linux/drivers/net/ethernet/intel/igbvf/netdev.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2009 - 2018 Intel Corporation. */
   3
   4#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   5
   6#include <linux/module.h>
   7#include <linux/types.h>
   8#include <linux/init.h>
   9#include <linux/pci.h>
  10#include <linux/vmalloc.h>
  11#include <linux/pagemap.h>
  12#include <linux/delay.h>
  13#include <linux/netdevice.h>
  14#include <linux/tcp.h>
  15#include <linux/ipv6.h>
  16#include <linux/slab.h>
  17#include <net/checksum.h>
  18#include <net/ip6_checksum.h>
  19#include <linux/mii.h>
  20#include <linux/ethtool.h>
  21#include <linux/if_vlan.h>
  22#include <linux/prefetch.h>
  23#include <linux/sctp.h>
  24
  25#include "igbvf.h"
  26
  27#define DRV_VERSION "2.4.0-k"
  28char igbvf_driver_name[] = "igbvf";
  29const char igbvf_driver_version[] = DRV_VERSION;
  30static const char igbvf_driver_string[] =
  31                  "Intel(R) Gigabit Virtual Function Network Driver";
  32static const char igbvf_copyright[] =
  33                  "Copyright (c) 2009 - 2012 Intel Corporation.";
  34
  35#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
  36static int debug = -1;
  37module_param(debug, int, 0);
  38MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  39
  40static int igbvf_poll(struct napi_struct *napi, int budget);
  41static void igbvf_reset(struct igbvf_adapter *);
  42static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
  43static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
  44
  45static struct igbvf_info igbvf_vf_info = {
  46        .mac            = e1000_vfadapt,
  47        .flags          = 0,
  48        .pba            = 10,
  49        .init_ops       = e1000_init_function_pointers_vf,
  50};
  51
  52static struct igbvf_info igbvf_i350_vf_info = {
  53        .mac            = e1000_vfadapt_i350,
  54        .flags          = 0,
  55        .pba            = 10,
  56        .init_ops       = e1000_init_function_pointers_vf,
  57};
  58
  59static const struct igbvf_info *igbvf_info_tbl[] = {
  60        [board_vf]      = &igbvf_vf_info,
  61        [board_i350_vf] = &igbvf_i350_vf_info,
  62};
  63
  64/**
  65 * igbvf_desc_unused - calculate if we have unused descriptors
  66 * @rx_ring: address of receive ring structure
  67 **/
  68static int igbvf_desc_unused(struct igbvf_ring *ring)
  69{
  70        if (ring->next_to_clean > ring->next_to_use)
  71                return ring->next_to_clean - ring->next_to_use - 1;
  72
  73        return ring->count + ring->next_to_clean - ring->next_to_use - 1;
  74}
  75
  76/**
  77 * igbvf_receive_skb - helper function to handle Rx indications
  78 * @adapter: board private structure
  79 * @status: descriptor status field as written by hardware
  80 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
  81 * @skb: pointer to sk_buff to be indicated to stack
  82 **/
  83static void igbvf_receive_skb(struct igbvf_adapter *adapter,
  84                              struct net_device *netdev,
  85                              struct sk_buff *skb,
  86                              u32 status, u16 vlan)
  87{
  88        u16 vid;
  89
  90        if (status & E1000_RXD_STAT_VP) {
  91                if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
  92                    (status & E1000_RXDEXT_STATERR_LB))
  93                        vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
  94                else
  95                        vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
  96                if (test_bit(vid, adapter->active_vlans))
  97                        __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
  98        }
  99
 100        napi_gro_receive(&adapter->rx_ring->napi, skb);
 101}
 102
 103static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
 104                                         u32 status_err, struct sk_buff *skb)
 105{
 106        skb_checksum_none_assert(skb);
 107
 108        /* Ignore Checksum bit is set or checksum is disabled through ethtool */
 109        if ((status_err & E1000_RXD_STAT_IXSM) ||
 110            (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
 111                return;
 112
 113        /* TCP/UDP checksum error bit is set */
 114        if (status_err &
 115            (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
 116                /* let the stack verify checksum errors */
 117                adapter->hw_csum_err++;
 118                return;
 119        }
 120
 121        /* It must be a TCP or UDP packet with a valid checksum */
 122        if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
 123                skb->ip_summed = CHECKSUM_UNNECESSARY;
 124
 125        adapter->hw_csum_good++;
 126}
 127
 128/**
 129 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
 130 * @rx_ring: address of ring structure to repopulate
 131 * @cleaned_count: number of buffers to repopulate
 132 **/
 133static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
 134                                   int cleaned_count)
 135{
 136        struct igbvf_adapter *adapter = rx_ring->adapter;
 137        struct net_device *netdev = adapter->netdev;
 138        struct pci_dev *pdev = adapter->pdev;
 139        union e1000_adv_rx_desc *rx_desc;
 140        struct igbvf_buffer *buffer_info;
 141        struct sk_buff *skb;
 142        unsigned int i;
 143        int bufsz;
 144
 145        i = rx_ring->next_to_use;
 146        buffer_info = &rx_ring->buffer_info[i];
 147
 148        if (adapter->rx_ps_hdr_size)
 149                bufsz = adapter->rx_ps_hdr_size;
 150        else
 151                bufsz = adapter->rx_buffer_len;
 152
 153        while (cleaned_count--) {
 154                rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
 155
 156                if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
 157                        if (!buffer_info->page) {
 158                                buffer_info->page = alloc_page(GFP_ATOMIC);
 159                                if (!buffer_info->page) {
 160                                        adapter->alloc_rx_buff_failed++;
 161                                        goto no_buffers;
 162                                }
 163                                buffer_info->page_offset = 0;
 164                        } else {
 165                                buffer_info->page_offset ^= PAGE_SIZE / 2;
 166                        }
 167                        buffer_info->page_dma =
 168                                dma_map_page(&pdev->dev, buffer_info->page,
 169                                             buffer_info->page_offset,
 170                                             PAGE_SIZE / 2,
 171                                             DMA_FROM_DEVICE);
 172                        if (dma_mapping_error(&pdev->dev,
 173                                              buffer_info->page_dma)) {
 174                                __free_page(buffer_info->page);
 175                                buffer_info->page = NULL;
 176                                dev_err(&pdev->dev, "RX DMA map failed\n");
 177                                break;
 178                        }
 179                }
 180
 181                if (!buffer_info->skb) {
 182                        skb = netdev_alloc_skb_ip_align(netdev, bufsz);
 183                        if (!skb) {
 184                                adapter->alloc_rx_buff_failed++;
 185                                goto no_buffers;
 186                        }
 187
 188                        buffer_info->skb = skb;
 189                        buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 190                                                          bufsz,
 191                                                          DMA_FROM_DEVICE);
 192                        if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 193                                dev_kfree_skb(buffer_info->skb);
 194                                buffer_info->skb = NULL;
 195                                dev_err(&pdev->dev, "RX DMA map failed\n");
 196                                goto no_buffers;
 197                        }
 198                }
 199                /* Refresh the desc even if buffer_addrs didn't change because
 200                 * each write-back erases this info.
 201                 */
 202                if (adapter->rx_ps_hdr_size) {
 203                        rx_desc->read.pkt_addr =
 204                             cpu_to_le64(buffer_info->page_dma);
 205                        rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
 206                } else {
 207                        rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
 208                        rx_desc->read.hdr_addr = 0;
 209                }
 210
 211                i++;
 212                if (i == rx_ring->count)
 213                        i = 0;
 214                buffer_info = &rx_ring->buffer_info[i];
 215        }
 216
 217no_buffers:
 218        if (rx_ring->next_to_use != i) {
 219                rx_ring->next_to_use = i;
 220                if (i == 0)
 221                        i = (rx_ring->count - 1);
 222                else
 223                        i--;
 224
 225                /* Force memory writes to complete before letting h/w
 226                 * know there are new descriptors to fetch.  (Only
 227                 * applicable for weak-ordered memory model archs,
 228                 * such as IA-64).
 229                */
 230                wmb();
 231                writel(i, adapter->hw.hw_addr + rx_ring->tail);
 232        }
 233}
 234
 235/**
 236 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
 237 * @adapter: board private structure
 238 *
 239 * the return value indicates whether actual cleaning was done, there
 240 * is no guarantee that everything was cleaned
 241 **/
 242static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
 243                               int *work_done, int work_to_do)
 244{
 245        struct igbvf_ring *rx_ring = adapter->rx_ring;
 246        struct net_device *netdev = adapter->netdev;
 247        struct pci_dev *pdev = adapter->pdev;
 248        union e1000_adv_rx_desc *rx_desc, *next_rxd;
 249        struct igbvf_buffer *buffer_info, *next_buffer;
 250        struct sk_buff *skb;
 251        bool cleaned = false;
 252        int cleaned_count = 0;
 253        unsigned int total_bytes = 0, total_packets = 0;
 254        unsigned int i;
 255        u32 length, hlen, staterr;
 256
 257        i = rx_ring->next_to_clean;
 258        rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
 259        staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 260
 261        while (staterr & E1000_RXD_STAT_DD) {
 262                if (*work_done >= work_to_do)
 263                        break;
 264                (*work_done)++;
 265                rmb(); /* read descriptor and rx_buffer_info after status DD */
 266
 267                buffer_info = &rx_ring->buffer_info[i];
 268
 269                /* HW will not DMA in data larger than the given buffer, even
 270                 * if it parses the (NFS, of course) header to be larger.  In
 271                 * that case, it fills the header buffer and spills the rest
 272                 * into the page.
