linux/drivers/nvme/host/pci.c
<<
>>
Prefs
   1/*
   2 * NVM Express device driver
   3 * Copyright (c) 2011-2014, Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 */
  14
  15#include <linux/aer.h>
  16#include <linux/async.h>
  17#include <linux/blkdev.h>
  18#include <linux/blk-mq.h>
  19#include <linux/blk-mq-pci.h>
  20#include <linux/dmi.h>
  21#include <linux/init.h>
  22#include <linux/interrupt.h>
  23#include <linux/io.h>
  24#include <linux/mm.h>
  25#include <linux/module.h>
  26#include <linux/mutex.h>
  27#include <linux/once.h>
  28#include <linux/pci.h>
  29#include <linux/t10-pi.h>
  30#include <linux/types.h>
  31#include <linux/io-64-nonatomic-lo-hi.h>
  32#include <linux/sed-opal.h>
  33#include <linux/pci-p2pdma.h>
  34
  35#include "trace.h"
  36#include "nvme.h"
  37
  38#define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
  39#define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
  40
  41#define SGES_PER_PAGE   (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
  42
  43/*
  44 * These can be higher, but we need to ensure that any command doesn't
  45 * require an sg allocation that needs more than a page of data.
  46 */
  47#define NVME_MAX_KB_SZ  4096
  48#define NVME_MAX_SEGS   127
  49
  50static int use_threaded_interrupts;
  51module_param(use_threaded_interrupts, int, 0);
  52
  53static bool use_cmb_sqes = true;
  54module_param(use_cmb_sqes, bool, 0444);
  55MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
  56
  57static unsigned int max_host_mem_size_mb = 128;
  58module_param(max_host_mem_size_mb, uint, 0444);
  59MODULE_PARM_DESC(max_host_mem_size_mb,
  60        "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
  61
  62static unsigned int sgl_threshold = SZ_32K;
  63module_param(sgl_threshold, uint, 0644);
  64MODULE_PARM_DESC(sgl_threshold,
  65                "Use SGLs when average request segment size is larger or equal to "
  66                "this size. Use 0 to disable SGLs.");
  67
  68static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
  69static const struct kernel_param_ops io_queue_depth_ops = {
  70        .set = io_queue_depth_set,
  71        .get = param_get_int,
  72};
  73
  74static int io_queue_depth = 1024;
  75module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
  76MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
  77
  78static int queue_count_set(const char *val, const struct kernel_param *kp);
  79static const struct kernel_param_ops queue_count_ops = {
  80        .set = queue_count_set,
  81        .get = param_get_int,
  82};
  83
  84static int write_queues;
  85module_param_cb(write_queues, &queue_count_ops, &write_queues, 0644);
  86MODULE_PARM_DESC(write_queues,
  87        "Number of queues to use for writes. If not set, reads and writes "
  88        "will share a queue set.");
  89
  90static int poll_queues = 0;
  91module_param_cb(poll_queues, &queue_count_ops, &poll_queues, 0644);
  92MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
  93
  94struct nvme_dev;
  95struct nvme_queue;
  96
  97static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
  98static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
  99
 100/*
 101 * Represents an NVM Express device.  Each nvme_dev is a PCI function.
 102 */
 103struct nvme_dev {
 104        struct nvme_queue *queues;
 105        struct blk_mq_tag_set tagset;
 106        struct blk_mq_tag_set admin_tagset;
 107        u32 __iomem *dbs;
 108        struct device *dev;
 109        struct dma_pool *prp_page_pool;
 110        struct dma_pool *prp_small_pool;
 111        unsigned online_queues;
 112        unsigned max_qid;
 113        unsigned io_queues[HCTX_MAX_TYPES];
 114        unsigned int num_vecs;
 115        int q_depth;
 116        u32 db_stride;
 117        void __iomem *bar;
 118        unsigned long bar_mapped_size;
 119        struct work_struct remove_work;
 120        struct mutex shutdown_lock;
 121        bool subsystem;
 122        u64 cmb_size;
 123        bool cmb_use_sqes;
 124        u32 cmbsz;
 125        u32 cmbloc;
 126        struct nvme_ctrl ctrl;
 127
 128        mempool_t *iod_mempool;
 129
 130        /* shadow doorbell buffer support: */
 131        u32 *dbbuf_dbs;
 132        dma_addr_t dbbuf_dbs_dma_addr;
 133        u32 *dbbuf_eis;
 134        dma_addr_t dbbuf_eis_dma_addr;
 135
 136        /* host memory buffer support: */
 137        u64 host_mem_size;
 138        u32 nr_host_mem_descs;
 139        dma_addr_t host_mem_descs_dma;
 140        struct nvme_host_mem_buf_desc *host_mem_descs;
 141        void **host_mem_desc_bufs;
 142};
 143
 144static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
 145{
 146        int n = 0, ret;
 147
 148        ret = kstrtoint(val, 10, &n);
 149        if (ret != 0 || n < 2)
 150                return -EINVAL;
 151
 152        return param_set_int(val, kp);
 153}
 154
 155static int queue_count_set(const char *val, const struct kernel_param *kp)
 156{
 157        int n = 0, ret;
 158
 159        ret = kstrtoint(val, 10, &n);
 160        if (n > num_possible_cpus())
 161                n = num_possible_cpus();
 162
 163        return param_set_int(val, kp);
 164}
 165
 166static inline unsigned int sq_idx(unsigned int qid, u32 stride)
 167{
 168        return qid * 2 * stride;
 169}
 170
 171static inline unsigned int cq_idx(unsigned int qid, u32 stride)
 172{
 173        return (qid * 2 + 1) * stride;
 174}
 175
 176static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
 177{
 178        return container_of(ctrl, struct nvme_dev, ctrl);
 179}
 180
 181/*
 182 * An NVM Express queue.  Each device has at least two (one for admin
 183 * commands and one for I/O commands).
 184 */
 185struct nvme_queue {
 186        struct device *q_dmadev;
 187        struct nvme_dev *dev;
 188        spinlock_t sq_lock;
 189        struct nvme_command *sq_cmds;
 190         /* only used for poll queues: */
 191        spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
 192        volatile struct nvme_completion *cqes;
 193        struct blk_mq_tags **tags;
 194        dma_addr_t sq_dma_addr;
 195        dma_addr_t cq_dma_addr;
 196        u32 __iomem *q_db;
 197        u16 q_depth;
 198        s16 cq_vector;
 199        u16 sq_tail;
 200        u16 last_sq_tail;
 201        u16 cq_head;
 202        u16 last_cq_head;
 203        u16 qid;
 204        u8 cq_phase;
 205        unsigned long flags;
 206#define NVMEQ_ENABLED           0
 207#define NVMEQ_SQ_CMB            1
 208#define NVMEQ_DELETE_ERROR      2
 209        u32 *dbbuf_sq_db;
 210        u32 *dbbuf_cq_db;
 211        u32 *dbbuf_sq_ei;
 212        u32 *dbbuf_cq_ei;
 213        struct completion delete_done;
 214};
 215
 216/*
 217 * The nvme_iod describes the data in an I/O, including the list of PRP
 218 * entries.  You can't see it in this data structure because C doesn't let
 219 * me express that.  Use nvme_init_iod to ensure there's enough space
 220 * allocated to store the PRP list.
 221 */
 222struct nvme_iod {
 223        struct nvme_request req;
 224        struct nvme_queue *nvmeq;
 225        bool use_sgl;
 226        int aborted;
 227        int npages;             /* In the PRP list. 0 means small pool in use */
 228        int nents;              /* Used in scatterlist */
 229        int length;             /* Of data, in bytes */
 230        dma_addr_t first_dma;
 231        struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
 232        struct scatterlist *sg;
 233        struct scatterlist inline_sg[0];
 234};
 235
 236/*
 237 * Check we didin't inadvertently grow the command struct
 238 */
 239static inline void _nvme_check_size(void)
 240{
 241        BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
 242        BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
 243        BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
 244        BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
 245        BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
 246        BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
 247        BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
 248        BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
 249        BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
 250        BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
 251        BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
 252        BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
 253        BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
 254}
 255
 256static unsigned int max_io_queues(void)
 257{
 258        return num_possible_cpus() + write_queues + poll_queues;
 259}
 260
 261static unsigned int max_queue_count(void)
 262{
 263        /* IO queues + admin queue */
 264        return 1 + max_io_queues();
 265}
 266
 267static inline unsigned int nvme_dbbuf_size(u32 stride)
 268{
 269        return (max_queue_count() * 8 * stride);
 270}
 271
 272static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
 273{
 274        unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
 275
 276        if (dev->dbbuf_dbs)
 277                return 0;
 278
 279        dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
 280                                            &dev->dbbuf_dbs_dma_addr,
 281                                            GFP_KERNEL);
 282        if (!dev->dbbuf_dbs)
 283                return -ENOMEM;
 284        dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
 285                                            &dev->dbbuf_eis_dma_addr,
 286                                            GFP_KERNEL);
 287        if (!dev->dbbuf_eis) {
 288                dma_free_coherent(dev->dev, mem_size,
 289                                  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
 290                dev->dbbuf_dbs = NULL;
 291                return -ENOMEM;
 292        }
 293
 294        return 0;
 295}
 296
 297static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
 298{
 299        unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
 300
 301        if (dev->dbbuf_dbs) {
 302                dma_free_coherent(dev->dev, mem_size,
 303                                  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
 304                dev->dbbuf_dbs = NULL;
 305        }
 306        if (dev->dbbuf_eis) {
 307                dma_free_coherent(dev->dev, mem_size,
 308                                  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
 309                dev->dbbuf_eis = NULL;
 310        }
 311}
 312
 313static void nvme_dbbuf_init(struct nvme_dev *dev,
 314                            struct nvme_queue *nvmeq, int qid)
 315{
 316        if (!dev->dbbuf_dbs || !qid)
 317                return;
 318
 319        nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
 320        nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
 321        nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
 322        nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
 323}
 324
 325static void nvme_dbbuf_set(struct nvme_dev *dev)
 326{
 327        struct nvme_command c;
 328
 329        if (!dev->dbbuf_dbs)
 330                return;
 331
 332        memset(&c, 0, sizeof(c));
 333        c.dbbuf.opcode = nvme_admin_dbbuf;
 334        c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
 335        c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
 336
 337        if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
 338                dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
 339                /* Free memory and continue on */
 340                nvme_dbbuf_dma_free(dev);
 341        }
 342}
 343
 344static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
 345{
 346        return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
 347}
 348
 349/* Update dbbuf and return true if an MMIO is required */
 350static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
 351                                              volatile u32 *dbbuf_ei)
 352{
 353        if (dbbuf_db) {
 354                u16 old_value;
 355
 356                /*
 357                 * Ensure that the queue is written before updating
 358                 * the doorbell in memory
 359                 */
 360                wmb();
 361
 362                old_value = *dbbuf_db;
 363                *dbbuf_db = value;
 364
 365                /*
 366                 * Ensure that the doorbell is updated before reading the event
 367                 * index from memory.  The controller needs to provide similar
 368                 * ordering to ensure the envent index is updated before reading
 369                 * the doorbell.
 370                 */
 371                mb();
 372
 373                if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
 374                        return false;
 375        }
 376
 377        return true;
 378}
 379
 380/*
 381 * Max size of iod being embedded in the request payload
 382 */
 383#define NVME_INT_PAGES          2
 384#define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
 385
 386/*
 387 * Will slightly overestimate the number of pages needed.  This is OK
 388 * as it only leads to a small amount of wasted memory for the lifetime of
 389 * the I/O.
