_counter;
1268
1269        /* Set M_CAN supported operations */
1270        priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1271                                        CAN_CTRLMODE_LISTENONLY |
1272                                        CAN_CTRLMODE_BERR_REPORTING |
1273                                        CAN_CTRLMODE_FD;
1274
1275        /* Set properties depending on M_CAN version */
1276        switch (priv->version) {
1277        case 30:
1278                /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
1279                can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1280                priv->can.bittiming_const = &m_can_bittiming_const_30X;
1281                priv->can.data_bittiming_const =
1282                                &m_can_data_bittiming_const_30X;
1283                break;
1284        case 31:
1285                /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
1286                can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1287                priv->can.bittiming_const = &m_can_bittiming_const_31X;
1288                priv->can.data_bittiming_const =
1289                                &m_can_data_bittiming_const_31X;
1290                break;
1291        case 32:
1292                priv->can.bittiming_const = &m_can_bittiming_const_31X;
1293                priv->can.data_bittiming_const =
1294                                &m_can_data_bittiming_const_31X;
1295                priv->can.ctrlmode_supported |= (m_can_niso_supported(priv)
1296                                                ? CAN_CTRLMODE_FD_NON_ISO
1297                                                : 0);
1298                break;
1299        default:
1300                dev_err(&pdev->dev, "Unsupported version number: %2d",
1301                        priv->version);
1302                return -EINVAL;
1303        }
1304
1305        return 0;
1306}
1307
1308static int m_can_open(struct net_device *dev)
1309{
1310        struct m_can_priv *priv = netdev_priv(dev);
1311        int err;
1312
1313        err = m_can_clk_start(priv);
1314        if (err)
1315                return err;
1316
1317        /* open the can device */
1318        err = open_candev(dev);
1319        if (err) {
1320                netdev_err(dev, "failed to open can device\n");
1321                goto exit_disable_clks;
1322        }
1323
1324        /* register interrupt handler */
1325        err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
1326                          dev);
1327        if (err < 0) {
1328                netdev_err(dev, "failed to request interrupt\n");
1329                goto exit_irq_fail;
1330        }
1331
1332        /* start the m_can controller */
1333        m_can_start(dev);
1334
1335        can_led_event(dev, CAN_LED_EVENT_OPEN);
1336        napi_enable(&priv->napi);
1337        netif_start_queue(dev);
1338
1339        return 0;
1340
1341exit_irq_fail:
1342        close_candev(dev);
1343exit_disable_clks:
1344        m_can_clk_stop(priv);
1345        return err;
1346}
1347
1348static void m_can_stop(struct net_device *dev)
1349{
1350        struct m_can_priv *priv = netdev_priv(dev);
1351
1352        /* disable all interrupts */
1353        m_can_disable_all_interrupts(priv);
1354
1355        /* set the state as STOPPED */
1356        priv->can.state = CAN_STATE_STOPPED;
1357}
1358
1359static int m_can_close(struct net_device *dev)
1360{
1361        struct m_can_priv *priv = netdev_priv(dev);
1362
1363        netif_stop_queue(dev);
1364        napi_disable(&priv->napi);
1365        m_can_stop(dev);
1366        m_can_clk_stop(priv);
1367        free_irq(dev->irq, dev);
1368        close_candev(dev);
1369        can_led_event(dev, CAN_LED_EVENT_STOP);
1370
1371        return 0;
1372}
1373
1374static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
1375{
1376        struct m_can_priv *priv = netdev_priv(dev);
1377        /*get wrap around for loopback skb index */
1378        unsigned int wrap = priv->can.echo_skb_max;
1379        int next_idx;
1380
1381        /* calculate next index */
1382        next_idx = (++putidx >= wrap ? 0 : putidx);
1383
1384        /* check if occupied */
1385        return !!priv->can.echo_skb[next_idx];
1386}
1387
1388static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1389                                    struct net_device *dev)
1390{
1391        struct m_can_priv *priv = netdev_priv(dev);