 273                 */
 274                hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info)
 275                       & E1000_RXDADV_HDRBUFLEN_MASK) >>
 276                       E1000_RXDADV_HDRBUFLEN_SHIFT;
 277                if (hlen > adapter->rx_ps_hdr_size)
 278                        hlen = adapter->rx_ps_hdr_size;
 279
 280                length = le16_to_cpu(rx_desc->wb.upper.length);
 281                cleaned = true;
 282                cleaned_count++;
 283
 284                skb = buffer_info->skb;
 285                prefetch(skb->data - NET_IP_ALIGN);
 286                buffer_info->skb = NULL;
 287                if (!adapter->rx_ps_hdr_size) {
 288                        dma_unmap_single(&pdev->dev, buffer_info->dma,
 289                                         adapter->rx_buffer_len,
 290                                         DMA_FROM_DEVICE);
 291                        buffer_info->dma = 0;
 292                        skb_put(skb, length);
 293                        goto send_up;
 294                }
 295
 296                if (!skb_shinfo(skb)->nr_frags) {
 297                        dma_unmap_single(&pdev->dev, buffer_info->dma,
 298                                         adapter->rx_ps_hdr_size,
 299                                         DMA_FROM_DEVICE);
 300                        buffer_info->dma = 0;
 301                        skb_put(skb, hlen);
 302                }
 303
 304                if (length) {
 305                        dma_unmap_page(&pdev->dev, buffer_info->page_dma,
 306                                       PAGE_SIZE / 2,
 307                                       DMA_FROM_DEVICE);
 308                        buffer_info->page_dma = 0;
 309
 310                        skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
 311                                           buffer_info->page,
 312                                           buffer_info->page_offset,
 313                                           length);
 314
 315                        if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
 316                            (page_count(buffer_info->page) != 1))
 317                                buffer_info->page = NULL;
 318                        else
 319                                get_page(buffer_info->page);
 320
 321                        skb->len += length;
 322                        skb->data_len += length;
 323                        skb->truesize += PAGE_SIZE / 2;
 324                }
 325send_up:
 326                i++;
 327                if (i == rx_ring->count)
 328                        i = 0;
 329                next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
 330                prefetch(next_rxd);
 331                next_buffer = &rx_ring->buffer_info[i];
 332
 333                if (!(staterr & E1000_RXD_STAT_EOP)) {
 334                        buffer_info->skb = next_buffer->skb;
 335                        buffer_info->dma = next_buffer->dma;
 336                        next_buffer->skb = skb;
 337                        next_buffer->dma = 0;
 338                        goto next_desc;
 339                }
 340
 341                if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
 342                        dev_kfree_skb_irq(skb);
 343                        goto next_desc;
 344                }
 345
 346                total_bytes += skb->len;
 347                total_packets++;
 348
 349                igbvf_rx_checksum_adv(adapter, staterr, skb);
 350
 351                skb->protocol = eth_type_trans(skb, netdev);
 352
 353                igbvf_receive_skb(adapter, netdev, skb, staterr,
 354                                  rx_desc->wb.upper.vlan);
 355
 356next_desc:
 357                rx_desc->wb.upper.status_error = 0;
 358
 359                /* return some buffers to hardware, one at a time is too slow */
 360                if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
 361                        igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
 362                        cleaned_count = 0;
 363                }
 364
 365                /* use prefetched values */
 366                rx_desc = next_rxd;
 367                buffer_info = next_buffer;
 368
 369                staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 370        }
 371
 372        rx_ring->next_to_clean = i;
 373        cleaned_count = igbvf_desc_unused(rx_ring);
 374
 375        if (cleaned_count)
 376                igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
 377
 378        adapter->total_rx_packets += total_packets;
 379        adapter->total_rx_bytes += total_bytes;
 380        netdev->stats.rx_bytes += total_bytes;
 381        netdev->stats.rx_packets += total_packets;
 382        return cleaned;
 383}
 384
 385static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
 386                            struct igbvf_buffer *buffer_info)
 387{
 388        if (buffer_info->dma) {
 389                if (buffer_info->mapped_as_page)
 390                        dma_unmap_page(&adapter->pdev->dev,
 391                                       buffer_info->dma,
 392                                       buffer_info->length,
 393                                       DMA_TO_DEVICE);
 394                else
 395                        dma_unmap_single(&adapter->pdev->dev,
 396                                         buffer_info->dma,
 397                                         buffer_info->length,
 398                                         DMA_TO_DEVICE);
 399                buffer_info->dma = 0;
 400        }
 401        if (buffer_info->skb) {
 402                dev_kfree_skb_any(buffer_info->skb);
 403                buffer_info->skb = NULL;
 404        }
 405        buffer_info->time_stamp = 0;
 406}
 407
 408/**
 409 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
 410 * @adapter: board private structure
 411 *
 412 * Return 0 on success, negative on failure
 413 **/
 414int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
 415                             struct igbvf_ring *tx_ring)
 416{
 417        struct pci_dev *pdev = adapter->pdev;
 418        int size;
 419
 420        size = sizeof(struct igbvf_buffer) * tx_ring->count;
 421        tx_ring->buffer_info = vzalloc(size);
 422        if (!tx_ring->buffer_info)
 423                goto err;
 424
 425        /* round up to nearest 4K */
 426        tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
 427        tx_ring->size = ALIGN(tx_ring->size, 4096);
 428
 429        tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
 430                                           &tx_ring->dma, GFP_KERNEL);
 431        if (!tx_ring->desc)
 432                goto err;
 433
 434        tx_ring->adapter = adapter;
 435        tx_ring->next_to_use = 0;
 436        tx_ring->next_to_clean = 0;
 437
 438        return 0;
 439err:
 440        vfree(tx_ring->buffer_info);
 441        dev_err(&adapter->pdev->dev,
 442                "Unable to allocate memory for the transmit descriptor ring\n");
 443        return -ENOMEM;
 444}
 445
 446/**
 447 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
 448 * @adapter: board private structure
 449 *
 450 * Returns 0 on success, negative on failure
 451 **/
 452int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
 453                             struct igbvf_ring *rx_ring)
 454{
 455        struct pci_dev *pdev = adapter->pdev;
 456        int size, desc_len;
 457
 458        size = sizeof(struct igbvf_buffer) * rx_ring->count;
 459        rx_ring->buffer_info = vzalloc(size);
 460        if (!rx_ring->buffer_info)
 461                goto err;
 462
 463        desc_len = sizeof(union e1000_adv_rx_desc);
 464
 465        /* Round up to nearest 4K */
 466        rx_ring->size = rx_ring->count * desc_len;
 467        rx_ring->size = ALIGN(rx_ring->size, 4096);
 468
 469        rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
 470                                           &rx_ring->dma, GFP_KERNEL);
 471        if (!rx_ring->desc)
 472                goto err;
 473
 474        rx_ring->next_to_clean = 0;
 475        rx_ring->next_to_use = 0;
 476
 477        rx_ring->adapter = adapter;
 478
 479        return 0;
 480
 481err:
 482        vfree(rx_ring->buffer_info);
 483        rx_ring->buffer_info = NULL;
 484        dev_err(&adapter->pdev->dev,
 485                "Unable to allocate memory for the receive descriptor ring\n");
 486        return -ENOMEM;
 487}
 488
 489/**
 490 * igbvf_clean_tx_ring - Free Tx Buffers
 491 * @tx_ring: ring to be cleaned
 492 **/
 493static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
 494{
 495        struct igbvf_adapter *adapter = tx_ring->adapter;
 496        struct igbvf_buffer *buffer_info;
 497        unsigned long size;
 498        unsigned int i;
 499
 500        if (!tx_ring->buffer_info)
 501                return;
 502
 503        /* Free all the Tx ring sk_buffs */
 504        for (i = 0; i < tx_ring->count; i++) {
 505                buffer_info = &tx_ring->buffer_info[i];
 506                igbvf_put_txbuf(adapter, buffer_info);
 507        }
 508
 509        size = sizeof(struct igbvf_buffer) * tx_ring->count;
 510        memset(tx_ring->buffer_info, 0, size);
 511
 512        /* Zero out the descriptor ring */
 513        memset(tx_ring->desc, 0, tx_ring->size);
 514
 515        tx_ring->next_to_use = 0;
 516        tx_ring->next_to_clean = 0;
 517
 518        writel(0, adapter->hw.hw_addr + tx_ring->head);
 519        writel(0, adapter->hw.hw_addr + tx_ring->tail);
 520}
 521
 522/**
 523 * igbvf_free_tx_resources - Free Tx Resources per Queue
 524 * @tx_ring: ring to free resources from
 525 *
 526 * Free all transmit software resources
 527 **/
 528void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
 529{
 530        struct pci_dev *pdev = tx_ring->adapter->pdev;
 531
 532        igbvf_clean_tx_ring(tx_ring);
 533
 534        vfree(tx_ring->buffer_info);
 535        tx_ring->buffer_info = NULL;
 536
 537        dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
 538                          tx_ring->dma);
 539
 540        tx_ring->desc = NULL;
 541}
 542
 543/**
 544 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
 545 * @adapter: board private structure
 546 **/
 547static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
 548{
 549        struct igbvf_adapter *adapter = rx_ring->adapter;
 550        struct igbvf_buffer *buffer_info;
 551        struct pci_dev *pdev = adapter->pdev;
 552        unsigned long size;
 553        unsigned int i;
 554
 555        if (!rx_ring->buffer_info)
 556                return;
 557
 558        /* Free all the Rx ring sk_buffs */
 559        for (i = 0; i < rx_ring->count; i++) {
 560                buffer_info = &rx_ring->buffer_info[i];
 561                if (buffer_info->dma) {
 562                        if (adapter->rx_ps_hdr_size) {
 563                                dma_unmap_single(&pdev->dev, buffer_info->dma,
 564                                                 adapter->rx_ps_hdr_size,
 565                                                 DMA_FROM_DEVICE);
 566                        } else {
 567                                dma_unmap_single(&pdev->dev, buffer_info->dma,
 568                                                 adapter->rx_buffer_len,
 569                                                 DMA_FROM_DEVICE);
 570                        }
 571                        buffer_info->dma = 0;
 572                }
 573
 574                if (buffer_info->skb) {
 575                        dev_kfree_skb(buffer_info->skb);
 576                        buffer_info->skb = NULL;
 577                }
 578
 579                if (buffer_info->page) {
 580                        if (buffer_info->page_dma)
 581                                dma_unmap_page(&pdev->dev,
 582                                               buffer_info->page_dma,
 583                                               PAGE_SIZE / 2,
 584                                               DMA_FROM_DEVICE);
 585                        put_page(buffer_info->page);
 586                        buffer_info->page = NULL;
 587                        buffer_info->page_dma = 0;
 588                        buffer_info->page_offset = 0;
 589                }
 590        }
 591
 592        size = sizeof(struct igbvf_buffer) * rx_ring->count;
 593        memset(rx_ring->buffer_info, 0, size);
 594
 595        /* Zero out the descriptor ring */
 596        memset(rx_ring->desc, 0, rx_ring->size);
 597
 598        rx_ring->next_to_clean = 0;
 599        rx_ring->next_to_use = 0;
 600
 601        writel(0, adapter->hw.hw_addr + rx_ring->head);
 602        writel(0, adapter->hw.hw_addr + rx_ring->tail);
 603}
 604
 605/**
 606 * igbvf_free_rx_resources - Free Rx Resources
 607 * @rx_ring: ring to clean the resources from
 608 *
 609 * Free all receive software resources
 610 **/
 611
 612void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
 613{
 614        struct pci_dev *pdev = rx_ring->adapter->pdev;
 615
 616        igbvf_clean_rx_ring(rx_ring);
 617
 618        vfree(rx_ring->buffer_info);
 619        rx_ring->buffer_info = NULL;
 620
 621        dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
 622                          rx_ring->dma);
 623        rx_ring->desc = NULL;
 624}
 625
 626/**
 627 * igbvf_update_itr - update the dynamic ITR value based on statistics
 628 * @adapter: pointer to adapter
 629 * @itr_setting: current adapter->itr
 630 * @packets: the number of packets during this measurement interval
 631 * @bytes: the number of bytes during this measurement interval
 632 *
 633 * Stores a new ITR value based on packets and byte counts during the last
 634 * interrupt.  The advantage of per interrupt computation is faster updates
 635 * and more accurate ITR for the current traffic pattern.  Constants in this
 636 * function were computed based on theoretical maximum wire speed and thresholds
 637 * were set based on testing data as well as attempting to minimize response
 638 * time while increasing bulk throughput.
 639 **/
 640static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
 641                                           enum latency_range itr_setting,
 642                                           int packets, int bytes)
 643{
 644        enum latency_range retval = itr_setting;
 645
 646        if (packets == 0)
 647                goto update_itr_done;
 648
 649        switch (itr_setting) {
 650        case lowest_latency:
 651                /* handle TSO and jumbo frames */
 652                if (bytes/packets > 8000)
 653                        retval = bulk_latency;
 654                else if ((packets < 5) && (bytes > 512))
 655                        retval = low_latency;
 656                break;
 657        case low_latency:  /* 50 usec aka 20000 ints/s */
 658                if (bytes > 10000) {
 659                        /* this if handles the TSO accounting */
 660                        if (bytes/packets > 8000)
 661                                retval = bulk_latency;
 662                        else if ((packets < 10) || ((bytes/packets) > 1200))
 663                                retval = bulk_latency;
 664                        else if ((packets > 35))
 665                                retval = lowest_latency;
 666                } else if (bytes/packets > 2000) {
 667                        retval = bulk_latency;
 668                } else if (packets <= 2 && bytes < 512) {
 669                        retval = lowest_latency;
 670                }
 671                break;
 672        case bulk_latency: /* 250 usec aka 4000 ints/s */
 673                if (bytes > 25000) {
 674                        if (packets > 35)
 675                                retval = low_latency;
 676                } else if (bytes < 6000) {
 677                        retval = low_latency;
 678                }
 679                break;
 680        default:
 681                break;
 682        }
 683
 684update_itr_done:
 685        return retval;
 686}
 687
 688static int igbvf_range_to_itr(enum latency_range current_range)
 689{
 690        int new_itr;
 691
 692        switch (current_range) {
 693        /* counts and packets in update_itr are dependent on these numbers */
 694        case lowest_latency:
 695                new_itr = IGBVF_70K_ITR;
 696                break;
 697        case low_latency:
 698                new_itr = IGBVF_20K_ITR;
 699                break;
 700        case bulk_latency:
 701                new_itr = IGBVF_4K_ITR;
 702                break;
 703        default:
 704                new_itr = IGBVF_START_ITR;
 705                break;
 706        }
 707        return new_itr;
 708}
 709
 710static void igbvf_set_itr(struct igbvf_adapter *adapter)
 711{
 712        u32 new_itr;
 713
 714        adapter->tx_ring->itr_range =
 715                        igbvf_update_itr(adapter,
 716                                         adapter->tx_ring->itr_val,
 717                                         adapter->total_tx_packets,
 718                                         adapter->total_tx_bytes);
 719
 720        /* conservative mode (itr 3) eliminates the lowest_latency setting */
 721        if (adapter->requested_itr == 3 &&
 722            adapter->tx_ring->itr_range == lowest_latency)
 723                adapter->tx_ring->itr_range = low_latency;
 724
 725        new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
 726
 727        if (new_itr != adapter->tx_ring->itr_val) {
 728                u32 current_itr = adapter->tx_ring->itr_val;
 729                /* this attempts to bias the interrupt rate towards Bulk
 730                 * by adding intermediate steps when interrupt rate is
 731                 * increasing
 732                 */
 733                new_itr = new_itr > current_itr ?
