linux/drivers/net/ethernet/intel/igb/igb_ptp.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/* Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> */
   3
   4#include <linux/module.h>
   5#include <linux/device.h>
   6#include <linux/pci.h>
   7#include <linux/ptp_classify.h>
   8
   9#include "igb.h"
  10
  11#define INCVALUE_MASK           0x7fffffff
  12#define ISGN                    0x80000000
  13
  14/* The 82580 timesync updates the system timer every 8ns by 8ns,
  15 * and this update value cannot be reprogrammed.
  16 *
  17 * Neither the 82576 nor the 82580 offer registers wide enough to hold
  18 * nanoseconds time values for very long. For the 82580, SYSTIM always
  19 * counts nanoseconds, but the upper 24 bits are not available. The
  20 * frequency is adjusted by changing the 32 bit fractional nanoseconds
  21 * register, TIMINCA.
  22 *
  23 * For the 82576, the SYSTIM register time unit is affect by the
  24 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
  25 * field are needed to provide the nominal 16 nanosecond period,
  26 * leaving 19 bits for fractional nanoseconds.
  27 *
  28 * We scale the NIC clock cycle by a large factor so that relatively
  29 * small clock corrections can be added or subtracted at each clock
  30 * tick. The drawbacks of a large factor are a) that the clock
  31 * register overflows more quickly (not such a big deal) and b) that
  32 * the increment per tick has to fit into 24 bits.  As a result we
  33 * need to use a shift of 19 so we can fit a value of 16 into the
  34 * TIMINCA register.
  35 *
  36 *
  37 *             SYSTIMH            SYSTIML
  38 *        +--------------+   +---+---+------+
  39 *  82576 |      32      |   | 8 | 5 |  19  |
  40 *        +--------------+   +---+---+------+
  41 *         \________ 45 bits _______/  fract
  42 *
  43 *        +----------+---+   +--------------+
  44 *  82580 |    24    | 8 |   |      32      |
  45 *        +----------+---+   +--------------+
  46 *          reserved  \______ 40 bits _____/
  47 *
  48 *
  49 * The 45 bit 82576 SYSTIM overflows every
  50 *   2^45 * 10^-9 / 3600 = 9.77 hours.
  51 *
  52 * The 40 bit 82580 SYSTIM overflows every
  53 *   2^40 * 10^-9 /  60  = 18.3 minutes.
  54 *
  55 * SYSTIM is converted to real time using a timecounter. As
  56 * timecounter_cyc2time() allows old timestamps, the timecounter needs
  57 * to be updated at least once per half of the SYSTIM interval.
  58 * Scheduling of delayed work is not very accurate, and also the NIC
  59 * clock can be adjusted to run up to 6% faster and the system clock
  60 * up to 10% slower, so we aim for 6 minutes to be sure the actual
  61 * interval in the NIC time is shorter than 9.16 minutes.
  62 */
  63
  64#define IGB_SYSTIM_OVERFLOW_PERIOD      (HZ * 60 * 6)
  65#define IGB_PTP_TX_TIMEOUT              (HZ * 15)
  66#define INCPERIOD_82576                 BIT(E1000_TIMINCA_16NS_SHIFT)
  67#define INCVALUE_82576_MASK             GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
  68#define INCVALUE_82576                  (16u << IGB_82576_TSYNC_SHIFT)
  69#define IGB_NBITS_82580                 40
  70
  71static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
  72
  73/* SYSTIM read access for the 82576 */
  74static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
  75{
  76        struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
  77        struct e1000_hw *hw = &igb->hw;
  78        u64 val;
  79        u32 lo, hi;
  80
  81        lo = rd32(E1000_SYSTIML);
  82        hi = rd32(E1000_SYSTIMH);
  83
  84        val = ((u64) hi) << 32;
  85        val |= lo;
  86
  87        return val;
  88}
  89
  90/* SYSTIM read access for the 82580 */
  91static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
  92{
  93        struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
  94        struct e1000_hw *hw = &igb->hw;
  95        u32 lo, hi;
  96        u64 val;
  97
  98        /* The timestamp latches on lowest register read. For the 82580
  99         * the lowest register is SYSTIMR instead of SYSTIML.  However we only
 100         * need to provide nanosecond resolution, so we just ignore it.
 101         */
 102        rd32(E1000_SYSTIMR);
 103        lo = rd32(E1000_SYSTIML);
 104        hi = rd32(E1000_SYSTIMH);
 105
 106        val = ((u64) hi) << 32;
 107        val |= lo;
 108
 109        return val;
 110}
 111
 112/* SYSTIM read access for I210/I211 */
 113static void igb_ptp_read_i210(struct igb_adapter *adapter,
 114                              struct timespec64 *ts)
 115{
 116        struct e1000_hw *hw = &adapter->hw;
 117        u32 sec, nsec;
 118
 119        /* The timestamp latches on lowest register read. For I210/I211, the
 120         * lowest register is SYSTIMR. Since we only need to provide nanosecond
 121         * resolution, we can ignore it.
 122         */
 123        rd32(E1000_SYSTIMR);
 124        nsec = rd32(E1000_SYSTIML);
 125        sec = rd32(E1000_SYSTIMH);
 126
 127        ts->tv_sec = sec;
 128        ts->tv_nsec = nsec;
 129}
 130
 131static void igb_ptp_write_i210(struct igb_adapter *adapter,
 132                               const struct timespec64 *ts)
 133{
 134        struct e1000_hw *hw = &adapter->hw;
 135
 136        /* Writing the SYSTIMR register is not necessary as it only provides
 137         * sub-nanosecond resolution.