1392        struct canfd_frame *cf = (struct canfd_frame *)skb->data;
1393        u32 id, cccr, fdflags;
1394        int i;
1395        int putidx;
1396
1397        if (can_dropped_invalid_skb(dev, skb))
1398                return NETDEV_TX_OK;
1399
1400        /* Generate ID field for TX buffer Element */
1401        /* Common to all supported M_CAN versions */
1402        if (cf->can_id & CAN_EFF_FLAG) {
1403                id = cf->can_id & CAN_EFF_MASK;
1404                id |= TX_BUF_XTD;
1405        } else {
1406                id = ((cf->can_id & CAN_SFF_MASK) << 18);
1407        }
1408
1409        if (cf->can_id & CAN_RTR_FLAG)
1410                id |= TX_BUF_RTR;
1411
1412        if (priv->version == 30) {
1413                netif_stop_queue(dev);
1414
1415                /* message ram configuration */
1416                m_can_fifo_write(priv, 0, M_CAN_FIFO_ID, id);
1417                m_can_fifo_write(priv, 0, M_CAN_FIFO_DLC,
1418                                 can_len2dlc(cf->len) << 16);
1419
1420                for (i = 0; i < cf->len; i += 4)
1421                        m_can_fifo_write(priv, 0,
1422                                         M_CAN_FIFO_DATA(i / 4),
1423                                         *(u32 *)(cf->data + i));
1424
1425                can_put_echo_skb(skb, dev, 0);
1426
1427                if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1428                        cccr = m_can_read(priv, M_CAN_CCCR);
1429                        cccr &= ~(CCCR_CMR_MASK << CCCR_CMR_SHIFT);
1430                        if (can_is_canfd_skb(skb)) {
1431                                if (cf->flags & CANFD_BRS)
1432                                        cccr |= CCCR_CMR_CANFD_BRS <<
1433                                                CCCR_CMR_SHIFT;
1434                                else
1435                                        cccr |= CCCR_CMR_CANFD <<
1436                                                CCCR_CMR_SHIFT;
1437                        } else {
1438                                cccr |= CCCR_CMR_CAN << CCCR_CMR_SHIFT;
1439                        }
1440                        m_can_write(priv, M_CAN_CCCR, cccr);
1441                }
1442                m_can_write(priv, M_CAN_TXBTIE, 0x1);
1443                m_can_write(priv, M_CAN_TXBAR, 0x1);
1444                /* End of xmit function for version 3.0.x */
1445        } else {
1446                /* Transmit routine for version >= v3.1.x */
1447
1448                /* Check if FIFO full */
1449                if (m_can_tx_fifo_full(priv)) {
1450                        /* This shouldn't happen */
1451                        netif_stop_queue(dev);
1452                        netdev_warn(dev,
1453                                    "TX queue active although FIFO is full.");
1454                        return NETDEV_TX_BUSY;
1455                }
1456
1457                /* get put index for frame */
1458                putidx = ((m_can_read(priv, M_CAN_TXFQS) & TXFQS_TFQPI_MASK)
1459                                  >> TXFQS_TFQPI_SHIFT);
1460                /* Write ID Field to FIFO Element */
1461                m_can_fifo_write(priv, putidx, M_CAN_FIFO_ID, id);
1462
1463                /* get CAN FD configuration of frame */
1464                fdflags = 0;
1465                if (can_is_canfd_skb(skb)) {
1466                        fdflags |= TX_BUF_FDF;
1467                        if (cf->flags & CANFD_BRS)
1468                                fdflags |= TX_BUF_BRS;
1469                }
1470
1471                /* Construct DLC Field. Also contains CAN-FD configuration
1472                 * use put index of fifo as message marker
1473                 * it is used in TX interrupt for
1474                 * sending the correct echo frame
1475                 */
1476                m_can_fifo_write(priv, putidx, M_CAN_FIFO_DLC,
1477                                 ((putidx << TX_BUF_MM_SHIFT) &
1478                                  TX_BUF_MM_MASK) |
1479                                 (can_len2dlc(cf->len) << 16) |
1480                                 fdflags | TX_BUF_EFC);
1481
1482                for (i = 0; i < cf->len; i += 4)
1483                        m_can_fifo_write(priv, putidx, M_CAN_FIFO_DATA(i / 4),
1484                                         *(u32 *)(cf->data + i));
1485
1486                /* Push loopback echo.