 734                          min(current_itr + (new_itr >> 2), new_itr) :
 735                          new_itr;
 736                adapter->tx_ring->itr_val = new_itr;
 737
 738                adapter->tx_ring->set_itr = 1;
 739        }
 740
 741        adapter->rx_ring->itr_range =
 742                        igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
 743                                         adapter->total_rx_packets,
 744                                         adapter->total_rx_bytes);
 745        if (adapter->requested_itr == 3 &&
 746            adapter->rx_ring->itr_range == lowest_latency)
 747                adapter->rx_ring->itr_range = low_latency;
 748
 749        new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
 750
 751        if (new_itr != adapter->rx_ring->itr_val) {
 752                u32 current_itr = adapter->rx_ring->itr_val;
 753
 754                new_itr = new_itr > current_itr ?
 755                          min(current_itr + (new_itr >> 2), new_itr) :
 756                          new_itr;
 757                adapter->rx_ring->itr_val = new_itr;
 758
 759                adapter->rx_ring->set_itr = 1;
 760        }
 761}
 762
 763/**
 764 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
 765 * @adapter: board private structure
 766 *
 767 * returns true if ring is completely cleaned
 768 **/
 769static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
 770{
 771        struct igbvf_adapter *adapter = tx_ring->adapter;
 772        struct net_device *netdev = adapter->netdev;
 773        struct igbvf_buffer *buffer_info;
 774        struct sk_buff *skb;
 775        union e1000_adv_tx_desc *tx_desc, *eop_desc;
 776        unsigned int total_bytes = 0, total_packets = 0;
 777        unsigned int i, count = 0;
 778        bool cleaned = false;
 779
 780        i = tx_ring->next_to_clean;
 781        buffer_info = &tx_ring->buffer_info[i];
 782        eop_desc = buffer_info->next_to_watch;
 783
 784        do {
 785                /* if next_to_watch is not set then there is no work pending */
 786                if (!eop_desc)
 787                        break;
 788
 789                /* prevent any other reads prior to eop_desc */
 790                smp_rmb();
 791
 792                /* if DD is not set pending work has not been completed */
 793                if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
 794                        break;
 795
 796                /* clear next_to_watch to prevent false hangs */
 797                buffer_info->next_to_watch = NULL;
 798
 799                for (cleaned = false; !cleaned; count++) {
 800                        tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
 801                        cleaned = (tx_desc == eop_desc);
 802                        skb = buffer_info->skb;
 803
 804                        if (skb) {
 805                                unsigned int segs, bytecount;
 806
 807                                /* gso_segs is currently only valid for tcp */
 808                                segs = skb_shinfo(skb)->gso_segs ?: 1;
 809                                /* multiply data chunks by size of headers */
 810                                bytecount = ((segs - 1) * skb_headlen(skb)) +
 811                                            skb->len;
 812                                total_packets += segs;
 813                                total_bytes += bytecount;
 814                        }
 815
 816                        igbvf_put_txbuf(adapter, buffer_info);
 817                        tx_desc->wb.status = 0;
 818
 819                        i++;
 820                        if (i == tx_ring->count)
 821                                i = 0;
 822
 823                        buffer_info = &tx_ring->buffer_info[i];
 824                }
 825
 826                eop_desc = buffer_info->next_to_watch;
 827        } while (count < tx_ring->count);
 828
 829        tx_ring->next_to_clean = i;
 830
 831        if (unlikely(count && netif_carrier_ok(netdev) &&
 832            igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
 833                /* Make sure that anybody stopping the queue after this
 834                 * sees the new next_to_clean.
 835                 */
 836                smp_mb();
 837                if (netif_queue_stopped(netdev) &&
 838                    !(test_bit(__IGBVF_DOWN, &adapter->state))) {
 839                        netif_wake_queue(netdev);
 840                        ++adapter->restart_queue;
 841                }
 842        }
 843
 844        netdev->stats.tx_bytes += total_bytes;
 845        netdev->stats.tx_packets += total_packets;
 846        return count < tx_ring->count;
 847}
 848
 849static irqreturn_t igbvf_msix_other(int irq, void *data)
 850{
 851        struct net_device *netdev = data;
 852        struct igbvf_adapter *adapter = netdev_priv(netdev);
 853        struct e1000_hw *hw = &adapter->hw;
 854
 855        adapter->int_counter1++;
 856
 857        hw->mac.get_link_status = 1;
 858        if (!test_bit(__IGBVF_DOWN, &adapter->state))
 859                mod_timer(&adapter->watchdog_timer, jiffies + 1);
 860
 861        ew32(EIMS, adapter->eims_other);
 862
 863        return IRQ_HANDLED;
 864}
 865
 866static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
 867{
 868        struct net_device *netdev = data;
 869        struct igbvf_adapter *adapter = netdev_priv(netdev);
 870        struct e1000_hw *hw = &adapter->hw;
 871        struct igbvf_ring *tx_ring = adapter->tx_ring;
 872
 873        if (tx_ring->set_itr) {
 874                writel(tx_ring->itr_val,
 875                       adapter->hw.hw_addr + tx_ring->itr_register);
 876                adapter->tx_ring->set_itr = 0;
 877        }
 878
 879        adapter->total_tx_bytes = 0;
 880        adapter->total_tx_packets = 0;
 881
 882        /* auto mask will automatically re-enable the interrupt when we write
 883         * EICS
 884         */
 885        if (!igbvf_clean_tx_irq(tx_ring))
 886                /* Ring was not completely cleaned, so fire another interrupt */
 887                ew32(EICS, tx_ring->eims_value);
 888        else
 889                ew32(EIMS, tx_ring->eims_value);
 890
 891        return IRQ_HANDLED;
 892}
 893
 894static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
 895{
 896        struct net_device *netdev = data;
 897        struct igbvf_adapter *adapter = netdev_priv(netdev);
 898
 899        adapter->int_counter0++;
 900
 901        /* Write the ITR value calculated at the end of the
 902         * previous interrupt.
 903         */
 904        if (adapter->rx_ring->set_itr) {
 905                writel(adapter->rx_ring->itr_val,
 906                       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
 907                adapter->rx_ring->set_itr = 0;
 908        }
 909
 910        if (napi_schedule_prep(&adapter->rx_ring->napi)) {
 911                adapter->total_rx_bytes = 0;
 912                adapter->total_rx_packets = 0;
 913                __napi_schedule(&adapter->rx_ring->napi);
 914        }
 915
 916        return IRQ_HANDLED;
 917}
 918
 919#define IGBVF_NO_QUEUE -1
 920
 921static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
 922                                int tx_queue, int msix_vector)
 923{
 924        struct e1000_hw *hw = &adapter->hw;
 925        u32 ivar, index;
 926
 927        /* 82576 uses a table-based method for assigning vectors.
 928         * Each queue has a single entry in the table to which we write
 929         * a vector number along with a "valid" bit.  Sadly, the layout
 930         * of the table is somewhat counterintuitive.
 931         */
 932        if (rx_queue > IGBVF_NO_QUEUE) {
 933                index = (rx_queue >> 1);
 934                ivar = array_er32(IVAR0, index);
 935                if (rx_queue & 0x1) {
 936                        /* vector goes into third byte of register */
 937                        ivar = ivar & 0xFF00FFFF;
 938                        ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
 939                } else {
 940                        /* vector goes into low byte of register */
 941                        ivar = ivar & 0xFFFFFF00;
 942                        ivar |= msix_vector | E1000_IVAR_VALID;
 943                }
 944                adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector);
 945                array_ew32(IVAR0, index, ivar);
 946        }
 947        if (tx_queue > IGBVF_NO_QUEUE) {
 948                index = (tx_queue >> 1);
 949                ivar = array_er32(IVAR0, index);
 950                if (tx_queue & 0x1) {
 951                        /* vector goes into high byte of register */
 952                        ivar = ivar & 0x00FFFFFF;
 953                        ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
 954                } else {
 955                        /* vector goes into second byte of register */
 956                        ivar = ivar & 0xFFFF00FF;
 957                        ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
 958                }
 959                adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector);
 960                array_ew32(IVAR0, index, ivar);
 961        }
 962}
 963
 964/**
 965 * igbvf_configure_msix - Configure MSI-X hardware
 966 * @adapter: board private structure
 967 *
 968 * igbvf_configure_msix sets up the hardware to properly
 969 * generate MSI-X interrupts.
 970 **/
 971static void igbvf_configure_msix(struct igbvf_adapter *adapter)
 972{
 973        u32 tmp;
 974        struct e1000_hw *hw = &adapter->hw;
 975        struct igbvf_ring *tx_ring = adapter->tx_ring;
 976        struct igbvf_ring *rx_ring = adapter->rx_ring;
 977        int vector = 0;
 978
 979        adapter->eims_enable_mask = 0;
 980
 981        igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
 982        adapter->eims_enable_mask |= tx_ring->eims_value;
 983        writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
 984        igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
 985        adapter->eims_enable_mask |= rx_ring->eims_value;
 986        writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
 987
 988        /* set vector for other causes, i.e. link changes */
 989
 990        tmp = (vector++ | E1000_IVAR_VALID);
 991
 992        ew32(IVAR_MISC, tmp);
 993
 994        adapter->eims_enable_mask = GENMASK(vector - 1, 0);
 995        adapter->eims_other = BIT(vector - 1);
 996        e1e_flush();
 997}
 998
 999static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1000{
1001        if (adapter->msix_entries) {
1002                pci_disable_msix(adapter->pdev);
1003                kfree(adapter->msix_entries);
1004                adapter->msix_entries = NULL;
1005        }
1006}
1007
1008/**
1009 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1010 * @adapter: board private structure
1011 *
1012 * Attempt to configure interrupts using the best available
1013 * capabilities of the hardware and kernel.
1014 **/
1015static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1016{
1017        int err = -ENOMEM;
1018        int i;
1019
1020        /* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1021        adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1022                                        GFP_KERNEL);
1023        if (adapter->msix_entries) {
1024                for (i = 0; i < 3; i++)
1025                        adapter->msix_entries[i].entry = i;
1026
1027                err = pci_enable_msix_range(adapter->pdev,
1028                                            adapter->msix_entries, 3, 3);
1029        }
1030
1031        if (err < 0) {
1032                /* MSI-X failed */
1033                dev_err(&adapter->pdev->dev,
1034                        "Failed to initialize MSI-X interrupts.\n");
1035                igbvf_reset_interrupt_capability(adapter);
1036        }
1037}
1038
1039/**
1040 * igbvf_request_msix - Initialize MSI-X interrupts
1041 * @adapter: board private structure
1042 *
1043 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1044 * kernel.
1045 **/
1046static int igbvf_request_msix(struct igbvf_adapter *adapter)
1047{
1048        struct net_device *netdev = adapter->netdev;
1049        int err = 0, vector = 0;
1050
1051        if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1052                sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1053                sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1054        } else {
1055                memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1056                memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1057        }
1058
1059        err = request_irq(adapter->msix_entries[vector].vector,
1060                          igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1061                          netdev);
1062        if (err)
1063                goto out;
1064
1065        adapter->tx_ring->itr_register = E1000_EITR(vector);
1066        adapter->tx_ring->itr_val = adapter->current_itr;
1067        vector++;
1068
1069        err = request_irq(adapter->msix_entries[vector].vector,
1070                          igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1071                          netdev);
1072        if (err)
1073                goto out;
1074
1075        adapter->rx_ring->itr_register = E1000_EITR(vector);
1076        adapter->rx_ring->itr_val = adapter->current_itr;
1077        vector++;
1078
1079        err = request_irq(adapter->msix_entries[vector].vector,
1080                          igbvf_msix_other, 0, netdev->name, netdev);
1081        if (err)
1082                goto out;
1083
1084        igbvf_configure_msix(adapter);
1085        return 0;
1086out:
1087        return err;
1088}
1089
1090/**
1091 * igbvf_alloc_queues - Allocate memory for all rings
1092 * @adapter: board private structure to initialize
1093 **/
1094static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1095{
1096        struct net_device *netdev = adapter->netdev;
1097
1098        adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1099        if (!adapter->tx_ring)
1100                return -ENOMEM;
1101
1102        adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1103        if (!adapter->rx_ring) {
1104                kfree(adapter->tx_ring);
1105                return -ENOMEM;
1106        }
1107
1108        netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1109
1110        return 0;
1111}
1112
1113/**
1114 * igbvf_request_irq - initialize interrupts
1115 * @adapter: board private structure
1116 *
1117 * Attempts to configure interrupts using the best available
1118 * capabilities of the hardware and kernel.