 390 */
 391static int nvme_npages(unsigned size, struct nvme_dev *dev)
 392{
 393        unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
 394                                      dev->ctrl.page_size);
 395        return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
 396}
 397
 398/*
 399 * Calculates the number of pages needed for the SGL segments. For example a 4k
 400 * page can accommodate 256 SGL descriptors.
 401 */
 402static int nvme_pci_npages_sgl(unsigned int num_seg)
 403{
 404        return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
 405}
 406
 407static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
 408                unsigned int size, unsigned int nseg, bool use_sgl)
 409{
 410        size_t alloc_size;
 411
 412        if (use_sgl)
 413                alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
 414        else
 415                alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
 416
 417        return alloc_size + sizeof(struct scatterlist) * nseg;
 418}
 419
 420static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl)
 421{
 422        unsigned int alloc_size = nvme_pci_iod_alloc_size(dev,
 423                                    NVME_INT_BYTES(dev), NVME_INT_PAGES,
 424                                    use_sgl);
 425
 426        return sizeof(struct nvme_iod) + alloc_size;
 427}
 428
 429static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
 430                                unsigned int hctx_idx)
 431{
 432        struct nvme_dev *dev = data;
 433        struct nvme_queue *nvmeq = &dev->queues[0];
 434
 435        WARN_ON(hctx_idx != 0);
 436        WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
 437        WARN_ON(nvmeq->tags);
 438
 439        hctx->driver_data = nvmeq;
 440        nvmeq->tags = &dev->admin_tagset.tags[0];
 441        return 0;
 442}
 443
 444static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
 445{
 446        struct nvme_queue *nvmeq = hctx->driver_data;
 447
 448        nvmeq->tags = NULL;
 449}
 450
 451static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
 452                          unsigned int hctx_idx)
 453{
 454        struct nvme_dev *dev = data;
 455        struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
 456
 457        if (!nvmeq->tags)
 458                nvmeq->tags = &dev->tagset.tags[hctx_idx];
 459
 460        WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
 461        hctx->driver_data = nvmeq;
 462        return 0;
 463}
 464
 465static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
 466                unsigned int hctx_idx, unsigned int numa_node)
 467{
 468        struct nvme_dev *dev = set->driver_data;
 469        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 470        int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
 471        struct nvme_queue *nvmeq = &dev->queues[queue_idx];
 472
 473        BUG_ON(!nvmeq);
 474        iod->nvmeq = nvmeq;
 475
 476        nvme_req(req)->ctrl = &dev->ctrl;
 477        return 0;
 478}
 479
 480static int queue_irq_offset(struct nvme_dev *dev)
 481{
 482        /* if we have more than 1 vec, admin queue offsets us by 1 */
 483        if (dev->num_vecs > 1)
 484                return 1;
 485
 486        return 0;
 487}
 488
 489static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
 490{
 491        struct nvme_dev *dev = set->driver_data;
 492        int i, qoff, offset;
 493
 494        offset = queue_irq_offset(dev);
 495        for (i = 0, qoff = 0; i < set->nr_maps; i++) {
 496                struct blk_mq_queue_map *map = &set->map[i];
 497
 498                map->nr_queues = dev->io_queues[i];
 499                if (!map->nr_queues) {
 500                        BUG_ON(i == HCTX_TYPE_DEFAULT);
 501                        continue;
 502                }
 503
 504                /*
 505                 * The poll queue(s) doesn't have an IRQ (and hence IRQ
 506                 * affinity), so use the regular blk-mq cpu mapping
 507                 */
 508                map->queue_offset = qoff;
 509                if (i != HCTX_TYPE_POLL)
 510                        blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
 511                else
 512                        blk_mq_map_queues(map);
 513                qoff += map->nr_queues;
 514                offset += map->nr_queues;
 515        }
 516
 517        return 0;
 518}
 519
 520/*
 521 * Write sq tail if we are asked to, or if the next command would wrap.
 522 */
 523static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
 524{
 525        if (!write_sq) {
 526                u16 next_tail = nvmeq->sq_tail + 1;
 527
 528                if (next_tail == nvmeq->q_depth)
 529                        next_tail = 0;
 530                if (next_tail != nvmeq->last_sq_tail)
 531                        return;
 532        }
 533
 534        if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
 535                        nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
 536                writel(nvmeq->sq_tail, nvmeq->q_db);
 537        nvmeq->last_sq_tail = nvmeq->sq_tail;
 538}
 539
 540/**
 541 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
 542 * @nvmeq: The queue to use
 543 * @cmd: The command to send
 544 * @write_sq: whether to write to the SQ doorbell
 545 */
 546static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
 547                            bool write_sq)
 548{
 549        spin_lock(&nvmeq->sq_lock);
 550        memcpy(&nvmeq->sq_cmds[nvmeq->sq_tail], cmd, sizeof(*cmd));
 551        if (++nvmeq->sq_tail == nvmeq->q_depth)
 552                nvmeq->sq_tail = 0;
 553        nvme_write_sq_db(nvmeq, write_sq);
 554        spin_unlock(&nvmeq->sq_lock);
 555}
 556
 557static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
 558{
 559        struct nvme_queue *nvmeq = hctx->driver_data;
 560
 561        spin_lock(&nvmeq->sq_lock);
 562        if (nvmeq->sq_tail != nvmeq->last_sq_tail)
 563                nvme_write_sq_db(nvmeq, true);
 564        spin_unlock(&nvmeq->sq_lock);
 565}
 566
 567static void **nvme_pci_iod_list(struct request *req)
 568{
 569        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 570        return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
 571}
 572
 573static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
 574{
 575        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 576        int nseg = blk_rq_nr_phys_segments(req);
 577        unsigned int avg_seg_size;
 578
 579        if (nseg == 0)
 580                return false;
 581
 582        avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
 583
 584        if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
 585                return false;
 586        if (!iod->nvmeq->qid)
 587                return false;
 588        if (!sgl_threshold || avg_seg_size < sgl_threshold)
 589                return false;
 590        return true;
 591}
 592
 593static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
 594{
 595        struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
 596        int nseg = blk_rq_nr_phys_segments(rq);
 597        unsigned int size = blk_rq_payload_bytes(rq);
 598
 599        iod->use_sgl = nvme_pci_use_sgls(dev, rq);
 600
 601        if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
 602                iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
 603                if (!iod->sg)
 604                        return BLK_STS_RESOURCE;
 605        } else {
 606                iod->sg = iod->inline_sg;
 607        }
 608
 609        iod->aborted = 0;
 610        iod->npages = -1;
 611        iod->nents = 0;
 612        iod->length = size;
 613
 614        return BLK_STS_OK;
 615}
 616
 617static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
 618{
 619        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 620        const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
 621        dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
 622
 623        int i;
 624
 625        if (iod->npages == 0)
 626                dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
 627                        dma_addr);
 628
 629        for (i = 0; i < iod->npages; i++) {
 630                void *addr = nvme_pci_iod_list(req)[i];
 631
 632                if (iod->use_sgl) {
 633                        struct nvme_sgl_desc *sg_list = addr;
 634
 635                        next_dma_addr =
 636                            le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
 637                } else {
 638                        __le64 *prp_list = addr;
 639
 640                        next_dma_addr = le64_to_cpu(prp_list[last_prp]);
 641                }
 642
 643                dma_pool_free(dev->prp_page_pool, addr, dma_addr);
 644                dma_addr = next_dma_addr;
 645        }
 646
 647        if (iod->sg != iod->inline_sg)
 648                mempool_free(iod->sg, dev->iod_mempool);
 649}
 650
 651static void nvme_print_sgl(struct scatterlist *sgl, int nents)
 652{
 653        int i;
 654        struct scatterlist *sg;
 655
 656        for_each_sg(sgl, sg, nents, i) {
 657                dma_addr_t phys = sg_phys(sg);
 658                pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
 659                        "dma_address:%pad dma_length:%d\n",
 660                        i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
 661                        sg_dma_len(sg));
 662        }
 663}
 664
 665static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
 666                struct request *req, struct nvme_rw_command *cmnd)
 667{
 668        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 669        struct dma_pool *pool;
 670        int length = blk_rq_payload_bytes(req);
 671        struct scatterlist *sg = iod->sg;
 672        int dma_len = sg_dma_len(sg);
 673        u64 dma_addr = sg_dma_address(sg);
 674        u32 page_size = dev->ctrl.page_size;
 675        int offset = dma_addr & (page_size - 1);
 676        __le64 *prp_list;
 677        void **list = nvme_pci_iod_list(req);
 678        dma_addr_t prp_dma;
 679        int nprps, i;
 680
 681        length -= (page_size - offset);
 682        if (length <= 0) {
 683                iod->first_dma = 0;
 684                goto done;
 685        }
 686
 687        dma_len -= (page_size - offset);
 688        if (dma_len) {
 689                dma_addr += (page_size - offset);
 690        } else {
 691                sg = sg_next(sg);
 692                dma_addr = sg_dma_address(sg);
 693                dma_len = sg_dma_len(sg);
 694        }
 695
 696        if (length <= page_size) {
 697                iod->first_dma = dma_addr;
 698                goto done;
 699        }
 700
 701        nprps = DIV_ROUND_UP(length, page_size);
 702        if (nprps <= (256 / 8)) {
 703                pool = dev->prp_small_pool;
 704                iod->npages = 0;
 705        } else {
 706                pool = dev->prp_page_pool;
 707                iod->npages = 1;
 708        }
 709
 710        prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
 711        if (!prp_list) {
 712                iod->first_dma = dma_addr;
 713                iod->npages = -1;
 714                return BLK_STS_RESOURCE;
 715        }
 716        list[0] = prp_list;
 717        iod->first_dma = prp_dma;
 718        i = 0;
 719        for (;;) {
 720                if (i == page_size >> 3) {
 721                        __le64 *old_prp_list = prp_list;
 722                        prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
 723                        if (!prp_list)
 724                                return BLK_STS_RESOURCE;
 725                        list[iod->npages++] = prp_list;
 726                        prp_list[0] = old_prp_list[i - 1];
 727                        old_prp_list[i - 1] = cpu_to_le64(prp_dma);
 728                        i = 1;
 729                }
 730                prp_list[i++] = cpu_to_le64(dma_addr);
 731                dma_len -= page_size;
 732                dma_addr += page_size;
 733                length -= page_size;
 734                if (length <= 0)
 735                        break;
 736                if (dma_len > 0)
 737                        continue;
 738                if (unlikely(dma_len < 0))
 739                        goto bad_sgl;
 740                sg = sg_next(sg);
 741                dma_addr = sg_dma_address(sg);
 742                dma_len = sg_dma_len(sg);
 743        }
 744
 745done:
 746        cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
 747        cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
 748
 749        return BLK_STS_OK;
 750
 751 bad_sgl:
 752        WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
 753                        "Invalid SGL for payload:%d nents:%d\n",
 754                        blk_rq_payload_bytes(req), iod->nents);
 755        return BLK_STS_IOERR;
 756}
 757
 758static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
 759                struct scatterlist *sg)
 760{
 761        sge->addr = cpu_to_le64(sg_dma_address(sg));
 762        sge->length = cpu_to_le32(sg_dma_len(sg));
 763        sge->type = NVME_SGL_FMT_DATA_DESC << 4;
 764}
 765
 766static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
 767                dma_addr_t dma_addr, int entries)
 768{
 769        sge->addr = cpu_to_le64(dma_addr);
 770        if (entries < SGES_PER_PAGE) {
 771                sge->length = cpu_to_le32(entries * sizeof(*sge));
 772                sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
 773        } else {
 774                sge->length = cpu_to_le32(PAGE_SIZE);
 775                sge->type = NVME_SGL_FMT_SEG_DESC << 4;
 776        }
 777}
 778
 779static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
 780                struct request *req, struct nvme_rw_command *cmd, int entries)
 781{
 782        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 783        struct dma_pool *pool;
 784        struct nvme_sgl_desc *sg_list;
 785        struct scatterlist *sg = iod->sg;
 786        dma_addr_t sgl_dma;
 787        int i = 0;
 788
 789        /* setting the transfer type as SGL */
 790        cmd->flags = NVME_CMD_SGL_METABUF;
 791
 792        if (entries == 1) {
 793                nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
 794                return BLK_STS_OK;
 795        }
 796
 797        if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
 798                pool = dev->prp_small_pool;
 799                iod->npages = 0;
 800        } else {
 801                pool = dev->prp_page_pool;
 802                iod->npages = 1;
 803        }
 804
 805        sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
 806        if (!sg_list) {
 807                iod->npages = -1;
 808                return BLK_STS_RESOURCE;
 809        }
 810
 811        nvme_pci_iod_list(req)[0] = sg_list;
 812        iod->first_dma = sgl_dma;
 813
 814        nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
 815
 816        do {
 817                if (i == SGES_PER_PAGE) {
 818                        struct nvme_sgl_desc *old_sg_desc = sg_list;
 819                        struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
 820
 821                        sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
 822                        if (!sg_list)
 823                                return BLK_STS_RESOURCE;
 824
 825                        i = 0;
 826                        nvme_pci_iod_list(req)[iod->npages++] = sg_list;
 827                        sg_list[i++] = *link;
 828                        nvme_pci_sgl_set_seg(link, sgl_dma, entries);
 829                }
 830
 831                nvme_pci_sgl_set_data(&sg_list[i++], sg);
 832                sg = sg_next(sg);
 833        } while (--entries > 0);
 834
 835        return BLK_STS_OK;
 836}
 837
 838static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
 839                struct nvme_command *cmnd)
 840{
 841        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 842        struct request_queue *q = req->q;
 843        enum dma_data_direction dma_dir = rq_data_dir(req) ?