1487                 * Will be looped back on TX interrupt based on message marker
1488                 */
1489                can_put_echo_skb(skb, dev, putidx);
1490
1491                /* Enable TX FIFO element to start transfer  */
1492                m_can_write(priv, M_CAN_TXBAR, (1 << putidx));
1493
1494                /* stop network queue if fifo full */
1495                        if (m_can_tx_fifo_full(priv) ||
1496                            m_can_next_echo_skb_occupied(dev, putidx))
1497                                netif_stop_queue(dev);
1498        }
1499
1500        return NETDEV_TX_OK;
1501}
1502
1503static const struct net_device_ops m_can_netdev_ops = {
1504        .ndo_open = m_can_open,
1505        .ndo_stop = m_can_close,
1506        .ndo_start_xmit = m_can_start_xmit,
1507        .ndo_change_mtu = can_change_mtu,
1508};
1509
1510static int register_m_can_dev(struct net_device *dev)
1511{
1512        dev->flags |= IFF_ECHO; /* we support local echo */
1513        dev->netdev_ops = &m_can_netdev_ops;
1514
1515        return register_candev(dev);
1516}
1517
1518static void m_can_init_ram(struct m_can_priv *priv)
1519{
1520        int end, i, start;
1521
1522        /* initialize the entire Message RAM in use to avoid possible
1523         * ECC/parity checksum errors when reading an uninitialized buffer
1524         */
1525        start = priv->mcfg[MRAM_SIDF].off;
1526        end = priv->mcfg[MRAM_TXB].off +
1527                priv->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1528        for (i = start; i < end; i += 4)
1529                writel(0x0, priv->mram_base + i);
1530}
1531
1532static void m_can_of_parse_mram(struct m_can_priv *priv,
1533                                const u32 *mram_config_vals)
1534{
1535        priv->mcfg[MRAM_SIDF].off = mram_config_vals[0];
1536        priv->mcfg[MRAM_SIDF].num = mram_config_vals[1];
1537        priv->mcfg[MRAM_XIDF].off = priv->mcfg[MRAM_SIDF].off +
1538                        priv->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
1539        priv->mcfg[MRAM_XIDF].num = mram_config_vals[2];
1540        priv->mcfg[MRAM_RXF0].off = priv->mcfg[MRAM_XIDF].off +
1541                        priv->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
1542        priv->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
1543                        (RXFC_FS_MASK >> RXFC_FS_SHIFT);
1544        priv->mcfg[MRAM_RXF1].off = priv->mcfg[MRAM_RXF0].off +
1545                        priv->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
1546        priv->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
1547                        (RXFC_FS_MASK >> RXFC_FS_SHIFT);
1548        priv->mcfg[MRAM_RXB].off = priv->mcfg[MRAM_RXF1].off +
1549                        priv->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
1550        priv->mcfg[MRAM_RXB].num = mram_config_vals[5];
1551        priv->mcfg[MRAM_TXE].off = priv->mcfg[MRAM_RXB].off +
1552                        priv->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
1553        priv->mcfg[MRAM_TXE].num = mram_config_vals[6];
1554        priv->mcfg[MRAM_TXB].off = priv->mcfg[MRAM_TXE].off +
1555                        priv->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
1556        priv->mcfg[MRAM_TXB].num = mram_config_vals[7] &
1557                        (TXBC_NDTB_MASK >> TXBC_NDTB_SHIFT);
1558
1559        dev_dbg(priv->device,
1560                "mram_base %p sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1561                priv->mram_base,
1562                priv->mcfg[MRAM_SIDF].off, priv->mcfg[MRAM_SIDF].num,
1563                priv->mcfg[MRAM_XIDF].off, priv->mcfg[MRAM_XIDF].num,
1564                priv->mcfg[MRAM_RXF0].off, priv->mcfg[MRAM_RXF0].num,
1565                priv->mcfg[MRAM_RXF1].off, priv->mcfg[MRAM_RXF1].num,
1566                priv->mcfg[MRAM_RXB].off, priv->mcfg[MRAM_RXB].num,