1119 **/
1120static int igbvf_request_irq(struct igbvf_adapter *adapter)
1121{
1122        int err = -1;
1123
1124        /* igbvf supports msi-x only */
1125        if (adapter->msix_entries)
1126                err = igbvf_request_msix(adapter);
1127
1128        if (!err)
1129                return err;
1130
1131        dev_err(&adapter->pdev->dev,
1132                "Unable to allocate interrupt, Error: %d\n", err);
1133
1134        return err;
1135}
1136
1137static void igbvf_free_irq(struct igbvf_adapter *adapter)
1138{
1139        struct net_device *netdev = adapter->netdev;
1140        int vector;
1141
1142        if (adapter->msix_entries) {
1143                for (vector = 0; vector < 3; vector++)
1144                        free_irq(adapter->msix_entries[vector].vector, netdev);
1145        }
1146}
1147
1148/**
1149 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1150 * @adapter: board private structure
1151 **/
1152static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1153{
1154        struct e1000_hw *hw = &adapter->hw;
1155
1156        ew32(EIMC, ~0);
1157
1158        if (adapter->msix_entries)
1159                ew32(EIAC, 0);
1160}
1161
1162/**
1163 * igbvf_irq_enable - Enable default interrupt generation settings
1164 * @adapter: board private structure
1165 **/
1166static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1167{
1168        struct e1000_hw *hw = &adapter->hw;
1169
1170        ew32(EIAC, adapter->eims_enable_mask);
1171        ew32(EIAM, adapter->eims_enable_mask);
1172        ew32(EIMS, adapter->eims_enable_mask);
1173}
1174
1175/**
1176 * igbvf_poll - NAPI Rx polling callback
1177 * @napi: struct associated with this polling callback
1178 * @budget: amount of packets driver is allowed to process this poll
1179 **/
1180static int igbvf_poll(struct napi_struct *napi, int budget)
1181{
1182        struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1183        struct igbvf_adapter *adapter = rx_ring->adapter;
1184        struct e1000_hw *hw = &adapter->hw;
1185        int work_done = 0;
1186
1187        igbvf_clean_rx_irq(adapter, &work_done, budget);
1188
1189        if (work_done == budget)
1190                return budget;
1191
1192        /* Exit the polling mode, but don't re-enable interrupts if stack might
1193         * poll us due to busy-polling
1194         */
1195        if (likely(napi_complete_done(napi, work_done))) {
1196                if (adapter->requested_itr & 3)
1197                        igbvf_set_itr(adapter);
1198
1199                if (!test_bit(__IGBVF_DOWN, &adapter->state))
1200                        ew32(EIMS, adapter->rx_ring->eims_value);
1201        }
1202
1203        return work_done;
1204}
1205
1206/**
1207 * igbvf_set_rlpml - set receive large packet maximum length
1208 * @adapter: board private structure
1209 *
1210 * Configure the maximum size of packets that will be received
1211 */
1212static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1213{
1214        int max_frame_size;
1215        struct e1000_hw *hw = &adapter->hw;
1216
1217        max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1218
1219        spin_lock_bh(&hw->mbx_lock);
1220
1221        e1000_rlpml_set_vf(hw, max_frame_size);
1222
1223        spin_unlock_bh(&hw->mbx_lock);
1224}
1225
1226static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1227                                 __be16 proto, u16 vid)
1228{
1229        struct igbvf_adapter *adapter = netdev_priv(netdev);
1230        struct e1000_hw *hw = &adapter->hw;
1231
1232        spin_lock_bh(&hw->mbx_lock);
1233
1234        if (hw->mac.ops.set_vfta(hw, vid, true)) {
1235                dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1236                spin_unlock_bh(&hw->mbx_lock);
1237                return -EINVAL;
1238        }
1239
1240        spin_unlock_bh(&hw->mbx_lock);
1241
1242        set_bit(vid, adapter->active_vlans);
1243        return 0;
1244}
1245
1246static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1247                                  __be16 proto, u16 vid)
1248{
1249        struct igbvf_adapter *adapter = netdev_priv(netdev);
1250        struct e1000_hw *hw = &adapter->hw;
1251
1252        spin_lock_bh(&hw->mbx_lock);
1253
1254        if (hw->mac.ops.set_vfta(hw, vid, false)) {
1255                dev_err(&adapter->pdev->dev,
1256                        "Failed to remove vlan id %d\n", vid);
1257                spin_unlock_bh(&hw->mbx_lock);
1258                return -EINVAL;
1259        }
1260
1261        spin_unlock_bh(&hw->mbx_lock);
1262
1263        clear_bit(vid, adapter->active_vlans);
1264        return 0;
1265}
1266
1267static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1268{
1269        u16 vid;
1270
1271        for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1272                igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1273}
1274
1275/**
1276 * igbvf_configure_tx - Configure Transmit Unit after Reset
1277 * @adapter: board private structure
1278 *
1279 * Configure the Tx unit of the MAC after a reset.
1280 **/
1281static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1282{
1283        struct e1000_hw *hw = &adapter->hw;
1284        struct igbvf_ring *tx_ring = adapter->tx_ring;
1285        u64 tdba;
1286        u32 txdctl, dca_txctrl;
1287
1288        /* disable transmits */
1289        txdctl = er32(TXDCTL(0));
1290        ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1291        e1e_flush();
1292        msleep(10);
1293
1294        /* Setup the HW Tx Head and Tail descriptor pointers */
1295        ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1296        tdba = tx_ring->dma;
1297        ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1298        ew32(TDBAH(0), (tdba >> 32));
1299        ew32(TDH(0), 0);
1300        ew32(TDT(0), 0);
1301        tx_ring->head = E1000_TDH(0);
1302        tx_ring->tail = E1000_TDT(0);
1303
1304        /* Turn off Relaxed Ordering on head write-backs.  The writebacks
1305         * MUST be delivered in order or it will completely screw up
1306         * our bookkeeping.
1307         */
1308        dca_txctrl = er32(DCA_TXCTRL(0));
1309        dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1310        ew32(DCA_TXCTRL(0), dca_txctrl);
1311
1312        /* enable transmits */
1313        txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1314        ew32(TXDCTL(0), txdctl);
1315
1316        /* Setup Transmit Descriptor Settings for eop descriptor */
1317        adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1318
1319        /* enable Report Status bit */
1320        adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1321}
1322
1323/**
1324 * igbvf_setup_srrctl - configure the receive control registers
1325 * @adapter: Board private structure
1326 **/
1327static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1328{
1329        struct e1000_hw *hw = &adapter->hw;
1330        u32 srrctl = 0;
1331
1332        srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1333                    E1000_SRRCTL_BSIZEHDR_MASK |
1334                    E1000_SRRCTL_BSIZEPKT_MASK);
1335
1336        /* Enable queue drop to avoid head of line blocking */
1337        srrctl |= E1000_SRRCTL_DROP_EN;
1338
1339        /* Setup buffer sizes */
1340        srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1341                  E1000_SRRCTL_BSIZEPKT_SHIFT;
1342
1343        if (adapter->rx_buffer_len < 2048) {
1344                adapter->rx_ps_hdr_size = 0;
1345                srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1346        } else {
1347                adapter->rx_ps_hdr_size = 128;
1348                srrctl |= adapter->rx_ps_hdr_size <<
1349                          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1350                srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1351        }
1352
1353        ew32(SRRCTL(0), srrctl);
1354}
1355
1356/**
1357 * igbvf_configure_rx - Configure Receive Unit after Reset
1358 * @adapter: board private structure
1359 *
1360 * Configure the Rx unit of the MAC after a reset.
1361 **/
1362static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1363{
1364        struct e1000_hw *hw = &adapter->hw;
1365        struct igbvf_ring *rx_ring = adapter->rx_ring;
1366        u64 rdba;
1367        u32 rxdctl;
1368
1369        /* disable receives */
1370        rxdctl = er32(RXDCTL(0));
1371        ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1372        e1e_flush();
1373        msleep(10);
1374
1375        /* Setup the HW Rx Head and Tail Descriptor Pointers and
1376         * the Base and Length of the Rx Descriptor Ring
1377         */
1378        rdba = rx_ring->dma;
1379        ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1380        ew32(RDBAH(0), (rdba >> 32));
1381        ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1382        rx_ring->head = E1000_RDH(0);
1383        rx_ring->tail = E1000_RDT(0);
1384        ew32(RDH(0), 0);
1385        ew32(RDT(0), 0);
1386
1387        rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1388        rxdctl &= 0xFFF00000;
1389        rxdctl |= IGBVF_RX_PTHRESH;
1390        rxdctl |= IGBVF_RX_HTHRESH << 8;
1391        rxdctl |= IGBVF_RX_WTHRESH << 16;
1392
1393        igbvf_set_rlpml(adapter);
1394
1395        /* enable receives */
1396        ew32(RXDCTL(0), rxdctl);
1397}
1398
1399/**
1400 * igbvf_set_multi - Multicast and Promiscuous mode set
1401 * @netdev: network interface device structure
1402 *
1403 * The set_multi entry point is called whenever the multicast address
1404 * list or the network interface flags are updated.  This routine is
1405 * responsible for configuring the hardware for proper multicast,
1406 * promiscuous mode, and all-multi behavior.
1407 **/
1408static void igbvf_set_multi(struct net_device *netdev)
1409{
1410        struct igbvf_adapter *adapter = netdev_priv(netdev);
1411        struct e1000_hw *hw = &adapter->hw;
1412        struct netdev_hw_addr *ha;
1413        u8  *mta_list = NULL;
1414        int i;
1415
1416        if (!netdev_mc_empty(netdev)) {
1417                mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1418                                         GFP_ATOMIC);
1419                if (!mta_list)
1420                        return;
1421        }
1422
1423        /* prepare a packed array of only addresses. */
1424        i = 0;
1425        netdev_for_each_mc_addr(ha, netdev)
1426                memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1427
1428        spin_lock_bh(&hw->mbx_lock);
1429
1430        hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1431
1432        spin_unlock_bh(&hw->mbx_lock);
1433        kfree(mta_list);
1434}
1435
1436/**
1437 * igbvf_set_uni - Configure unicast MAC filters
1438 * @netdev: network interface device structure
1439 *
1440 * This routine is responsible for configuring the hardware for proper
1441 * unicast filters.
1442 **/
1443static int igbvf_set_uni(struct net_device *netdev)
1444{
1445        struct igbvf_adapter *adapter = netdev_priv(netdev);
1446        struct e1000_hw *hw = &adapter->hw;
1447
1448        if (netdev_uc_count(netdev) > IGBVF_MAX_MAC_FILTERS) {
1449                pr_err("Too many unicast filters - No Space\n");
1450                return -ENOSPC;
1451        }
1452
1453        spin_lock_bh(&hw->mbx_lock);
1454
1455        /* Clear all unicast MAC filters */
1456        hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_CLR, NULL);
1457
1458        spin_unlock_bh(&hw->mbx_lock);
1459
1460        if (!netdev_uc_empty(netdev)) {
1461                struct netdev_hw_addr *ha;
1462
1463                /* Add MAC filters one by one */
1464                netdev_for_each_uc_addr(ha, netdev) {
1465                        spin_lock_bh(&hw->mbx_lock);
1466
1467                        hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_ADD,
1468                                                ha->addr);
1469
1470                        spin_unlock_bh(&hw->mbx_lock);
1471                        udelay(200);
1472                }
1473        }
1474
1475        return 0;
1476}
1477
1478static void igbvf_set_rx_mode(struct net_device *netdev)
1479{
1480        igbvf_set_multi(netdev);
1481        igbvf_set_uni(netdev);
1482}
1483
1484/**
1485 * igbvf_configure - configure the hardware for Rx and Tx
1486 * @adapter: private board structure
1487 **/
1488static void igbvf_configure(struct igbvf_adapter *adapter)
1489{
1490        igbvf_set_rx_mode(adapter->netdev);
1491
1492        igbvf_restore_vlan(adapter);
1493
1494        igbvf_configure_tx(adapter);
1495        igbvf_setup_srrctl(adapter);
1496        igbvf_configure_rx(adapter);
1497        igbvf_alloc_rx_buffers(adapter->rx_ring,
1498                               igbvf_desc_unused(adapter->rx_ring));
1499}
1500
1501/* igbvf_reset - bring the hardware into a known good state
1502 * @adapter: private board structure
1503 *
1504 * This function boots the hardware and enables some settings that
1505 * require a configuration cycle of the hardware - those cannot be
1506 * set/changed during runtime. After reset the device needs to be
1507 * properly configured for Rx, Tx etc.