 844                        DMA_TO_DEVICE : DMA_FROM_DEVICE;
 845        blk_status_t ret = BLK_STS_IOERR;
 846        int nr_mapped;
 847
 848        sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
 849        iod->nents = blk_rq_map_sg(q, req, iod->sg);
 850        if (!iod->nents)
 851                goto out;
 852
 853        ret = BLK_STS_RESOURCE;
 854
 855        if (is_pci_p2pdma_page(sg_page(iod->sg)))
 856                nr_mapped = pci_p2pdma_map_sg(dev->dev, iod->sg, iod->nents,
 857                                          dma_dir);
 858        else
 859                nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
 860                                             dma_dir,  DMA_ATTR_NO_WARN);
 861        if (!nr_mapped)
 862                goto out;
 863
 864        if (iod->use_sgl)
 865                ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
 866        else
 867                ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
 868
 869        if (ret != BLK_STS_OK)
 870                goto out_unmap;
 871
 872        ret = BLK_STS_IOERR;
 873        if (blk_integrity_rq(req)) {
 874                if (blk_rq_count_integrity_sg(q, req->bio) != 1)
 875                        goto out_unmap;
 876
 877                sg_init_table(&iod->meta_sg, 1);
 878                if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
 879                        goto out_unmap;
 880
 881                if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
 882                        goto out_unmap;
 883
 884                cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
 885        }
 886
 887        return BLK_STS_OK;
 888
 889out_unmap:
 890        dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
 891out:
 892        return ret;
 893}
 894
 895static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
 896{
 897        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 898        enum dma_data_direction dma_dir = rq_data_dir(req) ?
 899                        DMA_TO_DEVICE : DMA_FROM_DEVICE;
 900
 901        if (iod->nents) {
 902                /* P2PDMA requests do not need to be unmapped */
 903                if (!is_pci_p2pdma_page(sg_page(iod->sg)))
 904                        dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
 905
 906                if (blk_integrity_rq(req))
 907                        dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
 908        }
 909
 910        nvme_cleanup_cmd(req);
 911        nvme_free_iod(dev, req);
 912}
 913
 914/*
 915 * NOTE: ns is NULL when called on the admin queue.
 916 */
 917static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
 918                         const struct blk_mq_queue_data *bd)
 919{
 920        struct nvme_ns *ns = hctx->queue->queuedata;
 921        struct nvme_queue *nvmeq = hctx->driver_data;
 922        struct nvme_dev *dev = nvmeq->dev;
 923        struct request *req = bd->rq;
 924        struct nvme_command cmnd;
 925        blk_status_t ret;
 926
 927        /*
 928         * We should not need to do this, but we're still using this to
 929         * ensure we can drain requests on a dying queue.
 930         */
 931        if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
 932                return BLK_STS_IOERR;
 933
 934        ret = nvme_setup_cmd(ns, req, &cmnd);
 935        if (ret)
 936                return ret;
 937
 938        ret = nvme_init_iod(req, dev);
 939        if (ret)
 940                goto out_free_cmd;
 941
 942        if (blk_rq_nr_phys_segments(req)) {
 943                ret = nvme_map_data(dev, req, &cmnd);
 944                if (ret)
 945                        goto out_cleanup_iod;
 946        }
 947
 948        blk_mq_start_request(req);
 949        nvme_submit_cmd(nvmeq, &cmnd, bd->last);
 950        return BLK_STS_OK;
 951out_cleanup_iod:
 952        nvme_free_iod(dev, req);
 953out_free_cmd:
 954        nvme_cleanup_cmd(req);
 955        return ret;
 956}
 957
 958static void nvme_pci_complete_rq(struct request *req)
 959{
 960        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 961
 962        nvme_unmap_data(iod->nvmeq->dev, req);
 963        nvme_complete_rq(req);
 964}
 965
 966/* We read the CQE phase first to check if the rest of the entry is valid */
 967static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
 968{
 969        return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
 970                        nvmeq->cq_phase;
 971}
 972
 973static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
 974{
 975        u16 head = nvmeq->cq_head;
 976
 977        if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
 978                                              nvmeq->dbbuf_cq_ei))
 979                writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
 980}
 981
 982static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
 983{
 984        volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
 985        struct request *req;
 986
 987        if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
 988                dev_warn(nvmeq->dev->ctrl.device,
 989                        "invalid id %d completed on queue %d\n",
 990                        cqe->command_id, le16_to_cpu(cqe->sq_id));
 991                return;
 992        }
 993
 994        /*
 995         * AEN requests are special as they don't time out and can
 996         * survive any kind of queue freeze and often don't respond to
 997         * aborts.  We don't even bother to allocate a struct request
 998         * for them but rather special case them here.
 999         */
1000        if (unlikely(nvmeq->qid == 0 &&
1001                        cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
1002                nvme_complete_async_event(&nvmeq->dev->ctrl,
1003                                cqe->status, &cqe->result);
1004                return;
1005        }
1006
1007        req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
1008        trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1009        nvme_end_request(req, cqe->status, cqe->result);
1010}
1011
1012static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end)
1013{
1014        while (start != end) {
1015                nvme_handle_cqe(nvmeq, start);
1016                if (++start == nvmeq->q_depth)
1017                        start = 0;
1018        }
1019}
1020
1021static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1022{
1023        if (nvmeq->cq_head == nvmeq->q_depth - 1) {
1024                nvmeq->cq_head = 0;
1025                nvmeq->cq_phase = !nvmeq->cq_phase;
1026        } else {
1027                nvmeq->cq_head++;
1028        }
1029}
1030
1031static inline int nvme_process_cq(struct nvme_queue *nvmeq, u16 *start,
1032                                  u16 *end, unsigned int tag)
1033{
1034        int found = 0;
1035
1036        *start = nvmeq->cq_head;
1037        while (nvme_cqe_pending(nvmeq)) {
1038                if (tag == -1U || nvmeq->cqes[nvmeq->cq_head].command_id == tag)
1039                        found++;
1040                nvme_update_cq_head(nvmeq);
1041        }
1042        *end = nvmeq->cq_head;
1043
1044        if (*start != *end)
1045                nvme_ring_cq_doorbell(nvmeq);
1046        return found;
1047}
1048
1049static irqreturn_t nvme_irq(int irq, void *data)
1050{
1051        struct nvme_queue *nvmeq = data;
1052        irqreturn_t ret = IRQ_NONE;
1053        u16 start, end;
1054
1055        /*
1056         * The rmb/wmb pair ensures we see all updates from a previous run of
1057         * the irq handler, even if that was on another CPU.
1058         */
1059        rmb();
1060        if (nvmeq->cq_head != nvmeq->last_cq_head)
1061                ret = IRQ_HANDLED;
1062        nvme_process_cq(nvmeq, &start, &end, -1);
1063        nvmeq->last_cq_head = nvmeq->cq_head;
1064        wmb();
1065
1066        if (start != end) {
1067                nvme_complete_cqes(nvmeq, start, end);
1068                return IRQ_HANDLED;
1069        }
1070
1071        return ret;
1072}
1073
1074static irqreturn_t nvme_irq_check(int irq, void *data)
1075{
1076        struct nvme_queue *nvmeq = data;
1077        if (nvme_cqe_pending(nvmeq))
1078                return IRQ_WAKE_THREAD;
1079        return IRQ_NONE;
1080}
1081
1082/*
1083 * Poll for completions any queue, including those not dedicated to polling.
1084 * Can be called from any context.
1085 */
1086static int nvme_poll_irqdisable(struct nvme_queue *nvmeq, unsigned int tag)
1087{
1088        struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1089        u16 start, end;
1090        int found;
1091
1092        /*
1093         * For a poll queue we need to protect against the polling thread
1094         * using the CQ lock.  For normal interrupt driven threads we have
1095         * to disable the interrupt to avoid racing with it.
1096         */
1097        if (nvmeq->cq_vector == -1) {
1098                spin_lock(&nvmeq->cq_poll_lock);
1099                found = nvme_process_cq(nvmeq, &start, &end, tag);
1100                spin_unlock(&nvmeq->cq_poll_lock);
1101        } else {
1102                disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1103                found = nvme_process_cq(nvmeq, &start, &end, tag);
1104                enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1105        }
1106
1107        nvme_complete_cqes(nvmeq, start, end);
1108        return found;
1109}
1110
1111static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1112{
1113        struct nvme_queue *nvmeq = hctx->driver_data;
1114        u16 start, end;
1115        bool found;
1116
1117        if (!nvme_cqe_pending(nvmeq))
1118                return 0;
1119
1120        spin_lock(&nvmeq->cq_poll_lock);
1121        found = nvme_process_cq(nvmeq, &start, &end, -1);
1122        spin_unlock(&nvmeq->cq_poll_lock);
1123
1124        nvme_complete_cqes(nvmeq, start, end);
1125        return found;
1126}
1127
1128static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1129{
1130        struct nvme_dev *dev = to_nvme_dev(ctrl);
1131        struct nvme_queue *nvmeq = &dev->queues[0];
1132        struct nvme_command c;
1133
1134        memset(&c, 0, sizeof(c));
1135        c.common.opcode = nvme_admin_async_event;
1136        c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1137        nvme_submit_cmd(nvmeq, &c, true);
1138}
1139
1140static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1141{
1142        struct nvme_command c;
1143
1144        memset(&c, 0, sizeof(c));
1145        c.delete_queue.opcode = opcode;
1146        c.delete_queue.qid = cpu_to_le16(id);
1147
1148        return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1149}
1150
1151static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1152                struct nvme_queue *nvmeq, s16 vector)
1153{
1154        struct nvme_command c;
1155        int flags = NVME_QUEUE_PHYS_CONTIG;
1156
1157        if (vector != -1)
1158                flags |= NVME_CQ_IRQ_ENABLED;
1159
1160        /*
1161         * Note: we (ab)use the fact that the prp fields survive if no data
1162         * is attached to the request.
