linux/drivers/net/ethernet/intel/e1000e/ich8lan.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4/* 82562G 10/100 Network Connection
   5 * 82562G-2 10/100 Network Connection
   6 * 82562GT 10/100 Network Connection
   7 * 82562GT-2 10/100 Network Connection
   8 * 82562V 10/100 Network Connection
   9 * 82562V-2 10/100 Network Connection
  10 * 82566DC-2 Gigabit Network Connection
  11 * 82566DC Gigabit Network Connection
  12 * 82566DM-2 Gigabit Network Connection
  13 * 82566DM Gigabit Network Connection
  14 * 82566MC Gigabit Network Connection
  15 * 82566MM Gigabit Network Connection
  16 * 82567LM Gigabit Network Connection
  17 * 82567LF Gigabit Network Connection
  18 * 82567V Gigabit Network Connection
  19 * 82567LM-2 Gigabit Network Connection
  20 * 82567LF-2 Gigabit Network Connection
  21 * 82567V-2 Gigabit Network Connection
  22 * 82567LF-3 Gigabit Network Connection
  23 * 82567LM-3 Gigabit Network Connection
  24 * 82567LM-4 Gigabit Network Connection
  25 * 82577LM Gigabit Network Connection
  26 * 82577LC Gigabit Network Connection
  27 * 82578DM Gigabit Network Connection
  28 * 82578DC Gigabit Network Connection
  29 * 82579LM Gigabit Network Connection
  30 * 82579V Gigabit Network Connection
  31 * Ethernet Connection I217-LM
  32 * Ethernet Connection I217-V
  33 * Ethernet Connection I218-V
  34 * Ethernet Connection I218-LM
  35 * Ethernet Connection (2) I218-LM
  36 * Ethernet Connection (2) I218-V
  37 * Ethernet Connection (3) I218-LM
  38 * Ethernet Connection (3) I218-V
  39 */
  40
  41#include "e1000.h"
  42
  43/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
  44/* Offset 04h HSFSTS */
  45union ich8_hws_flash_status {
  46        struct ich8_hsfsts {
  47                u16 flcdone:1;  /* bit 0 Flash Cycle Done */
  48                u16 flcerr:1;   /* bit 1 Flash Cycle Error */
  49                u16 dael:1;     /* bit 2 Direct Access error Log */
  50                u16 berasesz:2; /* bit 4:3 Sector Erase Size */
  51                u16 flcinprog:1;        /* bit 5 flash cycle in Progress */
  52                u16 reserved1:2;        /* bit 13:6 Reserved */
  53                u16 reserved2:6;        /* bit 13:6 Reserved */
  54                u16 fldesvalid:1;       /* bit 14 Flash Descriptor Valid */
  55                u16 flockdn:1;  /* bit 15 Flash Config Lock-Down */
  56        } hsf_status;
  57        u16 regval;
  58};
  59
  60/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
  61/* Offset 06h FLCTL */
  62union ich8_hws_flash_ctrl {
  63        struct ich8_hsflctl {
  64                u16 flcgo:1;    /* 0 Flash Cycle Go */
  65                u16 flcycle:2;  /* 2:1 Flash Cycle */
  66                u16 reserved:5; /* 7:3 Reserved  */
  67                u16 fldbcount:2;        /* 9:8 Flash Data Byte Count */
  68                u16 flockdn:6;  /* 15:10 Reserved */
  69        } hsf_ctrl;
  70        u16 regval;
  71};
  72
  73/* ICH Flash Region Access Permissions */
  74union ich8_hws_flash_regacc {
  75        struct ich8_flracc {
  76                u32 grra:8;     /* 0:7 GbE region Read Access */
  77                u32 grwa:8;     /* 8:15 GbE region Write Access */
  78                u32 gmrag:8;    /* 23:16 GbE Master Read Access Grant */
  79                u32 gmwag:8;    /* 31:24 GbE Master Write Access Grant */
  80        } hsf_flregacc;
  81        u16 regval;
  82};
  83
  84/* ICH Flash Protected Region */
  85union ich8_flash_protected_range {
  86        struct ich8_pr {
  87                u32 base:13;    /* 0:12 Protected Range Base */
  88                u32 reserved1:2;        /* 13:14 Reserved */
  89                u32 rpe:1;      /* 15 Read Protection Enable */
  90                u32 limit:13;   /* 16:28 Protected Range Limit */
  91                u32 reserved2:2;        /* 29:30 Reserved */
  92                u32 wpe:1;      /* 31 Write Protection Enable */
  93        } range;
  94        u32 regval;
  95};
  96
  97static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
  98static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
  99static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
 100static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
 101                                                u32 offset, u8 byte);
 102static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
 103                                         u8 *data);
 104static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
 105                                         u16 *data);
 106static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
 107                                         u8 size, u16 *data);
 108static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
 109                                           u32 *data);
 110static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
 111                                          u32 offset, u32 *data);
 112static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
 113                                            u32 offset, u32 data);
 114static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
 115                                                 u32 offset, u32 dword);
 116static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
 117static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
 118static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
 119static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
 120static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
 121static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
 122static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
 123static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
 124static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
 125static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
 126static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
 127static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
 128static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
 129static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
 130static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
 131static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
 132static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
 133static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
 134static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
 135static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
 136static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
 137static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
 138static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
 139static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
 140
 141static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
 142{
 143        return readw(hw->flash_address + reg);
 144}
 145
 146static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
 147{
 148        return readl(hw->flash_address + reg);
 149}
 150
 151static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
 152{
 153        writew(val, hw->flash_address + reg);
 154}
 155
 156static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
 157{
 158        writel(val, hw->flash_address + reg);
 159}
 160
 161#define er16flash(reg)          __er16flash(hw, (reg))
 162#define er32flash(reg)          __er32flash(hw, (reg))
 163#define ew16flash(reg, val)     __ew16flash(hw, (reg), (val))
 164#define ew32flash(reg, val)     __ew32flash(hw, (reg), (val))
 165
 166/**
 167 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
 168 *  @hw: pointer to the HW structure
 169 *
 170 *  Test access to the PHY registers by reading the PHY ID registers.  If
 171 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
 172 *  otherwise assume the read PHY ID is correct if it is valid.
 173 *
 174 *  Assumes the sw/fw/hw semaphore is already acquired.
 175 **/
 176static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
 177{
 178        u16 phy_reg = 0;
 179        u32 phy_id = 0;
 180        s32 ret_val = 0;
 181        u16 retry_count;
 182        u32 mac_reg = 0;
 183
 184        for (retry_count = 0; retry_count < 2; retry_count++) {
 185                ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
 186                if (ret_val || (phy_reg == 0xFFFF))
 187                        continue;
 188                phy_id = (u32)(phy_reg << 16);
 189
 190                ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
 191                if (ret_val || (phy_reg == 0xFFFF)) {
 192                        phy_id = 0;
 193                        continue;
 194                }
 195                phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
 196                break;
 197        }
 198
 199        if (hw->phy.id) {
 200                if (hw->phy.id == phy_id)
 201                        goto out;
 202        } else if (phy_id) {
 203                hw->phy.id = phy_id;
 204                hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
 205                goto out;
 206        }
 207
 208        /* In case the PHY needs to be in mdio slow mode,
 209         * set slow mode and try to get the PHY id again.
 210         */
 211        if (hw->mac.type < e1000_pch_lpt) {
 212                hw->phy.ops.release(hw);
 213                ret_val = e1000_set_mdio_slow_mode_hv(hw);
 214                if (!ret_val)
 215                        ret_val = e1000e_get_phy_id(hw);
 216                hw->phy.ops.acquire(hw);
 217        }
 218
 219        if (ret_val)
 220                return false;
 221out:
 222        if (hw->mac.type >= e1000_pch_lpt) {
 223                /* Only unforce SMBus if ME is not active */
 224                if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
 225                        /* Unforce SMBus mode in PHY */
 226                        e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
 227                        phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
 228                        e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
 229
 230                        /* Unforce SMBus mode in MAC */
 231                        mac_reg = er32(CTRL_EXT);
 232                        mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 233                        ew32(CTRL_EXT, mac_reg);
 234                }
 235        }
 236
 237        return true;
 238}
 239
 240/**
 241 *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
 242 *  @hw: pointer to the HW structure
 243 *
 244 *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
 245 *  used to reset the PHY to a quiescent state when necessary.
 246 **/
 247static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
 248{
 249        u32 mac_reg;
 250
 251        /* Set Phy Config Counter to 50msec */
 252        mac_reg = er32(FEXTNVM3);
 253        mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
 254        mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
 255        ew32(FEXTNVM3, mac_reg);
 256
 257        /* Toggle LANPHYPC Value bit */
 258        mac_reg = er32(CTRL);
 259        mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
 260        mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
 261        ew32(CTRL, mac_reg);
 262        e1e_flush();
 263        usleep_range(10, 20);
 264        mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
 265        ew32(CTRL, mac_reg);
 266        e1e_flush();
 267
 268        if (hw->mac.type < e1000_pch_lpt) {
 269                msleep(50);
 270        } else {
 271                u16 count = 20;
 272
 273                do {
 274                        usleep_range(5000, 10000);
 275                } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
 276
 277                msleep(30);
 278        }
 279}
 280
 281/**
 282 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
 283 *  @hw: pointer to the HW structure
 284 *
 285 *  Workarounds/flow necessary for PHY initialization during driver load
 286 *  and resume paths.
 287 **/
 288static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
 289{
 290        struct e1000_adapter *adapter = hw->adapter;
 291        u32 mac_reg, fwsm = er32(FWSM);
 292        s32 ret_val;
 293
 294        /* Gate automatic PHY configuration by hardware on managed and
 295         * non-managed 82579 and newer adapters.
 296         */
 297        e1000_gate_hw_phy_config_ich8lan(hw, true);
 298
 299        /* It is not possible to be certain of the current state of ULP
 300         * so forcibly disable it.
 301         */
 302        hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
 303        e1000_disable_ulp_lpt_lp(hw, true);
 304
 305        ret_val = hw->phy.ops.acquire(hw);
 306        if (ret_val) {
 307                e_dbg("Failed to initialize PHY flow\n");
 308                goto out;
 309        }
 310
 311        /* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
 312         * inaccessible and resetting the PHY is not blocked, toggle the
 313         * LANPHYPC Value bit to force the interconnect to PCIe mode.
 314         */
 315        switch (hw->mac.type) {
 316        case e1000_pch_lpt:
 317        case e1000_pch_spt:
 318        case e1000_pch_cnp:
 319                if (e1000_phy_is_accessible_pchlan(hw))
 320                        break;
 321
 322                /* Before toggling LANPHYPC, see if PHY is accessible by
 323                 * forcing MAC to SMBus mode first.
 324                 */
 325                mac_reg = er32(CTRL_EXT);
 326                mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
 327                ew32(CTRL_EXT, mac_reg);
 328
 329                /* Wait 50 milliseconds for MAC to finish any retries
 330                 * that it might be trying to perform from previous
 331                 * attempts to acknowledge any phy read requests.
 332                 */
 333                msleep(50);
 334
 335                /* fall-through */
 336        case e1000_pch2lan:
 337                if (e1000_phy_is_accessible_pchlan(hw))
 338                        break;
 339
 340                /* fall-through */
 341        case e1000_pchlan:
 342                if ((hw->mac.type == e1000_pchlan) &&
 343                    (fwsm & E1000_ICH_FWSM_FW_VALID))
 344                        break;
 345
 346                if (hw->phy.ops.check_reset_block(hw)) {
 347                        e_dbg("Required LANPHYPC toggle blocked by ME\n");
 348                        ret_val = -E1000_ERR_PHY;
 349                        break;
 350                }
 351
 352                /* Toggle LANPHYPC Value bit */
 353                e1000_toggle_lanphypc_pch_lpt(hw);
 354                if (hw->mac.type >= e1000_pch_lpt) {
 355                        if (e1000_phy_is_accessible_pchlan(hw))
 356                                break;
 357
 358                        /* Toggling LANPHYPC brings the PHY out of SMBus mode
 359                         * so ensure that the MAC is also out of SMBus mode
 360                         */
 361                        mac_reg = er32(CTRL_EXT);
 362                        mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 363                        ew32(CTRL_EXT, mac_reg);
 364
 365                        if (e1000_phy_is_accessible_pchlan(hw))
 366                                break;
 367
 368                        ret_val = -E1000_ERR_PHY;
 369                }
 370                break;
 371        default:
 372                break;
 373        }
 374
 375        hw->phy.ops.release(hw);
 376        if (!ret_val) {
 377
 378                /* Check to see if able to reset PHY.  Print error if not */
 379                if (hw->phy.ops.check_reset_block(hw)) {
 380                        e_err("Reset blocked by ME\n");
 381                        goto out;
 382                }
 383
 384                /* Reset the PHY before any access to it.  Doing so, ensures
 385                 * that the PHY is in a known good state before we read/write
 386                 * PHY registers.  The generic reset is sufficient here,
 387                 * because we haven't determined the PHY type yet.
 388                 */
 389                ret_val = e1000e_phy_hw_reset_generic(hw);
 390                if (ret_val)
 391                        goto out;
 392
 393                /* On a successful reset, possibly need to wait for the PHY
 394                 * to quiesce to an accessible state before returning control
 395                 * to the calling function.  If the PHY does not quiesce, then
 396                 * return E1000E_BLK_PHY_RESET, as this is the condition that
 397                 *  the PHY is in.
 398                 */
 399                ret_val = hw->phy.ops.check_reset_block(hw);
 400                if (ret_val)
 401                        e_err("ME blocked access to PHY after reset\n");
 402        }
 403
 404out:
 405        /* Ungate automatic PHY configuration on non-managed 82579 */
 406        if ((hw->mac.type == e1000_pch2lan) &&
 407            !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
 408                usleep_range(10000, 20000);
 409                e1000_gate_hw_phy_config_ich8lan(hw, false);
 410        }
 411
 412        return ret_val;
 413}
 414
 415/**
 416 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 417 *  @hw: pointer to the HW structure
 418 *
 419 *  Initialize family-specific PHY parameters and function pointers.
 420 **/
 421static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
 422{
 423        struct e1000_phy_info *phy = &hw->phy;
 424        s32 ret_val;
 425
 426        phy->addr = 1;
 427        phy->reset_delay_us = 100;
 428
 429        phy->ops.set_page = e1000_set_page_igp;
 430        phy->ops.read_reg = e1000_read_phy_reg_hv;
 431        phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
 432        phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
 433        phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
 434        phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
 435        phy->ops.write_reg = e1000_write_phy_reg_hv;
 436        phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
 437        phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
 438        phy->ops.power_up = e1000_power_up_phy_copper;
 439        phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 440        phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 441
 442        phy->id = e1000_phy_unknown;
 443
 444        ret_val = e1000_init_phy_workarounds_pchlan(hw);
 445        if (ret_val)
 446                return ret_val;
 447
 448        if (phy->id == e1000_phy_unknown)
 449                switch (hw->mac.type) {
 450                default:
 451                        ret_val = e1000e_get_phy_id(hw);
 452                        if (ret_val)
 453                                return ret_val;
 454                        if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
 455                                break;
 456                        /* fall-through */
 457                case e1000_pch2lan:
 458                case e1000_pch_lpt:
 459                case e1000_pch_spt:
 460                case e1000_pch_cnp:
 461                        /* In case the PHY needs to be in mdio slow mode,
 462                         * set slow mode and try to get the PHY id again.
 463                         */
 464                        ret_val = e1000_set_mdio_slow_mode_hv(hw);
 465                        if (ret_val)
 466                                return ret_val;
 467                        ret_val = e1000e_get_phy_id(hw);
 468                        if (ret_val)
 469                                return ret_val;
 470                        break;
 471                }
 472        phy->type = e1000e_get_phy_type_from_id(phy->id);
 473
 474        switch (phy->type) {
 475        case e1000_phy_82577:
 476        case e1000_phy_82579:
 477        case e1000_phy_i217:
 478                phy->ops.check_polarity = e1000_check_polarity_82577;
 479                phy->ops.force_speed_duplex =
 480                    e1000_phy_force_speed_duplex_82577;
 481                phy->ops.get_cable_length = e1000_get_cable_length_82577;
 482                phy->ops.get_info = e1000_get_phy_info_82577;
 483                phy->ops.commit = e1000e_phy_sw_reset;
 484                break;
 485        case e1000_phy_82578:
 486                phy->ops.check_polarity = e1000_check_polarity_m88;
 487                phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 488                phy->ops.get_cable_length = e1000e_get_cable_length_m88;
 489                phy->ops.get_info = e1000e_get_phy_info_m88;
 490                break;
 491        default:
 492                ret_val = -E1000_ERR_PHY;
 493                break;
 494        }
 495
 496        return ret_val;
 497}
 498
 499/**
 500 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 501 *  @hw: pointer to the HW structure
 502 *
 503 *  Initialize family-specific PHY parameters and function pointers.
 504 **/
 505static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
 506{
 507        struct e1000_phy_info *phy = &hw->phy;
 508        s32 ret_val;
 509        u16 i = 0;
 510
 511        phy->addr = 1;
 512        phy->reset_delay_us = 100;
 513
 514        phy->ops.power_up = e1000_power_up_phy_copper;
 515        phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 516
 517        /* We may need to do this twice - once for IGP and if that fails,
 518         * we'll set BM func pointers and try again
 519         */
 520        ret_val = e1000e_determine_phy_address(hw);
 521        if (ret_val) {
 522                phy->ops.write_reg = e1000e_write_phy_reg_bm;
 523                phy->ops.read_reg = e1000e_read_phy_reg_bm;
 524                ret_val = e1000e_determine_phy_address(hw);
 525                if (ret_val) {
 526                        e_dbg("Cannot determine PHY addr. Erroring out\n");
 527                        return ret_val;
 528                }
 529        }
 530
 531        phy->id = 0;
 532        while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
 533               (i++ < 100)) {
 534                usleep_range(1000, 2000);
 535                ret_val = e1000e_get_phy_id(hw);
 536                if (ret_val)
 537                        return ret_val;
 538        }
 539
 540        /* Verify phy id */
 541        switch (phy->id) {
 542        case IGP03E1000_E_PHY_ID:
 543                phy->type = e1000_phy_igp_3;
 544                phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 545                phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
 546                phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
 547                phy->ops.get_info = e1000e_get_phy_info_igp;
 548                phy->ops.check_polarity = e1000_check_polarity_igp;
 549                phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
 550                break;
 551        case IFE_E_PHY_ID:
 552        case IFE_PLUS_E_PHY_ID:
 553        case IFE_C_E_PHY_ID:
 554                phy->type = e1000_phy_ife;
 555                phy->autoneg_mask = E1000_ALL_NOT_GIG;
 556                phy->ops.get_info = e1000_get_phy_info_ife;
 557                phy->ops.check_polarity = e1000_check_polarity_ife;
 558                phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
 559                break;
 560        case BME1000_E_PHY_ID:
 561                phy->type = e1000_phy_bm;
 562                phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 563                phy->ops.read_reg = e1000e_read_phy_reg_bm;
 564                phy->ops.write_reg = e1000e_write_phy_reg_bm;
 565                phy->ops.commit = e1000e_phy_sw_reset;
 566                phy->ops.get_info = e1000e_get_phy_info_m88;
 567                phy->ops.check_polarity = e1000_check_polarity_m88;
 568                phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 569                break;
 570        default:
 571                return -E1000_ERR_PHY;
 572        }
 573
 574        return 0;
 575}
 576
 577/**
 578 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 579 *  @hw: pointer to the HW structure
 580 *
 581 *  Initialize family-specific NVM parameters and function
 582 *  pointers.
 583 **/
 584static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
 585{
 586        struct e1000_nvm_info *nvm = &hw->nvm;
 587        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 588        u32 gfpreg, sector_base_addr, sector_end_addr;
 589        u16 i;
 590        u32 nvm_size;
 591
 592        nvm->type = e1000_nvm_flash_sw;
 593
 594        if (hw->mac.type >= e1000_pch_spt) {
 595                /* in SPT, gfpreg doesn't exist. NVM size is taken from the
 596                 * STRAP register. This is because in SPT the GbE Flash region
 597                 * is no longer accessed through the flash registers. Instead,
 598                 * the mechanism has changed, and the Flash region access
 599                 * registers are now implemented in GbE memory space.
 600                 */
 601                nvm->flash_base_addr = 0;
 602                nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
 603                    * NVM_SIZE_MULTIPLIER;
 604                nvm->flash_bank_size = nvm_size / 2;
 605                /* Adjust to word count */
 606                nvm->flash_bank_size /= sizeof(u16);
 607                /* Set the base address for flash register access */
 608                hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
 609        } else {
 610                /* Can't read flash registers if register set isn't mapped. */
 611                if (!hw->flash_address) {
 612                        e_dbg("ERROR: Flash registers not mapped\n");
 613                        return -E1000_ERR_CONFIG;
 614                }
 615
 616                gfpreg = er32flash(ICH_FLASH_GFPREG);
 617
 618                /* sector_X_addr is a "sector"-aligned address (4096 bytes)
 619                 * Add 1 to sector_end_addr since this sector is included in
 620                 * the overall size.
 621                 */
 622                sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
 623                sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
 624
 625                /* flash_base_addr is byte-aligned */
 626                nvm->flash_base_addr = sector_base_addr
 627                    << FLASH_SECTOR_ADDR_SHIFT;
 628
 629                /* find total size of the NVM, then cut in half since the total
 630                 * size represents two separate NVM banks.
 631                 */
 632                nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
 633                                        << FLASH_SECTOR_ADDR_SHIFT);
 634                nvm->flash_bank_size /= 2;
 635                /* Adjust to word count */
 636                nvm->flash_bank_size /= sizeof(u16);
 637        }
 638
 639        nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
 640
 641        /* Clear shadow ram */
 642        for (i = 0; i < nvm->word_size; i++) {
 643                dev_spec->shadow_ram[i].modified = false;
 644                dev_spec->shadow_ram[i].value = 0xFFFF;
 645        }
 646
 647        return 0;
 648}
 649
 650/**
 651 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 652 *  @hw: pointer to the HW structure
 653 *
 654 *  Initialize family-specific MAC parameters and function
 655 *  pointers.