1508 */
1509static void igbvf_reset(struct igbvf_adapter *adapter)
1510{
1511        struct e1000_mac_info *mac = &adapter->hw.mac;
1512        struct net_device *netdev = adapter->netdev;
1513        struct e1000_hw *hw = &adapter->hw;
1514
1515        spin_lock_bh(&hw->mbx_lock);
1516
1517        /* Allow time for pending master requests to run */
1518        if (mac->ops.reset_hw(hw))
1519                dev_err(&adapter->pdev->dev, "PF still resetting\n");
1520
1521        mac->ops.init_hw(hw);
1522
1523        spin_unlock_bh(&hw->mbx_lock);
1524
1525        if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1526                memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1527                       netdev->addr_len);
1528                memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1529                       netdev->addr_len);
1530        }
1531
1532        adapter->last_reset = jiffies;
1533}
1534
1535int igbvf_up(struct igbvf_adapter *adapter)
1536{
1537        struct e1000_hw *hw = &adapter->hw;
1538
1539        /* hardware has been reset, we need to reload some things */
1540        igbvf_configure(adapter);
1541
1542        clear_bit(__IGBVF_DOWN, &adapter->state);
1543
1544        napi_enable(&adapter->rx_ring->napi);
1545        if (adapter->msix_entries)
1546                igbvf_configure_msix(adapter);
1547
1548        /* Clear any pending interrupts. */
1549        er32(EICR);
1550        igbvf_irq_enable(adapter);
1551
1552        /* start the watchdog */
1553        hw->mac.get_link_status = 1;
1554        mod_timer(&adapter->watchdog_timer, jiffies + 1);
1555
1556        return 0;
1557}
1558
1559void igbvf_down(struct igbvf_adapter *adapter)
1560{
1561        struct net_device *netdev = adapter->netdev;
1562        struct e1000_hw *hw = &adapter->hw;
1563        u32 rxdctl, txdctl;
1564
1565        /* signal that we're down so the interrupt handler does not
1566         * reschedule our watchdog timer
1567         */
1568        set_bit(__IGBVF_DOWN, &adapter->state);
1569
1570        /* disable receives in the hardware */
1571        rxdctl = er32(RXDCTL(0));
1572        ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1573
1574        netif_carrier_off(netdev);
1575        netif_stop_queue(netdev);
1576
1577        /* disable transmits in the hardware */
1578        txdctl = er32(TXDCTL(0));
1579        ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1580
1581        /* flush both disables and wait for them to finish */
1582        e1e_flush();
1583        msleep(10);
1584
1585        napi_disable(&adapter->rx_ring->napi);
1586
1587        igbvf_irq_disable(adapter);
1588
1589        del_timer_sync(&adapter->watchdog_timer);
1590
1591        /* record the stats before reset*/
1592        igbvf_update_stats(adapter);
1593
1594        adapter->link_speed = 0;
1595        adapter->link_duplex = 0;
1596
1597        igbvf_reset(adapter);
1598        igbvf_clean_tx_ring(adapter->tx_ring);
1599        igbvf_clean_rx_ring(adapter->rx_ring);
1600}
1601
1602void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1603{
1604        might_sleep();
1605        while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1606                usleep_range(1000, 2000);
1607        igbvf_down(adapter);
1608        igbvf_up(adapter);
1609        clear_bit(__IGBVF_RESETTING, &adapter->state);
1610}
1611
1612/**
1613 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1614 * @adapter: board private structure to initialize
1615 *
1616 * igbvf_sw_init initializes the Adapter private data structure.
1617 * Fields are initialized based on PCI device information and
1618 * OS network device settings (MTU size).
1619 **/
1620static int igbvf_sw_init(struct igbvf_adapter *adapter)
1621{
1622        struct net_device *netdev = adapter->netdev;
1623        s32 rc;
1624
1625        adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1626        adapter->rx_ps_hdr_size = 0;
1627        adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1628        adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1629
1630        adapter->tx_int_delay = 8;
1631        adapter->tx_abs_int_delay = 32;
1632        adapter->rx_int_delay = 0;
1633        adapter->rx_abs_int_delay = 8;
1634        adapter->requested_itr = 3;
1635        adapter->current_itr = IGBVF_START_ITR;
1636
1637        /* Set various function pointers */
1638        adapter->ei->init_ops(&adapter->hw);
1639
1640        rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1641        if (rc)
1642                return rc;
1643
1644        rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1645        if (rc)
1646                return rc;
1647
1648        igbvf_set_interrupt_capability(adapter);
1649
1650        if (igbvf_alloc_queues(adapter))
1651                return -ENOMEM;
1652
1653        spin_lock_init(&adapter->tx_queue_lock);
1654
1655        /* Explicitly disable IRQ since the NIC can be in any state. */
1656        igbvf_irq_disable(adapter);
1657
1658        spin_lock_init(&adapter->stats_lock);
1659        spin_lock_init(&adapter->hw.mbx_lock);
1660
1661        set_bit(__IGBVF_DOWN, &adapter->state);
1662        return 0;
1663}
1664
1665static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1666{
1667        struct e1000_hw *hw = &adapter->hw;
1668
1669        adapter->stats.last_gprc = er32(VFGPRC);
1670        adapter->stats.last_gorc = er32(VFGORC);
1671        adapter->stats.last_gptc = er32(VFGPTC);
1672        adapter->stats.last_gotc = er32(VFGOTC);
1673        adapter->stats.last_mprc = er32(VFMPRC);
1674        adapter->stats.last_gotlbc = er32(VFGOTLBC);
1675        adapter->stats.last_gptlbc = er32(VFGPTLBC);
1676        adapter->stats.last_gorlbc = er32(VFGORLBC);
1677        adapter->stats.last_gprlbc = er32(VFGPRLBC);
1678
1679        adapter->stats.base_gprc = er32(VFGPRC);
1680        adapter->stats.base_gorc = er32(VFGORC);
1681        adapter->stats.base_gptc = er32(VFGPTC);
1682        adapter->stats.base_gotc = er32(VFGOTC);
1683        adapter->stats.base_mprc = er32(VFMPRC);
1684        adapter->stats.base_gotlbc = er32(VFGOTLBC);
1685        adapter->stats.base_gptlbc = er32(VFGPTLBC);
1686        adapter->stats.base_gorlbc = er32(VFGORLBC);
1687        adapter->stats.base_gprlbc = er32(VFGPRLBC);
1688}
1689
1690/**
1691 * igbvf_open - Called when a network interface is made active
1692 * @netdev: network interface device structure
1693 *
1694 * Returns 0 on success, negative value on failure
1695 *
1696 * The open entry point is called when a network interface is made
1697 * active by the system (IFF_UP).  At this point all resources needed
1698 * for transmit and receive operations are allocated, the interrupt
1699 * handler is registered with the OS, the watchdog timer is started,
1700 * and the stack is notified that the interface is ready.
1701 **/
1702static int igbvf_open(struct net_device *netdev)
1703{
1704        struct igbvf_adapter *adapter = netdev_priv(netdev);
1705        struct e1000_hw *hw = &adapter->hw;
1706        int err;
1707
1708        /* disallow open during test */
1709        if (test_bit(__IGBVF_TESTING, &adapter->state))
1710                return -EBUSY;
1711
1712        /* allocate transmit descriptors */
1713        err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1714        if (err)
1715                goto err_setup_tx;
1716
1717        /* allocate receive descriptors */
1718        err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1719        if (err)
1720                goto err_setup_rx;
1721
1722        /* before we allocate an interrupt, we must be ready to handle it.
1723         * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1724         * as soon as we call pci_request_irq, so we have to setup our
1725         * clean_rx handler before we do so.
1726         */
1727        igbvf_configure(adapter);
1728
1729        err = igbvf_request_irq(adapter);
1730        if (err)
1731                goto err_req_irq;
1732
1733        /* From here on the code is the same as igbvf_up() */
1734        clear_bit(__IGBVF_DOWN, &adapter->state);
1735
1736        napi_enable(&adapter->rx_ring->napi);
1737
1738        /* clear any pending interrupts */
1739        er32(EICR);
1740
1741        igbvf_irq_enable(adapter);
1742
1743        /* start the watchdog */
1744        hw->mac.get_link_status = 1;
1745        mod_timer(&adapter->watchdog_timer, jiffies + 1);
1746
1747        return 0;
1748
1749err_req_irq:
1750        igbvf_free_rx_resources(adapter->rx_ring);
1751err_setup_rx:
1752        igbvf_free_tx_resources(adapter->tx_ring);
1753err_setup_tx:
1754        igbvf_reset(adapter);
1755
1756        return err;
1757}
1758
1759/**
1760 * igbvf_close - Disables a network interface
1761 * @netdev: network interface device structure
1762 *
1763 * Returns 0, this is not allowed to fail
1764 *
1765 * The close entry point is called when an interface is de-activated
1766 * by the OS.  The hardware is still under the drivers control, but
1767 * needs to be disabled.  A global MAC reset is issued to stop the
1768 * hardware, and all transmit and receive resources are freed.
1769 **/
1770static int igbvf_close(struct net_device *netdev)
1771{
1772        struct igbvf_adapter *adapter = netdev_priv(netdev);
1773
1774        WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1775        igbvf_down(adapter);
1776
1777        igbvf_free_irq(adapter);
1778
1779        igbvf_free_tx_resources(adapter->tx_ring);
1780        igbvf_free_rx_resources(adapter->rx_ring);
1781
1782        return 0;
1783}
1784
1785/**
1786 * igbvf_set_mac - Change the Ethernet Address of the NIC
1787 * @netdev: network interface device structure
1788 * @p: pointer to an address structure
1789 *
1790 * Returns 0 on success, negative on failure
1791 **/
1792static int igbvf_set_mac(struct net_device *netdev, void *p)
1793{
1794        struct igbvf_adapter *adapter = netdev_priv(netdev);
1795        struct e1000_hw *hw = &adapter->hw;
1796        struct sockaddr *addr = p;
1797
1798        if (!is_valid_ether_addr(addr->sa_data))
1799                return -EADDRNOTAVAIL;
1800
1801        memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1802
1803        spin_lock_bh(&hw->mbx_lock);
1804
1805        hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1806
1807        spin_unlock_bh(&hw->mbx_lock);
1808
1809        if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1810                return -EADDRNOTAVAIL;
1811
1812        memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1813
1814        return 0;
1815}
1816
1817#define UPDATE_VF_COUNTER(reg, name) \
1818{ \
1819        u32 current_counter = er32(reg); \
1820        if (current_counter < adapter->stats.last_##name) \
1821                adapter->stats.name += 0x100000000LL; \
1822        adapter->stats.last_##name = current_counter; \
1823        adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1824        adapter->stats.name |= current_counter; \
1825}
1826
1827/**
1828 * igbvf_update_stats - Update the board statistics counters
1829 * @adapter: board private structure
1830**/
1831void igbvf_update_stats(struct igbvf_adapter *adapter)
1832{
1833        struct e1000_hw *hw = &adapter->hw;
1834        struct pci_dev *pdev = adapter->pdev;
1835
1836        /* Prevent stats update while adapter is being reset, link is down
1837         * or if the pci connection is down.