 138         */
 139        wr32(E1000_SYSTIML, ts->tv_nsec);
 140        wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
 141}
 142
 143/**
 144 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
 145 * @adapter: board private structure
 146 * @hwtstamps: timestamp structure to update
 147 * @systim: unsigned 64bit system time value.
 148 *
 149 * We need to convert the system time value stored in the RX/TXSTMP registers
 150 * into a hwtstamp which can be used by the upper level timestamping functions.
 151 *
 152 * The 'tmreg_lock' spinlock is used to protect the consistency of the
 153 * system time value. This is needed because reading the 64 bit time
 154 * value involves reading two (or three) 32 bit registers. The first
 155 * read latches the value. Ditto for writing.
 156 *
 157 * In addition, here have extended the system time with an overflow
 158 * counter in software.
 159 **/
 160static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
 161                                       struct skb_shared_hwtstamps *hwtstamps,
 162                                       u64 systim)
 163{
 164        unsigned long flags;
 165        u64 ns;
 166
 167        switch (adapter->hw.mac.type) {
 168        case e1000_82576:
 169        case e1000_82580:
 170        case e1000_i354:
 171        case e1000_i350:
 172                spin_lock_irqsave(&adapter->tmreg_lock, flags);
 173
 174                ns = timecounter_cyc2time(&adapter->tc, systim);
 175
 176                spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
 177
 178                memset(hwtstamps, 0, sizeof(*hwtstamps));
 179                hwtstamps->hwtstamp = ns_to_ktime(ns);
 180                break;
 181        case e1000_i210:
 182        case e1000_i211:
 183                memset(hwtstamps, 0, sizeof(*hwtstamps));
 184                /* Upper 32 bits contain s, lower 32 bits contain ns. */
 185                hwtstamps->hwtstamp = ktime_set(systim >> 32,
 186                                                systim & 0xFFFFFFFF);
 187                break;
 188        default:
 189                break;
 190        }
 191}
 192
 193/* PTP clock operations */
 194static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
 195{
 196        struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 197                                               ptp_caps);
 198        struct e1000_hw *hw = &igb->hw;
 199        int neg_adj = 0;
 200        u64 rate;
 201        u32 incvalue;
 202
 203        if (ppb < 0) {
 204                neg_adj = 1;
 205                ppb = -ppb;
 206        }
 207        rate = ppb;
 208        rate <<= 14;
 209        rate = div_u64(rate, 1953125);
 210
 211        incvalue = 16 << IGB_82576_TSYNC_SHIFT;
 212
 213        if (neg_adj)
 214                incvalue -= rate;
 215        else
 216                incvalue += rate;
 217
 218        wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
 219
 220        return 0;
 221}
 222
 223static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
 224{
 225        struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 226                                               ptp_caps);
 227        struct e1000_hw *hw = &igb->hw;
 228        int neg_adj = 0;
 229        u64 rate;
 230        u32 inca;
 231
 232        if (scaled_ppm < 0) {
 233                neg_adj = 1;
 234                scaled_ppm = -scaled_ppm;
 235        }
 236        rate = scaled_ppm;
 237        rate <<= 13;
 238        rate = div_u64(rate, 15625);
 239
 240        inca = rate & INCVALUE_MASK;
 241        if (neg_adj)
 242                inca |= ISGN;
 243
 244        wr32(E1000_TIMINCA, inca);
 245
 246        return 0;
 247}
 248
 249static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
 250{
 251        struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 252                                               ptp_caps);
 253        unsigned long flags;
 254
 255        spin_lock_irqsave(&igb->tmreg_lock, flags);
 256        timecounter_adjtime(&igb->tc, delta);
 257        spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 258
 259        return 0;
 260}
 261
 262static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
 263{
 264        struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 265                                               ptp_caps);
 266        unsigned long flags;
 267        struct timespec64 now, then = ns_to_timespec64(delta);
 268
 269        spin_lock_irqsave(&igb->tmreg_lock, flags);
 270
 271        igb_ptp_read_i210(igb, &now);
 272        now = timespec64_add(now, then);
 273        igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
 274
 275        spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 276
 277        return 0;
 278}
 279
 280static int igb_ptp_gettimex_82576(struct ptp_clock_info *ptp,
 281                                  struct timespec64 *ts,
 282                                  struct ptp_system_timestamp *sts)
 283{
 284        struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 285                                               ptp_caps);
 286        struct e1000_hw *hw = &igb->hw;
 287        unsigned long flags;
 288        u32 lo, hi;
 289        u64 ns;
 290
 291        spin_lock_irqsave(&igb->tmreg_lock, flags);
 292
 293        ptp_read_system_prets(sts);
 294        lo = rd32(E1000_SYSTIML);
 295        ptp_read_system_postts(sts);
 296        hi = rd32(E1000_SYSTIMH);
 297
 298        ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
 299
 300        spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 301
 302        *ts = ns_to_timespec64(ns);
 303
 304        return 0;
 305}
 306
 307static int igb_ptp_gettimex_82580(struct ptp_clock_info *ptp,
 308                                  struct timespec64 *ts,
 309                                  struct ptp_system_timestamp *sts)
 310{
 311        struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 312                                               ptp_caps);
 313        struct e1000_hw *hw = &igb->hw;
 314        unsigned long flags;
 315        u32 lo, hi;
 316        u64 ns;
 317
 318        spin_lock_irqsave(&igb->tmreg_lock, flags);
 319
 320        ptp_read_system_prets(sts);
 321        rd32(E1000_SYSTIMR);
 322        ptp_read_system_postts(sts);
 323        lo = rd32(E1000_SYSTIML);
 324        hi = rd32(E1000_SYSTIMH);
 325
 326        ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
 327
 328        spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 329
 330        *ts = ns_to_timespec64(ns);
 331
 332        return 0;
 333}
 334
 335static int igb_ptp_gettimex_i210(struct ptp_clock_info *ptp,