1163         */
1164        memset(&c, 0, sizeof(c));
1165        c.create_cq.opcode = nvme_admin_create_cq;
1166        c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1167        c.create_cq.cqid = cpu_to_le16(qid);
1168        c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1169        c.create_cq.cq_flags = cpu_to_le16(flags);
1170        if (vector != -1)
1171                c.create_cq.irq_vector = cpu_to_le16(vector);
1172        else
1173                c.create_cq.irq_vector = 0;
1174
1175        return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1176}
1177
1178static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1179                                                struct nvme_queue *nvmeq)
1180{
1181        struct nvme_ctrl *ctrl = &dev->ctrl;
1182        struct nvme_command c;
1183        int flags = NVME_QUEUE_PHYS_CONTIG;
1184
1185        /*
1186         * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1187         * set. Since URGENT priority is zeroes, it makes all queues
1188         * URGENT.
1189         */
1190        if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1191                flags |= NVME_SQ_PRIO_MEDIUM;
1192
1193        /*
1194         * Note: we (ab)use the fact that the prp fields survive if no data
1195         * is attached to the request.
1196         */
1197        memset(&c, 0, sizeof(c));
1198        c.create_sq.opcode = nvme_admin_create_sq;
1199        c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1200        c.create_sq.sqid = cpu_to_le16(qid);
1201        c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1202        c.create_sq.sq_flags = cpu_to_le16(flags);
1203        c.create_sq.cqid = cpu_to_le16(qid);
1204
1205        return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1206}
1207
1208static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1209{
1210        return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1211}
1212
1213static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1214{
1215        return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1216}
1217
1218static void abort_endio(struct request *req, blk_status_t error)
1219{
1220        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1221        struct nvme_queue *nvmeq = iod->nvmeq;
1222
1223        dev_warn(nvmeq->dev->ctrl.device,
1224                 "Abort status: 0x%x", nvme_req(req)->status);
1225        atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1226        blk_mq_free_request(req);
1227}
1228
1229static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1230{
1231
1232        /* If true, indicates loss of adapter communication, possibly by a
1233         * NVMe Subsystem reset.
1234         */
1235        bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1236
1237        /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1238        switch (dev->ctrl.state) {
1239        case NVME_CTRL_RESETTING:
1240        case NVME_CTRL_CONNECTING:
1241                return false;
1242        default:
1243                break;
1244        }
1245
1246        /* We shouldn't reset unless the controller is on fatal error state
1247         * _or_ if we lost the communication with it.
1248         */
1249        if (!(csts & NVME_CSTS_CFS) && !nssro)
1250                return false;
1251
1252        return true;
1253}
1254
1255static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1256{
1257        /* Read a config register to help see what died. */
1258        u16 pci_status;
1259        int result;
1260
1261        result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1262                                      &pci_status);
1263        if (result == PCIBIOS_SUCCESSFUL)
1264                dev_warn(dev->ctrl.device,
1265                         "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1266                         csts, pci_status);
1267        else
1268                dev_warn(dev->ctrl.device,
1269                         "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1270                         csts, result);
1271}
1272
1273static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1274{
1275        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1276        struct nvme_queue *nvmeq = iod->nvmeq;
1277        struct nvme_dev *dev = nvmeq->dev;
1278        struct request *abort_req;
1279        struct nvme_command cmd;
1280        u32 csts = readl(dev->bar + NVME_REG_CSTS);
1281
1282        /* If PCI error recovery process is happening, we cannot reset or
1283         * the recovery mechanism will surely fail.
1284         */
1285        mb();
1286        if (pci_channel_offline(to_pci_dev(dev->dev)))
1287                return BLK_EH_RESET_TIMER;
1288
1289        /*
1290         * Reset immediately if the controller is failed
1291         */
1292        if (nvme_should_reset(dev, csts)) {
1293                nvme_warn_reset(dev, csts);
1294                nvme_dev_disable(dev, false);
1295                nvme_reset_ctrl(&dev->ctrl);
1296                return BLK_EH_DONE;
1297        }
1298
1299        /*
1300         * Did we miss an interrupt?
1301         */
1302        if (nvme_poll_irqdisable(nvmeq, req->tag)) {
1303                dev_warn(dev->ctrl.device,
1304                         "I/O %d QID %d timeout, completion polled\n",
1305                         req->tag, nvmeq->qid);
1306                return BLK_EH_DONE;
1307        }
1308
1309        /*
1310         * Shutdown immediately if controller times out while starting. The
1311         * reset work will see the pci device disabled when it gets the forced
1312         * cancellation error. All outstanding requests are completed on
1313         * shutdown, so we return BLK_EH_DONE.
1314         */
1315        switch (dev->ctrl.state) {
1316        case NVME_CTRL_CONNECTING:
1317        case NVME_CTRL_RESETTING:
1318                dev_warn_ratelimited(dev->ctrl.device,
1319                         "I/O %d QID %d timeout, disable controller\n",
1320                         req->tag, nvmeq->qid);
1321                nvme_dev_disable(dev, false);
1322                nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1323                return BLK_EH_DONE;
1324        default:
1325                break;
1326        }
1327
1328        /*
1329         * Shutdown the controller immediately and schedule a reset if the
1330         * command was already aborted once before and still hasn't been
1331         * returned to the driver, or if this is the admin queue.
1332         */
1333        if (!nvmeq->qid || iod->aborted) {
1334                dev_warn(dev->ctrl.device,
1335                         "I/O %d QID %d timeout, reset controller\n",
1336                         req->tag, nvmeq->qid);
1337                nvme_dev_disable(dev, false);
1338                nvme_reset_ctrl(&dev->ctrl);
1339
1340                nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1341                return BLK_EH_DONE;
1342        }
1343
1344        if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1345                atomic_inc(&dev->ctrl.abort_limit);
1346                return BLK_EH_RESET_TIMER;
1347        }
1348        iod->aborted = 1;
1349
1350        memset(&cmd, 0, sizeof(cmd));
1351        cmd.abort.opcode = nvme_admin_abort_cmd;
1352        cmd.abort.cid = req->tag;
1353        cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1354
1355        dev_warn(nvmeq->dev->ctrl.device,
1356                "I/O %d QID %d timeout, aborting\n",
1357                 req->tag, nvmeq->qid);
1358
1359        abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1360                        BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1361        if (IS_ERR(abort_req)) {
1362                atomic_inc(&dev->ctrl.abort_limit);
1363                return BLK_EH_RESET_TIMER;
1364        }
1365
1366        abort_req->timeout = ADMIN_TIMEOUT;
1367        abort_req->end_io_data = NULL;
1368        blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1369
1370        /*
1371         * The aborted req will be completed on receiving the abort req.
1372         * We enable the timer again. If hit twice, it'll cause a device reset,
1373         * as the device then is in a faulty state.
1374         */
1375        return BLK_EH_RESET_TIMER;
1376}
1377
1378static void nvme_free_queue(struct nvme_queue *nvmeq)
1379{
1380        dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1381                                (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1382        if (!nvmeq->sq_cmds)
1383                return;
1384
1385        if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1386                pci_free_p2pmem(to_pci_dev(nvmeq->q_dmadev),
1387                                nvmeq->sq_cmds, SQ_SIZE(nvmeq->q_depth));
1388        } else {
1389                dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1390                                nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1391        }
1392}
1393
1394static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1395{
1396        int i;
1397
1398        for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1399                dev->ctrl.queue_count--;
1400                nvme_free_queue(&dev->queues[i]);
1401        }
1402}
1403
1404/**
1405 * nvme_suspend_queue - put queue into suspended state
1406 * @nvmeq: queue to suspend
1407 */
1408static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1409{
1410        if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1411                return 1;
1412
1413        /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1414        mb();
1415
1416        nvmeq->dev->online_queues--;
1417        if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1418                blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1419        if (nvmeq->cq_vector == -1)
1420                return 0;
1421        pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1422        nvmeq->cq_vector = -1;
1423        return 0;
1424}
1425
1426static void nvme_suspend_io_queues(struct nvme_dev *dev)
1427{
1428        int i;
1429
1430        for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1431                nvme_suspend_queue(&dev->queues[i]);
1432}
1433
1434static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1435{
1436        struct nvme_queue *nvmeq = &dev->queues[0];
1437
1438        if (shutdown)
1439                nvme_shutdown_ctrl(&dev->ctrl);
1440        else
1441                nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1442
1443        nvme_poll_irqdisable(nvmeq, -1);
1444}
1445
1446static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1447                                int entry_size)
1448{
1449        int q_depth = dev->q_depth;
1450        unsigned q_size_aligned = roundup(q_depth * entry_size,
1451                                          dev->ctrl.page_size);
1452
1453        if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1454                u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1455                mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1456                q_depth = div_u64(mem_per_q, entry_size);
1457
1458                /*
1459                 * Ensure the reduced q_depth is above some threshold where it
1460                 * would be better to map queues in system memory with the
1461                 * original depth
1462                 */
1463                if (q_depth < 64)
1464                        return -ENOMEM;
1465        }
1466
1467        return q_depth;
1468}
1469
1470static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1471                                int qid, int depth)
1472{
1473        struct pci_dev *pdev = to_pci_dev(dev->dev);
1474
1475        if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1476                nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(depth));
1477                nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1478                                                nvmeq->sq_cmds);
1479                if (nvmeq->sq_dma_addr) {
1480                        set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1481                        return 0; 
1482                }
1483        }
1484
1485        nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1486                                &nvmeq->sq_dma_addr, GFP_KERNEL);
1487        if (!nvmeq->sq_cmds)
1488                return -ENOMEM;
1489        return 0;
1490}
1491
1492static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1493{
1494        struct nvme_queue *nvmeq = &dev->queues[qid];
1495
1496        if (dev->ctrl.queue_count > qid)
1497                return 0;
1498
1499        nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1500                                          &nvmeq->cq_dma_addr, GFP_KERNEL);
1501        if (!nvmeq->cqes)
1502                goto free_nvmeq;
1503
1504        if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1505                goto free_cqdma;
1506
1507        nvmeq->q_dmadev = dev->dev;
1508        nvmeq->dev = dev;
1509        spin_lock_init(&nvmeq->sq_lock);
1510        spin_lock_init(&nvmeq->cq_poll_lock);
1511        nvmeq->cq_head = 0;
1512        nvmeq->cq_phase = 1;
1513        nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1514        nvmeq->q_depth = depth;
1515        nvmeq->qid = qid;
1516        nvmeq->cq_vector = -1;
1517        dev->ctrl.queue_count++;
1518
1519        return 0;
1520
1521 free_cqdma:
1522        dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1523                                                        nvmeq->cq_dma_addr);
1524 free_nvmeq:
1525        return -ENOMEM;
1526}
1527
1528static int queue_request_irq(struct nvme_queue *nvmeq)
1529{
1530        struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1531        int nr = nvmeq->dev->ctrl.instance;
1532
1533        if (use_threaded_interrupts) {
1534                return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1535                                nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1536        } else {
1537                return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1538                                NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1539        }
1540}
1541
1542static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1543{
1544        struct nvme_dev *dev = nvmeq->dev;
1545
1546        nvmeq->sq_tail = 0;
1547        nvmeq->last_sq_tail = 0;
1548        nvmeq->cq_head = 0;
1549        nvmeq->cq_phase = 1;
1550        nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1551        memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1552        nvme_dbbuf_init(dev, nvmeq, qid);
1553        dev->online_queues++;
1554        wmb(); /* ensure the first interrupt sees the initialization */
1555}
1556
1557static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1558{
1559        struct nvme_dev *dev = nvmeq->dev;
1560        int result;
1561        s16 vector;
1562
1563        clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1564
1565        /*
1566         * A queue's vector matches the queue identifier unless the controller
1567         * has only one vector available.