 656 **/
 657static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
 658{
 659        struct e1000_mac_info *mac = &hw->mac;
 660
 661        /* Set media type function pointer */
 662        hw->phy.media_type = e1000_media_type_copper;
 663
 664        /* Set mta register count */
 665        mac->mta_reg_count = 32;
 666        /* Set rar entry count */
 667        mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
 668        if (mac->type == e1000_ich8lan)
 669                mac->rar_entry_count--;
 670        /* FWSM register */
 671        mac->has_fwsm = true;
 672        /* ARC subsystem not supported */
 673        mac->arc_subsystem_valid = false;
 674        /* Adaptive IFS supported */
 675        mac->adaptive_ifs = true;
 676
 677        /* LED and other operations */
 678        switch (mac->type) {
 679        case e1000_ich8lan:
 680        case e1000_ich9lan:
 681        case e1000_ich10lan:
 682                /* check management mode */
 683                mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
 684                /* ID LED init */
 685                mac->ops.id_led_init = e1000e_id_led_init_generic;
 686                /* blink LED */
 687                mac->ops.blink_led = e1000e_blink_led_generic;
 688                /* setup LED */
 689                mac->ops.setup_led = e1000e_setup_led_generic;
 690                /* cleanup LED */
 691                mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
 692                /* turn on/off LED */
 693                mac->ops.led_on = e1000_led_on_ich8lan;
 694                mac->ops.led_off = e1000_led_off_ich8lan;
 695                break;
 696        case e1000_pch2lan:
 697                mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
 698                mac->ops.rar_set = e1000_rar_set_pch2lan;
 699                /* fall-through */
 700        case e1000_pch_lpt:
 701        case e1000_pch_spt:
 702        case e1000_pch_cnp:
 703        case e1000_pchlan:
 704                /* check management mode */
 705                mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
 706                /* ID LED init */
 707                mac->ops.id_led_init = e1000_id_led_init_pchlan;
 708                /* setup LED */
 709                mac->ops.setup_led = e1000_setup_led_pchlan;
 710                /* cleanup LED */
 711                mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
 712                /* turn on/off LED */
 713                mac->ops.led_on = e1000_led_on_pchlan;
 714                mac->ops.led_off = e1000_led_off_pchlan;
 715                break;
 716        default:
 717                break;
 718        }
 719
 720        if (mac->type >= e1000_pch_lpt) {
 721                mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
 722                mac->ops.rar_set = e1000_rar_set_pch_lpt;
 723                mac->ops.setup_physical_interface =
 724                    e1000_setup_copper_link_pch_lpt;
 725                mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
 726        }
 727
 728        /* Enable PCS Lock-loss workaround for ICH8 */
 729        if (mac->type == e1000_ich8lan)
 730                e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
 731
 732        return 0;
 733}
 734
 735/**
 736 *  __e1000_access_emi_reg_locked - Read/write EMI register
 737 *  @hw: pointer to the HW structure
 738 *  @addr: EMI address to program
 739 *  @data: pointer to value to read/write from/to the EMI address
 740 *  @read: boolean flag to indicate read or write
 741 *
 742 *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
 743 **/
 744static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
 745                                         u16 *data, bool read)
 746{
 747        s32 ret_val;
 748
 749        ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
 750        if (ret_val)
 751                return ret_val;
 752
 753        if (read)
 754                ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
 755        else
 756                ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
 757
 758        return ret_val;
 759}
 760
 761/**
 762 *  e1000_read_emi_reg_locked - Read Extended Management Interface register
 763 *  @hw: pointer to the HW structure
 764 *  @addr: EMI address to program
 765 *  @data: value to be read from the EMI address
 766 *
 767 *  Assumes the SW/FW/HW Semaphore is already acquired.
 768 **/
 769s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
 770{
 771        return __e1000_access_emi_reg_locked(hw, addr, data, true);
 772}
 773
 774/**
 775 *  e1000_write_emi_reg_locked - Write Extended Management Interface register
 776 *  @hw: pointer to the HW structure
 777 *  @addr: EMI address to program
 778 *  @data: value to be written to the EMI address
 779 *
 780 *  Assumes the SW/FW/HW Semaphore is already acquired.
 781 **/
 782s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
 783{
 784        return __e1000_access_emi_reg_locked(hw, addr, &data, false);
 785}
 786
 787/**
 788 *  e1000_set_eee_pchlan - Enable/disable EEE support
 789 *  @hw: pointer to the HW structure
 790 *
 791 *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
 792 *  the link and the EEE capabilities of the link partner.  The LPI Control
 793 *  register bits will remain set only if/when link is up.
 794 *
 795 *  EEE LPI must not be asserted earlier than one second after link is up.
 796 *  On 82579, EEE LPI should not be enabled until such time otherwise there
 797 *  can be link issues with some switches.  Other devices can have EEE LPI
 798 *  enabled immediately upon link up since they have a timer in hardware which
 799 *  prevents LPI from being asserted too early.
 800 **/
 801s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
 802{
 803        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 804        s32 ret_val;
 805        u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
 806
 807        switch (hw->phy.type) {
 808        case e1000_phy_82579:
 809                lpa = I82579_EEE_LP_ABILITY;
 810                pcs_status = I82579_EEE_PCS_STATUS;
 811                adv_addr = I82579_EEE_ADVERTISEMENT;
 812                break;
 813        case e1000_phy_i217:
 814                lpa = I217_EEE_LP_ABILITY;
 815                pcs_status = I217_EEE_PCS_STATUS;
 816                adv_addr = I217_EEE_ADVERTISEMENT;
 817                break;
 818        default:
 819                return 0;
 820        }
 821
 822        ret_val = hw->phy.ops.acquire(hw);
 823        if (ret_val)
 824                return ret_val;
 825
 826        ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
 827        if (ret_val)
 828                goto release;
 829
 830        /* Clear bits that enable EEE in various speeds */
 831        lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
 832
 833        /* Enable EEE if not disabled by user */
 834        if (!dev_spec->eee_disable) {
 835                /* Save off link partner's EEE ability */
 836                ret_val = e1000_read_emi_reg_locked(hw, lpa,
 837                                                    &dev_spec->eee_lp_ability);
 838                if (ret_val)
 839                        goto release;
 840
 841                /* Read EEE advertisement */
 842                ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
 843                if (ret_val)
 844                        goto release;
 845
 846                /* Enable EEE only for speeds in which the link partner is
 847                 * EEE capable and for which we advertise EEE.
 848                 */
 849                if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
 850                        lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
 851
 852                if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
 853                        e1e_rphy_locked(hw, MII_LPA, &data);
 854                        if (data & LPA_100FULL)
 855                                lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
 856                        else
 857                                /* EEE is not supported in 100Half, so ignore
 858                                 * partner's EEE in 100 ability if full-duplex
 859                                 * is not advertised.
 860                                 */
 861                                dev_spec->eee_lp_ability &=
 862                                    ~I82579_EEE_100_SUPPORTED;
 863                }
 864        }
 865
 866        if (hw->phy.type == e1000_phy_82579) {
 867                ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 868                                                    &data);
 869                if (ret_val)
 870                        goto release;
 871
 872                data &= ~I82579_LPI_100_PLL_SHUT;
 873                ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 874                                                     data);
 875        }
 876
 877        /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
 878        ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
 879        if (ret_val)
 880                goto release;
 881
 882        ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
 883release:
 884        hw->phy.ops.release(hw);
 885
 886        return ret_val;
 887}
 888
 889/**
 890 *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
 891 *  @hw:   pointer to the HW structure
 892 *  @link: link up bool flag
 893 *
 894 *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
 895 *  preventing further DMA write requests.  Workaround the issue by disabling
 896 *  the de-assertion of the clock request when in 1Gpbs mode.
 897 *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
 898 *  speeds in order to avoid Tx hangs.
 899 **/
 900static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
 901{
 902        u32 fextnvm6 = er32(FEXTNVM6);
 903        u32 status = er32(STATUS);
 904        s32 ret_val = 0;
 905        u16 reg;
 906
 907        if (link && (status & E1000_STATUS_SPEED_1000)) {
 908                ret_val = hw->phy.ops.acquire(hw);
 909                if (ret_val)
 910                        return ret_val;
 911
 912                ret_val =
 913                    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
 914                                                &reg);
 915                if (ret_val)
 916                        goto release;
 917
 918                ret_val =
 919                    e1000e_write_kmrn_reg_locked(hw,
 920                                                 E1000_KMRNCTRLSTA_K1_CONFIG,
 921                                                 reg &
 922                                                 ~E1000_KMRNCTRLSTA_K1_ENABLE);
 923                if (ret_val)
 924                        goto release;
 925
 926                usleep_range(10, 20);
 927
 928                ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
 929
 930                ret_val =
 931                    e1000e_write_kmrn_reg_locked(hw,
 932                                                 E1000_KMRNCTRLSTA_K1_CONFIG,
 933                                                 reg);
 934release:
 935                hw->phy.ops.release(hw);
 936        } else {
 937                /* clear FEXTNVM6 bit 8 on link down or 10/100 */
 938                fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
 939
 940                if ((hw->phy.revision > 5) || !link ||
 941                    ((status & E1000_STATUS_SPEED_100) &&
 942                     (status & E1000_STATUS_FD)))
 943                        goto update_fextnvm6;
 944
 945                ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
 946                if (ret_val)
 947                        return ret_val;
 948
 949                /* Clear link status transmit timeout */
 950                reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
 951
 952                if (status & E1000_STATUS_SPEED_100) {
 953                        /* Set inband Tx timeout to 5x10us for 100Half */
 954                        reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 955
 956                        /* Do not extend the K1 entry latency for 100Half */
 957                        fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 958                } else {
 959                        /* Set inband Tx timeout to 50x10us for 10Full/Half */
 960                        reg |= 50 <<
 961                            I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 962
 963                        /* Extend the K1 entry latency for 10 Mbps */
 964                        fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 965                }
 966
 967                ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
 968                if (ret_val)
 969                        return ret_val;
 970
 971update_fextnvm6:
 972                ew32(FEXTNVM6, fextnvm6);
 973        }
 974
 975        return ret_val;
 976}
 977
 978/**
 979 *  e1000_platform_pm_pch_lpt - Set platform power management values
 980 *  @hw: pointer to the HW structure
 981 *  @link: bool indicating link status
 982 *
 983 *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
 984 *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
 985 *  when link is up (which must not exceed the maximum latency supported
 986 *  by the platform), otherwise specify there is no LTR requirement.
 987 *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
 988 *  latencies in the LTR Extended Capability Structure in the PCIe Extended
 989 *  Capability register set, on this device LTR is set by writing the
 990 *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
 991 *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
 992 *  message to the PMC.
 993 **/
 994static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
 995{
 996        u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
 997            link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
 998        u16 lat_enc = 0;        /* latency encoded */
 999
1000        if (link) {
1001                u16 speed, duplex, scale = 0;
1002                u16 max_snoop, max_nosnoop;
1003                u16 max_ltr_enc;        /* max LTR latency encoded */
1004                u64 value;
1005                u32 rxa;
1006
1007                if (!hw->adapter->max_frame_size) {
1008                        e_dbg("max_frame_size not set.\n");
1009                        return -E1000_ERR_CONFIG;
1010                }
1011
1012                hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1013                if (!speed) {
1014                        e_dbg("Speed not set.\n");
1015                        return -E1000_ERR_CONFIG;
1016                }
1017
1018                /* Rx Packet Buffer Allocation size (KB) */
1019                rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1020
1021                /* Determine the maximum latency tolerated by the device.
1022                 *
1023                 * Per the PCIe spec, the tolerated latencies are encoded as
1024                 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1025                 * a 10-bit value (0-1023) to provide a range from 1 ns to
1026                 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1027                 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1028                 */
1029                rxa *= 512;
1030                value = (rxa > hw->adapter->max_frame_size) ?
1031                        (rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1032                        0;
1033
1034                while (value > PCI_LTR_VALUE_MASK) {
1035                        scale++;
1036                        value = DIV_ROUND_UP(value, BIT(5));
1037                }
1038                if (scale > E1000_LTRV_SCALE_MAX) {
1039                        e_dbg("Invalid LTR latency scale %d\n", scale);
1040                        return -E1000_ERR_CONFIG;
1041                }
1042                lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1043
1044                /* Determine the maximum latency tolerated by the platform */
1045                pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1046                                     &max_snoop);
1047                pci_read_config_word(hw->adapter->pdev,
1048                                     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1049                max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1050
1051                if (lat_enc > max_ltr_enc)
1052                        lat_enc = max_ltr_enc;
1053        }
1054
1055        /* Set Snoop and No-Snoop latencies the same */
1056        reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1057        ew32(LTRV, reg);
1058
1059        return 0;
1060}
1061
1062/**
1063 *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1064 *  @hw: pointer to the HW structure
1065 *  @to_sx: boolean indicating a system power state transition to Sx
1066 *
1067 *  When link is down, configure ULP mode to significantly reduce the power
1068 *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1069 *  ME firmware to start the ULP configuration.  If not on an ME enabled
1070 *  system, configure the ULP mode by software.
1071 */
1072s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1073{
1074        u32 mac_reg;
1075        s32 ret_val = 0;
1076        u16 phy_reg;
1077        u16 oem_reg = 0;
1078
1079        if ((hw->mac.type < e1000_pch_lpt) ||
1080            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1081            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1082            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1083            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1084            (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1085                return 0;
1086
1087        if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1088                /* Request ME configure ULP mode in the PHY */
1089                mac_reg = er32(H2ME);
1090                mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1091                ew32(H2ME, mac_reg);
1092
1093                goto out;
1094        }
1095
1096        if (!to_sx) {
1097                int i = 0;
1098
1099                /* Poll up to 5 seconds for Cable Disconnected indication */
1100                while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1101                        /* Bail if link is re-acquired */
1102                        if (er32(STATUS) & E1000_STATUS_LU)
1103                                return -E1000_ERR_PHY;
1104
1105                        if (i++ == 100)
1106                                break;
1107
1108                        msleep(50);
1109                }
1110                e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1111                      (er32(FEXT) &
1112                       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1113        }
1114
1115        ret_val = hw->phy.ops.acquire(hw);
1116        if (ret_val)
1117                goto out;
1118
1119        /* Force SMBus mode in PHY */
1120        ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1121        if (ret_val)
1122                goto release;
1123        phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1124        e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1125
1126        /* Force SMBus mode in MAC */
1127        mac_reg = er32(CTRL_EXT);
1128        mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1129        ew32(CTRL_EXT, mac_reg);
1130
1131        /* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1132         * LPLU and disable Gig speed when entering ULP
1133         */
1134        if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1135                ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1136                                                       &oem_reg);
1137                if (ret_val)
1138                        goto release;
1139
1140                phy_reg = oem_reg;
1141                phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1142
1143                ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1144                                                        phy_reg);
1145
1146                if (ret_val)
1147                        goto release;
1148        }
1149
1150        /* Set Inband ULP Exit, Reset to SMBus mode and
1151         * Disable SMBus Release on PERST# in PHY
1152         */
1153        ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1154        if (ret_val)
1155                goto release;
1156        phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1157                    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1158        if (to_sx) {
1159                if (er32(WUFC) & E1000_WUFC_LNKC)
1160                        phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1161                else
1162                        phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1163
1164                phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1165                phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1166        } else {
1167                phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1168                phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1169                phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1170        }
1171        e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1172
1173        /* Set Disable SMBus Release on PERST# in MAC */
1174        mac_reg = er32(FEXTNVM7);
1175        mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1176        ew32(FEXTNVM7, mac_reg);
1177
1178        /* Commit ULP changes in PHY by starting auto ULP configuration */
1179        phy_reg |= I218_ULP_CONFIG1_START;
1180        e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1181
1182        if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1183            to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1184                ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1185                                                        oem_reg);
1186                if (ret_val)
1187                        goto release;
1188        }
1189
1190release:
1191        hw->phy.ops.release(hw);
1192out:
1193        if (ret_val)
1194                e_dbg("Error in ULP enable flow: %d\n", ret_val);
1195        else
1196                hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1197
1198        return ret_val;
1199}
1200
1201/**
1202 *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1203 *  @hw: pointer to the HW structure
1204 *  @force: boolean indicating whether or not to force disabling ULP
1205 *
1206 *  Un-configure ULP mode when link is up, the system is transitioned from
1207 *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1208 *  system, poll for an indication from ME that ULP has been un-configured.
1209 *  If not on an ME enabled system, un-configure the ULP mode by software.
1210 *
1211 *  During nominal operation, this function is called when link is acquired
1212 *  to disable ULP mode (force=false); otherwise, for example when unloading
1213 *  the driver or during Sx->S0 transitions, this is called with force=true
1214 *  to forcibly disable ULP.
1215 */
1216static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1217{
1218        s32 ret_val = 0;
1219        u32 mac_reg;
1220        u16 phy_reg;
1221        int i = 0;
1222
1223        if ((hw->mac.type < e1000_pch_lpt) ||
1224            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1225            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1226            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1227            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1228            (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1229                return 0;
1230
1231        if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1232                if (force) {
1233                        /* Request ME un-configure ULP mode in the PHY */
1234                        mac_reg = er32(H2ME);
1235                        mac_reg &= ~E1000_H2ME_ULP;
1236                        mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1237                        ew32(H2ME, mac_reg);
1238                }
1239
1240                /* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
1241                while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1242                        if (i++ == 30) {
1243                                ret_val = -E1000_ERR_PHY;
1244                                goto out;
1245                        }
1246
1247                        usleep_range(10000, 20000);
1248                }
1249                e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1250
1251                if (force) {
1252                        mac_reg = er32(H2ME);
1253                        mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1254                        ew32(H2ME, mac_reg);
1255                } else {
1256                        /* Clear H2ME.ULP after ME ULP configuration */
1257                        mac_reg = er32(H2ME);
1258                        mac_reg &= ~E1000_H2ME_ULP;
1259                        ew32(H2ME, mac_reg);
1260                }
1261
1262                goto out;
1263        }
1264
1265        ret_val = hw->phy.ops.acquire(hw);
1266        if (ret_val)
1267                goto out;
1268
1269        if (force)
1270                /* Toggle LANPHYPC Value bit */
1271                e1000_toggle_lanphypc_pch_lpt(hw);
1272
1273        /* Unforce SMBus mode in PHY */
1274        ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1275        if (ret_val) {
1276                /* The MAC might be in PCIe mode, so temporarily force to
1277                 * SMBus mode in order to access the PHY.
1278                 */
1279                mac_reg = er32(CTRL_EXT);
1280                mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1281                ew32(CTRL_EXT, mac_reg);
1282
1283                msleep(50);
1284
1285                ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1286                                                       &phy_reg);
1287                if (ret_val)
1288                        goto release;
1289        }
1290        phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1291        e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1292
1293        /* Unforce SMBus mode in MAC */
1294        mac_reg = er32(CTRL_EXT);
1295        mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1296        ew32(CTRL_EXT, mac_reg);
1297
1298        /* When ULP mode was previously entered, K1 was disabled by the
1299         * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1300         */
1301        ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1302        if (ret_val)
1303                goto release;
1304        phy_reg |= HV_PM_CTRL_K1_ENABLE;
1305        e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1306
1307        /* Clear ULP enabled configuration */
1308        ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1309        if (ret_val)
1310                goto release;
1311        phy_reg &= ~(I218_ULP_CONFIG1_IND |
1312                     I218_ULP_CONFIG1_STICKY_ULP |
1313                     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1314                     I218_ULP_CONFIG1_WOL_HOST |
1315                     I218_ULP_CONFIG1_INBAND_EXIT |
1316                     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1317                     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1318                     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1319        e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1320
1321        /* Commit ULP changes by starting auto ULP configuration */
1322        phy_reg |= I218_ULP_CONFIG1_START;
1323        e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1324
1325        /* Clear Disable SMBus Release on PERST# in MAC */
1326        mac_reg = er32(FEXTNVM7);
1327        mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1328        ew32(FEXTNVM7, mac_reg);
1329
1330release:
1331        hw->phy.ops.release(hw);
1332        if (force) {
1333                e1000_phy_hw_reset(hw);
1334                msleep(50);
1335        }
1336out:
1337        if (ret_val)
1338                e_dbg("Error in ULP disable flow: %d\n", ret_val);
1339        else
1340                hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1341
1342        return ret_val;
1343}
1344
1345/**
1346 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1347 *  @hw: pointer to the HW structure
1348 *
1349 *  Checks to see of the link status of the hardware has changed.  If a
1350 *  change in link status has been detected, then we read the PHY registers
1351 *  to get the current speed/duplex if link exists.
1352 **/
1353static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1354{
1355        struct e1000_mac_info *mac = &hw->mac;
1356        s32 ret_val, tipg_reg = 0;
1357        u16 emi_addr, emi_val = 0;
1358        bool link;
1359        u16 phy_reg;
1360
1361        /* We only want to go out to the PHY registers to see if Auto-Neg
1362         * has completed and/or if our link status has changed.  The
1363         * get_link_status flag is set upon receiving a Link Status
1364         * Change or Rx Sequence Error interrupt.
1365         */
1366        if (!mac->get_link_status)
1367                return 0;
1368        mac->get_link_status = false;
1369
1370        /* First we want to see if the MII Status Register reports
1371         * link.  If so, then we want to get the current speed/duplex
1372         * of the PHY.
1373         */
1374        ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1375        if (ret_val)
1376                goto out;
1377
1378        if (hw->mac.type == e1000_pchlan) {
1379                ret_val = e1000_k1_gig_workaround_hv(hw, link);
1380                if (ret_val)
1381                        goto out;
1382        }
1383
1384        /* When connected at 10Mbps half-duplex, some parts are excessively
1385         * aggressive resulting in many collisions. To avoid this, increase
1386         * the IPG and reduce Rx latency in the PHY.
1387         */
1388        if ((hw->mac.type >= e1000_pch2lan) && link) {
1389                u16 speed, duplex;
1390
1391                e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1392                tipg_reg = er32(TIPG);
1393                tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1394
1395                if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1396                        tipg_reg |= 0xFF;
1397                        /* Reduce Rx latency in analog PHY */
1398                        emi_val = 0;
1399                } else if (hw->mac.type >= e1000_pch_spt &&
1400                           duplex == FULL_DUPLEX && speed != SPEED_1000) {
1401                        tipg_reg |= 0xC;
1402                        emi_val = 1;
1403                } else {
1404
1405                        /* Roll back the default values */
1406                        tipg_reg |= 0x08;
1407                        emi_val = 1;
1408                }
1409
1410                ew32(TIPG, tipg_reg);
1411
1412                ret_val = hw->phy.ops.acquire(hw);
1413                if (ret_val)
1414                        goto out;
1415
1416                if (hw->mac.type == e1000_pch2lan)
1417                        emi_addr = I82579_RX_CONFIG;
1418                else
1419                        emi_addr = I217_RX_CONFIG;
1420                ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1421
1422                if (hw->mac.type >= e1000_pch_lpt) {
1423                        u16 phy_reg;
1424
1425                        e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1426                        phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1427                        if (speed == SPEED_100 || speed == SPEED_10)
1428                                phy_reg |= 0x3E8;
1429                        else
1430                                phy_reg |= 0xFA;
1431                        e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1432                }
1433                hw->phy.ops.release(hw);
1434
1435                if (ret_val)
1436                        goto out;
1437
1438                if (hw->mac.type >= e1000_pch_spt) {
1439                        u16 data;
1440                        u16 ptr_gap;
1441
1442                        if (speed == SPEED_1000) {
1443                                ret_val = hw->phy.ops.acquire(hw);
1444                                if (ret_val)
1445                                        goto out;
1446
1447                                ret_val = e1e_rphy_locked(hw,
1448                                                          PHY_REG(776, 20),
1449                                                          &data);
1450                                if (ret_val) {
1451                                        hw->phy.ops.release(hw);
1452                                        goto out;
1453                                }
1454
1455                                ptr_gap = (data & (0x3FF << 2)) >> 2;
1456                                if (ptr_gap < 0x18) {
1457                                        data &= ~(0x3FF << 2);
1458                                        data |= (0x18 << 2);
1459                                        ret_val =
1460                                            e1e_wphy_locked(hw,
1461                                                            PHY_REG(776, 20),
1462                                                            data);
1463                                }
1464                                hw->phy.ops.release(hw);
1465                                if (ret_val)
1466                                        goto out;
1467                        } else {
1468                                ret_val = hw->phy.ops.acquire(hw);
1469                                if (ret_val)
1470                                        goto out;
1471
1472                                ret_val = e1e_wphy_locked(hw,
1473                                                          PHY_REG(776, 20),
1474                                                          0xC023);
1475                                hw->phy.ops.release(hw);
1476                                if (ret_val)
1477                                        goto out;
1478
1479                        }
1480                }
1481        }
1482
1483        /* I217 Packet Loss issue:
1484         * ensure that FEXTNVM4 Beacon Duration is set correctly
1485         * on power up.