 336                                 struct timespec64 *ts,
 337                                 struct ptp_system_timestamp *sts)
 338{
 339        struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 340                                               ptp_caps);
 341        struct e1000_hw *hw = &igb->hw;
 342        unsigned long flags;
 343
 344        spin_lock_irqsave(&igb->tmreg_lock, flags);
 345
 346        ptp_read_system_prets(sts);
 347        rd32(E1000_SYSTIMR);
 348        ptp_read_system_postts(sts);
 349        ts->tv_nsec = rd32(E1000_SYSTIML);
 350        ts->tv_sec = rd32(E1000_SYSTIMH);
 351
 352        spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 353
 354        return 0;
 355}
 356
 357static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
 358                                 const struct timespec64 *ts)
 359{
 360        struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 361                                               ptp_caps);
 362        unsigned long flags;
 363        u64 ns;
 364
 365        ns = timespec64_to_ns(ts);
 366
 367        spin_lock_irqsave(&igb->tmreg_lock, flags);
 368
 369        timecounter_init(&igb->tc, &igb->cc, ns);
 370
 371        spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 372
 373        return 0;
 374}
 375
 376static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
 377                                const struct timespec64 *ts)
 378{
 379        struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 380                                               ptp_caps);
 381        unsigned long flags;
 382
 383        spin_lock_irqsave(&igb->tmreg_lock, flags);
 384
 385        igb_ptp_write_i210(igb, ts);
 386
 387        spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 388
 389        return 0;
 390}
 391
 392static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
 393{
 394        u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
 395        static const u32 mask[IGB_N_SDP] = {
 396                E1000_CTRL_SDP0_DIR,
 397                E1000_CTRL_SDP1_DIR,
 398                E1000_CTRL_EXT_SDP2_DIR,
 399                E1000_CTRL_EXT_SDP3_DIR,
 400        };
 401
 402        if (input)
 403                *ptr &= ~mask[pin];
 404        else
 405                *ptr |= mask[pin];
 406}
 407
 408static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
 409{
 410        static const u32 aux0_sel_sdp[IGB_N_SDP] = {
 411                AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
 412        };
 413        static const u32 aux1_sel_sdp[IGB_N_SDP] = {
 414                AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
 415        };
 416        static const u32 ts_sdp_en[IGB_N_SDP] = {
 417                TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
 418        };
 419        struct e1000_hw *hw = &igb->hw;
 420        u32 ctrl, ctrl_ext, tssdp = 0;
 421
 422        ctrl = rd32(E1000_CTRL);
 423        ctrl_ext = rd32(E1000_CTRL_EXT);
 424        tssdp = rd32(E1000_TSSDP);
 425
 426        igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
 427
 428        /* Make sure this pin is not enabled as an output. */
 429        tssdp &= ~ts_sdp_en[pin];
 430
 431        if (chan == 1) {
 432                tssdp &= ~AUX1_SEL_SDP3;
 433                tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
 434        } else {
 435                tssdp &= ~AUX0_SEL_SDP3;
 436                tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
 437        }
 438
 439        wr32(E1000_TSSDP, tssdp);
 440        wr32(E1000_CTRL, ctrl);
 441        wr32(E1000_CTRL_EXT, ctrl_ext);
 442}
 443
 444static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
 445{
 446        static const u32 aux0_sel_sdp[IGB_N_SDP] = {
 447                AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
 448        };
 449        static const u32 aux1_sel_sdp[IGB_N_SDP] = {
 450                AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
 451        };
 452        static const u32 ts_sdp_en[IGB_N_SDP] = {
 453                TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
 454        };
 455        static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
 456                TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
 457                TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
 458        };
 459        static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
 460                TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
 461                TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
 462        };
 463        static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
 464                TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
 465                TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
 466        };
 467        static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
 468                TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
 469                TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
 470        };
 471        static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
 472                TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
 473                TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
 474        };
 475        struct e1000_hw *hw = &igb->hw;
 476        u32 ctrl, ctrl_ext, tssdp = 0;
 477
 478        ctrl = rd32(E1000_CTRL);
 479        ctrl_ext = rd32(E1000_CTRL_EXT);
 480        tssdp = rd32(E1000_TSSDP);
 481
 482        igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
 483
 484        /* Make sure this pin is not enabled as an input. */
 485        if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
 486                tssdp &= ~AUX0_TS_SDP_EN;
 487
 488        if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
 489                tssdp &= ~AUX1_TS_SDP_EN;
 490
 491        tssdp &= ~ts_sdp_sel_clr[pin];
 492        if (freq) {
 493                if (chan == 1)
 494                        tssdp |= ts_sdp_sel_fc1[pin];
 495                else
 496                        tssdp |= ts_sdp_sel_fc0[pin];
 497        } else {
 498                if (chan == 1)
 499                        tssdp |= ts_sdp_sel_tt1[pin];
 500                else
 501                        tssdp |= ts_sdp_sel_tt0[pin];
 502        }
 503        tssdp |= ts_sdp_en[pin];
 504
 505        wr32(E1000_TSSDP, tssdp);
 506        wr32(E1000_CTRL, ctrl);
 507        wr32(E1000_CTRL_EXT, ctrl_ext);
 508}
 509
 510static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
 511                                       struct ptp_clock_request *rq, int on)