1567                priv->mcfg[MRAM_TXE].off, priv->mcfg[MRAM_TXE].num,
1568                priv->mcfg[MRAM_TXB].off, priv->mcfg[MRAM_TXB].num);
1569
1570        m_can_init_ram(priv);
1571}
1572
1573static int m_can_plat_probe(struct platform_device *pdev)
1574{
1575        struct net_device *dev;
1576        struct m_can_priv *priv;
1577        struct resource *res;
1578        void __iomem *addr;
1579        void __iomem *mram_addr;
1580        struct clk *hclk, *cclk;
1581        int irq, ret;
1582        struct device_node *np;
1583        u32 mram_config_vals[MRAM_CFG_LEN];
1584        u32 tx_fifo_size;
1585
1586        np = pdev->dev.of_node;
1587
1588        hclk = devm_clk_get(&pdev->dev, "hclk");
1589        cclk = devm_clk_get(&pdev->dev, "cclk");
1590
1591        if (IS_ERR(hclk) || IS_ERR(cclk)) {
1592                dev_err(&pdev->dev, "no clock found\n");
1593                ret = -ENODEV;
1594                goto failed_ret;
1595        }
1596
1597        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "m_can");
1598        addr = devm_ioremap_resource(&pdev->dev, res);
1599        irq = platform_get_irq_byname(pdev, "int0");
1600
1601        if (IS_ERR(addr) || irq < 0) {
1602                ret = -EINVAL;
1603                goto failed_ret;
1604        }
1605
1606        /* message ram could be shared */
1607        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "message_ram");
1608        if (!res) {
1609                ret = -ENODEV;
1610                goto failed_ret;
1611        }
1612
1613        mram_addr = devm_ioremap(&pdev->dev, res->start, resource_size(res));
1614        if (!mram_addr) {
1615                ret = -ENOMEM;
1616                goto failed_ret;
1617        }
1618
1619        /* get message ram configuration */
1620        ret = of_property_read_u32_array(np, "bosch,mram-cfg",
1621                                         mram_config_vals,
1622                                         sizeof(mram_config_vals) / 4);
1623        if (ret) {
1624                dev_err(&pdev->dev, "Could not get Message RAM configuration.");
1625                goto failed_ret;
1626        }
1627
1628        /* Get TX FIFO size
1629         * Defines the total amount of echo buffers for loopback
1630         */
1631        tx_fifo_size = mram_config_vals[7];
1632
1633        /* allocate the m_can device */
1634        dev = alloc_candev(sizeof(*priv), tx_fifo_size);
1635        if (!dev) {
1636                ret = -ENOMEM;
1637                goto failed_ret;
1638        }
1639
1640        priv = netdev_priv(dev);
1641        dev->irq = irq;
1642        priv->device = &pdev->dev;
1643        priv->hclk = hclk;
1644        priv->cclk = cclk;
1645        priv->can.clock.freq = clk_get_rate(cclk);
1646        priv->mram_base = mram_addr;
1647
1648        platform_set_drvdata(pdev, dev);
1649        SET_NETDEV_DEV(dev, &pdev->dev);
1650
1651        /* Enable clocks. Necessary to read Core Release in order to determine
1652         * M_CAN version
1653         */
1654        pm_runtime_enable(&pdev->dev);
1655        ret = m_can_clk_start(priv);
1656        if (ret)
1657                goto pm_runtime_fail;
1658
1659        ret = m_can_dev_setup(pdev, dev, addr);
1660        if (ret)
1661                goto clk_disable;
1662
1663        ret = register_m_can_dev(dev);
1664        if (ret) {
1665                dev_err(&pdev->dev, "registering %s failed (err=%d)\n",
1666                        KBUILD_MODNAME, ret);
1667                goto clk_disable;
1668        }
1669
1670        m_can_of_parse_mram(priv, mram_config_vals);
1671
1672        devm_can_led_init(dev);
1673
1674        of_can_transceiver(dev);
1675
1676        dev_info(&pdev->dev, "%s device registered (irq=%d, version=%d)\n",
1677                 KBUILD_MODNAME, dev->irq, priv->version);
1678
1679        /* Probe finished