1838         */
1839        if (adapter->link_speed == 0)
1840                return;
1841
1842        if (test_bit(__IGBVF_RESETTING, &adapter->state))
1843                return;
1844
1845        if (pci_channel_offline(pdev))
1846                return;
1847
1848        UPDATE_VF_COUNTER(VFGPRC, gprc);
1849        UPDATE_VF_COUNTER(VFGORC, gorc);
1850        UPDATE_VF_COUNTER(VFGPTC, gptc);
1851        UPDATE_VF_COUNTER(VFGOTC, gotc);
1852        UPDATE_VF_COUNTER(VFMPRC, mprc);
1853        UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1854        UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1855        UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1856        UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1857
1858        /* Fill out the OS statistics structure */
1859        adapter->netdev->stats.multicast = adapter->stats.mprc;
1860}
1861
1862static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1863{
1864        dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1865                 adapter->link_speed,
1866                 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1867}
1868
1869static bool igbvf_has_link(struct igbvf_adapter *adapter)
1870{
1871        struct e1000_hw *hw = &adapter->hw;
1872        s32 ret_val = E1000_SUCCESS;
1873        bool link_active;
1874
1875        /* If interface is down, stay link down */
1876        if (test_bit(__IGBVF_DOWN, &adapter->state))
1877                return false;
1878
1879        spin_lock_bh(&hw->mbx_lock);
1880
1881        ret_val = hw->mac.ops.check_for_link(hw);
1882
1883        spin_unlock_bh(&hw->mbx_lock);
1884
1885        link_active = !hw->mac.get_link_status;
1886
1887        /* if check for link returns error we will need to reset */
1888        if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1889                schedule_work(&adapter->reset_task);
1890
1891        return link_active;
1892}
1893
1894/**
1895 * igbvf_watchdog - Timer Call-back
1896 * @data: pointer to adapter cast into an unsigned long
1897 **/
1898static void igbvf_watchdog(struct timer_list *t)
1899{
1900        struct igbvf_adapter *adapter = from_timer(adapter, t, watchdog_timer);
1901
1902        /* Do the rest outside of interrupt context */
1903        schedule_work(&adapter->watchdog_task);
1904}
1905
1906static void igbvf_watchdog_task(struct work_struct *work)
1907{
1908        struct igbvf_adapter *adapter = container_of(work,
1909                                                     struct igbvf_adapter,
1910                                                     watchdog_task);
1911        struct net_device *netdev = adapter->netdev;
1912        struct e1000_mac_info *mac = &adapter->hw.mac;
1913        struct igbvf_ring *tx_ring = adapter->tx_ring;
1914        struct e1000_hw *hw = &adapter->hw;
1915        u32 link;
1916        int tx_pending = 0;
1917
1918        link = igbvf_has_link(adapter);
1919
1920        if (link) {
1921                if (!netif_carrier_ok(netdev)) {
1922                        mac->ops.get_link_up_info(&adapter->hw,
1923                                                  &adapter->link_speed,
1924                                                  &adapter->link_duplex);
1925                        igbvf_print_link_info(adapter);
1926
1927                        netif_carrier_on(netdev);
1928                        netif_wake_queue(netdev);
1929                }
1930        } else {
1931                if (netif_carrier_ok(netdev)) {
1932                        adapter->link_speed = 0;
1933                        adapter->link_duplex = 0;
1934                        dev_info(&adapter->pdev->dev, "Link is Down\n");
1935                        netif_carrier_off(netdev);
1936                        netif_stop_queue(netdev);
1937                }
1938        }
1939
1940        if (netif_carrier_ok(netdev)) {
1941                igbvf_update_stats(adapter);
1942        } else {
1943                tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1944                              tx_ring->count);
1945                if (tx_pending) {
1946                        /* We've lost link, so the controller stops DMA,
1947                         * but we've got queued Tx work that's never going
1948                         * to get done, so reset controller to flush Tx.
1949                         * (Do the reset outside of interrupt context).
1950                         */
1951                        adapter->tx_timeout_count++;
1952                        schedule_work(&adapter->reset_task);
1953                }
1954        }
1955
1956        /* Cause software interrupt to ensure Rx ring is cleaned */
1957        ew32(EICS, adapter->rx_ring->eims_value);
1958
1959        /* Reset the timer */
1960        if (!test_bit(__IGBVF_DOWN, &adapter->state))
1961                mod_timer(&adapter->watchdog_timer,
1962                          round_jiffies(jiffies + (2 * HZ)));
1963}
1964
1965#define IGBVF_TX_FLAGS_CSUM             0x00000001
1966#define IGBVF_TX_FLAGS_VLAN             0x00000002
1967#define IGBVF_TX_FLAGS_TSO              0x00000004
1968#define IGBVF_TX_FLAGS_IPV4             0x00000008
1969#define IGBVF_TX_FLAGS_VLAN_MASK        0xffff0000
1970#define IGBVF_TX_FLAGS_VLAN_SHIFT       16
1971
1972static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens,
1973                              u32 type_tucmd, u32 mss_l4len_idx)
1974{
1975        struct e1000_adv_tx_context_desc *context_desc;
1976        struct igbvf_buffer *buffer_info;
1977        u16 i = tx_ring->next_to_use;
1978
1979        context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1980        buffer_info = &tx_ring->buffer_info[i];
1981
1982        i++;
1983        tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1984
1985        /* set bits to identify this as an advanced context descriptor */
1986        type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1987
1988        context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
1989        context_desc->seqnum_seed       = 0;
1990        context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
1991        context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
1992
1993        buffer_info->time_stamp = jiffies;
1994        buffer_info->dma = 0;
1995}
1996
1997static int igbvf_tso(struct igbvf_ring *tx_ring,
1998                     struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1999{
2000        u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
2001        union {
2002                struct iphdr *v4;
2003                struct ipv6hdr *v6;
2004                unsigned char *hdr;
2005        } ip;
2006        union {
2007                struct tcphdr *tcp;
2008                unsigned char *hdr;
2009        } l4;
2010        u32 paylen, l4_offset;
2011        int err;
2012
2013        if (skb->ip_summed != CHECKSUM_PARTIAL)
2014                return 0;
2015
2016        if (!skb_is_gso(skb))
2017                return 0;
2018
2019        err = skb_cow_head(skb, 0);
2020        if (err < 0)
2021                return err;
2022
2023        ip.hdr = skb_network_header(skb);
2024        l4.hdr = skb_checksum_start(skb);
2025
2026        /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2027        type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2028
2029        /* initialize outer IP header fields */
2030        if (ip.v4->version == 4) {
2031                unsigned char *csum_start = skb_checksum_start(skb);
2032                unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
2033
2034                /* IP header will have to cancel out any data that
2035                 * is not a part of the outer IP header
2036                 */
2037                ip.v4->check = csum_fold(csum_partial(trans_start,
2038                                                      csum_start - trans_start,
2039                                                      0));
2040                type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
2041
2042                ip.v4->tot_len = 0;
2043        } else {
2044                ip.v6->payload_len = 0;
2045        }
2046
2047        /* determine offset of inner transport header */
2048        l4_offset = l4.hdr - skb->data;
2049
2050        /* compute length of segmentation header */
2051        *hdr_len = (l4.tcp->doff * 4) + l4_offset;
2052
2053        /* remove payload length from inner checksum */
2054        paylen = skb->len - l4_offset;
2055        csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
2056
2057        /* MSS L4LEN IDX */
2058        mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
2059        mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
2060
2061        /* VLAN MACLEN IPLEN */
2062        vlan_macip_lens = l4.hdr - ip.hdr;
2063        vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
2064        vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2065
2066        igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
2067
2068        return 1;
2069}
2070
2071static inline bool igbvf_ipv6_csum_is_sctp(struct sk_buff *skb)
2072{
2073        unsigned int offset = 0;
2074
2075        ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
2076
2077        return offset == skb_checksum_start_offset(skb);
2078}
2079
2080static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb,
2081                          u32 tx_flags, __be16 protocol)
2082{
2083        u32 vlan_macip_lens = 0;
2084        u32 type_tucmd = 0;
2085
2086        if (skb->ip_summed != CHECKSUM_PARTIAL) {
2087csum_failed:
2088                if (!(tx_flags & IGBVF_TX_FLAGS_VLAN))
2089                        return false;
2090                goto no_csum;
2091        }
2092
2093        switch (skb->csum_offset) {
2094        case offsetof(struct tcphdr, check):
2095                type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2096                /* fall through */
2097        case offsetof(struct udphdr, check):
2098                break;
2099        case offsetof(struct sctphdr, checksum):
2100                /* validate that this is actually an SCTP request */
2101                if (((protocol == htons(ETH_P_IP)) &&
2102                     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
2103                    ((protocol == htons(ETH_P_IPV6)) &&
2104                     igbvf_ipv6_csum_is_sctp(skb))) {
2105                        type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
2106                        break;
2107                }
2108                /* fall through */
2109        default:
2110                skb_checksum_help(skb);
2111                goto csum_failed;
2112        }
2113
2114        vlan_macip_lens = skb_checksum_start_offset(skb) -
2115                          skb_network_offset(skb);
2116no_csum:
2117        vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
2118        vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2119
2120        igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
2121        return true;
2122}
2123
2124static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2125{
2126        struct igbvf_adapter *adapter = netdev_priv(netdev);
2127
2128        /* there is enough descriptors then we don't need to worry  */
2129        if (igbvf_desc_unused(adapter->tx_ring) >= size)
2130                return 0;
2131
2132        netif_stop_queue(netdev);
2133
2134        /* Herbert's original patch had:
2135         *  smp_mb__after_netif_stop_queue();
2136         * but since that doesn't exist yet, just open code it.
2137         */
2138        smp_mb();
2139
2140        /* We need to check again just in case room has been made available */
2141        if (igbvf_desc_unused(adapter->tx_ring) < size)
2142                return -EBUSY;
2143
2144        netif_wake_queue(netdev);
2145
2146        ++adapter->restart_queue;
2147        return 0;
2148}
2149
2150#define IGBVF_MAX_TXD_PWR       16
2151#define IGBVF_MAX_DATA_PER_TXD  (1u << IGBVF_MAX_TXD_PWR)
2152
2153static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2154                                   struct igbvf_ring *tx_ring,
2155                                   struct sk_buff *skb)
2156{
2157        struct igbvf_buffer *buffer_info;
2158        struct pci_dev *pdev = adapter->pdev;
2159        unsigned int len = skb_headlen(skb);
2160        unsigned int count = 0, i;
2161        unsigned int f;
2162
2163        i = tx_ring->next_to_use;
2164
2165        buffer_info = &tx_ring->buffer_info[i];
2166        BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2167        buffer_info->length = len;
2168        /* set time_stamp *before* dma to help avoid a possible race */
2169        buffer_info->time_stamp = jiffies;
2170        buffer_info->mapped_as_page = false;
2171        buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2172                                          DMA_TO_DEVICE);
2173        if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2174                goto dma_error;
2175
2176        for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2177                const struct skb_frag_struct *frag;
2178
2179                count++;
2180                i++;
2181                if (i == tx_ring->count)
2182                        i = 0;
2183
2184                frag = &skb_shinfo(skb)->frags[f];
2185                len = skb_frag_size(frag);
2186
2187                buffer_info = &tx_ring->buffer_info[i];
2188                BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2189                buffer_info->length = len;
2190                buffer_info->time_stamp = jiffies;
2191                buffer_info->mapped_as_page = true;
2192                buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2193                                                    DMA_TO_DEVICE);
2194                if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2195                        goto dma_error;
2196        }
2197
2198        tx_ring->buffer_info[i].skb = skb;
2199
2200        return ++count;
2201
2202dma_error:
2203        dev_err(&pdev->dev, "TX DMA map failed\n");
2204
2205        /* clear timestamp and dma mappings for failed buffer_info mapping */
2206        buffer_info->dma = 0;
2207        buffer_info->time_stamp = 0;
2208        buffer_info->length = 0;
2209        buffer_info->mapped_as_page = false;
2210        if (count)
2211                count--;
2212
2213        /* clear timestamp and dma mappings for remaining portion of packet */
2214        while (count--) {
2215                if (i == 0)
2216                        i += tx_ring->count;
2217                i--;
2218                buffer_info = &tx_ring->buffer_info[i];
2219                igbvf_put_txbuf(adapter, buffer_info);
2220        }
2221
2222        return 0;
2223}
2224
2225static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2226                                      struct igbvf_ring *tx_ring,
2227                                      int tx_flags, int count,
2228                                      unsigned int first, u32 paylen,
2229                                      u8 hdr_len)
2230{
2231        union e1000_adv_tx_desc *tx_desc = NULL;
2232        struct igbvf_buffer *buffer_info;
2233        u32 olinfo_status = 0, cmd_type_len;
2234        unsigned int i;
2235
2236        cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2237                        E1000_ADVTXD_DCMD_DEXT);
2238
2239        if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2240                cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2241
2242        if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2243                cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2244
2245                /* insert tcp checksum */
2246                olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2247
2248                /* insert ip checksum */
2249                if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2250                        olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2251
2252        } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2253                olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2254        }
2255
2256        olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2257
2258        i = tx_ring->next_to_use;
2259        while (count--) {
2260                buffer_info = &tx_ring->buffer_info[i];
2261                tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2262                tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2263                tx_desc->read.cmd_type_len =
2264                         cpu_to_le32(cmd_type_len | buffer_info->length);
2265                tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2266                i++;
2267                if (i == tx_ring->count)
2268                        i = 0;
2269        }
2270
2271        tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2272        /* Force memory writes to complete before letting h/w
2273         * know there are new descriptors to fetch.  (Only
2274         * applicable for weak-ordered memory model archs,
2275         * such as IA-64).