 512{
 513        struct igb_adapter *igb =
 514                container_of(ptp, struct igb_adapter, ptp_caps);
 515        struct e1000_hw *hw = &igb->hw;
 516        u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
 517        unsigned long flags;
 518        struct timespec64 ts;
 519        int use_freq = 0, pin = -1;
 520        s64 ns;
 521
 522        switch (rq->type) {
 523        case PTP_CLK_REQ_EXTTS:
 524                if (on) {
 525                        pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
 526                                           rq->extts.index);
 527                        if (pin < 0)
 528                                return -EBUSY;
 529                }
 530                if (rq->extts.index == 1) {
 531                        tsauxc_mask = TSAUXC_EN_TS1;
 532                        tsim_mask = TSINTR_AUTT1;
 533                } else {
 534                        tsauxc_mask = TSAUXC_EN_TS0;
 535                        tsim_mask = TSINTR_AUTT0;
 536                }
 537                spin_lock_irqsave(&igb->tmreg_lock, flags);
 538                tsauxc = rd32(E1000_TSAUXC);
 539                tsim = rd32(E1000_TSIM);
 540                if (on) {
 541                        igb_pin_extts(igb, rq->extts.index, pin);
 542                        tsauxc |= tsauxc_mask;
 543                        tsim |= tsim_mask;
 544                } else {
 545                        tsauxc &= ~tsauxc_mask;
 546                        tsim &= ~tsim_mask;
 547                }
 548                wr32(E1000_TSAUXC, tsauxc);
 549                wr32(E1000_TSIM, tsim);
 550                spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 551                return 0;
 552
 553        case PTP_CLK_REQ_PEROUT:
 554                if (on) {
 555                        pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
 556                                           rq->perout.index);
 557                        if (pin < 0)
 558                                return -EBUSY;
 559                }
 560                ts.tv_sec = rq->perout.period.sec;
 561                ts.tv_nsec = rq->perout.period.nsec;
 562                ns = timespec64_to_ns(&ts);
 563                ns = ns >> 1;
 564                if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
 565                           (ns == 250000000LL) || (ns == 500000000LL))) {
 566                        if (ns < 8LL)
 567                                return -EINVAL;
 568                        use_freq = 1;
 569                }
 570                ts = ns_to_timespec64(ns);
 571                if (rq->perout.index == 1) {
 572                        if (use_freq) {
 573                                tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
 574                                tsim_mask = 0;
 575                        } else {
 576                                tsauxc_mask = TSAUXC_EN_TT1;
 577                                tsim_mask = TSINTR_TT1;
 578                        }
 579                        trgttiml = E1000_TRGTTIML1;
 580                        trgttimh = E1000_TRGTTIMH1;
 581                        freqout = E1000_FREQOUT1;
 582                } else {
 583                        if (use_freq) {
 584                                tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
 585                                tsim_mask = 0;
 586                        } else {
 587                                tsauxc_mask = TSAUXC_EN_TT0;
 588                                tsim_mask = TSINTR_TT0;
 589                        }
 590                        trgttiml = E1000_TRGTTIML0;
 591                        trgttimh = E1000_TRGTTIMH0;
 592                        freqout = E1000_FREQOUT0;
 593                }
 594                spin_lock_irqsave(&igb->tmreg_lock, flags);
 595                tsauxc = rd32(E1000_TSAUXC);
 596                tsim = rd32(E1000_TSIM);
 597                if (rq->perout.index == 1) {
 598                        tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
 599                        tsim &= ~TSINTR_TT1;
 600                } else {
 601                        tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
 602                        tsim &= ~TSINTR_TT0;
 603                }
 604                if (on) {
 605                        int i = rq->perout.index;
 606                        igb_pin_perout(igb, i, pin, use_freq);
 607                        igb->perout[i].start.tv_sec = rq->perout.start.sec;
 608                        igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
 609                        igb->perout[i].period.tv_sec = ts.tv_sec;
 610                        igb->perout[i].period.tv_nsec = ts.tv_nsec;
 611                        wr32(trgttimh, rq->perout.start.sec);
 612                        wr32(trgttiml, rq->perout.start.nsec);
 613                        if (use_freq)
 614                                wr32(freqout, ns);
 615                        tsauxc |= tsauxc_mask;
 616                        tsim |= tsim_mask;
 617                }
 618                wr32(E1000_TSAUXC, tsauxc);
 619                wr32(E1000_TSIM, tsim);
 620                spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 621                return 0;
 622
 623        case PTP_CLK_REQ_PPS:
 624                spin_lock_irqsave(&igb->tmreg_lock, flags);
 625                tsim = rd32(E1000_TSIM);
 626                if (on)
 627                        tsim |= TSINTR_SYS_WRAP;
 628                else
 629                        tsim &= ~TSINTR_SYS_WRAP;
 630                igb->pps_sys_wrap_on = !!on;
 631                wr32(E1000_TSIM, tsim);
 632                spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 633                return 0;
 634        }
 635
 636        return -EOPNOTSUPP;
 637}
 638
 639static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
 640                                  struct ptp_clock_request *rq, int on)
 641{
 642        return -EOPNOTSUPP;
 643}
 644
 645static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
 646                              enum ptp_pin_function func, unsigned int chan)
 647{
 648        switch (func) {
 649        case PTP_PF_NONE:
 650        case PTP_PF_EXTTS:
 651        case PTP_PF_PEROUT:
 652                break;
 653        case PTP_PF_PHYSYNC:
 654                return -1;
 655        }
 656        return 0;
 657}
 658
 659/**
 660 * igb_ptp_tx_work
 661 * @work: pointer to work struct
 662 *
 663 * This work function polls the TSYNCTXCTL valid bit to determine when a
 664 * timestamp has been taken for the current stored skb.