1680         * Stop clocks. They will be reactivated once the M_CAN device is opened
1681         */
1682clk_disable:
1683        m_can_clk_stop(priv);
1684pm_runtime_fail:
1685        if (ret) {
1686                pm_runtime_disable(&pdev->dev);
1687                free_candev(dev);
1688        }
1689failed_ret:
1690        return ret;
1691}
1692
1693static __maybe_unused int m_can_suspend(struct device *dev)
1694{
1695        struct net_device *ndev = dev_get_drvdata(dev);
1696        struct m_can_priv *priv = netdev_priv(ndev);
1697
1698        if (netif_running(ndev)) {
1699                netif_stop_queue(ndev);
1700                netif_device_detach(ndev);
1701                m_can_stop(ndev);
1702                m_can_clk_stop(priv);
1703        }
1704
1705        pinctrl_pm_select_sleep_state(dev);
1706
1707        priv->can.state = CAN_STATE_SLEEPING;
1708
1709        return 0;
1710}
1711
1712static __maybe_unused int m_can_resume(struct device *dev)
1713{
1714        struct net_device *ndev = dev_get_drvdata(dev);
1715        struct m_can_priv *priv = netdev_priv(ndev);
1716
1717        pinctrl_pm_select_default_state(dev);
1718
1719        priv->can.state = CAN_STATE_ERROR_ACTIVE;
1720
1721        if (netif_running(ndev)) {
1722                int ret;
1723
1724                ret = m_can_clk_start(priv);
1725                if (ret)
1726                        return ret;
1727
1728                m_can_init_ram(priv);
1729                m_can_start(ndev);
1730                netif_device_attach(ndev);
1731                netif_start_queue(ndev);
1732        }
1733
1734        return 0;
1735}
1736
1737static void unregister_m_can_dev(struct net_device *dev)
1738{
1739        unregister_candev(dev);
1740}
1741
1742static int m_can_plat_remove(struct platform_device *pdev)
1743{
1744        struct net_device *dev = platform_get_drvdata(pdev);
1745
1746        unregister_m_can_dev(dev);
1747
1748        pm_runtime_disable(&pdev->dev);
1749
1750        platform_set_drvdata(pdev, NULL);
1751
1752        free_candev(dev);
1753
1754        return 0;
1755}
1756
1757static int __maybe_unused m_can_runtime_suspend(struct device *dev)
1758{
1759        struct net_device *ndev = dev_get_drvdata(dev);
1760        struct m_can_priv *priv = netdev_priv(ndev);
1761
1762        clk_disable_unprepare(priv->cclk);
1763        clk_disable_unprepare(priv->hclk);
1764
1765        return 0;
1766}
1767
1768static int __maybe_unused m_can_runtime_resume(struct device *dev)
1769{
1770        struct net_device *ndev = dev_get_drvdata(dev);
1771        struct m_can_priv *priv = netdev_priv(ndev);
1772        int err;
1773
1774        err = clk_prepare_enable(priv->hclk);
1775        if (err)
1776                return err;
1777
1778        err = clk_prepare_enable(priv->cclk);
1779        if (err)
1780                clk_disable_unprepare(priv->hclk);
1781
1782        return err;
1783}
1784
1785static const struct dev_pm_ops m_can_pmops = {
1786        SET_RUNTIME_PM_OPS(m_can_runtime_suspend,
1787                           m_can_runtime_resume, NULL)
1788        SET_SYSTEM_SLEEP_PM_OPS(m_can_suspend, m_can_resume)
1789};
1790
1791static const struct of_device_id m_can_of_table[] = {
1792        { .compatible = "bosch,m_can", .data = NULL },
1793        { /* sentinel */ },
1794};
1795MODULE_DEVICE_TABLE(of, m_can_of_table);
1796
1797static struct platform_driver m_can_plat_driver = {
1798        .driver = {
1799                .name = KBUILD_MODNAME,
1800                .of_match_table = m_can_of_table,
1801                .pm     = &m_can_pmops,
1802        },
1803        .probe = m_can_plat_probe,
1804        .remove = m_can_plat_remove,
1805};
1806
1807module_platform_driver(m_can_plat_driver);
1808
1809MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
1810MODULE_LICENSE("GPL v2");
1811MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");
1812