1486         * Set the Beacon Duration for I217 to 8 usec
1487         */
1488        if (hw->mac.type >= e1000_pch_lpt) {
1489                u32 mac_reg;
1490
1491                mac_reg = er32(FEXTNVM4);
1492                mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1493                mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1494                ew32(FEXTNVM4, mac_reg);
1495        }
1496
1497        /* Work-around I218 hang issue */
1498        if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1499            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1500            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1501            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1502                ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1503                if (ret_val)
1504                        goto out;
1505        }
1506        if (hw->mac.type >= e1000_pch_lpt) {
1507                /* Set platform power management values for
1508                 * Latency Tolerance Reporting (LTR)
1509                 */
1510                ret_val = e1000_platform_pm_pch_lpt(hw, link);
1511                if (ret_val)
1512                        goto out;
1513        }
1514
1515        /* Clear link partner's EEE ability */
1516        hw->dev_spec.ich8lan.eee_lp_ability = 0;
1517
1518        if (hw->mac.type >= e1000_pch_lpt) {
1519                u32 fextnvm6 = er32(FEXTNVM6);
1520
1521                if (hw->mac.type == e1000_pch_spt) {
1522                        /* FEXTNVM6 K1-off workaround - for SPT only */
1523                        u32 pcieanacfg = er32(PCIEANACFG);
1524
1525                        if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1526                                fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1527                        else
1528                                fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1529                }
1530
1531                ew32(FEXTNVM6, fextnvm6);
1532        }
1533
1534        if (!link)
1535                goto out;
1536
1537        switch (hw->mac.type) {
1538        case e1000_pch2lan:
1539                ret_val = e1000_k1_workaround_lv(hw);
1540                if (ret_val)
1541                        return ret_val;
1542                /* fall-thru */
1543        case e1000_pchlan:
1544                if (hw->phy.type == e1000_phy_82578) {
1545                        ret_val = e1000_link_stall_workaround_hv(hw);
1546                        if (ret_val)
1547                                return ret_val;
1548                }
1549
1550                /* Workaround for PCHx parts in half-duplex:
1551                 * Set the number of preambles removed from the packet
1552                 * when it is passed from the PHY to the MAC to prevent
1553                 * the MAC from misinterpreting the packet type.
1554                 */
1555                e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1556                phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1557
1558                if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1559                        phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1560
1561                e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1562                break;
1563        default:
1564                break;
1565        }
1566
1567        /* Check if there was DownShift, must be checked
1568         * immediately after link-up
1569         */
1570        e1000e_check_downshift(hw);
1571
1572        /* Enable/Disable EEE after link up */
1573        if (hw->phy.type > e1000_phy_82579) {
1574                ret_val = e1000_set_eee_pchlan(hw);
1575                if (ret_val)
1576                        return ret_val;
1577        }
1578
1579        /* If we are forcing speed/duplex, then we simply return since
1580         * we have already determined whether we have link or not.
1581         */
1582        if (!mac->autoneg)
1583                return -E1000_ERR_CONFIG;
1584
1585        /* Auto-Neg is enabled.  Auto Speed Detection takes care
1586         * of MAC speed/duplex configuration.  So we only need to
1587         * configure Collision Distance in the MAC.
1588         */
1589        mac->ops.config_collision_dist(hw);
1590
1591        /* Configure Flow Control now that Auto-Neg has completed.
1592         * First, we need to restore the desired flow control
1593         * settings because we may have had to re-autoneg with a
1594         * different link partner.
1595         */
1596        ret_val = e1000e_config_fc_after_link_up(hw);
1597        if (ret_val)
1598                e_dbg("Error configuring flow control\n");
1599
1600        return ret_val;
1601
1602out:
1603        mac->get_link_status = true;
1604        return ret_val;
1605}
1606
1607static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1608{
1609        struct e1000_hw *hw = &adapter->hw;
1610        s32 rc;
1611
1612        rc = e1000_init_mac_params_ich8lan(hw);
1613        if (rc)
1614                return rc;
1615
1616        rc = e1000_init_nvm_params_ich8lan(hw);
1617        if (rc)
1618                return rc;
1619
1620        switch (hw->mac.type) {
1621        case e1000_ich8lan:
1622        case e1000_ich9lan:
1623        case e1000_ich10lan:
1624                rc = e1000_init_phy_params_ich8lan(hw);
1625                break;
1626        case e1000_pchlan:
1627        case e1000_pch2lan:
1628        case e1000_pch_lpt:
1629        case e1000_pch_spt:
1630        case e1000_pch_cnp:
1631                rc = e1000_init_phy_params_pchlan(hw);
1632                break;
1633        default:
1634                break;
1635        }
1636        if (rc)
1637                return rc;
1638
1639        /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1640         * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1641         */
1642        if ((adapter->hw.phy.type == e1000_phy_ife) ||
1643            ((adapter->hw.mac.type >= e1000_pch2lan) &&
1644             (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1645                adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1646                adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1647
1648                hw->mac.ops.blink_led = NULL;
1649        }
1650
1651        if ((adapter->hw.mac.type == e1000_ich8lan) &&
1652            (adapter->hw.phy.type != e1000_phy_ife))
1653                adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1654
1655        /* Enable workaround for 82579 w/ ME enabled */
1656        if ((adapter->hw.mac.type == e1000_pch2lan) &&
1657            (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1658                adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1659
1660        return 0;
1661}
1662
1663static DEFINE_MUTEX(nvm_mutex);
1664
1665/**
1666 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1667 *  @hw: pointer to the HW structure
1668 *
1669 *  Acquires the mutex for performing NVM operations.
1670 **/
1671static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1672{
1673        mutex_lock(&nvm_mutex);
1674
1675        return 0;
1676}
1677
1678/**
1679 *  e1000_release_nvm_ich8lan - Release NVM mutex
1680 *  @hw: pointer to the HW structure
1681 *
1682 *  Releases the mutex used while performing NVM operations.
1683 **/
1684static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1685{
1686        mutex_unlock(&nvm_mutex);
1687}
1688
1689/**
1690 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1691 *  @hw: pointer to the HW structure
1692 *
1693 *  Acquires the software control flag for performing PHY and select
1694 *  MAC CSR accesses.
1695 **/
1696static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1697{
1698        u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1699        s32 ret_val = 0;
1700
1701        if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1702                             &hw->adapter->state)) {
1703                e_dbg("contention for Phy access\n");
1704                return -E1000_ERR_PHY;
1705        }
1706
1707        while (timeout) {
1708                extcnf_ctrl = er32(EXTCNF_CTRL);
1709                if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1710                        break;
1711
1712                mdelay(1);
1713                timeout--;
1714        }
1715
1716        if (!timeout) {
1717                e_dbg("SW has already locked the resource.\n");
1718                ret_val = -E1000_ERR_CONFIG;
1719                goto out;
1720        }
1721
1722        timeout = SW_FLAG_TIMEOUT;
1723
1724        extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1725        ew32(EXTCNF_CTRL, extcnf_ctrl);
1726
1727        while (timeout) {
1728                extcnf_ctrl = er32(EXTCNF_CTRL);
1729                if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1730                        break;
1731
1732                mdelay(1);
1733                timeout--;
1734        }
1735
1736        if (!timeout) {
1737                e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1738                      er32(FWSM), extcnf_ctrl);
1739                extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1740                ew32(EXTCNF_CTRL, extcnf_ctrl);
1741                ret_val = -E1000_ERR_CONFIG;
1742                goto out;
1743        }
1744
1745out:
1746        if (ret_val)
1747                clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1748
1749        return ret_val;
1750}
1751
1752/**
1753 *  e1000_release_swflag_ich8lan - Release software control flag
1754 *  @hw: pointer to the HW structure
1755 *
1756 *  Releases the software control flag for performing PHY and select
1757 *  MAC CSR accesses.
1758 **/
1759static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1760{
1761        u32 extcnf_ctrl;
1762
1763        extcnf_ctrl = er32(EXTCNF_CTRL);
1764
1765        if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1766                extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1767                ew32(EXTCNF_CTRL, extcnf_ctrl);
1768        } else {
1769                e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1770        }
1771
1772        clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1773}
1774
1775/**
1776 *  e1000_check_mng_mode_ich8lan - Checks management mode
1777 *  @hw: pointer to the HW structure
1778 *
1779 *  This checks if the adapter has any manageability enabled.
1780 *  This is a function pointer entry point only called by read/write
1781 *  routines for the PHY and NVM parts.
1782 **/
1783static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1784{
1785        u32 fwsm;
1786
1787        fwsm = er32(FWSM);
1788        return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1789                ((fwsm & E1000_FWSM_MODE_MASK) ==
1790                 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1791}
1792
1793/**
1794 *  e1000_check_mng_mode_pchlan - Checks management mode
1795 *  @hw: pointer to the HW structure
1796 *
1797 *  This checks if the adapter has iAMT enabled.
1798 *  This is a function pointer entry point only called by read/write
1799 *  routines for the PHY and NVM parts.
1800 **/
1801static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1802{
1803        u32 fwsm;
1804
1805        fwsm = er32(FWSM);
1806        return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1807            (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1808}
1809
1810/**
1811 *  e1000_rar_set_pch2lan - Set receive address register
1812 *  @hw: pointer to the HW structure
1813 *  @addr: pointer to the receive address
1814 *  @index: receive address array register
1815 *
1816 *  Sets the receive address array register at index to the address passed
1817 *  in by addr.  For 82579, RAR[0] is the base address register that is to
1818 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1819 *  Use SHRA[0-3] in place of those reserved for ME.
1820 **/
1821static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1822{
1823        u32 rar_low, rar_high;
1824
1825        /* HW expects these in little endian so we reverse the byte order
1826         * from network order (big endian) to little endian
1827         */
1828        rar_low = ((u32)addr[0] |
1829                   ((u32)addr[1] << 8) |
1830                   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1831
1832        rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1833
1834        /* If MAC address zero, no need to set the AV bit */
1835        if (rar_low || rar_high)
1836                rar_high |= E1000_RAH_AV;
1837
1838        if (index == 0) {
1839                ew32(RAL(index), rar_low);
1840                e1e_flush();
1841                ew32(RAH(index), rar_high);
1842                e1e_flush();
1843                return 0;
1844        }
1845
1846        /* RAR[1-6] are owned by manageability.  Skip those and program the
1847         * next address into the SHRA register array.
1848         */
1849        if (index < (u32)(hw->mac.rar_entry_count)) {
1850                s32 ret_val;
1851
1852                ret_val = e1000_acquire_swflag_ich8lan(hw);
1853                if (ret_val)
1854                        goto out;
1855
1856                ew32(SHRAL(index - 1), rar_low);
1857                e1e_flush();
1858                ew32(SHRAH(index - 1), rar_high);
1859                e1e_flush();
1860
1861                e1000_release_swflag_ich8lan(hw);
1862
1863                /* verify the register updates */
1864                if ((er32(SHRAL(index - 1)) == rar_low) &&
1865                    (er32(SHRAH(index - 1)) == rar_high))
1866                        return 0;
1867
1868                e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1869                      (index - 1), er32(FWSM));
1870        }
1871
1872out:
1873        e_dbg("Failed to write receive address at index %d\n", index);
1874        return -E1000_ERR_CONFIG;
1875}
1876
1877/**
1878 *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1879 *  @hw: pointer to the HW structure
1880 *
1881 *  Get the number of available receive registers that the Host can
1882 *  program. SHRA[0-10] are the shared receive address registers
1883 *  that are shared between the Host and manageability engine (ME).
1884 *  ME can reserve any number of addresses and the host needs to be
1885 *  able to tell how many available registers it has access to.
1886 **/
1887static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1888{
1889        u32 wlock_mac;
1890        u32 num_entries;
1891
1892        wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1893        wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1894
1895        switch (wlock_mac) {
1896        case 0:
1897                /* All SHRA[0..10] and RAR[0] available */
1898                num_entries = hw->mac.rar_entry_count;
1899                break;
1900        case 1:
1901                /* Only RAR[0] available */
1902                num_entries = 1;
1903                break;
1904        default:
1905                /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1906                num_entries = wlock_mac + 1;
1907                break;
1908        }
1909
1910        return num_entries;
1911}
1912
1913/**
1914 *  e1000_rar_set_pch_lpt - Set receive address registers
1915 *  @hw: pointer to the HW structure
1916 *  @addr: pointer to the receive address
1917 *  @index: receive address array register
1918 *
1919 *  Sets the receive address register array at index to the address passed
1920 *  in by addr. For LPT, RAR[0] is the base address register that is to
1921 *  contain the MAC address. SHRA[0-10] are the shared receive address
1922 *  registers that are shared between the Host and manageability engine (ME).
1923 **/
1924static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1925{
1926        u32 rar_low, rar_high;
1927        u32 wlock_mac;
1928
1929        /* HW expects these in little endian so we reverse the byte order
1930         * from network order (big endian) to little endian
1931         */
1932        rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1933                   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1934
1935        rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1936
1937        /* If MAC address zero, no need to set the AV bit */
1938        if (rar_low || rar_high)
1939                rar_high |= E1000_RAH_AV;
1940
1941        if (index == 0) {
1942                ew32(RAL(index), rar_low);
1943                e1e_flush();
1944                ew32(RAH(index), rar_high);
1945                e1e_flush();
1946                return 0;
1947        }
1948
1949        /* The manageability engine (ME) can lock certain SHRAR registers that
1950         * it is using - those registers are unavailable for use.
1951         */
1952        if (index < hw->mac.rar_entry_count) {
1953                wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1954                wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1955
1956                /* Check if all SHRAR registers are locked */
1957                if (wlock_mac == 1)
1958                        goto out;
1959
1960                if ((wlock_mac == 0) || (index <= wlock_mac)) {
1961                        s32 ret_val;
1962
1963                        ret_val = e1000_acquire_swflag_ich8lan(hw);
1964
1965                        if (ret_val)
1966                                goto out;
1967
1968                        ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1969                        e1e_flush();
1970                        ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1971                        e1e_flush();
1972
1973                        e1000_release_swflag_ich8lan(hw);
1974
1975                        /* verify the register updates */
1976                        if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1977                            (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1978                                return 0;
1979                }
1980        }
1981
1982out:
1983        e_dbg("Failed to write receive address at index %d\n", index);
1984        return -E1000_ERR_CONFIG;
1985}
1986
1987/**
1988 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1989 *  @hw: pointer to the HW structure
1990 *
1991 *  Checks if firmware is blocking the reset of the PHY.
1992 *  This is a function pointer entry point only called by
1993 *  reset routines.
1994 **/
1995static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1996{
1997        bool blocked = false;
1998        int i = 0;
1999
2000        while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2001               (i++ < 30))
2002                usleep_range(10000, 20000);
2003        return blocked ? E1000_BLK_PHY_RESET : 0;
2004}
2005
2006/**
2007 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2008 *  @hw: pointer to the HW structure
2009 *
2010 *  Assumes semaphore already acquired.
2011 *
2012 **/
2013static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2014{
2015        u16 phy_data;
2016        u32 strap = er32(STRAP);
2017        u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2018            E1000_STRAP_SMT_FREQ_SHIFT;
2019        s32 ret_val;
2020
2021        strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2022
2023        ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2024        if (ret_val)
2025                return ret_val;
2026
2027        phy_data &= ~HV_SMB_ADDR_MASK;
2028        phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2029        phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2030
2031        if (hw->phy.type == e1000_phy_i217) {
2032                /* Restore SMBus frequency */
2033                if (freq--) {
2034                        phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2035                        phy_data |= (freq & BIT(0)) <<
2036                            HV_SMB_ADDR_FREQ_LOW_SHIFT;
2037                        phy_data |= (freq & BIT(1)) <<
2038                            (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2039                } else {
2040                        e_dbg("Unsupported SMB frequency in PHY\n");
2041                }
2042        }
2043
2044        return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2045}
2046
2047/**
2048 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2049 *  @hw:   pointer to the HW structure
2050 *
2051 *  SW should configure the LCD from the NVM extended configuration region
2052 *  as a workaround for certain parts.
2053 **/
2054static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2055{
2056        struct e1000_phy_info *phy = &hw->phy;
2057        u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2058        s32 ret_val = 0;
2059        u16 word_addr, reg_data, reg_addr, phy_page = 0;
2060
2061        /* Initialize the PHY from the NVM on ICH platforms.  This
2062         * is needed due to an issue where the NVM configuration is
2063         * not properly autoloaded after power transitions.
2064         * Therefore, after each PHY reset, we will load the
2065         * configuration data out of the NVM manually.
2066         */
2067        switch (hw->mac.type) {
2068        case e1000_ich8lan:
2069                if (phy->type != e1000_phy_igp_3)
2070                        return ret_val;
2071
2072                if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2073                    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2074                        sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2075                        break;
2076                }
2077                /* Fall-thru */
2078        case e1000_pchlan:
2079        case e1000_pch2lan:
2080        case e1000_pch_lpt:
2081        case e1000_pch_spt:
2082        case e1000_pch_cnp:
2083                sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2084                break;
2085        default:
2086                return ret_val;
2087        }
2088
2089        ret_val = hw->phy.ops.acquire(hw);
2090        if (ret_val)
2091                return ret_val;
2092
2093        data = er32(FEXTNVM);
2094        if (!(data & sw_cfg_mask))
2095                goto release;
2096
2097        /* Make sure HW does not configure LCD from PHY
2098         * extended configuration before SW configuration
2099         */
2100        data = er32(EXTCNF_CTRL);
2101        if ((hw->mac.type < e1000_pch2lan) &&
2102            (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2103                goto release;
2104
2105        cnf_size = er32(EXTCNF_SIZE);
2106        cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2107        cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2108        if (!cnf_size)
2109                goto release;
2110
2111        cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2112        cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2113
2114        if (((hw->mac.type == e1000_pchlan) &&
2115             !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2116            (hw->mac.type > e1000_pchlan)) {
2117                /* HW configures the SMBus address and LEDs when the
2118                 * OEM and LCD Write Enable bits are set in the NVM.
2119                 * When both NVM bits are cleared, SW will configure
2120                 * them instead.
2121                 */
2122                ret_val = e1000_write_smbus_addr(hw);
2123                if (ret_val)
2124                        goto release;
2125
2126                data = er32(LEDCTL);
2127                ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2128                                                        (u16)data);
2129                if (ret_val)
2130                        goto release;
2131        }
2132
2133        /* Configure LCD from extended configuration region. */
2134
2135        /* cnf_base_addr is in DWORD */
2136        word_addr = (u16)(cnf_base_addr << 1);
2137
2138        for (i = 0; i < cnf_size; i++) {
2139                ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2140                if (ret_val)
2141                        goto release;
2142
2143                ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2144                                         1, &reg_addr);
2145                if (ret_val)
2146                        goto release;
2147
2148                /* Save off the PHY page for future writes. */
2149                if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2150                        phy_page = reg_data;
2151                        continue;
2152                }
2153
2154                reg_addr &= PHY_REG_MASK;
2155                reg_addr |= phy_page;
2156
2157                ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2158                if (ret_val)
2159                        goto release;
2160        }
2161
2162release:
2163        hw->phy.ops.release(hw);
2164        return ret_val;
2165}
2166
2167/**
2168 *  e1000_k1_gig_workaround_hv - K1 Si workaround
2169 *  @hw:   pointer to the HW structure
2170 *  @link: link up bool flag
2171 *
2172 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2173 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2174 *  If link is down, the function will restore the default K1 setting located
2175 *  in the NVM.
2176 **/
2177static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2178{
2179        s32 ret_val = 0;
2180        u16 status_reg = 0;
2181        bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2182
2183        if (hw->mac.type != e1000_pchlan)
2184                return 0;
2185
2186        /* Wrap the whole flow with the sw flag */
2187        ret_val = hw->phy.ops.acquire(hw);
2188        if (ret_val)
2189                return ret_val;
2190
2191        /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2192        if (link) {
2193                if (hw->phy.type == e1000_phy_82578) {
2194                        ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2195                                                  &status_reg);
2196                        if (ret_val)
2197                                goto release;
2198
2199                        status_reg &= (BM_CS_STATUS_LINK_UP |
2200                                       BM_CS_STATUS_RESOLVED |
2201                                       BM_CS_STATUS_SPEED_MASK);
2202
2203                        if (status_reg == (BM_CS_STATUS_LINK_UP |
2204                                           BM_CS_STATUS_RESOLVED |
2205                                           BM_CS_STATUS_SPEED_1000))
2206                                k1_enable = false;
2207                }
2208
2209                if (hw->phy.type == e1000_phy_82577) {
2210                        ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2211                        if (ret_val)
2212                                goto release;
2213
2214                        status_reg &= (HV_M_STATUS_LINK_UP |
2215                                       HV_M_STATUS_AUTONEG_COMPLETE |
2216                                       HV_M_STATUS_SPEED_MASK);
2217
2218                        if (status_reg == (HV_M_STATUS_LINK_UP |
2219                                           HV_M_STATUS_AUTONEG_COMPLETE |
2220                                           HV_M_STATUS_SPEED_1000))
2221                                k1_enable = false;
2222                }
2223
2224                /* Link stall fix for link up */
2225                ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2226                if (ret_val)
2227                        goto release;
2228
2229        } else {
2230                /* Link stall fix for link down */
2231                ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2232                if (ret_val)
2233                        goto release;
2234        }
2235
2236        ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2237
2238release:
2239        hw->phy.ops.release(hw);
2240
2241        return ret_val;
2242}
2243
2244/**
2245 *  e1000_configure_k1_ich8lan - Configure K1 power state
2246 *  @hw: pointer to the HW structure
2247 *  @enable: K1 state to configure
2248 *
2249 *  Configure the K1 power state based on the provided parameter.
2250 *  Assumes semaphore already acquired.