2276         */
2277        wmb();
2278
2279        tx_ring->buffer_info[first].next_to_watch = tx_desc;
2280        tx_ring->next_to_use = i;
2281        writel(i, adapter->hw.hw_addr + tx_ring->tail);
2282        /* we need this if more than one processor can write to our tail
2283         * at a time, it synchronizes IO on IA64/Altix systems
2284         */
2285        mmiowb();
2286}
2287
2288static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2289                                             struct net_device *netdev,
2290                                             struct igbvf_ring *tx_ring)
2291{
2292        struct igbvf_adapter *adapter = netdev_priv(netdev);
2293        unsigned int first, tx_flags = 0;
2294        u8 hdr_len = 0;
2295        int count = 0;
2296        int tso = 0;
2297        __be16 protocol = vlan_get_protocol(skb);
2298
2299        if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2300                dev_kfree_skb_any(skb);
2301                return NETDEV_TX_OK;
2302        }
2303
2304        if (skb->len <= 0) {
2305                dev_kfree_skb_any(skb);
2306                return NETDEV_TX_OK;
2307        }
2308
2309        /* need: count + 4 desc gap to keep tail from touching
2310         *       + 2 desc gap to keep tail from touching head,
2311         *       + 1 desc for skb->data,
2312         *       + 1 desc for context descriptor,
2313         * head, otherwise try next time
2314         */
2315        if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2316                /* this is a hard error */
2317                return NETDEV_TX_BUSY;
2318        }
2319
2320        if (skb_vlan_tag_present(skb)) {
2321                tx_flags |= IGBVF_TX_FLAGS_VLAN;
2322                tx_flags |= (skb_vlan_tag_get(skb) <<
2323                             IGBVF_TX_FLAGS_VLAN_SHIFT);
2324        }
2325
2326        if (protocol == htons(ETH_P_IP))
2327                tx_flags |= IGBVF_TX_FLAGS_IPV4;
2328
2329        first = tx_ring->next_to_use;
2330
2331        tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len);
2332        if (unlikely(tso < 0)) {
2333                dev_kfree_skb_any(skb);
2334                return NETDEV_TX_OK;
2335        }
2336
2337        if (tso)
2338                tx_flags |= IGBVF_TX_FLAGS_TSO;
2339        else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) &&
2340                 (skb->ip_summed == CHECKSUM_PARTIAL))
2341                tx_flags |= IGBVF_TX_FLAGS_CSUM;
2342
2343        /* count reflects descriptors mapped, if 0 then mapping error
2344         * has occurred and we need to rewind the descriptor queue
2345         */
2346        count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2347
2348        if (count) {
2349                igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2350                                   first, skb->len, hdr_len);
2351                /* Make sure there is space in the ring for the next send. */
2352                igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2353        } else {
2354                dev_kfree_skb_any(skb);
2355                tx_ring->buffer_info[first].time_stamp = 0;
2356                tx_ring->next_to_use = first;
2357        }
2358
2359        return NETDEV_TX_OK;
2360}
2361
2362static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2363                                    struct net_device *netdev)
2364{
2365        struct igbvf_adapter *adapter = netdev_priv(netdev);
2366        struct igbvf_ring *tx_ring;
2367
2368        if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2369                dev_kfree_skb_any(skb);
2370                return NETDEV_TX_OK;
2371        }
2372
2373        tx_ring = &adapter->tx_ring[0];
2374
2375        return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2376}
2377
2378/**
2379 * igbvf_tx_timeout - Respond to a Tx Hang
2380 * @netdev: network interface device structure
2381 **/
2382static void igbvf_tx_timeout(struct net_device *netdev)
2383{
2384        struct igbvf_adapter *adapter = netdev_priv(netdev);
2385
2386        /* Do the reset outside of interrupt context */
2387        adapter->tx_timeout_count++;
2388        schedule_work(&adapter->reset_task);
2389}
2390
2391static void igbvf_reset_task(struct work_struct *work)
2392{
2393        struct igbvf_adapter *adapter;
2394
2395        adapter = container_of(work, struct igbvf_adapter, reset_task);
2396
2397        igbvf_reinit_locked(adapter);
2398}
2399
2400/**
2401 * igbvf_change_mtu - Change the Maximum Transfer Unit
2402 * @netdev: network interface device structure
2403 * @new_mtu: new value for maximum frame size
2404 *
2405 * Returns 0 on success, negative on failure
2406 **/
2407static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2408{
2409        struct igbvf_adapter *adapter = netdev_priv(netdev);
2410        int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2411
2412        while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2413                usleep_range(1000, 2000);
2414        /* igbvf_down has a dependency on max_frame_size */
2415        adapter->max_frame_size = max_frame;
2416        if (netif_running(netdev))
2417                igbvf_down(adapter);
2418
2419        /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2420         * means we reserve 2 more, this pushes us to allocate from the next
2421         * larger slab size.
2422         * i.e. RXBUFFER_2048 --> size-4096 slab
2423         * However with the new *_jumbo_rx* routines, jumbo receives will use
2424         * fragmented skbs
2425         */
2426
2427        if (max_frame <= 1024)
2428                adapter->rx_buffer_len = 1024;
2429        else if (max_frame <= 2048)
2430                adapter->rx_buffer_len = 2048;
2431        else
2432#if (PAGE_SIZE / 2) > 16384
2433                adapter->rx_buffer_len = 16384;
2434#else
2435                adapter->rx_buffer_len = PAGE_SIZE / 2;
2436#endif
2437
2438        /* adjust allocation if LPE protects us, and we aren't using SBP */
2439        if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2440            (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2441                adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2442                                         ETH_FCS_LEN;
2443
2444        dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2445                 netdev->mtu, new_mtu);
2446        netdev->mtu = new_mtu;
2447
2448        if (netif_running(netdev))
2449                igbvf_up(adapter);
2450        else
2451                igbvf_reset(adapter);
2452
2453        clear_bit(__IGBVF_RESETTING, &adapter->state);
2454
2455        return 0;
2456}
2457
2458static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2459{
2460        switch (cmd) {
2461        default:
2462                return -EOPNOTSUPP;
2463        }
2464}
2465
2466static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2467{
2468        struct net_device *netdev = pci_get_drvdata(pdev);
2469        struct igbvf_adapter *adapter = netdev_priv(netdev);
2470#ifdef CONFIG_PM
2471        int retval = 0;
2472#endif
2473
2474        netif_device_detach(netdev);
2475
2476        if (netif_running(netdev)) {
2477                WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2478                igbvf_down(adapter);
2479                igbvf_free_irq(adapter);
2480        }
2481
2482#ifdef CONFIG_PM
2483        retval = pci_save_state(pdev);
2484        if (retval)
2485                return retval;
2486#endif
2487
2488        pci_disable_device(pdev);
2489
2490        return 0;
2491}
2492
2493#ifdef CONFIG_PM
2494static int igbvf_resume(struct pci_dev *pdev)
2495{
2496        struct net_device *netdev = pci_get_drvdata(pdev);
2497        struct igbvf_adapter *adapter = netdev_priv(netdev);
2498        u32 err;
2499
2500        pci_restore_state(pdev);
2501        err = pci_enable_device_mem(pdev);
2502        if (err) {
2503                dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2504                return err;
2505        }
2506
2507        pci_set_master(pdev);
2508
2509        if (netif_running(netdev)) {
2510                err = igbvf_request_irq(adapter);
2511                if (err)
2512                        return err;
2513        }
2514
2515        igbvf_reset(adapter);
2516
2517        if (netif_running(netdev))
2518                igbvf_up(adapter);
2519
2520        netif_device_attach(netdev);
2521
2522        return 0;
2523}
2524#endif
2525
2526static void igbvf_shutdown(struct pci_dev *pdev)
2527{
2528        igbvf_suspend(pdev, PMSG_SUSPEND);
2529}
2530
2531#ifdef CONFIG_NET_POLL_CONTROLLER
2532/* Polling 'interrupt' - used by things like netconsole to send skbs
2533 * without having to re-enable interrupts. It's not called while
2534 * the interrupt routine is executing.
2535 */
2536static void igbvf_netpoll(struct net_device *netdev)
2537{
2538        struct igbvf_adapter *adapter = netdev_priv(netdev);
2539
2540        disable_irq(adapter->pdev->irq);
2541
2542        igbvf_clean_tx_irq(adapter->tx_ring);
2543
2544        enable_irq(adapter->pdev->irq);
2545}
2546#endif
2547
2548/**
2549 * igbvf_io_error_detected - called when PCI error is detected
2550 * @pdev: Pointer to PCI device
2551 * @state: The current pci connection state
2552 *
2553 * This function is called after a PCI bus error affecting
2554 * this device has been detected.
2555 */
2556static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2557                                                pci_channel_state_t state)
2558{
2559        struct net_device *netdev = pci_get_drvdata(pdev);
2560        struct igbvf_adapter *adapter = netdev_priv(netdev);
2561
2562        netif_device_detach(netdev);
2563
2564        if (state == pci_channel_io_perm_failure)
2565                return PCI_ERS_RESULT_DISCONNECT;
2566
2567        if (netif_running(netdev))
2568                igbvf_down(adapter);
2569        pci_disable_device(pdev);
2570
2571        /* Request a slot slot reset. */
2572        return PCI_ERS_RESULT_NEED_RESET;
2573}
2574
2575/**
2576 * igbvf_io_slot_reset - called after the pci bus has been reset.
2577 * @pdev: Pointer to PCI device
2578 *
2579 * Restart the card from scratch, as if from a cold-boot. Implementation
2580 * resembles the first-half of the igbvf_resume routine.
2581 */
2582static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2583{
2584        struct net_device *netdev = pci_get_drvdata(pdev);
2585        struct igbvf_adapter *adapter = netdev_priv(netdev);
2586
2587        if (pci_enable_device_mem(pdev)) {
2588                dev_err(&pdev->dev,
2589                        "Cannot re-enable PCI device after reset.\n");
2590                return PCI_ERS_RESULT_DISCONNECT;
2591        }
2592        pci_set_master(pdev);
2593
2594        igbvf_reset(adapter);
2595
2596        return PCI_ERS_RESULT_RECOVERED;
2597}
2598
2599/**
2600 * igbvf_io_resume - called when traffic can start flowing again.
2601 * @pdev: Pointer to PCI device
2602 *
2603 * This callback is called when the error recovery driver tells us that
2604 * its OK to resume normal operation. Implementation resembles the
2605 * second-half of the igbvf_resume routine.
2606 */
2607static void igbvf_io_resume(struct pci_dev *pdev)
2608{
2609        struct net_device *netdev = pci_get_drvdata(pdev);
2610        struct igbvf_adapter *adapter = netdev_priv(netdev);
2611
2612        if (netif_running(netdev)) {
2613                if (igbvf_up(adapter)) {
2614                        dev_err(&pdev->dev,
2615                                "can't bring device back up after reset\n");
2616                        return;
2617                }
2618        }
2619
2620        netif_device_attach(netdev);
2621}
2622
2623static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2624{
2625        struct e1000_hw *hw = &adapter->hw;
2626        struct net_device *netdev = adapter->netdev;
2627        struct pci_dev *pdev = adapter->pdev;
2628
2629        if (hw->mac.type == e1000_vfadapt_i350)
2630                dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2631        else
2632                dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2633        dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2634}
2635
2636static int igbvf_set_features(struct net_device *netdev,
2637                              netdev_features_t features)
2638{
2639        struct igbvf_adapter *adapter = netdev_priv(netdev);
2640
2641        if (features & NETIF_F_RXCSUM)
2642                adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2643        else
2644                adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2645
2646        return 0;
2647}
2648
2649#define IGBVF_MAX_MAC_HDR_LEN           127
2650#define IGBVF_MAX_NETWORK_HDR_LEN       511
2651
2652static netdev_features_t
2653igbvf_features_check(struct sk_buff *skb, struct net_device *dev,
2654                     netdev_features_t features)
2655{
2656        unsigned int network_hdr_len, mac_hdr_len;
2657
2658        /* Make certain the headers can be described by a context descriptor */
2659        mac_hdr_len = skb_network_header(skb) - skb->data;
2660        if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN))
2661                return features & ~(NETIF_F_HW_CSUM |
2662                                    NETIF_F_SCTP_CRC |
2663                                    NETIF_F_HW_VLAN_CTAG_TX |
2664                                    NETIF_F_TSO |
2665                                    NETIF_F_TSO6);
2666
2667        network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2668        if (unlikely(network_hdr_len >  IGBVF_MAX_NETWORK_HDR_LEN))
2669                return features & ~(NETIF_F_HW_CSUM |
2670                                    NETIF_F_SCTP_CRC |
2671                                    NETIF_F_TSO |
2672                                    NETIF_F_TSO6);
2673
2674        /* We can only support IPV4 TSO in tunnels if we can mangle the
2675         * inner IP ID field, so strip TSO if MANGLEID is not supported.