 665 **/
 666static void igb_ptp_tx_work(struct work_struct *work)
 667{
 668        struct igb_adapter *adapter = container_of(work, struct igb_adapter,
 669                                                   ptp_tx_work);
 670        struct e1000_hw *hw = &adapter->hw;
 671        u32 tsynctxctl;
 672
 673        if (!adapter->ptp_tx_skb)
 674                return;
 675
 676        if (time_is_before_jiffies(adapter->ptp_tx_start +
 677                                   IGB_PTP_TX_TIMEOUT)) {
 678                dev_kfree_skb_any(adapter->ptp_tx_skb);
 679                adapter->ptp_tx_skb = NULL;
 680                clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 681                adapter->tx_hwtstamp_timeouts++;
 682                /* Clear the tx valid bit in TSYNCTXCTL register to enable
 683                 * interrupt
 684                 */
 685                rd32(E1000_TXSTMPH);
 686                dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
 687                return;
 688        }
 689
 690        tsynctxctl = rd32(E1000_TSYNCTXCTL);
 691        if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
 692                igb_ptp_tx_hwtstamp(adapter);
 693        else
 694                /* reschedule to check later */
 695                schedule_work(&adapter->ptp_tx_work);
 696}
 697
 698static void igb_ptp_overflow_check(struct work_struct *work)
 699{
 700        struct igb_adapter *igb =
 701                container_of(work, struct igb_adapter, ptp_overflow_work.work);
 702        struct timespec64 ts;
 703        u64 ns;
 704
 705        /* Update the timecounter */
 706        ns = timecounter_read(&igb->tc);
 707
 708        ts = ns_to_timespec64(ns);
 709        pr_debug("igb overflow check at %lld.%09lu\n",
 710                 (long long) ts.tv_sec, ts.tv_nsec);
 711
 712        schedule_delayed_work(&igb->ptp_overflow_work,
 713                              IGB_SYSTIM_OVERFLOW_PERIOD);
 714}
 715
 716/**
 717 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
 718 * @adapter: private network adapter structure
 719 *
 720 * This watchdog task is scheduled to detect error case where hardware has
 721 * dropped an Rx packet that was timestamped when the ring is full. The
 722 * particular error is rare but leaves the device in a state unable to timestamp
 723 * any future packets.
 724 **/
 725void igb_ptp_rx_hang(struct igb_adapter *adapter)
 726{
 727        struct e1000_hw *hw = &adapter->hw;
 728        u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
 729        unsigned long rx_event;
 730
 731        /* Other hardware uses per-packet timestamps */
 732        if (hw->mac.type != e1000_82576)
 733                return;
 734
 735        /* If we don't have a valid timestamp in the registers, just update the
 736         * timeout counter and exit
 737         */
 738        if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
 739                adapter->last_rx_ptp_check = jiffies;
 740                return;
 741        }
 742
 743        /* Determine the most recent watchdog or rx_timestamp event */
 744        rx_event = adapter->last_rx_ptp_check;
 745        if (time_after(adapter->last_rx_timestamp, rx_event))
 746                rx_event = adapter->last_rx_timestamp;
 747
 748        /* Only need to read the high RXSTMP register to clear the lock */
 749        if (time_is_before_jiffies(rx_event + 5 * HZ)) {
 750                rd32(E1000_RXSTMPH);
 751                adapter->last_rx_ptp_check = jiffies;
 752                adapter->rx_hwtstamp_cleared++;
 753                dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
 754        }
 755}
 756
 757/**
 758 * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
 759 * @adapter: private network adapter structure
 760 */
 761void igb_ptp_tx_hang(struct igb_adapter *adapter)
 762{
 763        struct e1000_hw *hw = &adapter->hw;
 764        bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
 765                                              IGB_PTP_TX_TIMEOUT);
 766
 767        if (!adapter->ptp_tx_skb)
 768                return;
 769
 770        if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
 771                return;
 772
 773        /* If we haven't received a timestamp within the timeout, it is
 774         * reasonable to assume that it will never occur, so we can unlock the
 775         * timestamp bit when this occurs.
 776         */
 777        if (timeout) {
 778                cancel_work_sync(&adapter->ptp_tx_work);
 779                dev_kfree_skb_any(adapter->ptp_tx_skb);
 780                adapter->ptp_tx_skb = NULL;
 781                clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 782                adapter->tx_hwtstamp_timeouts++;
 783                /* Clear the tx valid bit in TSYNCTXCTL register to enable
 784                 * interrupt
 785                 */
 786                rd32(E1000_TXSTMPH);
 787                dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
 788        }
 789}
 790
 791/**
 792 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
 793 * @adapter: Board private structure.
 794 *
 795 * If we were asked to do hardware stamping and such a time stamp is
 796 * available, then it must have been for this skb here because we only
 797 * allow only one such packet into the queue.
 798 **/
 799static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
 800{
 801        struct sk_buff *skb = adapter->ptp_tx_skb;
 802        struct e1000_hw *hw = &adapter->hw;
 803        struct skb_shared_hwtstamps shhwtstamps;
 804        u64 regval;
 805        int adjust = 0;
 806
 807        regval = rd32(E1000_TXSTMPL);
 808        regval |= (u64)rd32(E1000_TXSTMPH) << 32;
 809
 810        igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
 811        /* adjust timestamp for the TX latency based on link speed */
 812        if (adapter->hw.mac.type == e1000_i210) {
 813                switch (adapter->link_speed) {
 814                case SPEED_10:
 815                        adjust = IGB_I210_TX_LATENCY_10;
 816                        break;
 817                case SPEED_100:
 818                        adjust = IGB_I210_TX_LATENCY_100;
 819                        break;
 820                case SPEED_1000:
 821                        adjust = IGB_I210_TX_LATENCY_1000;
 822                        break;
 823                }
 824        }
 825
 826        shhwtstamps.hwtstamp =
 827                ktime_add_ns(shhwtstamps.hwtstamp, adjust);
 828
 829        /* Clear the lock early before calling skb_tstamp_tx so that
 830         * applications are not woken up before the lock bit is clear. We use
 831         * a copy of the skb pointer to ensure other threads can't change it
 832         * while we're notifying the stack.