2251 *
2252 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2253 **/
2254s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2255{
2256        s32 ret_val;
2257        u32 ctrl_reg = 0;
2258        u32 ctrl_ext = 0;
2259        u32 reg = 0;
2260        u16 kmrn_reg = 0;
2261
2262        ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2263                                              &kmrn_reg);
2264        if (ret_val)
2265                return ret_val;
2266
2267        if (k1_enable)
2268                kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2269        else
2270                kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2271
2272        ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2273                                               kmrn_reg);
2274        if (ret_val)
2275                return ret_val;
2276
2277        usleep_range(20, 40);
2278        ctrl_ext = er32(CTRL_EXT);
2279        ctrl_reg = er32(CTRL);
2280
2281        reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2282        reg |= E1000_CTRL_FRCSPD;
2283        ew32(CTRL, reg);
2284
2285        ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2286        e1e_flush();
2287        usleep_range(20, 40);
2288        ew32(CTRL, ctrl_reg);
2289        ew32(CTRL_EXT, ctrl_ext);
2290        e1e_flush();
2291        usleep_range(20, 40);
2292
2293        return 0;
2294}
2295
2296/**
2297 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2298 *  @hw:       pointer to the HW structure
2299 *  @d0_state: boolean if entering d0 or d3 device state
2300 *
2301 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2302 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2303 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2304 **/
2305static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2306{
2307        s32 ret_val = 0;
2308        u32 mac_reg;
2309        u16 oem_reg;
2310
2311        if (hw->mac.type < e1000_pchlan)
2312                return ret_val;
2313
2314        ret_val = hw->phy.ops.acquire(hw);
2315        if (ret_val)
2316                return ret_val;
2317
2318        if (hw->mac.type == e1000_pchlan) {
2319                mac_reg = er32(EXTCNF_CTRL);
2320                if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2321                        goto release;
2322        }
2323
2324        mac_reg = er32(FEXTNVM);
2325        if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2326                goto release;
2327
2328        mac_reg = er32(PHY_CTRL);
2329
2330        ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2331        if (ret_val)
2332                goto release;
2333
2334        oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2335
2336        if (d0_state) {
2337                if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2338                        oem_reg |= HV_OEM_BITS_GBE_DIS;
2339
2340                if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2341                        oem_reg |= HV_OEM_BITS_LPLU;
2342        } else {
2343                if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2344                               E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2345                        oem_reg |= HV_OEM_BITS_GBE_DIS;
2346
2347                if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2348                               E1000_PHY_CTRL_NOND0A_LPLU))
2349                        oem_reg |= HV_OEM_BITS_LPLU;
2350        }
2351
2352        /* Set Restart auto-neg to activate the bits */
2353        if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2354            !hw->phy.ops.check_reset_block(hw))
2355                oem_reg |= HV_OEM_BITS_RESTART_AN;
2356
2357        ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2358
2359release:
2360        hw->phy.ops.release(hw);
2361
2362        return ret_val;
2363}
2364
2365/**
2366 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2367 *  @hw:   pointer to the HW structure
2368 **/
2369static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2370{
2371        s32 ret_val;
2372        u16 data;
2373
2374        ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2375        if (ret_val)
2376                return ret_val;
2377
2378        data |= HV_KMRN_MDIO_SLOW;
2379
2380        ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2381
2382        return ret_val;
2383}
2384
2385/**
2386 *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2387 *  done after every PHY reset.
2388 **/
2389static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2390{
2391        s32 ret_val = 0;
2392        u16 phy_data;
2393
2394        if (hw->mac.type != e1000_pchlan)
2395                return 0;
2396
2397        /* Set MDIO slow mode before any other MDIO access */
2398        if (hw->phy.type == e1000_phy_82577) {
2399                ret_val = e1000_set_mdio_slow_mode_hv(hw);
2400                if (ret_val)
2401                        return ret_val;
2402        }
2403
2404        if (((hw->phy.type == e1000_phy_82577) &&
2405             ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2406            ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2407                /* Disable generation of early preamble */
2408                ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2409                if (ret_val)
2410                        return ret_val;
2411
2412                /* Preamble tuning for SSC */
2413                ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2414                if (ret_val)
2415                        return ret_val;
2416        }
2417
2418        if (hw->phy.type == e1000_phy_82578) {
2419                /* Return registers to default by doing a soft reset then
2420                 * writing 0x3140 to the control register.
2421                 */
2422                if (hw->phy.revision < 2) {
2423                        e1000e_phy_sw_reset(hw);
2424                        ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2425                        if (ret_val)
2426                                return ret_val;
2427                }
2428        }
2429
2430        /* Select page 0 */
2431        ret_val = hw->phy.ops.acquire(hw);
2432        if (ret_val)
2433                return ret_val;
2434
2435        hw->phy.addr = 1;
2436        ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2437        hw->phy.ops.release(hw);
2438        if (ret_val)
2439                return ret_val;
2440
2441        /* Configure the K1 Si workaround during phy reset assuming there is
2442         * link so that it disables K1 if link is in 1Gbps.
2443         */
2444        ret_val = e1000_k1_gig_workaround_hv(hw, true);
2445        if (ret_val)
2446                return ret_val;
2447
2448        /* Workaround for link disconnects on a busy hub in half duplex */
2449        ret_val = hw->phy.ops.acquire(hw);
2450        if (ret_val)
2451                return ret_val;
2452        ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2453        if (ret_val)
2454                goto release;
2455        ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2456        if (ret_val)
2457                goto release;
2458
2459        /* set MSE higher to enable link to stay up when noise is high */
2460        ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2461release:
2462        hw->phy.ops.release(hw);
2463
2464        return ret_val;
2465}
2466
2467/**
2468 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2469 *  @hw:   pointer to the HW structure
2470 **/
2471void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2472{
2473        u32 mac_reg;
2474        u16 i, phy_reg = 0;
2475        s32 ret_val;
2476
2477        ret_val = hw->phy.ops.acquire(hw);
2478        if (ret_val)
2479                return;
2480        ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2481        if (ret_val)
2482                goto release;
2483
2484        /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2485        for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2486                mac_reg = er32(RAL(i));
2487                hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2488                                           (u16)(mac_reg & 0xFFFF));
2489                hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2490                                           (u16)((mac_reg >> 16) & 0xFFFF));
2491
2492                mac_reg = er32(RAH(i));
2493                hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2494                                           (u16)(mac_reg & 0xFFFF));
2495                hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2496                                           (u16)((mac_reg & E1000_RAH_AV)
2497                                                 >> 16));
2498        }
2499
2500        e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2501
2502release:
2503        hw->phy.ops.release(hw);
2504}
2505
2506/**
2507 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2508 *  with 82579 PHY
2509 *  @hw: pointer to the HW structure
2510 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2511 **/
2512s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2513{
2514        s32 ret_val = 0;
2515        u16 phy_reg, data;
2516        u32 mac_reg;
2517        u16 i;
2518
2519        if (hw->mac.type < e1000_pch2lan)
2520                return 0;
2521
2522        /* disable Rx path while enabling/disabling workaround */
2523        e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2524        ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2525        if (ret_val)
2526                return ret_val;
2527
2528        if (enable) {
2529                /* Write Rx addresses (rar_entry_count for RAL/H, and
2530                 * SHRAL/H) and initial CRC values to the MAC
2531                 */
2532                for (i = 0; i < hw->mac.rar_entry_count; i++) {
2533                        u8 mac_addr[ETH_ALEN] = { 0 };
2534                        u32 addr_high, addr_low;
2535
2536                        addr_high = er32(RAH(i));
2537                        if (!(addr_high & E1000_RAH_AV))
2538                                continue;
2539                        addr_low = er32(RAL(i));
2540                        mac_addr[0] = (addr_low & 0xFF);
2541                        mac_addr[1] = ((addr_low >> 8) & 0xFF);
2542                        mac_addr[2] = ((addr_low >> 16) & 0xFF);
2543                        mac_addr[3] = ((addr_low >> 24) & 0xFF);
2544                        mac_addr[4] = (addr_high & 0xFF);
2545                        mac_addr[5] = ((addr_high >> 8) & 0xFF);
2546
2547                        ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2548                }
2549
2550                /* Write Rx addresses to the PHY */
2551                e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2552
2553                /* Enable jumbo frame workaround in the MAC */
2554                mac_reg = er32(FFLT_DBG);
2555                mac_reg &= ~BIT(14);
2556                mac_reg |= (7 << 15);
2557                ew32(FFLT_DBG, mac_reg);
2558
2559                mac_reg = er32(RCTL);
2560                mac_reg |= E1000_RCTL_SECRC;
2561                ew32(RCTL, mac_reg);
2562
2563                ret_val = e1000e_read_kmrn_reg(hw,
2564                                               E1000_KMRNCTRLSTA_CTRL_OFFSET,
2565                                               &data);
2566                if (ret_val)
2567                        return ret_val;
2568                ret_val = e1000e_write_kmrn_reg(hw,
2569                                                E1000_KMRNCTRLSTA_CTRL_OFFSET,
2570                                                data | BIT(0));
2571                if (ret_val)
2572                        return ret_val;
2573                ret_val = e1000e_read_kmrn_reg(hw,
2574                                               E1000_KMRNCTRLSTA_HD_CTRL,
2575                                               &data);
2576                if (ret_val)
2577                        return ret_val;
2578                data &= ~(0xF << 8);
2579                data |= (0xB << 8);
2580                ret_val = e1000e_write_kmrn_reg(hw,
2581                                                E1000_KMRNCTRLSTA_HD_CTRL,
2582                                                data);
2583                if (ret_val)
2584                        return ret_val;
2585
2586                /* Enable jumbo frame workaround in the PHY */
2587                e1e_rphy(hw, PHY_REG(769, 23), &data);
2588                data &= ~(0x7F << 5);
2589                data |= (0x37 << 5);
2590                ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2591                if (ret_val)
2592                        return ret_val;
2593                e1e_rphy(hw, PHY_REG(769, 16), &data);
2594                data &= ~BIT(13);
2595                ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2596                if (ret_val)
2597                        return ret_val;
2598                e1e_rphy(hw, PHY_REG(776, 20), &data);
2599                data &= ~(0x3FF << 2);
2600                data |= (E1000_TX_PTR_GAP << 2);
2601                ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2602                if (ret_val)
2603                        return ret_val;
2604                ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2605                if (ret_val)
2606                        return ret_val;
2607                e1e_rphy(hw, HV_PM_CTRL, &data);
2608                ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2609                if (ret_val)
2610                        return ret_val;
2611        } else {
2612                /* Write MAC register values back to h/w defaults */
2613                mac_reg = er32(FFLT_DBG);
2614                mac_reg &= ~(0xF << 14);
2615                ew32(FFLT_DBG, mac_reg);
2616
2617                mac_reg = er32(RCTL);
2618                mac_reg &= ~E1000_RCTL_SECRC;
2619                ew32(RCTL, mac_reg);
2620
2621                ret_val = e1000e_read_kmrn_reg(hw,
2622                                               E1000_KMRNCTRLSTA_CTRL_OFFSET,
2623                                               &data);
2624                if (ret_val)
2625                        return ret_val;
2626                ret_val = e1000e_write_kmrn_reg(hw,
2627                                                E1000_KMRNCTRLSTA_CTRL_OFFSET,
2628                                                data & ~BIT(0));
2629                if (ret_val)
2630                        return ret_val;
2631                ret_val = e1000e_read_kmrn_reg(hw,
2632                                               E1000_KMRNCTRLSTA_HD_CTRL,
2633                                               &data);
2634                if (ret_val)
2635                        return ret_val;
2636                data &= ~(0xF << 8);
2637                data |= (0xB << 8);
2638                ret_val = e1000e_write_kmrn_reg(hw,
2639                                                E1000_KMRNCTRLSTA_HD_CTRL,
2640                                                data);
2641                if (ret_val)
2642                        return ret_val;
2643
2644                /* Write PHY register values back to h/w defaults */
2645                e1e_rphy(hw, PHY_REG(769, 23), &data);
2646                data &= ~(0x7F << 5);
2647                ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2648                if (ret_val)
2649                        return ret_val;
2650                e1e_rphy(hw, PHY_REG(769, 16), &data);
2651                data |= BIT(13);
2652                ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2653                if (ret_val)
2654                        return ret_val;
2655                e1e_rphy(hw, PHY_REG(776, 20), &data);
2656                data &= ~(0x3FF << 2);
2657                data |= (0x8 << 2);
2658                ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2659                if (ret_val)
2660                        return ret_val;
2661                ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2662                if (ret_val)
2663                        return ret_val;
2664                e1e_rphy(hw, HV_PM_CTRL, &data);
2665                ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2666                if (ret_val)
2667                        return ret_val;
2668        }
2669
2670        /* re-enable Rx path after enabling/disabling workaround */
2671        return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2672}
2673
2674/**
2675 *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2676 *  done after every PHY reset.
2677 **/
2678static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2679{
2680        s32 ret_val = 0;
2681
2682        if (hw->mac.type != e1000_pch2lan)
2683                return 0;
2684
2685        /* Set MDIO slow mode before any other MDIO access */
2686        ret_val = e1000_set_mdio_slow_mode_hv(hw);
2687        if (ret_val)
2688                return ret_val;
2689
2690        ret_val = hw->phy.ops.acquire(hw);
2691        if (ret_val)
2692                return ret_val;
2693        /* set MSE higher to enable link to stay up when noise is high */
2694        ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2695        if (ret_val)
2696                goto release;
2697        /* drop link after 5 times MSE threshold was reached */
2698        ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2699release:
2700        hw->phy.ops.release(hw);
2701
2702        return ret_val;
2703}
2704
2705/**
2706 *  e1000_k1_gig_workaround_lv - K1 Si workaround
2707 *  @hw:   pointer to the HW structure
2708 *
2709 *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2710 *  Disable K1 in 1000Mbps and 100Mbps
2711 **/
2712static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2713{
2714        s32 ret_val = 0;
2715        u16 status_reg = 0;
2716
2717        if (hw->mac.type != e1000_pch2lan)
2718                return 0;
2719
2720        /* Set K1 beacon duration based on 10Mbs speed */
2721        ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2722        if (ret_val)
2723                return ret_val;
2724
2725        if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2726            == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2727                if (status_reg &
2728                    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2729                        u16 pm_phy_reg;
2730
2731                        /* LV 1G/100 Packet drop issue wa  */
2732                        ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2733                        if (ret_val)
2734                                return ret_val;
2735                        pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2736                        ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2737                        if (ret_val)
2738                                return ret_val;
2739                } else {
2740                        u32 mac_reg;
2741
2742                        mac_reg = er32(FEXTNVM4);
2743                        mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2744                        mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2745                        ew32(FEXTNVM4, mac_reg);
2746                }
2747        }
2748
2749        return ret_val;
2750}
2751
2752/**
2753 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2754 *  @hw:   pointer to the HW structure
2755 *  @gate: boolean set to true to gate, false to ungate
2756 *
2757 *  Gate/ungate the automatic PHY configuration via hardware; perform
2758 *  the configuration via software instead.
2759 **/
2760static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2761{
2762        u32 extcnf_ctrl;
2763
2764        if (hw->mac.type < e1000_pch2lan)
2765                return;
2766
2767        extcnf_ctrl = er32(EXTCNF_CTRL);
2768
2769        if (gate)
2770                extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2771        else
2772                extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2773
2774        ew32(EXTCNF_CTRL, extcnf_ctrl);
2775}
2776
2777/**
2778 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2779 *  @hw: pointer to the HW structure
2780 *
2781 *  Check the appropriate indication the MAC has finished configuring the
2782 *  PHY after a software reset.
2783 **/
2784static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2785{
2786        u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2787
2788        /* Wait for basic configuration completes before proceeding */
2789        do {
2790                data = er32(STATUS);
2791                data &= E1000_STATUS_LAN_INIT_DONE;
2792                usleep_range(100, 200);
2793        } while ((!data) && --loop);
2794
2795        /* If basic configuration is incomplete before the above loop
2796         * count reaches 0, loading the configuration from NVM will
2797         * leave the PHY in a bad state possibly resulting in no link.
2798         */
2799        if (loop == 0)
2800                e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2801
2802        /* Clear the Init Done bit for the next init event */
2803        data = er32(STATUS);
2804        data &= ~E1000_STATUS_LAN_INIT_DONE;
2805        ew32(STATUS, data);
2806}
2807
2808/**
2809 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2810 *  @hw: pointer to the HW structure
2811 **/
2812static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2813{
2814        s32 ret_val = 0;
2815        u16 reg;
2816
2817        if (hw->phy.ops.check_reset_block(hw))
2818                return 0;
2819
2820        /* Allow time for h/w to get to quiescent state after reset */
2821        usleep_range(10000, 20000);
2822
2823        /* Perform any necessary post-reset workarounds */
2824        switch (hw->mac.type) {
2825        case e1000_pchlan:
2826                ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2827                if (ret_val)
2828                        return ret_val;
2829                break;
2830        case e1000_pch2lan:
2831                ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2832                if (ret_val)
2833                        return ret_val;
2834                break;
2835        default:
2836                break;
2837        }
2838
2839        /* Clear the host wakeup bit after lcd reset */
2840        if (hw->mac.type >= e1000_pchlan) {
2841                e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2842                reg &= ~BM_WUC_HOST_WU_BIT;
2843                e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2844        }
2845
2846        /* Configure the LCD with the extended configuration region in NVM */
2847        ret_val = e1000_sw_lcd_config_ich8lan(hw);
2848        if (ret_val)
2849                return ret_val;
2850
2851        /* Configure the LCD with the OEM bits in NVM */
2852        ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2853
2854        if (hw->mac.type == e1000_pch2lan) {
2855                /* Ungate automatic PHY configuration on non-managed 82579 */
2856                if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2857                        usleep_range(10000, 20000);
2858                        e1000_gate_hw_phy_config_ich8lan(hw, false);
2859                }
2860
2861                /* Set EEE LPI Update Timer to 200usec */
2862                ret_val = hw->phy.ops.acquire(hw);
2863                if (ret_val)
2864                        return ret_val;
2865                ret_val = e1000_write_emi_reg_locked(hw,
2866                                                     I82579_LPI_UPDATE_TIMER,
2867                                                     0x1387);
2868                hw->phy.ops.release(hw);
2869        }
2870
2871        return ret_val;
2872}
2873
2874/**
2875 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2876 *  @hw: pointer to the HW structure
2877 *
2878 *  Resets the PHY
2879 *  This is a function pointer entry point called by drivers
2880 *  or other shared routines.
2881 **/
2882static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2883{
2884        s32 ret_val = 0;
2885
2886        /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2887        if ((hw->mac.type == e1000_pch2lan) &&
2888            !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2889                e1000_gate_hw_phy_config_ich8lan(hw, true);
2890
2891        ret_val = e1000e_phy_hw_reset_generic(hw);
2892        if (ret_val)
2893                return ret_val;
2894
2895        return e1000_post_phy_reset_ich8lan(hw);
2896}
2897
2898/**
2899 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2900 *  @hw: pointer to the HW structure
2901 *  @active: true to enable LPLU, false to disable
2902 *
2903 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2904 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2905 *  the phy speed. This function will manually set the LPLU bit and restart
2906 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2907 *  since it configures the same bit.
2908 **/
2909static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2910{
2911        s32 ret_val;
2912        u16 oem_reg;
2913
2914        ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2915        if (ret_val)
2916                return ret_val;
2917
2918        if (active)
2919                oem_reg |= HV_OEM_BITS_LPLU;
2920        else
2921                oem_reg &= ~HV_OEM_BITS_LPLU;
2922
2923        if (!hw->phy.ops.check_reset_block(hw))
2924                oem_reg |= HV_OEM_BITS_RESTART_AN;
2925
2926        return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2927}
2928
2929/**
2930 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2931 *  @hw: pointer to the HW structure
2932 *  @active: true to enable LPLU, false to disable
2933 *
2934 *  Sets the LPLU D0 state according to the active flag.  When
2935 *  activating LPLU this function also disables smart speed
2936 *  and vice versa.  LPLU will not be activated unless the
2937 *  device autonegotiation advertisement meets standards of
2938 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2939 *  This is a function pointer entry point only called by
2940 *  PHY setup routines.
2941 **/
2942static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2943{
2944        struct e1000_phy_info *phy = &hw->phy;
2945        u32 phy_ctrl;
2946        s32 ret_val = 0;
2947        u16 data;
2948
2949        if (phy->type == e1000_phy_ife)
2950                return 0;
2951
2952        phy_ctrl = er32(PHY_CTRL);
2953
2954        if (active) {
2955                phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2956                ew32(PHY_CTRL, phy_ctrl);
2957
2958                if (phy->type != e1000_phy_igp_3)
2959                        return 0;
2960
2961                /* Call gig speed drop workaround on LPLU before accessing
2962                 * any PHY registers
2963                 */
2964                if (hw->mac.type == e1000_ich8lan)
2965                        e1000e_gig_downshift_workaround_ich8lan(hw);
2966
2967                /* When LPLU is enabled, we should disable SmartSpeed */
2968                ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2969                if (ret_val)
2970                        return ret_val;
2971                data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2972                ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2973                if (ret_val)
2974                        return ret_val;
2975        } else {
2976                phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2977                ew32(PHY_CTRL, phy_ctrl);
2978
2979                if (phy->type != e1000_phy_igp_3)
2980                        return 0;
2981
2982                /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2983                 * during Dx states where the power conservation is most
2984                 * important.  During driver activity we should enable
2985                 * SmartSpeed, so performance is maintained.
2986                 */
2987                if (phy->smart_speed == e1000_smart_speed_on) {
2988                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2989                                           &data);
2990                        if (ret_val)
2991                                return ret_val;
2992
2993                        data |= IGP01E1000_PSCFR_SMART_SPEED;
2994                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2995                                           data);
2996                        if (ret_val)
2997                                return ret_val;
2998                } else if (phy->smart_speed == e1000_smart_speed_off) {
2999                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3000                                           &data);
3001                        if (ret_val)
3002                                return ret_val;
3003
3004                        data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3005                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3006                                           data);
3007                        if (ret_val)
3008                                return ret_val;
3009                }
3010        }
3011
3012        return 0;
3013}
3014
3015/**
3016 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3017 *  @hw: pointer to the HW structure
3018 *  @active: true to enable LPLU, false to disable
3019 *
3020 *  Sets the LPLU D3 state according to the active flag.  When
3021 *  activating LPLU this function also disables smart speed
3022 *  and vice versa.  LPLU will not be activated unless the
3023 *  device autonegotiation advertisement meets standards of
3024 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3025 *  This is a function pointer entry point only called by
3026 *  PHY setup routines.
3027 **/
3028static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3029{
3030        struct e1000_phy_info *phy = &hw->phy;
3031        u32 phy_ctrl;
3032        s32 ret_val = 0;
3033        u16 data;
3034
3035        phy_ctrl = er32(PHY_CTRL);
3036
3037        if (!active) {
3038                phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3039                ew32(PHY_CTRL, phy_ctrl);
3040
3041                if (phy->type != e1000_phy_igp_3)
3042                        return 0;
3043
3044                /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3045                 * during Dx states where the power conservation is most
3046                 * important.  During driver activity we should enable
3047                 * SmartSpeed, so performance is maintained.