2676         */
2677        if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2678                features &= ~NETIF_F_TSO;
2679
2680        return features;
2681}
2682
2683static const struct net_device_ops igbvf_netdev_ops = {
2684        .ndo_open               = igbvf_open,
2685        .ndo_stop               = igbvf_close,
2686        .ndo_start_xmit         = igbvf_xmit_frame,
2687        .ndo_set_rx_mode        = igbvf_set_rx_mode,
2688        .ndo_set_mac_address    = igbvf_set_mac,
2689        .ndo_change_mtu         = igbvf_change_mtu,
2690        .ndo_do_ioctl           = igbvf_ioctl,
2691        .ndo_tx_timeout         = igbvf_tx_timeout,
2692        .ndo_vlan_rx_add_vid    = igbvf_vlan_rx_add_vid,
2693        .ndo_vlan_rx_kill_vid   = igbvf_vlan_rx_kill_vid,
2694#ifdef CONFIG_NET_POLL_CONTROLLER
2695        .ndo_poll_controller    = igbvf_netpoll,
2696#endif
2697        .ndo_set_features       = igbvf_set_features,
2698        .ndo_features_check     = igbvf_features_check,
2699};
2700
2701/**
2702 * igbvf_probe - Device Initialization Routine
2703 * @pdev: PCI device information struct
2704 * @ent: entry in igbvf_pci_tbl
2705 *
2706 * Returns 0 on success, negative on failure
2707 *
2708 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2709 * The OS initialization, configuring of the adapter private structure,
2710 * and a hardware reset occur.
2711 **/
2712static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2713{
2714        struct net_device *netdev;
2715        struct igbvf_adapter *adapter;
2716        struct e1000_hw *hw;
2717        const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2718
2719        static int cards_found;
2720        int err, pci_using_dac;
2721
2722        err = pci_enable_device_mem(pdev);
2723        if (err)
2724                return err;
2725
2726        pci_using_dac = 0;
2727        err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2728        if (!err) {
2729                pci_using_dac = 1;
2730        } else {
2731                err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2732                if (err) {
2733                        dev_err(&pdev->dev,
2734                                "No usable DMA configuration, aborting\n");
2735                        goto err_dma;
2736                }
2737        }
2738
2739        err = pci_request_regions(pdev, igbvf_driver_name);
2740        if (err)
2741                goto err_pci_reg;
2742
2743        pci_set_master(pdev);
2744
2745        err = -ENOMEM;
2746        netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2747        if (!netdev)
2748                goto err_alloc_etherdev;
2749
2750        SET_NETDEV_DEV(netdev, &pdev->dev);
2751
2752        pci_set_drvdata(pdev, netdev);
2753        adapter = netdev_priv(netdev);
2754        hw = &adapter->hw;
2755        adapter->netdev = netdev;
2756        adapter->pdev = pdev;
2757        adapter->ei = ei;
2758        adapter->pba = ei->pba;
2759        adapter->flags = ei->flags;
2760        adapter->hw.back = adapter;
2761        adapter->hw.mac.type = ei->mac;
2762        adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2763
2764        /* PCI config space info */
2765
2766        hw->vendor_id = pdev->vendor;
2767        hw->device_id = pdev->device;
2768        hw->subsystem_vendor_id = pdev->subsystem_vendor;
2769        hw->subsystem_device_id = pdev->subsystem_device;
2770        hw->revision_id = pdev->revision;
2771
2772        err = -EIO;
2773        adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2774                                      pci_resource_len(pdev, 0));
2775
2776        if (!adapter->hw.hw_addr)
2777                goto err_ioremap;
2778
2779        if (ei->get_variants) {
2780                err = ei->get_variants(adapter);
2781                if (err)
2782                        goto err_get_variants;
2783        }
2784
2785        /* setup adapter struct */
2786        err = igbvf_sw_init(adapter);
2787        if (err)
2788                goto err_sw_init;
2789
2790        /* construct the net_device struct */
2791        netdev->netdev_ops = &igbvf_netdev_ops;
2792
2793        igbvf_set_ethtool_ops(netdev);
2794        netdev->watchdog_timeo = 5 * HZ;
2795        strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2796
2797        adapter->bd_number = cards_found++;
2798
2799        netdev->hw_features = NETIF_F_SG |
2800                              NETIF_F_TSO |
2801                              NETIF_F_TSO6 |
2802                              NETIF_F_RXCSUM |
2803                              NETIF_F_HW_CSUM |
2804                              NETIF_F_SCTP_CRC;
2805
2806#define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2807                                    NETIF_F_GSO_GRE_CSUM | \
2808                                    NETIF_F_GSO_IPXIP4 | \
2809                                    NETIF_F_GSO_IPXIP6 | \
2810                                    NETIF_F_GSO_UDP_TUNNEL | \
2811                                    NETIF_F_GSO_UDP_TUNNEL_CSUM)
2812
2813        netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES;
2814        netdev->hw_features |= NETIF_F_GSO_PARTIAL |
2815                               IGBVF_GSO_PARTIAL_FEATURES;
2816
2817        netdev->features = netdev->hw_features;
2818
2819        if (pci_using_dac)
2820                netdev->features |= NETIF_F_HIGHDMA;
2821
2822        netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2823        netdev->mpls_features |= NETIF_F_HW_CSUM;
2824        netdev->hw_enc_features |= netdev->vlan_features;
2825
2826        /* set this bit last since it cannot be part of vlan_features */
2827        netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2828                            NETIF_F_HW_VLAN_CTAG_RX |
2829                            NETIF_F_HW_VLAN_CTAG_TX;
2830
2831        /* MTU range: 68 - 9216 */
2832        netdev->min_mtu = ETH_MIN_MTU;
2833        netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2834
2835        spin_lock_bh(&hw->mbx_lock);
2836
2837        /*reset the controller to put the device in a known good state */
2838        err = hw->mac.ops.reset_hw(hw);
2839        if (err) {
2840                dev_info(&pdev->dev,
2841                         "PF still in reset state. Is the PF interface up?\n");
2842        } else {
2843                err = hw->mac.ops.read_mac_addr(hw);
2844                if (err)
2845                        dev_info(&pdev->dev, "Error reading MAC address.\n");
2846                else if (is_zero_ether_addr(adapter->hw.mac.addr))
2847                        dev_info(&pdev->dev,
2848                                 "MAC address not assigned by administrator.\n");
2849                memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2850                       netdev->addr_len);
2851        }
2852
2853        spin_unlock_bh(&hw->mbx_lock);
2854
2855        if (!is_valid_ether_addr(netdev->dev_addr)) {
2856                dev_info(&pdev->dev, "Assigning random MAC address.\n");
2857                eth_hw_addr_random(netdev);
2858                memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2859                       netdev->addr_len);
2860        }
2861
2862        timer_setup(&adapter->watchdog_timer, igbvf_watchdog, 0);
2863
2864        INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2865        INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2866
2867        /* ring size defaults */
2868        adapter->rx_ring->count = 1024;
2869        adapter->tx_ring->count = 1024;
2870
2871        /* reset the hardware with the new settings */
2872        igbvf_reset(adapter);
2873
2874        /* set hardware-specific flags */
2875        if (adapter->hw.mac.type == e1000_vfadapt_i350)
2876                adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2877
2878        strcpy(netdev->name, "eth%d");
2879        err = register_netdev(netdev);
2880        if (err)
2881                goto err_hw_init;
2882
2883        /* tell the stack to leave us alone until igbvf_open() is called */
2884        netif_carrier_off(netdev);
2885        netif_stop_queue(netdev);
2886
2887        igbvf_print_device_info(adapter);
2888
2889        igbvf_initialize_last_counter_stats(adapter);
2890
2891        return 0;
2892
2893err_hw_init:
2894        kfree(adapter->tx_ring);
2895        kfree(adapter->rx_ring);
2896err_sw_init:
2897        igbvf_reset_interrupt_capability(adapter);
2898err_get_variants:
2899        iounmap(adapter->hw.hw_addr);
2900err_ioremap:
2901        free_netdev(netdev);
2902err_alloc_etherdev:
2903        pci_release_regions(pdev);
2904err_pci_reg:
2905err_dma:
2906        pci_disable_device(pdev);
2907        return err;
2908}
2909
2910/**
2911 * igbvf_remove - Device Removal Routine
2912 * @pdev: PCI device information struct
2913 *
2914 * igbvf_remove is called by the PCI subsystem to alert the driver
2915 * that it should release a PCI device.  The could be caused by a
2916 * Hot-Plug event, or because the driver is going to be removed from
2917 * memory.
2918 **/
2919static void igbvf_remove(struct pci_dev *pdev)
2920{
2921        struct net_device *netdev = pci_get_drvdata(pdev);
2922        struct igbvf_adapter *adapter = netdev_priv(netdev);
2923        struct e1000_hw *hw = &adapter->hw;
2924
2925        /* The watchdog timer may be rescheduled, so explicitly
2926         * disable it from being rescheduled.
2927         */
2928        set_bit(__IGBVF_DOWN, &adapter->state);
2929        del_timer_sync(&adapter->watchdog_timer);
2930
2931        cancel_work_sync(&adapter->reset_task);
2932        cancel_work_sync(&adapter->watchdog_task);
2933
2934        unregister_netdev(netdev);
2935
2936        igbvf_reset_interrupt_capability(adapter);
2937
2938        /* it is important to delete the NAPI struct prior to freeing the
2939         * Rx ring so that you do not end up with null pointer refs
2940         */
2941        netif_napi_del(&adapter->rx_ring->napi);
2942        kfree(adapter->tx_ring);
2943        kfree(adapter->rx_ring);
2944
2945        iounmap(hw->hw_addr);
2946        if (hw->flash_address)
2947                iounmap(hw->flash_address);
2948        pci_release_regions(pdev);
2949
2950        free_netdev(netdev);
2951
2952        pci_disable_device(pdev);
2953}
2954
2955/* PCI Error Recovery (ERS) */
2956static const struct pci_error_handlers igbvf_err_handler = {
2957        .error_detected = igbvf_io_error_detected,
2958        .slot_reset = igbvf_io_slot_reset,
2959        .resume = igbvf_io_resume,
2960};
2961
2962static const struct pci_device_id igbvf_pci_tbl[] = {
2963        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2964        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2965        { } /* terminate list */
2966};
2967MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2968
2969/* PCI Device API Driver */
2970static struct pci_driver igbvf_driver = {
2971        .name           = igbvf_driver_name,
2972        .id_table       = igbvf_pci_tbl,
2973        .probe          = igbvf_probe,
2974        .remove         = igbvf_remove,
2975#ifdef CONFIG_PM
2976        /* Power Management Hooks */
2977        .suspend        = igbvf_suspend,
2978        .resume         = igbvf_resume,
2979#endif
2980        .shutdown       = igbvf_shutdown,
2981        .err_handler    = &igbvf_err_handler
2982};
2983
2984/**
2985 * igbvf_init_module - Driver Registration Routine
2986 *
2987 * igbvf_init_module is the first routine called when the driver is
2988 * loaded. All it does is register with the PCI subsystem.
2989 **/
2990static int __init igbvf_init_module(void)
2991{
2992        int ret;
2993
2994        pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
2995        pr_info("%s\n", igbvf_copyright);
2996
2997        ret = pci_register_driver(&igbvf_driver);
2998
2999        return ret;
3000}
3001module_init(igbvf_init_module);
3002
3003/**
3004 * igbvf_exit_module - Driver Exit Cleanup Routine
3005 *
3006 * igbvf_exit_module is called just before the driver is removed
3007 * from memory.
3008 **/
3009static void __exit igbvf_exit_module(void)
3010{
3011        pci_unregister_driver(&igbvf_driver);
3012}
3013module_exit(igbvf_exit_module);
3014
3015MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
3016MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
3017MODULE_LICENSE("GPL v2");
3018MODULE_VERSION(DRV_VERSION);
3019
3020/* netdev.c */
3021