 833         */
 834        adapter->ptp_tx_skb = NULL;
 835        clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 836
 837        /* Notify the stack and free the skb after we've unlocked */
 838        skb_tstamp_tx(skb, &shhwtstamps);
 839        dev_kfree_skb_any(skb);
 840}
 841
 842/**
 843 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
 844 * @q_vector: Pointer to interrupt specific structure
 845 * @va: Pointer to address containing Rx buffer
 846 * @skb: Buffer containing timestamp and packet
 847 *
 848 * This function is meant to retrieve a timestamp from the first buffer of an
 849 * incoming frame.  The value is stored in little endian format starting on
 850 * byte 8.
 851 **/
 852void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
 853                         struct sk_buff *skb)
 854{
 855        __le64 *regval = (__le64 *)va;
 856        struct igb_adapter *adapter = q_vector->adapter;
 857        int adjust = 0;
 858
 859        /* The timestamp is recorded in little endian format.
 860         * DWORD: 0        1        2        3
 861         * Field: Reserved Reserved SYSTIML  SYSTIMH
 862         */
 863        igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb),
 864                                   le64_to_cpu(regval[1]));
 865
 866        /* adjust timestamp for the RX latency based on link speed */
 867        if (adapter->hw.mac.type == e1000_i210) {
 868                switch (adapter->link_speed) {
 869                case SPEED_10:
 870                        adjust = IGB_I210_RX_LATENCY_10;
 871                        break;
 872                case SPEED_100:
 873                        adjust = IGB_I210_RX_LATENCY_100;
 874                        break;
 875                case SPEED_1000:
 876                        adjust = IGB_I210_RX_LATENCY_1000;
 877                        break;
 878                }
 879        }
 880        skb_hwtstamps(skb)->hwtstamp =
 881                ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
 882}
 883
 884/**
 885 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
 886 * @q_vector: Pointer to interrupt specific structure
 887 * @skb: Buffer containing timestamp and packet
 888 *
 889 * This function is meant to retrieve a timestamp from the internal registers
 890 * of the adapter and store it in the skb.
 891 **/
 892void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
 893                         struct sk_buff *skb)
 894{
 895        struct igb_adapter *adapter = q_vector->adapter;
 896        struct e1000_hw *hw = &adapter->hw;
 897        u64 regval;
 898        int adjust = 0;
 899
 900        /* If this bit is set, then the RX registers contain the time stamp. No
 901         * other packet will be time stamped until we read these registers, so
 902         * read the registers to make them available again. Because only one
 903         * packet can be time stamped at a time, we know that the register
 904         * values must belong to this one here and therefore we don't need to
 905         * compare any of the additional attributes stored for it.
 906         *
 907         * If nothing went wrong, then it should have a shared tx_flags that we
 908         * can turn into a skb_shared_hwtstamps.
 909         */
 910        if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
 911                return;
 912
 913        regval = rd32(E1000_RXSTMPL);
 914        regval |= (u64)rd32(E1000_RXSTMPH) << 32;
 915
 916        igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
 917
 918        /* adjust timestamp for the RX latency based on link speed */
 919        if (adapter->hw.mac.type == e1000_i210) {
 920                switch (adapter->link_speed) {
 921                case SPEED_10:
 922                        adjust = IGB_I210_RX_LATENCY_10;
 923                        break;
 924                case SPEED_100:
 925                        adjust = IGB_I210_RX_LATENCY_100;
 926                        break;
 927                case SPEED_1000:
 928                        adjust = IGB_I210_RX_LATENCY_1000;
 929                        break;
 930                }
 931        }
 932        skb_hwtstamps(skb)->hwtstamp =
 933                ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
 934
 935        /* Update the last_rx_timestamp timer in order to enable watchdog check
 936         * for error case of latched timestamp on a dropped packet.
 937         */
 938        adapter->last_rx_timestamp = jiffies;
 939}
 940
 941/**
 942 * igb_ptp_get_ts_config - get hardware time stamping config
 943 * @netdev:
 944 * @ifreq:
 945 *
 946 * Get the hwtstamp_config settings to return to the user. Rather than attempt
 947 * to deconstruct the settings from the registers, just return a shadow copy
 948 * of the last known settings.
 949 **/
 950int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
 951{
 952        struct igb_adapter *adapter = netdev_priv(netdev);
 953        struct hwtstamp_config *config = &adapter->tstamp_config;
 954
 955        return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
 956                -EFAULT : 0;
 957}
 958
 959/**
 960 * igb_ptp_set_timestamp_mode - setup hardware for timestamping
 961 * @adapter: networking device structure
 962 * @config: hwtstamp configuration
 963 *
 964 * Outgoing time stamping can be enabled and disabled. Play nice and
 965 * disable it when requested, although it shouldn't case any overhead
 966 * when no packet needs it. At most one packet in the queue may be
 967 * marked for time stamping, otherwise it would be impossible to tell
 968 * for sure to which packet the hardware time stamp belongs.
 969 *
 970 * Incoming time stamping has to be configured via the hardware
 971 * filters. Not all combinations are supported, in particular event
 972 * type has to be specified. Matching the kind of event packet is
 973 * not supported, with the exception of "all V2 events regardless of
 974 * level 2 or 4".