3048                 */
3049                if (phy->smart_speed == e1000_smart_speed_on) {
3050                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3051                                           &data);
3052                        if (ret_val)
3053                                return ret_val;
3054
3055                        data |= IGP01E1000_PSCFR_SMART_SPEED;
3056                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3057                                           data);
3058                        if (ret_val)
3059                                return ret_val;
3060                } else if (phy->smart_speed == e1000_smart_speed_off) {
3061                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3062                                           &data);
3063                        if (ret_val)
3064                                return ret_val;
3065
3066                        data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3067                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3068                                           data);
3069                        if (ret_val)
3070                                return ret_val;
3071                }
3072        } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3073                   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3074                   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3075                phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3076                ew32(PHY_CTRL, phy_ctrl);
3077
3078                if (phy->type != e1000_phy_igp_3)
3079                        return 0;
3080
3081                /* Call gig speed drop workaround on LPLU before accessing
3082                 * any PHY registers
3083                 */
3084                if (hw->mac.type == e1000_ich8lan)
3085                        e1000e_gig_downshift_workaround_ich8lan(hw);
3086
3087                /* When LPLU is enabled, we should disable SmartSpeed */
3088                ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3089                if (ret_val)
3090                        return ret_val;
3091
3092                data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3093                ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3094        }
3095
3096        return ret_val;
3097}
3098
3099/**
3100 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3101 *  @hw: pointer to the HW structure
3102 *  @bank:  pointer to the variable that returns the active bank
3103 *
3104 *  Reads signature byte from the NVM using the flash access registers.
3105 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3106 **/
3107static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3108{
3109        u32 eecd;
3110        struct e1000_nvm_info *nvm = &hw->nvm;
3111        u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3112        u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3113        u32 nvm_dword = 0;
3114        u8 sig_byte = 0;
3115        s32 ret_val;
3116
3117        switch (hw->mac.type) {
3118        case e1000_pch_spt:
3119        case e1000_pch_cnp:
3120                bank1_offset = nvm->flash_bank_size;
3121                act_offset = E1000_ICH_NVM_SIG_WORD;
3122
3123                /* set bank to 0 in case flash read fails */
3124                *bank = 0;
3125
3126                /* Check bank 0 */
3127                ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3128                                                         &nvm_dword);
3129                if (ret_val)
3130                        return ret_val;
3131                sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3132                if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3133                    E1000_ICH_NVM_SIG_VALUE) {
3134                        *bank = 0;
3135                        return 0;
3136                }
3137
3138                /* Check bank 1 */
3139                ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3140                                                         bank1_offset,
3141                                                         &nvm_dword);
3142                if (ret_val)
3143                        return ret_val;
3144                sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3145                if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3146                    E1000_ICH_NVM_SIG_VALUE) {
3147                        *bank = 1;
3148                        return 0;
3149                }
3150
3151                e_dbg("ERROR: No valid NVM bank present\n");
3152                return -E1000_ERR_NVM;
3153        case e1000_ich8lan:
3154        case e1000_ich9lan:
3155                eecd = er32(EECD);
3156                if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3157                    E1000_EECD_SEC1VAL_VALID_MASK) {
3158                        if (eecd & E1000_EECD_SEC1VAL)
3159                                *bank = 1;
3160                        else
3161                                *bank = 0;
3162
3163                        return 0;
3164                }
3165                e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3166                /* fall-thru */
3167        default:
3168                /* set bank to 0 in case flash read fails */
3169                *bank = 0;
3170
3171                /* Check bank 0 */
3172                ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3173                                                        &sig_byte);
3174                if (ret_val)
3175                        return ret_val;
3176                if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3177                    E1000_ICH_NVM_SIG_VALUE) {
3178                        *bank = 0;
3179                        return 0;
3180                }
3181
3182                /* Check bank 1 */
3183                ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3184                                                        bank1_offset,
3185                                                        &sig_byte);
3186                if (ret_val)
3187                        return ret_val;
3188                if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3189                    E1000_ICH_NVM_SIG_VALUE) {
3190                        *bank = 1;
3191                        return 0;
3192                }
3193
3194                e_dbg("ERROR: No valid NVM bank present\n");
3195                return -E1000_ERR_NVM;
3196        }
3197}
3198
3199/**
3200 *  e1000_read_nvm_spt - NVM access for SPT
3201 *  @hw: pointer to the HW structure
3202 *  @offset: The offset (in bytes) of the word(s) to read.
3203 *  @words: Size of data to read in words.
3204 *  @data: pointer to the word(s) to read at offset.
3205 *
3206 *  Reads a word(s) from the NVM
3207 **/
3208static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3209                              u16 *data)
3210{
3211        struct e1000_nvm_info *nvm = &hw->nvm;
3212        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3213        u32 act_offset;
3214        s32 ret_val = 0;
3215        u32 bank = 0;
3216        u32 dword = 0;
3217        u16 offset_to_read;
3218        u16 i;
3219
3220        if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3221            (words == 0)) {
3222                e_dbg("nvm parameter(s) out of bounds\n");
3223                ret_val = -E1000_ERR_NVM;
3224                goto out;
3225        }
3226
3227        nvm->ops.acquire(hw);
3228
3229        ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3230        if (ret_val) {
3231                e_dbg("Could not detect valid bank, assuming bank 0\n");
3232                bank = 0;
3233        }
3234
3235        act_offset = (bank) ? nvm->flash_bank_size : 0;
3236        act_offset += offset;
3237
3238        ret_val = 0;
3239
3240        for (i = 0; i < words; i += 2) {
3241                if (words - i == 1) {
3242                        if (dev_spec->shadow_ram[offset + i].modified) {
3243                                data[i] =
3244                                    dev_spec->shadow_ram[offset + i].value;
3245                        } else {
3246                                offset_to_read = act_offset + i -
3247                                    ((act_offset + i) % 2);
3248                                ret_val =
3249                                  e1000_read_flash_dword_ich8lan(hw,
3250                                                                 offset_to_read,
3251                                                                 &dword);
3252                                if (ret_val)
3253                                        break;
3254                                if ((act_offset + i) % 2 == 0)
3255                                        data[i] = (u16)(dword & 0xFFFF);
3256                                else
3257                                        data[i] = (u16)((dword >> 16) & 0xFFFF);
3258                        }
3259                } else {
3260                        offset_to_read = act_offset + i;
3261                        if (!(dev_spec->shadow_ram[offset + i].modified) ||
3262                            !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3263                                ret_val =
3264                                  e1000_read_flash_dword_ich8lan(hw,
3265                                                                 offset_to_read,
3266                                                                 &dword);
3267                                if (ret_val)
3268                                        break;
3269                        }
3270                        if (dev_spec->shadow_ram[offset + i].modified)
3271                                data[i] =
3272                                    dev_spec->shadow_ram[offset + i].value;
3273                        else
3274                                data[i] = (u16)(dword & 0xFFFF);
3275                        if (dev_spec->shadow_ram[offset + i].modified)
3276                                data[i + 1] =
3277                                    dev_spec->shadow_ram[offset + i + 1].value;
3278                        else
3279                                data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3280                }
3281        }
3282
3283        nvm->ops.release(hw);
3284
3285out:
3286        if (ret_val)
3287                e_dbg("NVM read error: %d\n", ret_val);
3288
3289        return ret_val;
3290}
3291
3292/**
3293 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3294 *  @hw: pointer to the HW structure
3295 *  @offset: The offset (in bytes) of the word(s) to read.
3296 *  @words: Size of data to read in words
3297 *  @data: Pointer to the word(s) to read at offset.
3298 *
3299 *  Reads a word(s) from the NVM using the flash access registers.
3300 **/
3301static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3302                                  u16 *data)
3303{
3304        struct e1000_nvm_info *nvm = &hw->nvm;
3305        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3306        u32 act_offset;
3307        s32 ret_val = 0;
3308        u32 bank = 0;
3309        u16 i, word;
3310
3311        if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3312            (words == 0)) {
3313                e_dbg("nvm parameter(s) out of bounds\n");
3314                ret_val = -E1000_ERR_NVM;
3315                goto out;
3316        }
3317
3318        nvm->ops.acquire(hw);
3319
3320        ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3321        if (ret_val) {
3322                e_dbg("Could not detect valid bank, assuming bank 0\n");
3323                bank = 0;
3324        }
3325
3326        act_offset = (bank) ? nvm->flash_bank_size : 0;
3327        act_offset += offset;
3328
3329        ret_val = 0;
3330        for (i = 0; i < words; i++) {
3331                if (dev_spec->shadow_ram[offset + i].modified) {
3332                        data[i] = dev_spec->shadow_ram[offset + i].value;
3333                } else {
3334                        ret_val = e1000_read_flash_word_ich8lan(hw,
3335                                                                act_offset + i,
3336                                                                &word);
3337                        if (ret_val)
3338                                break;
3339                        data[i] = word;
3340                }
3341        }
3342
3343        nvm->ops.release(hw);
3344
3345out:
3346        if (ret_val)
3347                e_dbg("NVM read error: %d\n", ret_val);
3348
3349        return ret_val;
3350}
3351
3352/**
3353 *  e1000_flash_cycle_init_ich8lan - Initialize flash
3354 *  @hw: pointer to the HW structure
3355 *
3356 *  This function does initial flash setup so that a new read/write/erase cycle
3357 *  can be started.
3358 **/
3359static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3360{
3361        union ich8_hws_flash_status hsfsts;
3362        s32 ret_val = -E1000_ERR_NVM;
3363
3364        hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3365
3366        /* Check if the flash descriptor is valid */
3367        if (!hsfsts.hsf_status.fldesvalid) {
3368                e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3369                return -E1000_ERR_NVM;
3370        }
3371
3372        /* Clear FCERR and DAEL in hw status by writing 1 */
3373        hsfsts.hsf_status.flcerr = 1;
3374        hsfsts.hsf_status.dael = 1;
3375        if (hw->mac.type >= e1000_pch_spt)
3376                ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3377        else
3378                ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3379
3380        /* Either we should have a hardware SPI cycle in progress
3381         * bit to check against, in order to start a new cycle or
3382         * FDONE bit should be changed in the hardware so that it
3383         * is 1 after hardware reset, which can then be used as an
3384         * indication whether a cycle is in progress or has been
3385         * completed.
3386         */
3387
3388        if (!hsfsts.hsf_status.flcinprog) {
3389                /* There is no cycle running at present,
3390                 * so we can start a cycle.
3391                 * Begin by setting Flash Cycle Done.
3392                 */
3393                hsfsts.hsf_status.flcdone = 1;
3394                if (hw->mac.type >= e1000_pch_spt)
3395                        ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3396                else
3397                        ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3398                ret_val = 0;
3399        } else {
3400                s32 i;
3401
3402                /* Otherwise poll for sometime so the current
3403                 * cycle has a chance to end before giving up.
3404                 */
3405                for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3406                        hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3407                        if (!hsfsts.hsf_status.flcinprog) {
3408                                ret_val = 0;
3409                                break;
3410                        }
3411                        udelay(1);
3412                }
3413                if (!ret_val) {
3414                        /* Successful in waiting for previous cycle to timeout,
3415                         * now set the Flash Cycle Done.
3416                         */
3417                        hsfsts.hsf_status.flcdone = 1;
3418                        if (hw->mac.type >= e1000_pch_spt)
3419                                ew32flash(ICH_FLASH_HSFSTS,
3420                                          hsfsts.regval & 0xFFFF);
3421                        else
3422                                ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3423                } else {
3424                        e_dbg("Flash controller busy, cannot get access\n");
3425                }
3426        }
3427
3428        return ret_val;
3429}
3430
3431/**
3432 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3433 *  @hw: pointer to the HW structure
3434 *  @timeout: maximum time to wait for completion
3435 *
3436 *  This function starts a flash cycle and waits for its completion.
3437 **/
3438static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3439{
3440        union ich8_hws_flash_ctrl hsflctl;
3441        union ich8_hws_flash_status hsfsts;
3442        u32 i = 0;
3443
3444        /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3445        if (hw->mac.type >= e1000_pch_spt)
3446                hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3447        else
3448                hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3449        hsflctl.hsf_ctrl.flcgo = 1;
3450
3451        if (hw->mac.type >= e1000_pch_spt)
3452                ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3453        else
3454                ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3455
3456        /* wait till FDONE bit is set to 1 */
3457        do {
3458                hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3459                if (hsfsts.hsf_status.flcdone)
3460                        break;
3461                udelay(1);
3462        } while (i++ < timeout);
3463
3464        if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3465                return 0;
3466
3467        return -E1000_ERR_NVM;
3468}
3469
3470/**
3471 *  e1000_read_flash_dword_ich8lan - Read dword from flash
3472 *  @hw: pointer to the HW structure
3473 *  @offset: offset to data location
3474 *  @data: pointer to the location for storing the data
3475 *
3476 *  Reads the flash dword at offset into data.  Offset is converted
3477 *  to bytes before read.
3478 **/
3479static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3480                                          u32 *data)
3481{
3482        /* Must convert word offset into bytes. */
3483        offset <<= 1;
3484        return e1000_read_flash_data32_ich8lan(hw, offset, data);
3485}
3486
3487/**
3488 *  e1000_read_flash_word_ich8lan - Read word from flash
3489 *  @hw: pointer to the HW structure
3490 *  @offset: offset to data location
3491 *  @data: pointer to the location for storing the data
3492 *
3493 *  Reads the flash word at offset into data.  Offset is converted
3494 *  to bytes before read.
3495 **/
3496static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3497                                         u16 *data)
3498{
3499        /* Must convert offset into bytes. */
3500        offset <<= 1;
3501
3502        return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3503}
3504
3505/**
3506 *  e1000_read_flash_byte_ich8lan - Read byte from flash
3507 *  @hw: pointer to the HW structure
3508 *  @offset: The offset of the byte to read.
3509 *  @data: Pointer to a byte to store the value read.
3510 *
3511 *  Reads a single byte from the NVM using the flash access registers.
3512 **/
3513static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3514                                         u8 *data)
3515{
3516        s32 ret_val;
3517        u16 word = 0;
3518
3519        /* In SPT, only 32 bits access is supported,
3520         * so this function should not be called.
3521         */
3522        if (hw->mac.type >= e1000_pch_spt)
3523                return -E1000_ERR_NVM;
3524        else
3525                ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3526
3527        if (ret_val)
3528                return ret_val;
3529
3530        *data = (u8)word;
3531
3532        return 0;
3533}
3534
3535/**
3536 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3537 *  @hw: pointer to the HW structure
3538 *  @offset: The offset (in bytes) of the byte or word to read.
3539 *  @size: Size of data to read, 1=byte 2=word
3540 *  @data: Pointer to the word to store the value read.
3541 *
3542 *  Reads a byte or word from the NVM using the flash access registers.
3543 **/
3544static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3545                                         u8 size, u16 *data)
3546{
3547        union ich8_hws_flash_status hsfsts;
3548        union ich8_hws_flash_ctrl hsflctl;
3549        u32 flash_linear_addr;
3550        u32 flash_data = 0;
3551        s32 ret_val = -E1000_ERR_NVM;
3552        u8 count = 0;
3553
3554        if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3555                return -E1000_ERR_NVM;
3556
3557        flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3558                             hw->nvm.flash_base_addr);
3559
3560        do {
3561                udelay(1);
3562                /* Steps */
3563                ret_val = e1000_flash_cycle_init_ich8lan(hw);
3564                if (ret_val)
3565                        break;
3566
3567                hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3568                /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3569                hsflctl.hsf_ctrl.fldbcount = size - 1;
3570                hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3571                ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3572
3573                ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3574
3575                ret_val =
3576                    e1000_flash_cycle_ich8lan(hw,
3577                                              ICH_FLASH_READ_COMMAND_TIMEOUT);
3578
3579                /* Check if FCERR is set to 1, if set to 1, clear it
3580                 * and try the whole sequence a few more times, else
3581                 * read in (shift in) the Flash Data0, the order is
3582                 * least significant byte first msb to lsb
3583                 */
3584                if (!ret_val) {
3585                        flash_data = er32flash(ICH_FLASH_FDATA0);
3586                        if (size == 1)
3587                                *data = (u8)(flash_data & 0x000000FF);
3588                        else if (size == 2)
3589                                *data = (u16)(flash_data & 0x0000FFFF);
3590                        break;
3591                } else {
3592                        /* If we've gotten here, then things are probably
3593                         * completely hosed, but if the error condition is
3594                         * detected, it won't hurt to give it another try...
3595                         * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3596                         */
3597                        hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3598                        if (hsfsts.hsf_status.flcerr) {
3599                                /* Repeat for some time before giving up. */
3600                                continue;
3601                        } else if (!hsfsts.hsf_status.flcdone) {
3602                                e_dbg("Timeout error - flash cycle did not complete.\n");
3603                                break;
3604                        }
3605                }
3606        } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3607
3608        return ret_val;
3609}
3610
3611/**
3612 *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3613 *  @hw: pointer to the HW structure
3614 *  @offset: The offset (in bytes) of the dword to read.
3615 *  @data: Pointer to the dword to store the value read.
3616 *
3617 *  Reads a byte or word from the NVM using the flash access registers.
3618 **/
3619
3620static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3621                                           u32 *data)
3622{
3623        union ich8_hws_flash_status hsfsts;
3624        union ich8_hws_flash_ctrl hsflctl;
3625        u32 flash_linear_addr;
3626        s32 ret_val = -E1000_ERR_NVM;
3627        u8 count = 0;
3628
3629        if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3630                return -E1000_ERR_NVM;
3631        flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3632                             hw->nvm.flash_base_addr);
3633
3634        do {
3635                udelay(1);
3636                /* Steps */
3637                ret_val = e1000_flash_cycle_init_ich8lan(hw);
3638                if (ret_val)
3639                        break;
3640                /* In SPT, This register is in Lan memory space, not flash.
3641                 * Therefore, only 32 bit access is supported
3642                 */
3643                hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3644
3645                /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3646                hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3647                hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3648                /* In SPT, This register is in Lan memory space, not flash.
3649                 * Therefore, only 32 bit access is supported
3650                 */
3651                ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3652                ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3653
3654                ret_val =
3655                   e1000_flash_cycle_ich8lan(hw,
3656                                             ICH_FLASH_READ_COMMAND_TIMEOUT);
3657
3658                /* Check if FCERR is set to 1, if set to 1, clear it
3659                 * and try the whole sequence a few more times, else
3660                 * read in (shift in) the Flash Data0, the order is
3661                 * least significant byte first msb to lsb
3662                 */
3663                if (!ret_val) {
3664                        *data = er32flash(ICH_FLASH_FDATA0);
3665                        break;
3666                } else {
3667                        /* If we've gotten here, then things are probably
3668                         * completely hosed, but if the error condition is
3669                         * detected, it won't hurt to give it another try...
3670                         * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3671                         */
3672                        hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3673                        if (hsfsts.hsf_status.flcerr) {
3674                                /* Repeat for some time before giving up. */
3675                                continue;
3676                        } else if (!hsfsts.hsf_status.flcdone) {
3677                                e_dbg("Timeout error - flash cycle did not complete.\n");
3678                                break;
3679                        }
3680                }
3681        } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3682
3683        return ret_val;
3684}
3685
3686/**
3687 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3688 *  @hw: pointer to the HW structure
3689 *  @offset: The offset (in bytes) of the word(s) to write.
3690 *  @words: Size of data to write in words
3691 *  @data: Pointer to the word(s) to write at offset.
3692 *
3693 *  Writes a byte or word to the NVM using the flash access registers.
3694 **/
3695static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3696                                   u16 *data)
3697{
3698        struct e1000_nvm_info *nvm = &hw->nvm;
3699        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3700        u16 i;
3701
3702        if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3703            (words == 0)) {
3704                e_dbg("nvm parameter(s) out of bounds\n");
3705                return -E1000_ERR_NVM;
3706        }
3707
3708        nvm->ops.acquire(hw);
3709
3710        for (i = 0; i < words; i++) {
3711                dev_spec->shadow_ram[offset + i].modified = true;
3712                dev_spec->shadow_ram[offset + i].value = data[i];
3713        }
3714
3715        nvm->ops.release(hw);
3716
3717        return 0;
3718}
3719
3720/**
3721 *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3722 *  @hw: pointer to the HW structure
3723 *
3724 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3725 *  which writes the checksum to the shadow ram.  The changes in the shadow
3726 *  ram are then committed to the EEPROM by processing each bank at a time
3727 *  checking for the modified bit and writing only the pending changes.
3728 *  After a successful commit, the shadow ram is cleared and is ready for
3729 *  future writes.
3730 **/
3731static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3732{
3733        struct e1000_nvm_info *nvm = &hw->nvm;
3734        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3735        u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3736        s32 ret_val;
3737        u32 dword = 0;
3738
3739        ret_val = e1000e_update_nvm_checksum_generic(hw);
3740        if (ret_val)
3741                goto out;
3742
3743        if (nvm->type != e1000_nvm_flash_sw)
3744                goto out;
3745
3746        nvm->ops.acquire(hw);
3747
3748        /* We're writing to the opposite bank so if we're on bank 1,
3749         * write to bank 0 etc.  We also need to erase the segment that
3750         * is going to be written
3751         */
3752        ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3753        if (ret_val) {
3754                e_dbg("Could not detect valid bank, assuming bank 0\n");
3755                bank = 0;
3756        }
3757
3758        if (bank == 0) {
3759                new_bank_offset = nvm->flash_bank_size;
3760                old_bank_offset = 0;
3761                ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3762                if (ret_val)
3763                        goto release;
3764        } else {
3765                old_bank_offset = nvm->flash_bank_size;
3766                new_bank_offset = 0;
3767                ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3768                if (ret_val)
3769                        goto release;
3770        }
3771        for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3772                /* Determine whether to write the value stored
3773                 * in the other NVM bank or a modified value stored
3774                 * in the shadow RAM
3775                 */
3776                ret_val = e1000_read_flash_dword_ich8lan(hw,
3777                                                         i + old_bank_offset,
3778                                                         &dword);
3779
3780                if (dev_spec->shadow_ram[i].modified) {
3781                        dword &= 0xffff0000;
3782                        dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3783                }
3784                if (dev_spec->shadow_ram[i + 1].modified) {
3785                        dword &= 0x0000ffff;
3786                        dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3787                                  << 16);
3788                }
3789                if (ret_val)
3790                        break;
3791
3792                /* If the word is 0x13, then make sure the signature bits
3793                 * (15:14) are 11b until the commit has completed.
3794                 * This will allow us to write 10b which indicates the
3795                 * signature is valid.  We want to do this after the write
3796                 * has completed so that we don't mark the segment valid
3797                 * while the write is still in progress
3798                 */
3799                if (i == E1000_ICH_NVM_SIG_WORD - 1)
3800                        dword |= E1000_ICH_NVM_SIG_MASK << 16;
3801
3802                /* Convert offset to bytes. */
3803                act_offset = (i + new_bank_offset) << 1;
3804
3805                usleep_range(100, 200);
3806
3807                /* Write the data to the new bank. Offset in words */
3808                act_offset = i + new_bank_offset;
3809                ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3810                                                                dword);
3811                if (ret_val)
3812                        break;
3813        }
3814
3815        /* Don't bother writing the segment valid bits if sector
3816         * programming failed.