1568         */
1569        if (!polled)
1570                vector = dev->num_vecs == 1 ? 0 : qid;
1571        else
1572                vector = -1;
1573
1574        result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1575        if (result)
1576                return result;
1577
1578        result = adapter_alloc_sq(dev, qid, nvmeq);
1579        if (result < 0)
1580                return result;
1581        else if (result)
1582                goto release_cq;
1583
1584        nvmeq->cq_vector = vector;
1585        nvme_init_queue(nvmeq, qid);
1586
1587        if (vector != -1) {
1588                result = queue_request_irq(nvmeq);
1589                if (result < 0)
1590                        goto release_sq;
1591        }
1592
1593        set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1594        return result;
1595
1596release_sq:
1597        nvmeq->cq_vector = -1;
1598        dev->online_queues--;
1599        adapter_delete_sq(dev, qid);
1600release_cq:
1601        adapter_delete_cq(dev, qid);
1602        return result;
1603}
1604
1605static const struct blk_mq_ops nvme_mq_admin_ops = {
1606        .queue_rq       = nvme_queue_rq,
1607        .complete       = nvme_pci_complete_rq,
1608        .init_hctx      = nvme_admin_init_hctx,
1609        .exit_hctx      = nvme_admin_exit_hctx,
1610        .init_request   = nvme_init_request,
1611        .timeout        = nvme_timeout,
1612};
1613
1614static const struct blk_mq_ops nvme_mq_ops = {
1615        .queue_rq       = nvme_queue_rq,
1616        .complete       = nvme_pci_complete_rq,
1617        .commit_rqs     = nvme_commit_rqs,
1618        .init_hctx      = nvme_init_hctx,
1619        .init_request   = nvme_init_request,
1620        .map_queues     = nvme_pci_map_queues,
1621        .timeout        = nvme_timeout,
1622        .poll           = nvme_poll,
1623};
1624
1625static void nvme_dev_remove_admin(struct nvme_dev *dev)
1626{
1627        if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1628                /*
1629                 * If the controller was reset during removal, it's possible
1630                 * user requests may be waiting on a stopped queue. Start the
1631                 * queue to flush these to completion.
1632                 */
1633                blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1634                blk_cleanup_queue(dev->ctrl.admin_q);
1635                blk_mq_free_tag_set(&dev->admin_tagset);
1636        }
1637}
1638
1639static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1640{
1641        if (!dev->ctrl.admin_q) {
1642                dev->admin_tagset.ops = &nvme_mq_admin_ops;
1643                dev->admin_tagset.nr_hw_queues = 1;
1644
1645                dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1646                dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1647                dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1648                dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false);
1649                dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1650                dev->admin_tagset.driver_data = dev;
1651
1652                if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1653                        return -ENOMEM;
1654                dev->ctrl.admin_tagset = &dev->admin_tagset;
1655
1656                dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1657                if (IS_ERR(dev->ctrl.admin_q)) {
1658                        blk_mq_free_tag_set(&dev->admin_tagset);
1659                        return -ENOMEM;
1660                }
1661                if (!blk_get_queue(dev->ctrl.admin_q)) {
1662                        nvme_dev_remove_admin(dev);
1663                        dev->ctrl.admin_q = NULL;
1664                        return -ENODEV;
1665                }
1666        } else
1667                blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1668
1669        return 0;
1670}
1671
1672static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1673{
1674        return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1675}
1676
1677static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1678{
1679        struct pci_dev *pdev = to_pci_dev(dev->dev);
1680
1681        if (size <= dev->bar_mapped_size)
1682                return 0;
1683        if (size > pci_resource_len(pdev, 0))
1684                return -ENOMEM;
1685        if (dev->bar)
1686                iounmap(dev->bar);
1687        dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1688        if (!dev->bar) {
1689                dev->bar_mapped_size = 0;
1690                return -ENOMEM;
1691        }
1692        dev->bar_mapped_size = size;
1693        dev->dbs = dev->bar + NVME_REG_DBS;
1694
1695        return 0;
1696}
1697
1698static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1699{
1700        int result;
1701        u32 aqa;
1702        struct nvme_queue *nvmeq;
1703
1704        result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1705        if (result < 0)
1706                return result;
1707
1708        dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1709                                NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1710
1711        if (dev->subsystem &&
1712            (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1713                writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1714
1715        result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1716        if (result < 0)
1717                return result;
1718
1719        result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1720        if (result)
1721                return result;
1722
1723        nvmeq = &dev->queues[0];
1724        aqa = nvmeq->q_depth - 1;
1725        aqa |= aqa << 16;
1726
1727        writel(aqa, dev->bar + NVME_REG_AQA);
1728        lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1729        lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1730
1731        result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1732        if (result)
1733                return result;
1734
1735        nvmeq->cq_vector = 0;
1736        nvme_init_queue(nvmeq, 0);
1737        result = queue_request_irq(nvmeq);
1738        if (result) {
1739                nvmeq->cq_vector = -1;
1740                return result;
1741        }
1742
1743        set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1744        return result;
1745}
1746
1747static int nvme_create_io_queues(struct nvme_dev *dev)
1748{
1749        unsigned i, max, rw_queues;
1750        int ret = 0;
1751
1752        for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1753                if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1754                        ret = -ENOMEM;
1755                        break;
1756                }
1757        }
1758
1759        max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1760        if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1761                rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1762                                dev->io_queues[HCTX_TYPE_READ];
1763        } else {
1764                rw_queues = max;
1765        }
1766
1767        for (i = dev->online_queues; i <= max; i++) {
1768                bool polled = i > rw_queues;
1769
1770                ret = nvme_create_queue(&dev->queues[i], i, polled);
1771                if (ret)
1772                        break;
1773        }
1774
1775        /*
1776         * Ignore failing Create SQ/CQ commands, we can continue with less
1777         * than the desired amount of queues, and even a controller without
1778         * I/O queues can still be used to issue admin commands.  This might
1779         * be useful to upgrade a buggy firmware for example.
1780         */
1781        return ret >= 0 ? 0 : ret;
1782}
1783
1784static ssize_t nvme_cmb_show(struct device *dev,
1785                             struct device_attribute *attr,
1786                             char *buf)
1787{
1788        struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1789
1790        return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1791                       ndev->cmbloc, ndev->cmbsz);
1792}
1793static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1794
1795static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1796{
1797        u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1798
1799        return 1ULL << (12 + 4 * szu);
1800}
1801
1802static u32 nvme_cmb_size(struct nvme_dev *dev)
1803{
1804        return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1805}
1806
1807static void nvme_map_cmb(struct nvme_dev *dev)
1808{
1809        u64 size, offset;
1810        resource_size_t bar_size;
1811        struct pci_dev *pdev = to_pci_dev(dev->dev);
1812        int bar;
1813
1814        if (dev->cmb_size)
1815                return;
1816
1817        dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1818        if (!dev->cmbsz)
1819                return;
1820        dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1821
1822        size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1823        offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1824        bar = NVME_CMB_BIR(dev->cmbloc);
1825        bar_size = pci_resource_len(pdev, bar);
1826
1827        if (offset > bar_size)
1828                return;
1829
1830        /*
1831         * Controllers may support a CMB size larger than their BAR,
1832         * for example, due to being behind a bridge. Reduce the CMB to
1833         * the reported size of the BAR
1834         */
1835        if (size > bar_size - offset)
1836                size = bar_size - offset;
1837
1838        if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1839                dev_warn(dev->ctrl.device,
1840                         "failed to register the CMB\n");
1841                return;
1842        }
1843
1844        dev->cmb_size = size;
1845        dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1846
1847        if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1848                        (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1849                pci_p2pmem_publish(pdev, true);
1850
1851        if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1852                                    &dev_attr_cmb.attr, NULL))
1853                dev_warn(dev->ctrl.device,
1854                         "failed to add sysfs attribute for CMB\n");
1855}
1856
1857static inline void nvme_release_cmb(struct nvme_dev *dev)
1858{
1859        if (dev->cmb_size) {
1860                sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1861                                             &dev_attr_cmb.attr, NULL);
1862                dev->cmb_size = 0;
1863        }
1864}
1865
1866static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1867{
1868        u64 dma_addr = dev->host_mem_descs_dma;
1869        struct nvme_command c;
1870        int ret;
1871
1872        memset(&c, 0, sizeof(c));
1873        c.features.opcode       = nvme_admin_set_features;
1874        c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1875        c.features.dword11      = cpu_to_le32(bits);
1876        c.features.dword12      = cpu_to_le32(dev->host_mem_size >>
1877                                              ilog2(dev->ctrl.page_size));
1878        c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1879        c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1880        c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1881
1882        ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1883        if (ret) {
1884                dev_warn(dev->ctrl.device,
1885                         "failed to set host mem (err %d, flags %#x).\n",
1886                         ret, bits);
1887        }
1888        return ret;
1889}
1890
1891static void nvme_free_host_mem(struct nvme_dev *dev)
1892{
1893        int i;
1894
1895        for (i = 0; i < dev->nr_host_mem_descs; i++) {
1896                struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1897                size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1898
1899                dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1900                               le64_to_cpu(desc->addr),
1901                               DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1902        }
1903
1904        kfree(dev->host_mem_desc_bufs);
1905        dev->host_mem_desc_bufs = NULL;
1906        dma_free_coherent(dev->dev,
1907                        dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1908                        dev->host_mem_descs, dev->host_mem_descs_dma);
1909        dev->host_mem_descs = NULL;
1910        dev->nr_host_mem_descs = 0;
1911}
1912
1913static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1914                u32 chunk_size)
1915{
1916        struct nvme_host_mem_buf_desc *descs;
1917        u32 max_entries, len;
1918        dma_addr_t descs_dma;
1919        int i = 0;
1920        void **bufs;
1921        u64 size, tmp;
1922
1923        tmp = (preferred + chunk_size - 1);
1924        do_div(tmp, chunk_size);
1925        max_entries = tmp;
1926
1927        if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1928                max_entries = dev->ctrl.hmmaxd;
1929
1930        descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
1931                        &descs_dma, GFP_KERNEL);
1932        if (!descs)
1933                goto out;
1934
1935        bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1936        if (!bufs)
1937                goto out_free_descs;
1938
1939        for (size = 0; size < preferred && i < max_entries; size += len) {
1940                dma_addr_t dma_addr;
1941
1942                len = min_t(u64, chunk_size, preferred - size);
1943                bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1944                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1945                if (!bufs[i])
1946                        break;
1947
1948                descs[i].addr = cpu_to_le64(dma_addr);
1949                descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1950                i++;
1951        }
1952
1953        if (!size)
1954                goto out_free_bufs;
1955
1956        dev->nr_host_mem_descs = i;
1957        dev->host_mem_size = size;
1958        dev->host_mem_descs = descs;
1959        dev->host_mem_descs_dma = descs_dma;
1960        dev->host_mem_desc_bufs = bufs;
1961        return 0;
1962
1963out_free_bufs:
1964        while (--i >= 0) {
1965                size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1966
1967                dma_free_attrs(dev->dev, size, bufs[i],
1968                               le64_to_cpu(descs[i].addr),
1969                               DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1970        }
1971
1972        kfree(bufs);
1973out_free_descs:
1974        dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1975                        descs_dma);
1976out:
1977        dev->host_mem_descs = NULL;
1978        return -ENOMEM;
1979}
1980
1981static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1982{
1983        u32 chunk_size;
1984
1985        /* start big and work our way down */
1986        for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1987             chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1988             chunk_size /= 2) {
1989                if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1990                        if (!min || dev->host_mem_size >= min)
1991                                return 0;
1992                        nvme_free_host_mem(dev);
1993                }
1994        }
1995
1996        return -ENOMEM;
1997}
1998
1999static int nvme_setup_host_mem(struct nvme_dev *dev)
2000{
2001        u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2002        u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2003        u64 min = (u64)dev->ctrl.hmmin * 4096;
2004        u32 enable_bits = NVME_HOST_MEM_ENABLE;
2005        int ret;
2006
2007        preferred = min(preferred, max);
2008        if (min > max) {
2009                dev_warn(dev->ctrl.device,
2010                        "min host memory (%lld MiB) above limit (%d MiB).\n",
2011                        min >> ilog2(SZ_1M), max_host_mem_size_mb);
2012                nvme_free_host_mem(dev);
2013                return 0;
2014        }
2015
2016        /*
2017         * If we already have a buffer allocated check if we can reuse it.