 975 */
 976static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
 977                                      struct hwtstamp_config *config)
 978{
 979        struct e1000_hw *hw = &adapter->hw;
 980        u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
 981        u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
 982        u32 tsync_rx_cfg = 0;
 983        bool is_l4 = false;
 984        bool is_l2 = false;
 985        u32 regval;
 986
 987        /* reserved for future extensions */
 988        if (config->flags)
 989                return -EINVAL;
 990
 991        switch (config->tx_type) {
 992        case HWTSTAMP_TX_OFF:
 993                tsync_tx_ctl = 0;
 994        case HWTSTAMP_TX_ON:
 995                break;
 996        default:
 997                return -ERANGE;
 998        }
 999
1000        switch (config->rx_filter) {
1001        case HWTSTAMP_FILTER_NONE:
1002                tsync_rx_ctl = 0;
1003                break;
1004        case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1005                tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1006                tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
1007                is_l4 = true;
1008                break;
1009        case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1010                tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1011                tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
1012                is_l4 = true;
1013                break;
1014        case HWTSTAMP_FILTER_PTP_V2_EVENT:
1015        case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1016        case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1017        case HWTSTAMP_FILTER_PTP_V2_SYNC:
1018        case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1019        case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1020        case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1021        case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1022        case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1023                tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
1024                config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1025                is_l2 = true;
1026                is_l4 = true;
1027                break;
1028        case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1029        case HWTSTAMP_FILTER_NTP_ALL:
1030        case HWTSTAMP_FILTER_ALL:
1031                /* 82576 cannot timestamp all packets, which it needs to do to
1032                 * support both V1 Sync and Delay_Req messages
1033                 */
1034                if (hw->mac.type != e1000_82576) {
1035                        tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1036                        config->rx_filter = HWTSTAMP_FILTER_ALL;
1037                        break;
1038                }
1039                /* fall through */
1040        default:
1041                config->rx_filter = HWTSTAMP_FILTER_NONE;
1042                return -ERANGE;
1043        }
1044
1045        if (hw->mac.type == e1000_82575) {
1046                if (tsync_rx_ctl | tsync_tx_ctl)
1047                        return -EINVAL;
1048                return 0;
1049        }
1050
1051        /* Per-packet timestamping only works if all packets are
1052         * timestamped, so enable timestamping in all packets as
1053         * long as one Rx filter was configured.
1054         */
1055        if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1056                tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1057                tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1058                config->rx_filter = HWTSTAMP_FILTER_ALL;
1059                is_l2 = true;
1060                is_l4 = true;
1061
1062                if ((hw->mac.type == e1000_i210) ||
1063                    (hw->mac.type == e1000_i211)) {
1064                        regval = rd32(E1000_RXPBS);
1065                        regval |= E1000_RXPBS_CFG_TS_EN;
1066                        wr32(E1000_RXPBS, regval);
1067                }
1068        }
1069
1070        /* enable/disable TX */
1071        regval = rd32(E1000_TSYNCTXCTL);
1072        regval &= ~E1000_TSYNCTXCTL_ENABLED;
1073        regval |= tsync_tx_ctl;
1074        wr32(E1000_TSYNCTXCTL, regval);
1075
1076        /* enable/disable RX */
1077        regval = rd32(E1000_TSYNCRXCTL);
1078        regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1079        regval |= tsync_rx_ctl;
1080        wr32(E1000_TSYNCRXCTL, regval);
1081
1082        /* define which PTP packets are time stamped */
1083        wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1084
1085        /* define ethertype filter for timestamped packets */
1086        if (is_l2)
1087                wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1088                     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1089                      E1000_ETQF_1588 | /* enable timestamping */
1090                      ETH_P_1588));     /* 1588 eth protocol type */
1091        else
1092                wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1093
1094        /* L4 Queue Filter[3]: filter by destination port and protocol */
1095        if (is_l4) {
1096                u32 ftqf = (IPPROTO_UDP /* UDP */
1097                        | E1000_FTQF_VF_BP /* VF not compared */
1098                        | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1099                        | E1000_FTQF_MASK); /* mask all inputs */
1100                ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1101
1102                wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
1103                wr32(E1000_IMIREXT(3),
1104                     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1105                if (hw->mac.type == e1000_82576) {
1106                        /* enable source port check */
1107                        wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
1108                        ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1109                }
1110                wr32(E1000_FTQF(3), ftqf);
1111        } else {
1112                wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1113        }
1114        wrfl();
1115
1116        /* clear TX/RX time stamp registers, just to be sure */
1117        regval = rd32(E1000_TXSTMPL);
1118        regval = rd32(E1000_TXSTMPH);
1119        regval = rd32(E1000_RXSTMPL);
1120        regval = rd32(E1000_RXSTMPH);
1121
1122        return 0;
1123}
1124
1125/**
1126 * igb_ptp_set_ts_config - set hardware time stamping config
1127 * @netdev:
1128 * @ifreq:
1129 *
1130 **/
1131int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1132{
1133        struct igb_adapter *adapter = netdev_priv(netdev);
1134        struct hwtstamp_config config;
1135        int err;
1136
1137        if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1138                return -EFAULT;
1139
1140        err = igb_ptp_set_timestamp_mode(adapter, &config);
1141        if (err)
1142                return err;
1143
1144        /* save these settings for future reference */
1145        memcpy(&adapter->tstamp_config, &config,
1146               sizeof(adapter->tstamp_config));
1147
1148        return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1149                -EFAULT : 0;
1150}
1151
1152/**
1153 * igb_ptp_init - Initialize PTP functionality
1154 * @adapter: Board private structure
1155 *
1156 * This function is called at device probe to initialize the PTP
1157 * functionality.