3817         */
3818        if (ret_val) {
3819                /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3820                e_dbg("Flash commit failed.\n");
3821                goto release;
3822        }
3823
3824        /* Finally validate the new segment by setting bit 15:14
3825         * to 10b in word 0x13 , this can be done without an
3826         * erase as well since these bits are 11 to start with
3827         * and we need to change bit 14 to 0b
3828         */
3829        act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3830
3831        /*offset in words but we read dword */
3832        --act_offset;
3833        ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3834
3835        if (ret_val)
3836                goto release;
3837
3838        dword &= 0xBFFFFFFF;
3839        ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3840
3841        if (ret_val)
3842                goto release;
3843
3844        /* And invalidate the previously valid segment by setting
3845         * its signature word (0x13) high_byte to 0b. This can be
3846         * done without an erase because flash erase sets all bits
3847         * to 1's. We can write 1's to 0's without an erase
3848         */
3849        act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3850
3851        /* offset in words but we read dword */
3852        act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3853        ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3854
3855        if (ret_val)
3856                goto release;
3857
3858        dword &= 0x00FFFFFF;
3859        ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3860
3861        if (ret_val)
3862                goto release;
3863
3864        /* Great!  Everything worked, we can now clear the cached entries. */
3865        for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3866                dev_spec->shadow_ram[i].modified = false;
3867                dev_spec->shadow_ram[i].value = 0xFFFF;
3868        }
3869
3870release:
3871        nvm->ops.release(hw);
3872
3873        /* Reload the EEPROM, or else modifications will not appear
3874         * until after the next adapter reset.
3875         */
3876        if (!ret_val) {
3877                nvm->ops.reload(hw);
3878                usleep_range(10000, 20000);
3879        }
3880
3881out:
3882        if (ret_val)
3883                e_dbg("NVM update error: %d\n", ret_val);
3884
3885        return ret_val;
3886}
3887
3888/**
3889 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3890 *  @hw: pointer to the HW structure
3891 *
3892 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3893 *  which writes the checksum to the shadow ram.  The changes in the shadow
3894 *  ram are then committed to the EEPROM by processing each bank at a time
3895 *  checking for the modified bit and writing only the pending changes.
3896 *  After a successful commit, the shadow ram is cleared and is ready for
3897 *  future writes.
3898 **/
3899static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3900{
3901        struct e1000_nvm_info *nvm = &hw->nvm;
3902        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3903        u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3904        s32 ret_val;
3905        u16 data = 0;
3906
3907        ret_val = e1000e_update_nvm_checksum_generic(hw);
3908        if (ret_val)
3909                goto out;
3910
3911        if (nvm->type != e1000_nvm_flash_sw)
3912                goto out;
3913
3914        nvm->ops.acquire(hw);
3915
3916        /* We're writing to the opposite bank so if we're on bank 1,
3917         * write to bank 0 etc.  We also need to erase the segment that
3918         * is going to be written
3919         */
3920        ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3921        if (ret_val) {
3922                e_dbg("Could not detect valid bank, assuming bank 0\n");
3923                bank = 0;
3924        }
3925
3926        if (bank == 0) {
3927                new_bank_offset = nvm->flash_bank_size;
3928                old_bank_offset = 0;
3929                ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3930                if (ret_val)
3931                        goto release;
3932        } else {
3933                old_bank_offset = nvm->flash_bank_size;
3934                new_bank_offset = 0;
3935                ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3936                if (ret_val)
3937                        goto release;
3938        }
3939        for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3940                if (dev_spec->shadow_ram[i].modified) {
3941                        data = dev_spec->shadow_ram[i].value;
3942                } else {
3943                        ret_val = e1000_read_flash_word_ich8lan(hw, i +
3944                                                                old_bank_offset,
3945                                                                &data);
3946                        if (ret_val)
3947                                break;
3948                }
3949
3950                /* If the word is 0x13, then make sure the signature bits
3951                 * (15:14) are 11b until the commit has completed.
3952                 * This will allow us to write 10b which indicates the
3953                 * signature is valid.  We want to do this after the write
3954                 * has completed so that we don't mark the segment valid
3955                 * while the write is still in progress
3956                 */
3957                if (i == E1000_ICH_NVM_SIG_WORD)
3958                        data |= E1000_ICH_NVM_SIG_MASK;
3959
3960                /* Convert offset to bytes. */
3961                act_offset = (i + new_bank_offset) << 1;
3962
3963                usleep_range(100, 200);
3964                /* Write the bytes to the new bank. */
3965                ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3966                                                               act_offset,
3967                                                               (u8)data);
3968                if (ret_val)
3969                        break;
3970
3971                usleep_range(100, 200);
3972                ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3973                                                               act_offset + 1,
3974                                                               (u8)(data >> 8));
3975                if (ret_val)
3976                        break;
3977        }
3978
3979        /* Don't bother writing the segment valid bits if sector
3980         * programming failed.
3981         */
3982        if (ret_val) {
3983                /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3984                e_dbg("Flash commit failed.\n");
3985                goto release;
3986        }
3987
3988        /* Finally validate the new segment by setting bit 15:14
3989         * to 10b in word 0x13 , this can be done without an
3990         * erase as well since these bits are 11 to start with
3991         * and we need to change bit 14 to 0b
3992         */
3993        act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3994        ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
3995        if (ret_val)
3996                goto release;
3997
3998        data &= 0xBFFF;
3999        ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4000                                                       act_offset * 2 + 1,
4001                                                       (u8)(data >> 8));
4002        if (ret_val)
4003                goto release;
4004
4005        /* And invalidate the previously valid segment by setting
4006         * its signature word (0x13) high_byte to 0b. This can be
4007         * done without an erase because flash erase sets all bits
4008         * to 1's. We can write 1's to 0's without an erase
4009         */
4010        act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4011        ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4012        if (ret_val)
4013                goto release;
4014
4015        /* Great!  Everything worked, we can now clear the cached entries. */
4016        for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4017                dev_spec->shadow_ram[i].modified = false;
4018                dev_spec->shadow_ram[i].value = 0xFFFF;
4019        }
4020
4021release:
4022        nvm->ops.release(hw);
4023
4024        /* Reload the EEPROM, or else modifications will not appear
4025         * until after the next adapter reset.
4026         */
4027        if (!ret_val) {
4028                nvm->ops.reload(hw);
4029                usleep_range(10000, 20000);
4030        }
4031
4032out:
4033        if (ret_val)
4034                e_dbg("NVM update error: %d\n", ret_val);
4035
4036        return ret_val;
4037}
4038
4039/**
4040 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4041 *  @hw: pointer to the HW structure
4042 *
4043 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4044 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4045 *  calculated, in which case we need to calculate the checksum and set bit 6.
4046 **/
4047static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4048{
4049        s32 ret_val;
4050        u16 data;
4051        u16 word;
4052        u16 valid_csum_mask;
4053
4054        /* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4055         * the checksum needs to be fixed.  This bit is an indication that
4056         * the NVM was prepared by OEM software and did not calculate
4057         * the checksum...a likely scenario.
4058         */
4059        switch (hw->mac.type) {
4060        case e1000_pch_lpt:
4061        case e1000_pch_spt:
4062        case e1000_pch_cnp:
4063                word = NVM_COMPAT;
4064                valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4065                break;
4066        default:
4067                word = NVM_FUTURE_INIT_WORD1;
4068                valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4069                break;
4070        }
4071
4072        ret_val = e1000_read_nvm(hw, word, 1, &data);
4073        if (ret_val)
4074                return ret_val;
4075
4076        if (!(data & valid_csum_mask)) {
4077                data |= valid_csum_mask;
4078                ret_val = e1000_write_nvm(hw, word, 1, &data);
4079                if (ret_val)
4080                        return ret_val;
4081                ret_val = e1000e_update_nvm_checksum(hw);
4082                if (ret_val)
4083                        return ret_val;
4084        }
4085
4086        return e1000e_validate_nvm_checksum_generic(hw);
4087}
4088
4089/**
4090 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4091 *  @hw: pointer to the HW structure
4092 *
4093 *  To prevent malicious write/erase of the NVM, set it to be read-only
4094 *  so that the hardware ignores all write/erase cycles of the NVM via
4095 *  the flash control registers.  The shadow-ram copy of the NVM will
4096 *  still be updated, however any updates to this copy will not stick
4097 *  across driver reloads.
4098 **/
4099void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4100{
4101        struct e1000_nvm_info *nvm = &hw->nvm;
4102        union ich8_flash_protected_range pr0;
4103        union ich8_hws_flash_status hsfsts;
4104        u32 gfpreg;
4105
4106        nvm->ops.acquire(hw);
4107
4108        gfpreg = er32flash(ICH_FLASH_GFPREG);
4109
4110        /* Write-protect GbE Sector of NVM */
4111        pr0.regval = er32flash(ICH_FLASH_PR0);
4112        pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4113        pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4114        pr0.range.wpe = true;
4115        ew32flash(ICH_FLASH_PR0, pr0.regval);
4116
4117        /* Lock down a subset of GbE Flash Control Registers, e.g.
4118         * PR0 to prevent the write-protection from being lifted.
4119         * Once FLOCKDN is set, the registers protected by it cannot
4120         * be written until FLOCKDN is cleared by a hardware reset.
4121         */
4122        hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4123        hsfsts.hsf_status.flockdn = true;
4124        ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4125
4126        nvm->ops.release(hw);
4127}
4128
4129/**
4130 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4131 *  @hw: pointer to the HW structure
4132 *  @offset: The offset (in bytes) of the byte/word to read.
4133 *  @size: Size of data to read, 1=byte 2=word
4134 *  @data: The byte(s) to write to the NVM.
4135 *
4136 *  Writes one/two bytes to the NVM using the flash access registers.
4137 **/
4138static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4139                                          u8 size, u16 data)
4140{
4141        union ich8_hws_flash_status hsfsts;
4142        union ich8_hws_flash_ctrl hsflctl;
4143        u32 flash_linear_addr;
4144        u32 flash_data = 0;
4145        s32 ret_val;
4146        u8 count = 0;
4147
4148        if (hw->mac.type >= e1000_pch_spt) {
4149                if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4150                        return -E1000_ERR_NVM;
4151        } else {
4152                if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4153                        return -E1000_ERR_NVM;
4154        }
4155
4156        flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4157                             hw->nvm.flash_base_addr);
4158
4159        do {
4160                udelay(1);
4161                /* Steps */
4162                ret_val = e1000_flash_cycle_init_ich8lan(hw);
4163                if (ret_val)
4164                        break;
4165                /* In SPT, This register is in Lan memory space, not
4166                 * flash.  Therefore, only 32 bit access is supported
4167                 */
4168                if (hw->mac.type >= e1000_pch_spt)
4169                        hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4170                else
4171                        hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4172
4173                /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4174                hsflctl.hsf_ctrl.fldbcount = size - 1;
4175                hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4176                /* In SPT, This register is in Lan memory space,
4177                 * not flash.  Therefore, only 32 bit access is
4178                 * supported
4179                 */
4180                if (hw->mac.type >= e1000_pch_spt)
4181                        ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4182                else
4183                        ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4184
4185                ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4186
4187                if (size == 1)
4188                        flash_data = (u32)data & 0x00FF;
4189                else
4190                        flash_data = (u32)data;
4191
4192                ew32flash(ICH_FLASH_FDATA0, flash_data);
4193
4194                /* check if FCERR is set to 1 , if set to 1, clear it
4195                 * and try the whole sequence a few more times else done
4196                 */
4197                ret_val =
4198                    e1000_flash_cycle_ich8lan(hw,
4199                                              ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4200                if (!ret_val)
4201                        break;
4202
4203                /* If we're here, then things are most likely
4204                 * completely hosed, but if the error condition
4205                 * is detected, it won't hurt to give it another
4206                 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4207                 */
4208                hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4209                if (hsfsts.hsf_status.flcerr)
4210                        /* Repeat for some time before giving up. */
4211                        continue;
4212                if (!hsfsts.hsf_status.flcdone) {
4213                        e_dbg("Timeout error - flash cycle did not complete.\n");
4214                        break;
4215                }
4216        } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4217
4218        return ret_val;
4219}
4220
4221/**
4222*  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4223*  @hw: pointer to the HW structure
4224*  @offset: The offset (in bytes) of the dwords to read.
4225*  @data: The 4 bytes to write to the NVM.
4226*
4227*  Writes one/two/four bytes to the NVM using the flash access registers.
4228**/
4229static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4230                                            u32 data)
4231{
4232        union ich8_hws_flash_status hsfsts;
4233        union ich8_hws_flash_ctrl hsflctl;
4234        u32 flash_linear_addr;
4235        s32 ret_val;
4236        u8 count = 0;
4237
4238        if (hw->mac.type >= e1000_pch_spt) {
4239                if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4240                        return -E1000_ERR_NVM;
4241        }
4242        flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4243                             hw->nvm.flash_base_addr);
4244        do {
4245                udelay(1);
4246                /* Steps */
4247                ret_val = e1000_flash_cycle_init_ich8lan(hw);
4248                if (ret_val)
4249                        break;
4250
4251                /* In SPT, This register is in Lan memory space, not
4252                 * flash.  Therefore, only 32 bit access is supported
4253                 */
4254                if (hw->mac.type >= e1000_pch_spt)
4255                        hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4256                            >> 16;
4257                else
4258                        hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4259
4260                hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4261                hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4262
4263                /* In SPT, This register is in Lan memory space,
4264                 * not flash.  Therefore, only 32 bit access is
4265                 * supported
4266                 */
4267                if (hw->mac.type >= e1000_pch_spt)
4268                        ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4269                else
4270                        ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4271
4272                ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4273
4274                ew32flash(ICH_FLASH_FDATA0, data);
4275
4276                /* check if FCERR is set to 1 , if set to 1, clear it
4277                 * and try the whole sequence a few more times else done
4278                 */
4279                ret_val =
4280                   e1000_flash_cycle_ich8lan(hw,
4281                                             ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4282
4283                if (!ret_val)
4284                        break;
4285
4286                /* If we're here, then things are most likely
4287                 * completely hosed, but if the error condition
4288                 * is detected, it won't hurt to give it another
4289                 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4290                 */
4291                hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4292
4293                if (hsfsts.hsf_status.flcerr)
4294                        /* Repeat for some time before giving up. */
4295                        continue;
4296                if (!hsfsts.hsf_status.flcdone) {
4297                        e_dbg("Timeout error - flash cycle did not complete.\n");
4298                        break;
4299                }
4300        } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4301
4302        return ret_val;
4303}
4304
4305/**
4306 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4307 *  @hw: pointer to the HW structure
4308 *  @offset: The index of the byte to read.
4309 *  @data: The byte to write to the NVM.
4310 *
4311 *  Writes a single byte to the NVM using the flash access registers.
4312 **/
4313static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4314                                          u8 data)
4315{
4316        u16 word = (u16)data;
4317
4318        return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4319}
4320
4321/**
4322*  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4323*  @hw: pointer to the HW structure
4324*  @offset: The offset of the word to write.
4325*  @dword: The dword to write to the NVM.
4326*
4327*  Writes a single dword to the NVM using the flash access registers.
4328*  Goes through a retry algorithm before giving up.
4329**/
4330static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4331                                                 u32 offset, u32 dword)
4332{
4333        s32 ret_val;
4334        u16 program_retries;
4335
4336        /* Must convert word offset into bytes. */
4337        offset <<= 1;
4338        ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4339
4340        if (!ret_val)
4341                return ret_val;
4342        for (program_retries = 0; program_retries < 100; program_retries++) {
4343                e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4344                usleep_range(100, 200);
4345                ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4346                if (!ret_val)
4347                        break;
4348        }
4349        if (program_retries == 100)
4350                return -E1000_ERR_NVM;
4351
4352        return 0;
4353}
4354
4355/**
4356 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4357 *  @hw: pointer to the HW structure
4358 *  @offset: The offset of the byte to write.
4359 *  @byte: The byte to write to the NVM.
4360 *
4361 *  Writes a single byte to the NVM using the flash access registers.
4362 *  Goes through a retry algorithm before giving up.
4363 **/
4364static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4365                                                u32 offset, u8 byte)
4366{
4367        s32 ret_val;
4368        u16 program_retries;
4369
4370        ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4371        if (!ret_val)
4372                return ret_val;
4373
4374        for (program_retries = 0; program_retries < 100; program_retries++) {
4375                e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4376                usleep_range(100, 200);
4377                ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4378                if (!ret_val)
4379                        break;
4380        }
4381        if (program_retries == 100)
4382                return -E1000_ERR_NVM;
4383
4384        return 0;
4385}
4386
4387/**
4388 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4389 *  @hw: pointer to the HW structure
4390 *  @bank: 0 for first bank, 1 for second bank, etc.
4391 *
4392 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4393 *  bank N is 4096 * N + flash_reg_addr.
4394 **/
4395static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4396{
4397        struct e1000_nvm_info *nvm = &hw->nvm;
4398        union ich8_hws_flash_status hsfsts;
4399        union ich8_hws_flash_ctrl hsflctl;
4400        u32 flash_linear_addr;
4401        /* bank size is in 16bit words - adjust to bytes */
4402        u32 flash_bank_size = nvm->flash_bank_size * 2;
4403        s32 ret_val;
4404        s32 count = 0;
4405        s32 j, iteration, sector_size;
4406
4407        hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4408
4409        /* Determine HW Sector size: Read BERASE bits of hw flash status
4410         * register
4411         * 00: The Hw sector is 256 bytes, hence we need to erase 16
4412         *     consecutive sectors.  The start index for the nth Hw sector
4413         *     can be calculated as = bank * 4096 + n * 256
4414         * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4415         *     The start index for the nth Hw sector can be calculated
4416         *     as = bank * 4096
4417         * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4418         *     (ich9 only, otherwise error condition)
4419         * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4420         */
4421        switch (hsfsts.hsf_status.berasesz) {
4422        case 0:
4423                /* Hw sector size 256 */
4424                sector_size = ICH_FLASH_SEG_SIZE_256;
4425                iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4426                break;
4427        case 1:
4428                sector_size = ICH_FLASH_SEG_SIZE_4K;
4429                iteration = 1;
4430                break;
4431        case 2:
4432                sector_size = ICH_FLASH_SEG_SIZE_8K;
4433                iteration = 1;
4434                break;
4435        case 3:
4436                sector_size = ICH_FLASH_SEG_SIZE_64K;
4437                iteration = 1;
4438                break;
4439        default:
4440                return -E1000_ERR_NVM;
4441        }
4442
4443        /* Start with the base address, then add the sector offset. */
4444        flash_linear_addr = hw->nvm.flash_base_addr;
4445        flash_linear_addr += (bank) ? flash_bank_size : 0;
4446
4447        for (j = 0; j < iteration; j++) {
4448                do {
4449                        u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4450
4451                        /* Steps */
4452                        ret_val = e1000_flash_cycle_init_ich8lan(hw);
4453                        if (ret_val)
4454                                return ret_val;
4455
4456                        /* Write a value 11 (block Erase) in Flash
4457                         * Cycle field in hw flash control
4458                         */
4459                        if (hw->mac.type >= e1000_pch_spt)
4460                                hsflctl.regval =
4461                                    er32flash(ICH_FLASH_HSFSTS) >> 16;
4462                        else
4463                                hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4464
4465                        hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4466                        if (hw->mac.type >= e1000_pch_spt)
4467                                ew32flash(ICH_FLASH_HSFSTS,
4468                                          hsflctl.regval << 16);
4469                        else
4470                                ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4471
4472                        /* Write the last 24 bits of an index within the
4473                         * block into Flash Linear address field in Flash
4474                         * Address.
4475                         */
4476                        flash_linear_addr += (j * sector_size);
4477                        ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4478
4479                        ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4480                        if (!ret_val)
4481                                break;
4482
4483                        /* Check if FCERR is set to 1.  If 1,
4484                         * clear it and try the whole sequence
4485                         * a few more times else Done
4486                         */
4487                        hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4488                        if (hsfsts.hsf_status.flcerr)
4489                                /* repeat for some time before giving up */
4490                                continue;
4491                        else if (!hsfsts.hsf_status.flcdone)
4492                                return ret_val;
4493                } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4494        }
4495
4496        return 0;
4497}
4498
4499/**
4500 *  e1000_valid_led_default_ich8lan - Set the default LED settings
4501 *  @hw: pointer to the HW structure
4502 *  @data: Pointer to the LED settings
4503 *
4504 *  Reads the LED default settings from the NVM to data.  If the NVM LED
4505 *  settings is all 0's or F's, set the LED default to a valid LED default
4506 *  setting.
4507 **/
4508static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4509{
4510        s32 ret_val;
4511
4512        ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4513        if (ret_val) {
4514                e_dbg("NVM Read Error\n");
4515                return ret_val;
4516        }
4517
4518        if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4519                *data = ID_LED_DEFAULT_ICH8LAN;
4520
4521        return 0;
4522}
4523
4524/**
4525 *  e1000_id_led_init_pchlan - store LED configurations
4526 *  @hw: pointer to the HW structure
4527 *
4528 *  PCH does not control LEDs via the LEDCTL register, rather it uses
4529 *  the PHY LED configuration register.
4530 *
4531 *  PCH also does not have an "always on" or "always off" mode which
4532 *  complicates the ID feature.  Instead of using the "on" mode to indicate
4533 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4534 *  use "link_up" mode.  The LEDs will still ID on request if there is no
4535 *  link based on logic in e1000_led_[on|off]_pchlan().
4536 **/
4537static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4538{
4539        struct e1000_mac_info *mac = &hw->mac;
4540        s32 ret_val;
4541        const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4542        const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4543        u16 data, i, temp, shift;
4544
4545        /* Get default ID LED modes */
4546        ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4547        if (ret_val)
4548                return ret_val;
4549
4550        mac->ledctl_default = er32(LEDCTL);
4551        mac->ledctl_mode1 = mac->ledctl_default;
4552        mac->ledctl_mode2 = mac->ledctl_default;
4553
4554        for (i = 0; i < 4; i++) {
4555                temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4556                shift = (i * 5);
4557                switch (temp) {
4558                case ID_LED_ON1_DEF2:
4559                case ID_LED_ON1_ON2:
4560                case ID_LED_ON1_OFF2:
4561                        mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4562                        mac->ledctl_mode1 |= (ledctl_on << shift);
4563                        break;
4564                case ID_LED_OFF1_DEF2:
4565                case ID_LED_OFF1_ON2:
4566                case ID_LED_OFF1_OFF2:
4567                        mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4568                        mac->ledctl_mode1 |= (ledctl_off << shift);
4569                        break;
4570                default:
4571                        /* Do nothing */
4572                        break;
4573                }
4574                switch (temp) {
4575                case ID_LED_DEF1_ON2:
4576                case ID_LED_ON1_ON2:
4577                case ID_LED_OFF1_ON2:
4578                        mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4579                        mac->ledctl_mode2 |= (ledctl_on << shift);
4580                        break;
4581                case ID_LED_DEF1_OFF2:
4582                case ID_LED_ON1_OFF2:
4583                case ID_LED_OFF1_OFF2:
4584                        mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4585                        mac->ledctl_mode2 |= (ledctl_off << shift);
4586                        break;
4587                default:
4588                        /* Do nothing */
4589                        break;
4590                }
4591        }
4592
4593        return 0;
4594}
4595
4596/**
4597 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4598 *  @hw: pointer to the HW structure
4599 *
4600 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4601 *  register, so the the bus width is hard coded.