2018         */
2019        if (dev->host_mem_descs) {
2020                if (dev->host_mem_size >= min)
2021                        enable_bits |= NVME_HOST_MEM_RETURN;
2022                else
2023                        nvme_free_host_mem(dev);
2024        }
2025
2026        if (!dev->host_mem_descs) {
2027                if (nvme_alloc_host_mem(dev, min, preferred)) {
2028                        dev_warn(dev->ctrl.device,
2029                                "failed to allocate host memory buffer.\n");
2030                        return 0; /* controller must work without HMB */
2031                }
2032
2033                dev_info(dev->ctrl.device,
2034                        "allocated %lld MiB host memory buffer.\n",
2035                        dev->host_mem_size >> ilog2(SZ_1M));
2036        }
2037
2038        ret = nvme_set_host_mem(dev, enable_bits);
2039        if (ret)
2040                nvme_free_host_mem(dev);
2041        return ret;
2042}
2043
2044/*
2045 * nirqs is the number of interrupts available for write and read
2046 * queues. The core already reserved an interrupt for the admin queue.
2047 */
2048static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2049{
2050        struct nvme_dev *dev = affd->priv;
2051        unsigned int nr_read_queues;
2052
2053        /*
2054         * If there is no interupt available for queues, ensure that
2055         * the default queue is set to 1. The affinity set size is
2056         * also set to one, but the irq core ignores it for this case.
2057         *
2058         * If only one interrupt is available or 'write_queue' == 0, combine
2059         * write and read queues.
2060         *
2061         * If 'write_queues' > 0, ensure it leaves room for at least one read
2062         * queue.
2063         */
2064        if (!nrirqs) {
2065                nrirqs = 1;
2066                nr_read_queues = 0;
2067        } else if (nrirqs == 1 || !write_queues) {
2068                nr_read_queues = 0;
2069        } else if (write_queues >= nrirqs) {
2070                nr_read_queues = 1;
2071        } else {
2072                nr_read_queues = nrirqs - write_queues;
2073        }
2074
2075        dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2076        affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2077        dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2078        affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2079        affd->nr_sets = nr_read_queues ? 2 : 1;
2080}
2081
2082static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2083{
2084        struct pci_dev *pdev = to_pci_dev(dev->dev);
2085        struct irq_affinity affd = {
2086                .pre_vectors    = 1,
2087                .calc_sets      = nvme_calc_irq_sets,
2088                .priv           = dev,
2089        };
2090        unsigned int irq_queues, this_p_queues;
2091
2092        /*
2093         * Poll queues don't need interrupts, but we need at least one IO
2094         * queue left over for non-polled IO.
2095         */
2096        this_p_queues = poll_queues;
2097        if (this_p_queues >= nr_io_queues) {
2098                this_p_queues = nr_io_queues - 1;
2099                irq_queues = 1;
2100        } else {
2101                irq_queues = nr_io_queues - this_p_queues + 1;
2102        }
2103        dev->io_queues[HCTX_TYPE_POLL] = this_p_queues;
2104
2105        /* Initialize for the single interrupt case */
2106        dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2107        dev->io_queues[HCTX_TYPE_READ] = 0;
2108
2109        return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2110                              PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2111}
2112
2113static void nvme_disable_io_queues(struct nvme_dev *dev)
2114{
2115        if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2116                __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2117}
2118
2119static int nvme_setup_io_queues(struct nvme_dev *dev)
2120{
2121        struct nvme_queue *adminq = &dev->queues[0];
2122        struct pci_dev *pdev = to_pci_dev(dev->dev);
2123        int result, nr_io_queues;
2124        unsigned long size;
2125
2126        nr_io_queues = max_io_queues();
2127        result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2128        if (result < 0)
2129                return result;
2130
2131        if (nr_io_queues == 0)
2132                return 0;
2133        
2134        clear_bit(NVMEQ_ENABLED, &adminq->flags);
2135
2136        if (dev->cmb_use_sqes) {
2137                result = nvme_cmb_qdepth(dev, nr_io_queues,
2138                                sizeof(struct nvme_command));
2139                if (result > 0)
2140                        dev->q_depth = result;
2141                else
2142                        dev->cmb_use_sqes = false;
2143        }
2144
2145        do {
2146                size = db_bar_size(dev, nr_io_queues);
2147                result = nvme_remap_bar(dev, size);
2148                if (!result)
2149                        break;
2150                if (!--nr_io_queues)
2151                        return -ENOMEM;
2152        } while (1);
2153        adminq->q_db = dev->dbs;
2154
2155 retry:
2156        /* Deregister the admin queue's interrupt */
2157        pci_free_irq(pdev, 0, adminq);
2158
2159        /*
2160         * If we enable msix early due to not intx, disable it again before
2161         * setting up the full range we need.
2162         */
2163        pci_free_irq_vectors(pdev);
2164
2165        result = nvme_setup_irqs(dev, nr_io_queues);
2166        if (result <= 0)
2167                return -EIO;
2168
2169        dev->num_vecs = result;
2170        result = max(result - 1, 1);
2171        dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2172
2173        /*
2174         * Should investigate if there's a performance win from allocating
2175         * more queues than interrupt vectors; it might allow the submission
2176         * path to scale better, even if the receive path is limited by the
2177         * number of interrupts.
2178         */
2179        result = queue_request_irq(adminq);
2180        if (result) {
2181                adminq->cq_vector = -1;
2182                return result;
2183        }
2184        set_bit(NVMEQ_ENABLED, &adminq->flags);
2185
2186        result = nvme_create_io_queues(dev);
2187        if (result || dev->online_queues < 2)
2188                return result;
2189
2190        if (dev->online_queues - 1 < dev->max_qid) {
2191                nr_io_queues = dev->online_queues - 1;
2192                nvme_disable_io_queues(dev);
2193                nvme_suspend_io_queues(dev);
2194                goto retry;
2195        }
2196        dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2197                                        dev->io_queues[HCTX_TYPE_DEFAULT],
2198                                        dev->io_queues[HCTX_TYPE_READ],
2199                                        dev->io_queues[HCTX_TYPE_POLL]);
2200        return 0;
2201}
2202
2203static void nvme_del_queue_end(struct request *req, blk_status_t error)
2204{
2205        struct nvme_queue *nvmeq = req->end_io_data;
2206
2207        blk_mq_free_request(req);
2208        complete(&nvmeq->delete_done);
2209}
2210
2211static void nvme_del_cq_end(struct request *req, blk_status_t error)
2212{
2213        struct nvme_queue *nvmeq = req->end_io_data;
2214
2215        if (error)
2216                set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2217
2218        nvme_del_queue_end(req, error);
2219}
2220
2221static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2222{
2223        struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2224        struct request *req;
2225        struct nvme_command cmd;
2226
2227        memset(&cmd, 0, sizeof(cmd));
2228        cmd.delete_queue.opcode = opcode;
2229        cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2230
2231        req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2232        if (IS_ERR(req))
2233                return PTR_ERR(req);
2234
2235        req->timeout = ADMIN_TIMEOUT;
2236        req->end_io_data = nvmeq;
2237
2238        init_completion(&nvmeq->delete_done);
2239        blk_execute_rq_nowait(q, NULL, req, false,
2240                        opcode == nvme_admin_delete_cq ?
2241                                nvme_del_cq_end : nvme_del_queue_end);
2242        return 0;
2243}
2244
2245static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2246{
2247        int nr_queues = dev->online_queues - 1, sent = 0;
2248        unsigned long timeout;
2249
2250 retry:
2251        timeout = ADMIN_TIMEOUT;
2252        while (nr_queues > 0) {
2253                if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2254                        break;
2255                nr_queues--;
2256                sent++;
2257        }
2258        while (sent) {
2259                struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2260
2261                timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2262                                timeout);
2263                if (timeout == 0)
2264                        return false;
2265
2266                /* handle any remaining CQEs */
2267                if (opcode == nvme_admin_delete_cq &&
2268                    !test_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags))
2269                        nvme_poll_irqdisable(nvmeq, -1);
2270
2271                sent--;
2272                if (nr_queues)
2273                        goto retry;
2274        }
2275        return true;
2276}
2277
2278/*
2279 * return error value only when tagset allocation failed
2280 */
2281static int nvme_dev_add(struct nvme_dev *dev)
2282{
2283        int ret;
2284
2285        if (!dev->ctrl.tagset) {
2286                dev->tagset.ops = &nvme_mq_ops;
2287                dev->tagset.nr_hw_queues = dev->online_queues - 1;
2288                dev->tagset.nr_maps = 2; /* default + read */
2289                if (dev->io_queues[HCTX_TYPE_POLL])
2290                        dev->tagset.nr_maps++;
2291                dev->tagset.timeout = NVME_IO_TIMEOUT;
2292                dev->tagset.numa_node = dev_to_node(dev->dev);
2293                dev->tagset.queue_depth =
2294                                min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2295                dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false);
2296                if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) {
2297                        dev->tagset.cmd_size = max(dev->tagset.cmd_size,
2298                                        nvme_pci_cmd_size(dev, true));
2299                }
2300                dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2301                dev->tagset.driver_data = dev;
2302
2303                ret = blk_mq_alloc_tag_set(&dev->tagset);
2304                if (ret) {
2305                        dev_warn(dev->ctrl.device,
2306                                "IO queues tagset allocation failed %d\n", ret);
2307                        return ret;
2308                }
2309                dev->ctrl.tagset = &dev->tagset;
2310
2311                nvme_dbbuf_set(dev);
2312        } else {
2313                blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2314
2315                /* Free previously allocated queues that are no longer usable */
2316                nvme_free_queues(dev, dev->online_queues);
2317        }
2318
2319        return 0;
2320}
2321
2322static int nvme_pci_enable(struct nvme_dev *dev)
2323{
2324        int result = -ENOMEM;
2325        struct pci_dev *pdev = to_pci_dev(dev->dev);
2326
2327        if (pci_enable_device_mem(pdev))
2328                return result;
2329
2330        pci_set_master(pdev);
2331
2332        if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2333            dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2334                goto disable;
2335
2336        if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2337                result = -ENODEV;
2338                goto disable;
2339        }
2340
2341        /*
2342         * Some devices and/or platforms don't advertise or work with INTx
2343         * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2344         * adjust this later.