1158 */
1159void igb_ptp_init(struct igb_adapter *adapter)
1160{
1161        struct e1000_hw *hw = &adapter->hw;
1162        struct net_device *netdev = adapter->netdev;
1163        int i;
1164
1165        switch (hw->mac.type) {
1166        case e1000_82576:
1167                snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1168                adapter->ptp_caps.owner = THIS_MODULE;
1169                adapter->ptp_caps.max_adj = 999999881;
1170                adapter->ptp_caps.n_ext_ts = 0;
1171                adapter->ptp_caps.pps = 0;
1172                adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
1173                adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1174                adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82576;
1175                adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1176                adapter->ptp_caps.enable = igb_ptp_feature_enable;
1177                adapter->cc.read = igb_ptp_read_82576;
1178                adapter->cc.mask = CYCLECOUNTER_MASK(64);
1179                adapter->cc.mult = 1;
1180                adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1181                adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1182                break;
1183        case e1000_82580:
1184        case e1000_i354:
1185        case e1000_i350:
1186                snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1187                adapter->ptp_caps.owner = THIS_MODULE;
1188                adapter->ptp_caps.max_adj = 62499999;
1189                adapter->ptp_caps.n_ext_ts = 0;
1190                adapter->ptp_caps.pps = 0;
1191                adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1192                adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1193                adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82580;
1194                adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1195                adapter->ptp_caps.enable = igb_ptp_feature_enable;
1196                adapter->cc.read = igb_ptp_read_82580;
1197                adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1198                adapter->cc.mult = 1;
1199                adapter->cc.shift = 0;
1200                adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1201                break;
1202        case e1000_i210:
1203        case e1000_i211:
1204                for (i = 0; i < IGB_N_SDP; i++) {
1205                        struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1206
1207                        snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1208                        ppd->index = i;
1209                        ppd->func = PTP_PF_NONE;
1210                }
1211                snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1212                adapter->ptp_caps.owner = THIS_MODULE;
1213                adapter->ptp_caps.max_adj = 62499999;
1214                adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1215                adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1216                adapter->ptp_caps.n_pins = IGB_N_SDP;
1217                adapter->ptp_caps.pps = 1;
1218                adapter->ptp_caps.pin_config = adapter->sdp_config;
1219                adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1220                adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1221                adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_i210;
1222                adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1223                adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1224                adapter->ptp_caps.verify = igb_ptp_verify_pin;
1225                break;
1226        default:
1227                adapter->ptp_clock = NULL;
1228                return;
1229        }
1230
1231        spin_lock_init(&adapter->tmreg_lock);
1232        INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1233
1234        if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1235                INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1236                                  igb_ptp_overflow_check);
1237
1238        adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1239        adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1240
1241        igb_ptp_reset(adapter);
1242
1243        adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1244                                                &adapter->pdev->dev);
1245        if (IS_ERR(adapter->ptp_clock)) {
1246                adapter->ptp_clock = NULL;
1247                dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1248        } else if (adapter->ptp_clock) {
1249                dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1250                         adapter->netdev->name);
1251                adapter->ptp_flags |= IGB_PTP_ENABLED;
1252        }
1253}
1254
1255/**
1256 * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1257 * @adapter: Board private structure
1258 *
1259 * This function stops the overflow check work and PTP Tx timestamp work, and
1260 * will prepare the device for OS suspend.
1261 */
1262void igb_ptp_suspend(struct igb_adapter *adapter)
1263{
1264        if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1265                return;
1266
1267        if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1268                cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1269
1270        cancel_work_sync(&adapter->ptp_tx_work);
1271        if (adapter->ptp_tx_skb) {
1272                dev_kfree_skb_any(adapter->ptp_tx_skb);
1273                adapter->ptp_tx_skb = NULL;
1274                clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1275        }
1276}
1277
1278/**
1279 * igb_ptp_stop - Disable PTP device and stop the overflow check.
1280 * @adapter: Board private structure.
1281 *
1282 * This function stops the PTP support and cancels the delayed work.
1283 **/
1284void igb_ptp_stop(struct igb_adapter *adapter)
1285{
1286        igb_ptp_suspend(adapter);
1287
1288        if (adapter->ptp_clock) {
1289                ptp_clock_unregister(adapter->ptp_clock);
1290                dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1291                         adapter->netdev->name);
1292                adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1293        }
1294}
1295
1296/**
1297 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1298 * @adapter: Board private structure.
1299 *
1300 * This function handles the reset work required to re-enable the PTP device.
1301 **/
1302void igb_ptp_reset(struct igb_adapter *adapter)
1303{
1304        struct e1000_hw *hw = &adapter->hw;
1305        unsigned long flags;
1306
1307        /* reset the tstamp_config */
1308        igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1309
1310        spin_lock_irqsave(&adapter->tmreg_lock, flags);
1311
1312        switch (adapter->hw.mac.type) {
1313        case e1000_82576:
1314                /* Dial the nominal frequency. */
1315                wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1316                break;
1317        case e1000_82580:
1318        case e1000_i354:
1319        case e1000_i350:
1320        case e1000_i210:
1321        case e1000_i211:
1322                wr32(E1000_TSAUXC, 0x0);
1323                wr32(E1000_TSSDP, 0x0);
1324                wr32(E1000_TSIM,
1325                     TSYNC_INTERRUPTS |
1326                     (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1327                wr32(E1000_IMS, E1000_IMS_TS);
1328                break;
1329        default:
1330                /* No work to do. */
1331                goto out;
1332        }
1333
1334        /* Re-initialize the timer. */
1335        if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1336                struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1337
1338                igb_ptp_write_i210(adapter, &ts);
1339        } else {
1340                timecounter_init(&adapter->tc, &adapter->cc,
1341                                 ktime_to_ns(ktime_get_real()));
1342        }
1343out:
1344        spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1345
1346        wrfl();
1347
1348        if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1349                schedule_delayed_work(&adapter->ptp_overflow_work,
1350                                      IGB_SYSTIM_OVERFLOW_PERIOD);
1351}
1352