4602 **/
4603static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4604{
4605        struct e1000_bus_info *bus = &hw->bus;
4606        s32 ret_val;
4607
4608        ret_val = e1000e_get_bus_info_pcie(hw);
4609
4610        /* ICH devices are "PCI Express"-ish.  They have
4611         * a configuration space, but do not contain
4612         * PCI Express Capability registers, so bus width
4613         * must be hardcoded.
4614         */
4615        if (bus->width == e1000_bus_width_unknown)
4616                bus->width = e1000_bus_width_pcie_x1;
4617
4618        return ret_val;
4619}
4620
4621/**
4622 *  e1000_reset_hw_ich8lan - Reset the hardware
4623 *  @hw: pointer to the HW structure
4624 *
4625 *  Does a full reset of the hardware which includes a reset of the PHY and
4626 *  MAC.
4627 **/
4628static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4629{
4630        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4631        u16 kum_cfg;
4632        u32 ctrl, reg;
4633        s32 ret_val;
4634
4635        /* Prevent the PCI-E bus from sticking if there is no TLP connection
4636         * on the last TLP read/write transaction when MAC is reset.
4637         */
4638        ret_val = e1000e_disable_pcie_master(hw);
4639        if (ret_val)
4640                e_dbg("PCI-E Master disable polling has failed.\n");
4641
4642        e_dbg("Masking off all interrupts\n");
4643        ew32(IMC, 0xffffffff);
4644
4645        /* Disable the Transmit and Receive units.  Then delay to allow
4646         * any pending transactions to complete before we hit the MAC
4647         * with the global reset.
4648         */
4649        ew32(RCTL, 0);
4650        ew32(TCTL, E1000_TCTL_PSP);
4651        e1e_flush();
4652
4653        usleep_range(10000, 20000);
4654
4655        /* Workaround for ICH8 bit corruption issue in FIFO memory */
4656        if (hw->mac.type == e1000_ich8lan) {
4657                /* Set Tx and Rx buffer allocation to 8k apiece. */
4658                ew32(PBA, E1000_PBA_8K);
4659                /* Set Packet Buffer Size to 16k. */
4660                ew32(PBS, E1000_PBS_16K);
4661        }
4662
4663        if (hw->mac.type == e1000_pchlan) {
4664                /* Save the NVM K1 bit setting */
4665                ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4666                if (ret_val)
4667                        return ret_val;
4668
4669                if (kum_cfg & E1000_NVM_K1_ENABLE)
4670                        dev_spec->nvm_k1_enabled = true;
4671                else
4672                        dev_spec->nvm_k1_enabled = false;
4673        }
4674
4675        ctrl = er32(CTRL);
4676
4677        if (!hw->phy.ops.check_reset_block(hw)) {
4678                /* Full-chip reset requires MAC and PHY reset at the same
4679                 * time to make sure the interface between MAC and the
4680                 * external PHY is reset.
4681                 */
4682                ctrl |= E1000_CTRL_PHY_RST;
4683
4684                /* Gate automatic PHY configuration by hardware on
4685                 * non-managed 82579
4686                 */
4687                if ((hw->mac.type == e1000_pch2lan) &&
4688                    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4689                        e1000_gate_hw_phy_config_ich8lan(hw, true);
4690        }
4691        ret_val = e1000_acquire_swflag_ich8lan(hw);
4692        e_dbg("Issuing a global reset to ich8lan\n");
4693        ew32(CTRL, (ctrl | E1000_CTRL_RST));
4694        /* cannot issue a flush here because it hangs the hardware */
4695        msleep(20);
4696
4697        /* Set Phy Config Counter to 50msec */
4698        if (hw->mac.type == e1000_pch2lan) {
4699                reg = er32(FEXTNVM3);
4700                reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4701                reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4702                ew32(FEXTNVM3, reg);
4703        }
4704
4705        if (!ret_val)
4706                clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4707
4708        if (ctrl & E1000_CTRL_PHY_RST) {
4709                ret_val = hw->phy.ops.get_cfg_done(hw);
4710                if (ret_val)
4711                        return ret_val;
4712
4713                ret_val = e1000_post_phy_reset_ich8lan(hw);
4714                if (ret_val)
4715                        return ret_val;
4716        }
4717
4718        /* For PCH, this write will make sure that any noise
4719         * will be detected as a CRC error and be dropped rather than show up
4720         * as a bad packet to the DMA engine.
4721         */
4722        if (hw->mac.type == e1000_pchlan)
4723                ew32(CRC_OFFSET, 0x65656565);
4724
4725        ew32(IMC, 0xffffffff);
4726        er32(ICR);
4727
4728        reg = er32(KABGTXD);
4729        reg |= E1000_KABGTXD_BGSQLBIAS;
4730        ew32(KABGTXD, reg);
4731
4732        return 0;
4733}
4734
4735/**
4736 *  e1000_init_hw_ich8lan - Initialize the hardware
4737 *  @hw: pointer to the HW structure
4738 *
4739 *  Prepares the hardware for transmit and receive by doing the following:
4740 *   - initialize hardware bits
4741 *   - initialize LED identification
4742 *   - setup receive address registers
4743 *   - setup flow control
4744 *   - setup transmit descriptors
4745 *   - clear statistics
4746 **/
4747static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4748{
4749        struct e1000_mac_info *mac = &hw->mac;
4750        u32 ctrl_ext, txdctl, snoop;
4751        s32 ret_val;
4752        u16 i;
4753
4754        e1000_initialize_hw_bits_ich8lan(hw);
4755
4756        /* Initialize identification LED */
4757        ret_val = mac->ops.id_led_init(hw);
4758        /* An error is not fatal and we should not stop init due to this */
4759        if (ret_val)
4760                e_dbg("Error initializing identification LED\n");
4761
4762        /* Setup the receive address. */
4763        e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4764
4765        /* Zero out the Multicast HASH table */
4766        e_dbg("Zeroing the MTA\n");
4767        for (i = 0; i < mac->mta_reg_count; i++)
4768                E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4769
4770        /* The 82578 Rx buffer will stall if wakeup is enabled in host and
4771         * the ME.  Disable wakeup by clearing the host wakeup bit.
4772         * Reset the phy after disabling host wakeup to reset the Rx buffer.
4773         */
4774        if (hw->phy.type == e1000_phy_82578) {
4775                e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4776                i &= ~BM_WUC_HOST_WU_BIT;
4777                e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4778                ret_val = e1000_phy_hw_reset_ich8lan(hw);
4779                if (ret_val)
4780                        return ret_val;
4781        }
4782
4783        /* Setup link and flow control */
4784        ret_val = mac->ops.setup_link(hw);
4785
4786        /* Set the transmit descriptor write-back policy for both queues */
4787        txdctl = er32(TXDCTL(0));
4788        txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4789                  E1000_TXDCTL_FULL_TX_DESC_WB);
4790        txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4791                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4792        ew32(TXDCTL(0), txdctl);
4793        txdctl = er32(TXDCTL(1));
4794        txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4795                  E1000_TXDCTL_FULL_TX_DESC_WB);
4796        txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4797                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4798        ew32(TXDCTL(1), txdctl);
4799
4800        /* ICH8 has opposite polarity of no_snoop bits.
4801         * By default, we should use snoop behavior.
4802         */
4803        if (mac->type == e1000_ich8lan)
4804                snoop = PCIE_ICH8_SNOOP_ALL;
4805        else
4806                snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4807        e1000e_set_pcie_no_snoop(hw, snoop);
4808
4809        ctrl_ext = er32(CTRL_EXT);
4810        ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4811        ew32(CTRL_EXT, ctrl_ext);
4812
4813        /* Clear all of the statistics registers (clear on read).  It is
4814         * important that we do this after we have tried to establish link
4815         * because the symbol error count will increment wildly if there
4816         * is no link.
4817         */
4818        e1000_clear_hw_cntrs_ich8lan(hw);
4819
4820        return ret_val;
4821}
4822
4823/**
4824 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4825 *  @hw: pointer to the HW structure
4826 *
4827 *  Sets/Clears required hardware bits necessary for correctly setting up the
4828 *  hardware for transmit and receive.
4829 **/
4830static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4831{
4832        u32 reg;
4833
4834        /* Extended Device Control */
4835        reg = er32(CTRL_EXT);
4836        reg |= BIT(22);
4837        /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4838        if (hw->mac.type >= e1000_pchlan)
4839                reg |= E1000_CTRL_EXT_PHYPDEN;
4840        ew32(CTRL_EXT, reg);
4841
4842        /* Transmit Descriptor Control 0 */
4843        reg = er32(TXDCTL(0));
4844        reg |= BIT(22);
4845        ew32(TXDCTL(0), reg);
4846
4847        /* Transmit Descriptor Control 1 */
4848        reg = er32(TXDCTL(1));
4849        reg |= BIT(22);
4850        ew32(TXDCTL(1), reg);
4851
4852        /* Transmit Arbitration Control 0 */
4853        reg = er32(TARC(0));
4854        if (hw->mac.type == e1000_ich8lan)
4855                reg |= BIT(28) | BIT(29);
4856        reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4857        ew32(TARC(0), reg);
4858
4859        /* Transmit Arbitration Control 1 */
4860        reg = er32(TARC(1));
4861        if (er32(TCTL) & E1000_TCTL_MULR)
4862                reg &= ~BIT(28);
4863        else
4864                reg |= BIT(28);
4865        reg |= BIT(24) | BIT(26) | BIT(30);
4866        ew32(TARC(1), reg);
4867
4868        /* Device Status */
4869        if (hw->mac.type == e1000_ich8lan) {
4870                reg = er32(STATUS);
4871                reg &= ~BIT(31);
4872                ew32(STATUS, reg);
4873        }
4874
4875        /* work-around descriptor data corruption issue during nfs v2 udp
4876         * traffic, just disable the nfs filtering capability
4877         */
4878        reg = er32(RFCTL);
4879        reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4880
4881        /* Disable IPv6 extension header parsing because some malformed
4882         * IPv6 headers can hang the Rx.
4883         */
4884        if (hw->mac.type == e1000_ich8lan)
4885                reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4886        ew32(RFCTL, reg);
4887
4888        /* Enable ECC on Lynxpoint */
4889        if (hw->mac.type >= e1000_pch_lpt) {
4890                reg = er32(PBECCSTS);
4891                reg |= E1000_PBECCSTS_ECC_ENABLE;
4892                ew32(PBECCSTS, reg);
4893
4894                reg = er32(CTRL);
4895                reg |= E1000_CTRL_MEHE;
4896                ew32(CTRL, reg);
4897        }
4898}
4899
4900/**
4901 *  e1000_setup_link_ich8lan - Setup flow control and link settings
4902 *  @hw: pointer to the HW structure
4903 *
4904 *  Determines which flow control settings to use, then configures flow
4905 *  control.  Calls the appropriate media-specific link configuration
4906 *  function.  Assuming the adapter has a valid link partner, a valid link
4907 *  should be established.  Assumes the hardware has previously been reset
4908 *  and the transmitter and receiver are not enabled.
4909 **/
4910static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4911{
4912        s32 ret_val;
4913
4914        if (hw->phy.ops.check_reset_block(hw))
4915                return 0;
4916
4917        /* ICH parts do not have a word in the NVM to determine
4918         * the default flow control setting, so we explicitly
4919         * set it to full.
4920         */
4921        if (hw->fc.requested_mode == e1000_fc_default) {
4922                /* Workaround h/w hang when Tx flow control enabled */
4923                if (hw->mac.type == e1000_pchlan)
4924                        hw->fc.requested_mode = e1000_fc_rx_pause;
4925                else
4926                        hw->fc.requested_mode = e1000_fc_full;
4927        }
4928
4929        /* Save off the requested flow control mode for use later.  Depending
4930         * on the link partner's capabilities, we may or may not use this mode.
4931         */
4932        hw->fc.current_mode = hw->fc.requested_mode;
4933
4934        e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4935
4936        /* Continue to configure the copper link. */
4937        ret_val = hw->mac.ops.setup_physical_interface(hw);
4938        if (ret_val)
4939                return ret_val;
4940
4941        ew32(FCTTV, hw->fc.pause_time);
4942        if ((hw->phy.type == e1000_phy_82578) ||
4943            (hw->phy.type == e1000_phy_82579) ||
4944            (hw->phy.type == e1000_phy_i217) ||
4945            (hw->phy.type == e1000_phy_82577)) {
4946                ew32(FCRTV_PCH, hw->fc.refresh_time);
4947
4948                ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4949                                   hw->fc.pause_time);
4950                if (ret_val)
4951                        return ret_val;
4952        }
4953
4954        return e1000e_set_fc_watermarks(hw);
4955}
4956
4957/**
4958 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4959 *  @hw: pointer to the HW structure
4960 *
4961 *  Configures the kumeran interface to the PHY to wait the appropriate time
4962 *  when polling the PHY, then call the generic setup_copper_link to finish
4963 *  configuring the copper link.
4964 **/
4965static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4966{
4967        u32 ctrl;
4968        s32 ret_val;
4969        u16 reg_data;
4970
4971        ctrl = er32(CTRL);
4972        ctrl |= E1000_CTRL_SLU;
4973        ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4974        ew32(CTRL, ctrl);
4975
4976        /* Set the mac to wait the maximum time between each iteration
4977         * and increase the max iterations when polling the phy;
4978         * this fixes erroneous timeouts at 10Mbps.
4979         */
4980        ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
4981        if (ret_val)
4982                return ret_val;
4983        ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4984                                       &reg_data);
4985        if (ret_val)
4986                return ret_val;
4987        reg_data |= 0x3F;
4988        ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4989                                        reg_data);
4990        if (ret_val)
4991                return ret_val;
4992
4993        switch (hw->phy.type) {
4994        case e1000_phy_igp_3:
4995                ret_val = e1000e_copper_link_setup_igp(hw);
4996                if (ret_val)
4997                        return ret_val;
4998                break;
4999        case e1000_phy_bm:
5000        case e1000_phy_82578:
5001                ret_val = e1000e_copper_link_setup_m88(hw);
5002                if (ret_val)
5003                        return ret_val;
5004                break;
5005        case e1000_phy_82577:
5006        case e1000_phy_82579:
5007                ret_val = e1000_copper_link_setup_82577(hw);
5008                if (ret_val)
5009                        return ret_val;
5010                break;
5011        case e1000_phy_ife:
5012                ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5013                if (ret_val)
5014                        return ret_val;
5015
5016                reg_data &= ~IFE_PMC_AUTO_MDIX;
5017
5018                switch (hw->phy.mdix) {
5019                case 1:
5020                        reg_data &= ~IFE_PMC_FORCE_MDIX;
5021                        break;
5022                case 2:
5023                        reg_data |= IFE_PMC_FORCE_MDIX;
5024                        break;
5025                case 0:
5026                default:
5027                        reg_data |= IFE_PMC_AUTO_MDIX;
5028                        break;
5029                }
5030                ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5031                if (ret_val)
5032                        return ret_val;
5033                break;
5034        default:
5035                break;
5036        }
5037
5038        return e1000e_setup_copper_link(hw);
5039}
5040
5041/**
5042 *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5043 *  @hw: pointer to the HW structure
5044 *
5045 *  Calls the PHY specific link setup function and then calls the
5046 *  generic setup_copper_link to finish configuring the link for
5047 *  Lynxpoint PCH devices
5048 **/
5049static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5050{
5051        u32 ctrl;
5052        s32 ret_val;
5053
5054        ctrl = er32(CTRL);
5055        ctrl |= E1000_CTRL_SLU;
5056        ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5057        ew32(CTRL, ctrl);
5058
5059        ret_val = e1000_copper_link_setup_82577(hw);
5060        if (ret_val)
5061                return ret_val;
5062
5063        return e1000e_setup_copper_link(hw);
5064}
5065
5066/**
5067 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5068 *  @hw: pointer to the HW structure
5069 *  @speed: pointer to store current link speed
5070 *  @duplex: pointer to store the current link duplex
5071 *
5072 *  Calls the generic get_speed_and_duplex to retrieve the current link
5073 *  information and then calls the Kumeran lock loss workaround for links at
5074 *  gigabit speeds.
5075 **/
5076static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5077                                          u16 *duplex)
5078{
5079        s32 ret_val;
5080
5081        ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5082        if (ret_val)
5083                return ret_val;
5084
5085        if ((hw->mac.type == e1000_ich8lan) &&
5086            (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5087                ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5088        }
5089
5090        return ret_val;
5091}
5092
5093/**
5094 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5095 *  @hw: pointer to the HW structure
5096 *
5097 *  Work-around for 82566 Kumeran PCS lock loss:
5098 *  On link status change (i.e. PCI reset, speed change) and link is up and
5099 *  speed is gigabit-
5100 *    0) if workaround is optionally disabled do nothing
5101 *    1) wait 1ms for Kumeran link to come up
5102 *    2) check Kumeran Diagnostic register PCS lock loss bit
5103 *    3) if not set the link is locked (all is good), otherwise...
5104 *    4) reset the PHY
5105 *    5) repeat up to 10 times
5106 *  Note: this is only called for IGP3 copper when speed is 1gb.
5107 **/
5108static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5109{
5110        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5111        u32 phy_ctrl;
5112        s32 ret_val;
5113        u16 i, data;
5114        bool link;
5115
5116        if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5117                return 0;
5118
5119        /* Make sure link is up before proceeding.  If not just return.
5120         * Attempting this while link is negotiating fouled up link
5121         * stability
5122         */
5123        ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5124        if (!link)
5125                return 0;
5126
5127        for (i = 0; i < 10; i++) {
5128                /* read once to clear */
5129                ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5130                if (ret_val)
5131                        return ret_val;
5132                /* and again to get new status */
5133                ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5134                if (ret_val)
5135                        return ret_val;
5136
5137                /* check for PCS lock */
5138                if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5139                        return 0;
5140
5141                /* Issue PHY reset */
5142                e1000_phy_hw_reset(hw);
5143                mdelay(5);
5144        }
5145        /* Disable GigE link negotiation */
5146        phy_ctrl = er32(PHY_CTRL);
5147        phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5148                     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5149        ew32(PHY_CTRL, phy_ctrl);
5150
5151        /* Call gig speed drop workaround on Gig disable before accessing
5152         * any PHY registers
5153         */
5154        e1000e_gig_downshift_workaround_ich8lan(hw);
5155
5156        /* unable to acquire PCS lock */
5157        return -E1000_ERR_PHY;
5158}
5159
5160/**
5161 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5162 *  @hw: pointer to the HW structure
5163 *  @state: boolean value used to set the current Kumeran workaround state
5164 *
5165 *  If ICH8, set the current Kumeran workaround state (enabled - true
5166 *  /disabled - false).
5167 **/
5168void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5169                                                  bool state)
5170{
5171        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5172
5173        if (hw->mac.type != e1000_ich8lan) {
5174                e_dbg("Workaround applies to ICH8 only.\n");
5175                return;
5176        }
5177
5178        dev_spec->kmrn_lock_loss_workaround_enabled = state;
5179}
5180
5181/**
5182 *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5183 *  @hw: pointer to the HW structure
5184 *
5185 *  Workaround for 82566 power-down on D3 entry:
5186 *    1) disable gigabit link
5187 *    2) write VR power-down enable
5188 *    3) read it back
5189 *  Continue if successful, else issue LCD reset and repeat
5190 **/
5191void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5192{
5193        u32 reg;
5194        u16 data;
5195        u8 retry = 0;
5196
5197        if (hw->phy.type != e1000_phy_igp_3)
5198                return;
5199
5200        /* Try the workaround twice (if needed) */
5201        do {
5202                /* Disable link */
5203                reg = er32(PHY_CTRL);
5204                reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5205                        E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5206                ew32(PHY_CTRL, reg);
5207
5208                /* Call gig speed drop workaround on Gig disable before
5209                 * accessing any PHY registers
5210                 */
5211                if (hw->mac.type == e1000_ich8lan)
5212                        e1000e_gig_downshift_workaround_ich8lan(hw);
5213
5214                /* Write VR power-down enable */
5215                e1e_rphy(hw, IGP3_VR_CTRL, &data);
5216                data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5217                e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5218
5219                /* Read it back and test */
5220                e1e_rphy(hw, IGP3_VR_CTRL, &data);
5221                data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5222                if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5223                        break;
5224
5225                /* Issue PHY reset and repeat at most one more time */
5226                reg = er32(CTRL);
5227                ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5228                retry++;
5229        } while (retry);
5230}
5231
5232/**
5233 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5234 *  @hw: pointer to the HW structure
5235 *
5236 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5237 *  LPLU, Gig disable, MDIC PHY reset):
5238 *    1) Set Kumeran Near-end loopback
5239 *    2) Clear Kumeran Near-end loopback
5240 *  Should only be called for ICH8[m] devices with any 1G Phy.
5241 **/
5242void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5243{
5244        s32 ret_val;
5245        u16 reg_data;
5246
5247        if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5248                return;
5249
5250        ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5251                                       &reg_data);
5252        if (ret_val)
5253                return;
5254        reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5255        ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5256                                        reg_data);
5257        if (ret_val)
5258                return;
5259        reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5260        e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5261}
5262
5263/**
5264 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5265 *  @hw: pointer to the HW structure
5266 *
5267 *  During S0 to Sx transition, it is possible the link remains at gig
5268 *  instead of negotiating to a lower speed.  Before going to Sx, set
5269 *  'Gig Disable' to force link speed negotiation to a lower speed based on
5270 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5271 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5272 *  needs to be written.
5273 *  Parts that support (and are linked to a partner which support) EEE in
5274 *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5275 *  than 10Mbps w/o EEE.
5276 **/
5277void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5278{
5279        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5280        u32 phy_ctrl;
5281        s32 ret_val;
5282
5283        phy_ctrl = er32(PHY_CTRL);
5284        phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5285
5286        if (hw->phy.type == e1000_phy_i217) {
5287                u16 phy_reg, device_id = hw->adapter->pdev->device;
5288
5289                if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5290                    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5291                    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5292                    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5293                    (hw->mac.type >= e1000_pch_spt)) {
5294                        u32 fextnvm6 = er32(FEXTNVM6);
5295
5296                        ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5297                }
5298
5299                ret_val = hw->phy.ops.acquire(hw);
5300                if (ret_val)
5301                        goto out;
5302
5303                if (!dev_spec->eee_disable) {
5304                        u16 eee_advert;
5305
5306                        ret_val =
5307                            e1000_read_emi_reg_locked(hw,
5308                                                      I217_EEE_ADVERTISEMENT,
5309                                                      &eee_advert);
5310                        if (ret_val)
5311                                goto release;
5312
5313                        /* Disable LPLU if both link partners support 100BaseT
5314                         * EEE and 100Full is advertised on both ends of the
5315                         * link, and enable Auto Enable LPI since there will
5316                         * be no driver to enable LPI while in Sx.