2345         */
2346        result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2347        if (result < 0)
2348                return result;
2349
2350        dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2351
2352        dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2353                                io_queue_depth);
2354        dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2355        dev->dbs = dev->bar + 4096;
2356
2357        /*
2358         * Temporary fix for the Apple controller found in the MacBook8,1 and
2359         * some MacBook7,1 to avoid controller resets and data loss.
2360         */
2361        if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2362                dev->q_depth = 2;
2363                dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2364                        "set queue depth=%u to work around controller resets\n",
2365                        dev->q_depth);
2366        } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2367                   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2368                   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2369                dev->q_depth = 64;
2370                dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2371                        "set queue depth=%u\n", dev->q_depth);
2372        }
2373
2374        nvme_map_cmb(dev);
2375
2376        pci_enable_pcie_error_reporting(pdev);
2377        pci_save_state(pdev);
2378        return 0;
2379
2380 disable:
2381        pci_disable_device(pdev);
2382        return result;
2383}
2384
2385static void nvme_dev_unmap(struct nvme_dev *dev)
2386{
2387        if (dev->bar)
2388                iounmap(dev->bar);
2389        pci_release_mem_regions(to_pci_dev(dev->dev));
2390}
2391
2392static void nvme_pci_disable(struct nvme_dev *dev)
2393{
2394        struct pci_dev *pdev = to_pci_dev(dev->dev);
2395
2396        pci_free_irq_vectors(pdev);
2397
2398        if (pci_is_enabled(pdev)) {
2399                pci_disable_pcie_error_reporting(pdev);
2400                pci_disable_device(pdev);
2401        }
2402}
2403
2404static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2405{
2406        bool dead = true;
2407        struct pci_dev *pdev = to_pci_dev(dev->dev);
2408
2409        mutex_lock(&dev->shutdown_lock);
2410        if (pci_is_enabled(pdev)) {
2411                u32 csts = readl(dev->bar + NVME_REG_CSTS);
2412
2413                if (dev->ctrl.state == NVME_CTRL_LIVE ||
2414                    dev->ctrl.state == NVME_CTRL_RESETTING)
2415                        nvme_start_freeze(&dev->ctrl);
2416                dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2417                        pdev->error_state  != pci_channel_io_normal);
2418        }
2419
2420        /*
2421         * Give the controller a chance to complete all entered requests if
2422         * doing a safe shutdown.
2423         */
2424        if (!dead) {
2425                if (shutdown)
2426                        nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2427        }
2428
2429        nvme_stop_queues(&dev->ctrl);
2430
2431        if (!dead && dev->ctrl.queue_count > 0) {
2432                nvme_disable_io_queues(dev);
2433                nvme_disable_admin_queue(dev, shutdown);
2434        }
2435        nvme_suspend_io_queues(dev);
2436        nvme_suspend_queue(&dev->queues[0]);
2437        nvme_pci_disable(dev);
2438
2439        blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2440        blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2441
2442        /*
2443         * The driver will not be starting up queues again if shutting down so
2444         * must flush all entered requests to their failed completion to avoid
2445         * deadlocking blk-mq hot-cpu notifier.
2446         */
2447        if (shutdown)
2448                nvme_start_queues(&dev->ctrl);
2449        mutex_unlock(&dev->shutdown_lock);
2450}
2451
2452static int nvme_setup_prp_pools(struct nvme_dev *dev)
2453{
2454        dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2455                                                PAGE_SIZE, PAGE_SIZE, 0);
2456        if (!dev->prp_page_pool)
2457                return -ENOMEM;
2458
2459        /* Optimisation for I/Os between 4k and 128k */
2460        dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2461                                                256, 256, 0);
2462        if (!dev->prp_small_pool) {
2463                dma_pool_destroy(dev->prp_page_pool);
2464                return -ENOMEM;
2465        }
2466        return 0;
2467}
2468
2469static void nvme_release_prp_pools(struct nvme_dev *dev)
2470{
2471        dma_pool_destroy(dev->prp_page_pool);
2472        dma_pool_destroy(dev->prp_small_pool);
2473}
2474
2475static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2476{
2477        struct nvme_dev *dev = to_nvme_dev(ctrl);
2478
2479        nvme_dbbuf_dma_free(dev);
2480        put_device(dev->dev);
2481        if (dev->tagset.tags)
2482                blk_mq_free_tag_set(&dev->tagset);
2483        if (dev->ctrl.admin_q)
2484                blk_put_queue(dev->ctrl.admin_q);
2485        kfree(dev->queues);
2486        free_opal_dev(dev->ctrl.opal_dev);
2487        mempool_destroy(dev->iod_mempool);
2488        kfree(dev);
2489}
2490
2491static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2492{
2493        dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2494
2495        nvme_get_ctrl(&dev->ctrl);
2496        nvme_dev_disable(dev, false);
2497        nvme_kill_queues(&dev->ctrl);
2498        if (!queue_work(nvme_wq, &dev->remove_work))
2499                nvme_put_ctrl(&dev->ctrl);
2500}
2501
2502static void nvme_reset_work(struct work_struct *work)
2503{
2504        struct nvme_dev *dev =
2505                container_of(work, struct nvme_dev, ctrl.reset_work);
2506        bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2507        int result = -ENODEV;
2508        enum nvme_ctrl_state new_state = NVME_CTRL_LIVE;
2509
2510        if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2511                goto out;
2512
2513        /*
2514         * If we're called to reset a live controller first shut it down before
2515         * moving on.
2516         */
2517        if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2518                nvme_dev_disable(dev, false);
2519
2520        mutex_lock(&dev->shutdown_lock);
2521        result = nvme_pci_enable(dev);
2522        if (result)
2523                goto out_unlock;
2524
2525        result = nvme_pci_configure_admin_queue(dev);
2526        if (result)
2527                goto out_unlock;
2528
2529        result = nvme_alloc_admin_tags(dev);
2530        if (result)
2531                goto out_unlock;
2532
2533        /*
2534         * Limit the max command size to prevent iod->sg allocations going
2535         * over a single page.
2536         */
2537        dev->ctrl.max_hw_sectors = NVME_MAX_KB_SZ << 1;
2538        dev->ctrl.max_segments = NVME_MAX_SEGS;
2539        mutex_unlock(&dev->shutdown_lock);
2540
2541        /*
2542         * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2543         * initializing procedure here.
2544         */
2545        if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2546                dev_warn(dev->ctrl.device,
2547                        "failed to mark controller CONNECTING\n");
2548                goto out;
2549        }
2550
2551        result = nvme_init_identify(&dev->ctrl);
2552        if (result)
2553                goto out;
2554
2555        if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2556                if (!dev->ctrl.opal_dev)
2557                        dev->ctrl.opal_dev =
2558                                init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2559                else if (was_suspend)
2560                        opal_unlock_from_suspend(dev->ctrl.opal_dev);
2561        } else {
2562                free_opal_dev(dev->ctrl.opal_dev);
2563                dev->ctrl.opal_dev = NULL;
2564        }
2565
2566        if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2567                result = nvme_dbbuf_dma_alloc(dev);
2568                if (result)
2569                        dev_warn(dev->dev,
2570                                 "unable to allocate dma for dbbuf\n");
2571        }
2572
2573        if (dev->ctrl.hmpre) {
2574                result = nvme_setup_host_mem(dev);
2575                if (result < 0)
2576                        goto out;
2577        }
2578
2579        result = nvme_setup_io_queues(dev);
2580        if (result)
2581                goto out;
2582
2583        /*
2584         * Keep the controller around but remove all namespaces if we don't have
2585         * any working I/O queue.
2586         */
2587        if (dev->online_queues < 2) {
2588                dev_warn(dev->ctrl.device, "IO queues not created\n");
2589                nvme_kill_queues(&dev->ctrl);
2590                nvme_remove_namespaces(&dev->ctrl);
2591                new_state = NVME_CTRL_ADMIN_ONLY;
2592        } else {
2593                nvme_start_queues(&dev->ctrl);
2594                nvme_wait_freeze(&dev->ctrl);
2595                /* hit this only when allocate tagset fails */
2596                if (nvme_dev_add(dev))
2597                        new_state = NVME_CTRL_ADMIN_ONLY;
2598                nvme_unfreeze(&dev->ctrl);
2599        }
2600
2601        /*
2602         * If only admin queue live, keep it to do further investigation or
2603         * recovery.
2604         */
2605        if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) {
2606                dev_warn(dev->ctrl.device,
2607                        "failed to mark controller state %d\n", new_state);
2608                goto out;
2609        }
2610
2611        nvme_start_ctrl(&dev->ctrl);
2612        return;
2613
2614 out_unlock:
2615        mutex_unlock(&dev->shutdown_lock);
2616 out:
2617        nvme_remove_dead_ctrl(dev, result);
2618}
2619
2620static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2621{
2622        struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2623        struct pci_dev *pdev = to_pci_dev(dev->dev);
2624
2625        if (pci_get_drvdata(pdev))
2626                device_release_driver(&pdev->dev);
2627        nvme_put_ctrl(&dev->ctrl);
2628}
2629
2630static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2631{
2632        *val = readl(to_nvme_dev(ctrl)->bar + off);
2633        return 0;
2634}
2635
2636static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2637{
2638        writel(val, to_nvme_dev(ctrl)->bar + off);
2639        return 0;
2640}
2641
2642static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2643{
2644        *val = readq(to_nvme_dev(ctrl)->bar + off);
2645        return 0;
2646}
2647
2648static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2649{
2650        struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2651
2652        return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2653}
2654
2655static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2656        .name                   = "pcie",
2657        .module                 = THIS_MODULE,
2658        .flags                  = NVME_F_METADATA_SUPPORTED |
2659                                  NVME_F_PCI_P2PDMA,
2660        .reg_read32             = nvme_pci_reg_read32,
2661        .reg_write32            = nvme_pci_reg_write32,
2662        .reg_read64             = nvme_pci_reg_read64,
2663        .free_ctrl              = nvme_pci_free_ctrl,
2664        .submit_async_event     = nvme_pci_submit_async_event,
2665        .get_address            = nvme_pci_get_address,
2666};
2667
2668static int nvme_dev_map(struct nvme_dev *dev)
2669{
2670        struct pci_dev *pdev = to_pci_dev(dev->dev);
2671
2672        if (pci_request_mem_regions(pdev, "nvme"))
2673                return -ENODEV;
2674
2675        if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2676                goto release;
2677
2678        return 0;
2679  release:
2680        pci_release_mem_regions(pdev);
2681        return -ENODEV;
2682}
2683
2684static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2685{
2686        if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2687                /*
2688                 * Several Samsung devices seem to drop off the PCIe bus
2689                 * randomly when APST is on and uses the deepest sleep state.
2690                 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2691                 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2692                 * 950 PRO 256GB", but it seems to be restricted to two Dell
2693                 * laptops.
2694                 */
2695                if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2696                    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2697                     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2698                        return NVME_QUIRK_NO_DEEPEST_PS;
2699        } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2700                /*
2701                 * Samsung SSD 960 EVO drops off the PCIe bus after system
2702                 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2703                 * within few minutes after bootup on a Coffee Lake board -
2704                 * ASUS PRIME Z370-A
2705                 */
2706                if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2707                    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2708                     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2709                        return NVME_QUIRK_NO_APST;
2710        }
2711
2712        return 0;
2713}
2714
2715static void nvme_async_probe(void *data, async_cookie_t cookie)
2716{
2717        struct nvme_dev *dev = data;
2718
2719        nvme_reset_ctrl_sync(&dev->ctrl);
2720        flush_work(&dev->ctrl.scan_work);
2721        nvme_put_ctrl(&dev->ctrl);
2722}
2723
2724static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2725{
2726        int node, result = -ENOMEM;
2727        struct nvme_dev *dev;
2728        unsigned long quirks = id->driver_data;
2729        size_t alloc_size;
2730
2731        node = dev_to_node(&pdev->dev);
2732        if (node == NUMA_NO_NODE)
2733                set_dev_node(&pdev->dev, first_memory_node);
2734
2735        dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2736        if (!dev)
2737                return -ENOMEM;
2738
2739        dev->queues = kcalloc_node(max_queue_count(), sizeof(struct nvme_queue),
2740                                        GFP_KERNEL, node);
2741        if (!dev->queues)
2742                goto free;
2743
2744        dev->dev = get_device(&pdev->dev);
2745        pci_set_drvdata(pdev, dev);
2746
2747        result = nvme_dev_map(dev);
2748        if (result)
2749                goto put_pci;
2750
2751        INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2752        INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2753        mutex_init(&dev->shutdown_lock);
2754
2755        result = nvme_setup_prp_pools(dev);
2756        if (result)
2757                goto unmap;
2758
2759        quirks |= check_vendor_combination_bug(pdev);
2760
2761        /*
2762         * Double check that our mempool alloc size will cover the biggest
2763         * command we support.
2764         */
2765        alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2766                                                NVME_MAX_SEGS, true);
2767        WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2768
2769        dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2770                                                mempool_kfree,
2771                                                (void *) alloc_size,
2772                                                GFP_KERNEL, node);
2773        if (!dev->iod_mempool) {
2774                result = -ENOMEM;
2775                goto release_pools;
2776        }
2777
2778        result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2779                        quirks);
2780        if (result)
2781                goto release_mempool;
2782
2783        dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2784
2785        nvme_get_ctrl(&dev->ctrl);
2786        async_schedule(nvme_async_probe, dev);
2787
2788        return 0;
2789
2790 release_mempool:
2791        mempool_destroy(dev->iod_mempool);
2792 release_pools:
2793        nvme_release_prp_pools(dev);
2794 unmap:
2795        nvme_dev_unmap(dev);
2796 put_pci:
2797        put_device(dev->dev);
2798 free:
2799        kfree(dev->queues);
2800        kfree(dev);
2801        return result;
2802}
2803
2804static void nvme_reset_prepare(struct pci_dev *pdev)
2805{
2806        struct nvme_dev *dev = pci_get_drvdata(pdev);
2807        nvme_dev_disable(dev, false);
2808}
2809
2810static void nvme_reset_done(struct pci_dev *pdev)
2811{
2812        struct nvme_dev *dev = pci_get_drvdata(pdev);
2813        nvme_reset_ctrl_sync(&dev->ctrl);
2814}
2815
2816static void nvme_shutdown(struct pci_dev *pdev)
2817{
2818        struct nvme_dev *dev = pci_get_drvdata(pdev);
2819        nvme_dev_disable(dev, true);
2820}
2821
2822/*
2823 * The driver's remove may be called on a device in a partially initialized
2824 * state. This function must not have any dependencies on the device state in
2825 * order to proceed.
2826 */
2827static void nvme_remove(struct pci_dev *pdev)
2828{
2829        struct nvme_dev *dev = pci_get_drvdata(pdev);
2830
2831        nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2832        pci_set_drvdata(pdev, NULL);
2833
2834        if (!pci_device_is_present(pdev)) {
2835                nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2836                nvme_dev_disable(dev, true);
2837                nvme_dev_remove_admin(dev);
2838        }
2839
2840        flush_work(&dev->ctrl.reset_work);
2841        nvme_stop_ctrl(&dev->ctrl);
2842        nvme_remove_namespaces(&dev->ctrl);
2843        nvme_dev_disable(dev, true);
2844        nvme_release_cmb(dev);
2845        nvme_free_host_mem(dev);
2846        nvme_dev_remove_admin(dev);
2847        nvme_free_queues(dev, 0);
2848        nvme_uninit_ctrl(&dev->ctrl);
2849        nvme_release_prp_pools(dev);
2850        nvme_dev_unmap(dev);
2851        nvme_put_ctrl(&dev->ctrl);
2852}
2853
2854#ifdef CONFIG_PM_SLEEP
2855static int nvme_suspend(struct device *dev)
2856{
2857        struct pci_dev *pdev = to_pci_dev(dev);
2858        struct nvme_dev *ndev = pci_get_drvdata(pdev);
2859
2860        nvme_dev_disable(ndev, true);
2861        return 0;
2862}
2863
2864static int nvme_resume(struct device *dev)
2865{
2866        struct pci_dev *pdev = to_pci_dev(dev);
2867        struct nvme_dev *ndev = pci_get_drvdata(pdev);
2868
2869        nvme_reset_ctrl(&ndev->ctrl);
2870        return 0;
2871}
2872#endif
2873
2874static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2875
2876static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2877                                                pci_channel_state_t state)
2878{
2879        struct nvme_dev *dev = pci_get_drvdata(pdev);
2880
2881        /*
2882         * A frozen channel requires a reset. When detected, this method will
2883         * shutdown the controller to quiesce. The controller will be restarted
2884         * after the slot reset through driver's slot_reset callback.
2885         */
2886        switch (state) {
2887        case pci_channel_io_normal:
2888                return PCI_ERS_RESULT_CAN_RECOVER;
2889        case pci_channel_io_frozen:
2890                dev_warn(dev->ctrl.device,
2891                        "frozen state error detected, reset controller\n");
2892                nvme_dev_disable(dev, false);
2893                return PCI_ERS_RESULT_NEED_RESET;
2894        case pci_channel_io_perm_failure:
2895                dev_warn(dev->ctrl.device,
2896                        "failure state error detected, request disconnect\n");
2897                return PCI_ERS_RESULT_DISCONNECT;
2898        }
2899        return PCI_ERS_RESULT_NEED_RESET;
2900}
2901
2902static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2903{
2904        struct nvme_dev *dev = pci_get_drvdata(pdev);
2905
2906        dev_info(dev->ctrl.device, "restart after slot reset\n");
2907        pci_restore_state(pdev);
2908        nvme_reset_ctrl(&dev->ctrl);
2909        return PCI_ERS_RESULT_RECOVERED;
2910}
2911
2912static void nvme_error_resume(struct pci_dev *pdev)
2913{
2914        struct nvme_dev *dev = pci_get_drvdata(pdev);
2915
2916        flush_work(&dev->ctrl.reset_work);
2917}
2918
2919static const struct pci_error_handlers nvme_err_handler = {
2920        .error_detected = nvme_error_detected,
2921        .slot_reset     = nvme_slot_reset,
2922        .resume         = nvme_error_resume,
2923        .reset_prepare  = nvme_reset_prepare,
2924        .reset_done     = nvme_reset_done,
2925};
2926
2927static const struct pci_device_id nvme_id_table[] = {
2928        { PCI_VDEVICE(INTEL, 0x0953),
2929                .driver_data = NVME_QUIRK_STRIPE_SIZE |
2930                                NVME_QUIRK_DEALLOCATE_ZEROES, },
2931        { PCI_VDEVICE(INTEL, 0x0a53),
2932                .driver_data = NVME_QUIRK_STRIPE_SIZE |
2933                                NVME_QUIRK_DEALLOCATE_ZEROES, },
2934        { PCI_VDEVICE(INTEL, 0x0a54),
2935                .driver_data = NVME_QUIRK_STRIPE_SIZE |
2936                                NVME_QUIRK_DEALLOCATE_ZEROES, },
2937        { PCI_VDEVICE(INTEL, 0x0a55),
2938                .driver_data = NVME_QUIRK_STRIPE_SIZE |
2939                                NVME_QUIRK_DEALLOCATE_ZEROES, },
2940        { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
2941                .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
2942                                NVME_QUIRK_MEDIUM_PRIO_SQ },
2943        { PCI_VDEVICE(INTEL, 0xf1a6),   /* Intel 760p/Pro 7600p */
2944                .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
2945        { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2946                .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2947        { PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
2948                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2949        { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
2950                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2951        { PCI_DEVICE(0x1c58, 0x0023),   /* WDC SN200 adapter */
2952                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2953        { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
2954                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2955        { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
2956                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2957        { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
2958                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2959        { PCI_DEVICE(0x1d1d, 0x1f1f),   /* LighNVM qemu device */
2960                .driver_data = NVME_QUIRK_LIGHTNVM, },
2961        { PCI_DEVICE(0x1d1d, 0x2807),   /* CNEX WL */
2962                .driver_data = NVME_QUIRK_LIGHTNVM, },
2963        { PCI_DEVICE(0x1d1d, 0x2601),   /* CNEX Granby */
2964                .driver_data = NVME_QUIRK_LIGHTNVM, },
2965        { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2966        { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2967        { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2968        { 0, }
2969};
2970MODULE_DEVICE_TABLE(pci, nvme_id_table);
2971
2972static struct pci_driver nvme_driver = {
2973        .name           = "nvme",
2974        .id_table       = nvme_id_table,
2975        .probe          = nvme_probe,
2976        .remove         = nvme_remove,
2977        .shutdown       = nvme_shutdown,
2978        .driver         = {
2979                .pm     = &nvme_dev_pm_ops,
2980        },
2981        .sriov_configure = pci_sriov_configure_simple,
2982        .err_handler    = &nvme_err_handler,
2983};
2984
2985static int __init nvme_init(void)
2986{
2987        BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
2988        return pci_register_driver(&nvme_driver);
2989}
2990
2991static void __exit nvme_exit(void)
2992{
2993        pci_unregister_driver(&nvme_driver);
2994        flush_workqueue(nvme_wq);
2995        _nvme_check_size();
2996}
2997
2998MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2999MODULE_LICENSE("GPL");
3000MODULE_VERSION("1.0");
3001module_init(nvme_init);
3002module_exit(nvme_exit);
3003