5317                         */
5318                        if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5319                            (dev_spec->eee_lp_ability &
5320                             I82579_EEE_100_SUPPORTED) &&
5321                            (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5322                                phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5323                                              E1000_PHY_CTRL_NOND0A_LPLU);
5324
5325                                /* Set Auto Enable LPI after link up */
5326                                e1e_rphy_locked(hw,
5327                                                I217_LPI_GPIO_CTRL, &phy_reg);
5328                                phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5329                                e1e_wphy_locked(hw,
5330                                                I217_LPI_GPIO_CTRL, phy_reg);
5331                        }
5332                }
5333
5334                /* For i217 Intel Rapid Start Technology support,
5335                 * when the system is going into Sx and no manageability engine
5336                 * is present, the driver must configure proxy to reset only on
5337                 * power good.  LPI (Low Power Idle) state must also reset only
5338                 * on power good, as well as the MTA (Multicast table array).
5339                 * The SMBus release must also be disabled on LCD reset.
5340                 */
5341                if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5342                        /* Enable proxy to reset only on power good. */
5343                        e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5344                        phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5345                        e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5346
5347                        /* Set bit enable LPI (EEE) to reset only on
5348                         * power good.
5349                         */
5350                        e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5351                        phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5352                        e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5353
5354                        /* Disable the SMB release on LCD reset. */
5355                        e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5356                        phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5357                        e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5358                }
5359
5360                /* Enable MTA to reset for Intel Rapid Start Technology
5361                 * Support
5362                 */
5363                e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5364                phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5365                e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5366
5367release:
5368                hw->phy.ops.release(hw);
5369        }
5370out:
5371        ew32(PHY_CTRL, phy_ctrl);
5372
5373        if (hw->mac.type == e1000_ich8lan)
5374                e1000e_gig_downshift_workaround_ich8lan(hw);
5375
5376        if (hw->mac.type >= e1000_pchlan) {
5377                e1000_oem_bits_config_ich8lan(hw, false);
5378
5379                /* Reset PHY to activate OEM bits on 82577/8 */
5380                if (hw->mac.type == e1000_pchlan)
5381                        e1000e_phy_hw_reset_generic(hw);
5382
5383                ret_val = hw->phy.ops.acquire(hw);
5384                if (ret_val)
5385                        return;
5386                e1000_write_smbus_addr(hw);
5387                hw->phy.ops.release(hw);
5388        }
5389}
5390
5391/**
5392 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5393 *  @hw: pointer to the HW structure
5394 *
5395 *  During Sx to S0 transitions on non-managed devices or managed devices
5396 *  on which PHY resets are not blocked, if the PHY registers cannot be
5397 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5398 *  the PHY.
5399 *  On i217, setup Intel Rapid Start Technology.
5400 **/
5401void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5402{
5403        s32 ret_val;
5404
5405        if (hw->mac.type < e1000_pch2lan)
5406                return;
5407
5408        ret_val = e1000_init_phy_workarounds_pchlan(hw);
5409        if (ret_val) {
5410                e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5411                return;
5412        }
5413
5414        /* For i217 Intel Rapid Start Technology support when the system
5415         * is transitioning from Sx and no manageability engine is present
5416         * configure SMBus to restore on reset, disable proxy, and enable
5417         * the reset on MTA (Multicast table array).
5418         */
5419        if (hw->phy.type == e1000_phy_i217) {
5420                u16 phy_reg;
5421
5422                ret_val = hw->phy.ops.acquire(hw);
5423                if (ret_val) {
5424                        e_dbg("Failed to setup iRST\n");
5425                        return;
5426                }
5427
5428                /* Clear Auto Enable LPI after link up */
5429                e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5430                phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5431                e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5432
5433                if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5434                        /* Restore clear on SMB if no manageability engine
5435                         * is present
5436                         */
5437                        ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5438                        if (ret_val)
5439                                goto release;
5440                        phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5441                        e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5442
5443                        /* Disable Proxy */
5444                        e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5445                }
5446                /* Enable reset on MTA */
5447                ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5448                if (ret_val)
5449                        goto release;
5450                phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5451                e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5452release:
5453                if (ret_val)
5454                        e_dbg("Error %d in resume workarounds\n", ret_val);
5455                hw->phy.ops.release(hw);
5456        }
5457}
5458
5459/**
5460 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5461 *  @hw: pointer to the HW structure
5462 *
5463 *  Return the LED back to the default configuration.
5464 **/
5465static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5466{
5467        if (hw->phy.type == e1000_phy_ife)
5468                return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5469
5470        ew32(LEDCTL, hw->mac.ledctl_default);
5471        return 0;
5472}
5473
5474/**
5475 *  e1000_led_on_ich8lan - Turn LEDs on
5476 *  @hw: pointer to the HW structure
5477 *
5478 *  Turn on the LEDs.
5479 **/
5480static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5481{
5482        if (hw->phy.type == e1000_phy_ife)
5483                return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5484                                (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5485
5486        ew32(LEDCTL, hw->mac.ledctl_mode2);
5487        return 0;
5488}
5489
5490/**
5491 *  e1000_led_off_ich8lan - Turn LEDs off
5492 *  @hw: pointer to the HW structure
5493 *
5494 *  Turn off the LEDs.
5495 **/
5496static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5497{
5498        if (hw->phy.type == e1000_phy_ife)
5499                return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5500                                (IFE_PSCL_PROBE_MODE |
5501                                 IFE_PSCL_PROBE_LEDS_OFF));
5502
5503        ew32(LEDCTL, hw->mac.ledctl_mode1);
5504        return 0;
5505}
5506
5507/**
5508 *  e1000_setup_led_pchlan - Configures SW controllable LED
5509 *  @hw: pointer to the HW structure
5510 *
5511 *  This prepares the SW controllable LED for use.
5512 **/
5513static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5514{
5515        return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5516}
5517
5518/**
5519 *  e1000_cleanup_led_pchlan - Restore the default LED operation
5520 *  @hw: pointer to the HW structure
5521 *
5522 *  Return the LED back to the default configuration.
5523 **/
5524static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5525{
5526        return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5527}
5528
5529/**
5530 *  e1000_led_on_pchlan - Turn LEDs on
5531 *  @hw: pointer to the HW structure
5532 *
5533 *  Turn on the LEDs.
5534 **/
5535static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5536{
5537        u16 data = (u16)hw->mac.ledctl_mode2;
5538        u32 i, led;
5539
5540        /* If no link, then turn LED on by setting the invert bit
5541         * for each LED that's mode is "link_up" in ledctl_mode2.
5542         */
5543        if (!(er32(STATUS) & E1000_STATUS_LU)) {
5544                for (i = 0; i < 3; i++) {
5545                        led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5546                        if ((led & E1000_PHY_LED0_MODE_MASK) !=
5547                            E1000_LEDCTL_MODE_LINK_UP)
5548                                continue;
5549                        if (led & E1000_PHY_LED0_IVRT)
5550                                data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5551                        else
5552                                data |= (E1000_PHY_LED0_IVRT << (i * 5));
5553                }
5554        }
5555
5556        return e1e_wphy(hw, HV_LED_CONFIG, data);
5557}
5558
5559/**
5560 *  e1000_led_off_pchlan - Turn LEDs off
5561 *  @hw: pointer to the HW structure
5562 *
5563 *  Turn off the LEDs.
5564 **/
5565static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5566{
5567        u16 data = (u16)hw->mac.ledctl_mode1;
5568        u32 i, led;
5569
5570        /* If no link, then turn LED off by clearing the invert bit
5571         * for each LED that's mode is "link_up" in ledctl_mode1.
5572         */
5573        if (!(er32(STATUS) & E1000_STATUS_LU)) {
5574                for (i = 0; i < 3; i++) {
5575                        led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5576                        if ((led & E1000_PHY_LED0_MODE_MASK) !=
5577                            E1000_LEDCTL_MODE_LINK_UP)
5578                                continue;
5579                        if (led & E1000_PHY_LED0_IVRT)
5580                                data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5581                        else
5582                                data |= (E1000_PHY_LED0_IVRT << (i * 5));
5583                }
5584        }
5585
5586        return e1e_wphy(hw, HV_LED_CONFIG, data);
5587}
5588
5589/**
5590 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5591 *  @hw: pointer to the HW structure
5592 *
5593 *  Read appropriate register for the config done bit for completion status
5594 *  and configure the PHY through s/w for EEPROM-less parts.
5595 *
5596 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5597 *  config done bit, so only an error is logged and continues.  If we were
5598 *  to return with error, EEPROM-less silicon would not be able to be reset
5599 *  or change link.
5600 **/
5601static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5602{
5603        s32 ret_val = 0;
5604        u32 bank = 0;
5605        u32 status;
5606
5607        e1000e_get_cfg_done_generic(hw);
5608
5609        /* Wait for indication from h/w that it has completed basic config */
5610        if (hw->mac.type >= e1000_ich10lan) {
5611                e1000_lan_init_done_ich8lan(hw);
5612        } else {
5613                ret_val = e1000e_get_auto_rd_done(hw);
5614                if (ret_val) {
5615                        /* When auto config read does not complete, do not
5616                         * return with an error. This can happen in situations
5617                         * where there is no eeprom and prevents getting link.
5618                         */
5619                        e_dbg("Auto Read Done did not complete\n");
5620                        ret_val = 0;
5621                }
5622        }
5623
5624        /* Clear PHY Reset Asserted bit */
5625        status = er32(STATUS);
5626        if (status & E1000_STATUS_PHYRA)
5627                ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5628        else
5629                e_dbg("PHY Reset Asserted not set - needs delay\n");
5630
5631        /* If EEPROM is not marked present, init the IGP 3 PHY manually */
5632        if (hw->mac.type <= e1000_ich9lan) {
5633                if (!(er32(EECD) & E1000_EECD_PRES) &&
5634                    (hw->phy.type == e1000_phy_igp_3)) {
5635                        e1000e_phy_init_script_igp3(hw);
5636                }
5637        } else {
5638                if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5639                        /* Maybe we should do a basic PHY config */
5640                        e_dbg("EEPROM not present\n");
5641                        ret_val = -E1000_ERR_CONFIG;
5642                }
5643        }
5644
5645        return ret_val;
5646}
5647
5648/**
5649 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5650 * @hw: pointer to the HW structure
5651 *
5652 * In the case of a PHY power down to save power, or to turn off link during a
5653 * driver unload, or wake on lan is not enabled, remove the link.
5654 **/
5655static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5656{
5657        /* If the management interface is not enabled, then power down */
5658        if (!(hw->mac.ops.check_mng_mode(hw) ||
5659              hw->phy.ops.check_reset_block(hw)))
5660                e1000_power_down_phy_copper(hw);
5661}
5662
5663/**
5664 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5665 *  @hw: pointer to the HW structure
5666 *
5667 *  Clears hardware counters specific to the silicon family and calls
5668 *  clear_hw_cntrs_generic to clear all general purpose counters.
5669 **/
5670static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5671{
5672        u16 phy_data;
5673        s32 ret_val;
5674
5675        e1000e_clear_hw_cntrs_base(hw);
5676
5677        er32(ALGNERRC);
5678        er32(RXERRC);
5679        er32(TNCRS);
5680        er32(CEXTERR);
5681        er32(TSCTC);
5682        er32(TSCTFC);
5683
5684        er32(MGTPRC);
5685        er32(MGTPDC);
5686        er32(MGTPTC);
5687
5688        er32(IAC);
5689        er32(ICRXOC);
5690
5691        /* Clear PHY statistics registers */
5692        if ((hw->phy.type == e1000_phy_82578) ||
5693            (hw->phy.type == e1000_phy_82579) ||
5694            (hw->phy.type == e1000_phy_i217) ||
5695            (hw->phy.type == e1000_phy_82577)) {
5696                ret_val = hw->phy.ops.acquire(hw);
5697                if (ret_val)
5698                        return;
5699                ret_val = hw->phy.ops.set_page(hw,
5700                                               HV_STATS_PAGE << IGP_PAGE_SHIFT);
5701                if (ret_val)
5702                        goto release;
5703                hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5704                hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5705                hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5706                hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5707                hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5708                hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5709                hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5710                hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5711                hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5712                hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5713                hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5714                hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5715                hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5716                hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5717release:
5718                hw->phy.ops.release(hw);
5719        }
5720}
5721
5722static const struct e1000_mac_operations ich8_mac_ops = {
5723        /* check_mng_mode dependent on mac type */
5724        .check_for_link         = e1000_check_for_copper_link_ich8lan,
5725        /* cleanup_led dependent on mac type */
5726        .clear_hw_cntrs         = e1000_clear_hw_cntrs_ich8lan,
5727        .get_bus_info           = e1000_get_bus_info_ich8lan,
5728        .set_lan_id             = e1000_set_lan_id_single_port,
5729        .get_link_up_info       = e1000_get_link_up_info_ich8lan,
5730        /* led_on dependent on mac type */
5731        /* led_off dependent on mac type */
5732        .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
5733        .reset_hw               = e1000_reset_hw_ich8lan,
5734        .init_hw                = e1000_init_hw_ich8lan,
5735        .setup_link             = e1000_setup_link_ich8lan,
5736        .setup_physical_interface = e1000_setup_copper_link_ich8lan,
5737        /* id_led_init dependent on mac type */
5738        .config_collision_dist  = e1000e_config_collision_dist_generic,
5739        .rar_set                = e1000e_rar_set_generic,
5740        .rar_get_count          = e1000e_rar_get_count_generic,
5741};
5742
5743static const struct e1000_phy_operations ich8_phy_ops = {
5744        .acquire                = e1000_acquire_swflag_ich8lan,
5745        .check_reset_block      = e1000_check_reset_block_ich8lan,
5746        .commit                 = NULL,
5747        .get_cfg_done           = e1000_get_cfg_done_ich8lan,
5748        .get_cable_length       = e1000e_get_cable_length_igp_2,
5749        .read_reg               = e1000e_read_phy_reg_igp,
5750        .release                = e1000_release_swflag_ich8lan,
5751        .reset                  = e1000_phy_hw_reset_ich8lan,
5752        .set_d0_lplu_state      = e1000_set_d0_lplu_state_ich8lan,
5753        .set_d3_lplu_state      = e1000_set_d3_lplu_state_ich8lan,
5754        .write_reg              = e1000e_write_phy_reg_igp,
5755};
5756
5757static const struct e1000_nvm_operations ich8_nvm_ops = {
5758        .acquire                = e1000_acquire_nvm_ich8lan,
5759        .read                   = e1000_read_nvm_ich8lan,
5760        .release                = e1000_release_nvm_ich8lan,
5761        .reload                 = e1000e_reload_nvm_generic,
5762        .update                 = e1000_update_nvm_checksum_ich8lan,
5763        .valid_led_default      = e1000_valid_led_default_ich8lan,
5764        .validate               = e1000_validate_nvm_checksum_ich8lan,
5765        .write                  = e1000_write_nvm_ich8lan,
5766};
5767
5768static const struct e1000_nvm_operations spt_nvm_ops = {
5769        .acquire                = e1000_acquire_nvm_ich8lan,
5770        .release                = e1000_release_nvm_ich8lan,
5771        .read                   = e1000_read_nvm_spt,
5772        .update                 = e1000_update_nvm_checksum_spt,
5773        .reload                 = e1000e_reload_nvm_generic,
5774        .valid_led_default      = e1000_valid_led_default_ich8lan,
5775        .validate               = e1000_validate_nvm_checksum_ich8lan,
5776        .write                  = e1000_write_nvm_ich8lan,
5777};
5778
5779const struct e1000_info e1000_ich8_info = {
5780        .mac                    = e1000_ich8lan,
5781        .flags                  = FLAG_HAS_WOL
5782                                  | FLAG_IS_ICH
5783                                  | FLAG_HAS_CTRLEXT_ON_LOAD
5784                                  | FLAG_HAS_AMT
5785                                  | FLAG_HAS_FLASH
5786                                  | FLAG_APME_IN_WUC,
5787        .pba                    = 8,
5788        .max_hw_frame_size      = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5789        .get_variants           = e1000_get_variants_ich8lan,
5790        .mac_ops                = &ich8_mac_ops,
5791        .phy_ops                = &ich8_phy_ops,
5792        .nvm_ops                = &ich8_nvm_ops,
5793};
5794
5795const struct e1000_info e1000_ich9_info = {
5796        .mac                    = e1000_ich9lan,
5797        .flags                  = FLAG_HAS_JUMBO_FRAMES
5798                                  | FLAG_IS_ICH
5799                                  | FLAG_HAS_WOL
5800                                  | FLAG_HAS_CTRLEXT_ON_LOAD
5801                                  | FLAG_HAS_AMT
5802                                  | FLAG_HAS_FLASH
5803                                  | FLAG_APME_IN_WUC,
5804        .pba                    = 18,
5805        .max_hw_frame_size      = DEFAULT_JUMBO,
5806        .get_variants           = e1000_get_variants_ich8lan,
5807        .mac_ops                = &ich8_mac_ops,
5808        .phy_ops                = &ich8_phy_ops,
5809        .nvm_ops                = &ich8_nvm_ops,
5810};
5811
5812const struct e1000_info e1000_ich10_info = {
5813        .mac                    = e1000_ich10lan,
5814        .flags                  = FLAG_HAS_JUMBO_FRAMES
5815                                  | FLAG_IS_ICH
5816                                  | FLAG_HAS_WOL
5817                                  | FLAG_HAS_CTRLEXT_ON_LOAD
5818                                  | FLAG_HAS_AMT
5819                                  | FLAG_HAS_FLASH
5820                                  | FLAG_APME_IN_WUC,
5821        .pba                    = 18,
5822        .max_hw_frame_size      = DEFAULT_JUMBO,
5823        .get_variants           = e1000_get_variants_ich8lan,
5824        .mac_ops                = &ich8_mac_ops,
5825        .phy_ops                = &ich8_phy_ops,
5826        .nvm_ops                = &ich8_nvm_ops,
5827};
5828
5829const struct e1000_info e1000_pch_info = {
5830        .mac                    = e1000_pchlan,
5831        .flags                  = FLAG_IS_ICH
5832                                  | FLAG_HAS_WOL
5833                                  | FLAG_HAS_CTRLEXT_ON_LOAD
5834                                  | FLAG_HAS_AMT
5835                                  | FLAG_HAS_FLASH
5836                                  | FLAG_HAS_JUMBO_FRAMES
5837                                  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5838                                  | FLAG_APME_IN_WUC,
5839        .flags2                 = FLAG2_HAS_PHY_STATS,
5840        .pba                    = 26,
5841        .max_hw_frame_size      = 4096,
5842        .get_variants           = e1000_get_variants_ich8lan,
5843        .mac_ops                = &ich8_mac_ops,
5844        .phy_ops                = &ich8_phy_ops,
5845        .nvm_ops                = &ich8_nvm_ops,
5846};
5847
5848const struct e1000_info e1000_pch2_info = {
5849        .mac                    = e1000_pch2lan,
5850        .flags                  = FLAG_IS_ICH
5851                                  | FLAG_HAS_WOL
5852                                  | FLAG_HAS_HW_TIMESTAMP
5853                                  | FLAG_HAS_CTRLEXT_ON_LOAD
5854                                  | FLAG_HAS_AMT
5855                                  | FLAG_HAS_FLASH
5856                                  | FLAG_HAS_JUMBO_FRAMES
5857                                  | FLAG_APME_IN_WUC,
5858        .flags2                 = FLAG2_HAS_PHY_STATS
5859                                  | FLAG2_HAS_EEE
5860                                  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5861        .pba                    = 26,
5862        .max_hw_frame_size      = 9022,
5863        .get_variants           = e1000_get_variants_ich8lan,
5864        .mac_ops                = &ich8_mac_ops,
5865        .phy_ops                = &ich8_phy_ops,
5866        .nvm_ops                = &ich8_nvm_ops,
5867};
5868
5869const struct e1000_info e1000_pch_lpt_info = {
5870        .mac                    = e1000_pch_lpt,
5871        .flags                  = FLAG_IS_ICH
5872                                  | FLAG_HAS_WOL
5873                                  | FLAG_HAS_HW_TIMESTAMP
5874                                  | FLAG_HAS_CTRLEXT_ON_LOAD
5875                                  | FLAG_HAS_AMT
5876                                  | FLAG_HAS_FLASH
5877                                  | FLAG_HAS_JUMBO_FRAMES
5878                                  | FLAG_APME_IN_WUC,
5879        .flags2                 = FLAG2_HAS_PHY_STATS
5880                                  | FLAG2_HAS_EEE
5881                                  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5882        .pba                    = 26,
5883        .max_hw_frame_size      = 9022,
5884        .get_variants           = e1000_get_variants_ich8lan,
5885        .mac_ops                = &ich8_mac_ops,
5886        .phy_ops                = &ich8_phy_ops,
5887        .nvm_ops                = &ich8_nvm_ops,
5888};
5889
5890const struct e1000_info e1000_pch_spt_info = {
5891        .mac                    = e1000_pch_spt,
5892        .flags                  = FLAG_IS_ICH
5893                                  | FLAG_HAS_WOL
5894                                  | FLAG_HAS_HW_TIMESTAMP
5895                                  | FLAG_HAS_CTRLEXT_ON_LOAD
5896                                  | FLAG_HAS_AMT
5897                                  | FLAG_HAS_FLASH
5898                                  | FLAG_HAS_JUMBO_FRAMES
5899                                  | FLAG_APME_IN_WUC,
5900        .flags2                 = FLAG2_HAS_PHY_STATS
5901                                  | FLAG2_HAS_EEE,
5902        .pba                    = 26,
5903        .max_hw_frame_size      = 9022,
5904        .get_variants           = e1000_get_variants_ich8lan,
5905        .mac_ops                = &ich8_mac_ops,
5906        .phy_ops                = &ich8_phy_ops,
5907        .nvm_ops                = &spt_nvm_ops,
5908};
5909
5910const struct e1000_info e1000_pch_cnp_info = {
5911        .mac                    = e1000_pch_cnp,
5912        .flags                  = FLAG_IS_ICH
5913                                  | FLAG_HAS_WOL
5914                                  | FLAG_HAS_HW_TIMESTAMP
5915                                  | FLAG_HAS_CTRLEXT_ON_LOAD
5916                                  | FLAG_HAS_AMT
5917                                  | FLAG_HAS_FLASH
5918                                  | FLAG_HAS_JUMBO_FRAMES
5919                                  | FLAG_APME_IN_WUC,
5920        .flags2                 = FLAG2_HAS_PHY_STATS
5921                                  | FLAG2_HAS_EEE,
5922        .pba                    = 26,
5923        .max_hw_frame_size      = 9022,
5924        .get_variants           = e1000_get_variants_ich8lan,
5925        .mac_ops                = &ich8_mac_ops,
5926        .phy_ops                = &ich8_phy_ops,
5927        .nvm_ops                = &spt_nvm_ops,
5928};
5929