linux/drivers/spi/spi-pxa2xx.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
   3 * Copyright (C) 2013, Intel Corporation
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License as published by
   7 * the Free Software Foundation; either version 2 of the License, or
   8 * (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 */
  15
  16#include <linux/bitops.h>
  17#include <linux/init.h>
  18#include <linux/module.h>
  19#include <linux/device.h>
  20#include <linux/ioport.h>
  21#include <linux/errno.h>
  22#include <linux/err.h>
  23#include <linux/interrupt.h>
  24#include <linux/kernel.h>
  25#include <linux/pci.h>
  26#include <linux/platform_device.h>
  27#include <linux/spi/pxa2xx_spi.h>
  28#include <linux/spi/spi.h>
  29#include <linux/delay.h>
  30#include <linux/gpio.h>
  31#include <linux/gpio/consumer.h>
  32#include <linux/slab.h>
  33#include <linux/clk.h>
  34#include <linux/pm_runtime.h>
  35#include <linux/acpi.h>
  36
  37#include "spi-pxa2xx.h"
  38
  39MODULE_AUTHOR("Stephen Street");
  40MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  41MODULE_LICENSE("GPL");
  42MODULE_ALIAS("platform:pxa2xx-spi");
  43
  44#define TIMOUT_DFLT             1000
  45
  46/*
  47 * for testing SSCR1 changes that require SSP restart, basically
  48 * everything except the service and interrupt enables, the pxa270 developer
  49 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  50 * list, but the PXA255 dev man says all bits without really meaning the
  51 * service and interrupt enables
  52 */
  53#define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  54                                | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  55                                | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  56                                | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  57                                | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  58                                | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  59
  60#define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF   \
  61                                | QUARK_X1000_SSCR1_EFWR        \
  62                                | QUARK_X1000_SSCR1_RFT         \
  63                                | QUARK_X1000_SSCR1_TFT         \
  64                                | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  65
  66#define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  67                                | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  68                                | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  69                                | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  70                                | CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
  71                                | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  72
  73#define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE   BIT(24)
  74#define LPSS_CS_CONTROL_SW_MODE                 BIT(0)
  75#define LPSS_CS_CONTROL_CS_HIGH                 BIT(1)
  76#define LPSS_CAPS_CS_EN_SHIFT                   9
  77#define LPSS_CAPS_CS_EN_MASK                    (0xf << LPSS_CAPS_CS_EN_SHIFT)
  78
  79struct lpss_config {
  80        /* LPSS offset from drv_data->ioaddr */
  81        unsigned offset;
  82        /* Register offsets from drv_data->lpss_base or -1 */
  83        int reg_general;
  84        int reg_ssp;
  85        int reg_cs_ctrl;
  86        int reg_capabilities;
  87        /* FIFO thresholds */
  88        u32 rx_threshold;
  89        u32 tx_threshold_lo;
  90        u32 tx_threshold_hi;
  91        /* Chip select control */
  92        unsigned cs_sel_shift;
  93        unsigned cs_sel_mask;
  94        unsigned cs_num;
  95};
  96
  97/* Keep these sorted with enum pxa_ssp_type */
  98static const struct lpss_config lpss_platforms[] = {
  99        {       /* LPSS_LPT_SSP */
 100                .offset = 0x800,
 101                .reg_general = 0x08,
 102                .reg_ssp = 0x0c,
 103                .reg_cs_ctrl = 0x18,
 104                .reg_capabilities = -1,
 105                .rx_threshold = 64,
 106                .tx_threshold_lo = 160,
 107                .tx_threshold_hi = 224,
 108        },
 109        {       /* LPSS_BYT_SSP */
 110                .offset = 0x400,
 111                .reg_general = 0x08,
 112                .reg_ssp = 0x0c,
 113                .reg_cs_ctrl = 0x18,
 114                .reg_capabilities = -1,
 115                .rx_threshold = 64,
 116                .tx_threshold_lo = 160,
 117                .tx_threshold_hi = 224,
 118        },
 119        {       /* LPSS_BSW_SSP */
 120                .offset = 0x400,
 121                .reg_general = 0x08,
 122                .reg_ssp = 0x0c,
 123                .reg_cs_ctrl = 0x18,
 124                .reg_capabilities = -1,
 125                .rx_threshold = 64,
 126                .tx_threshold_lo = 160,
 127                .tx_threshold_hi = 224,
 128                .cs_sel_shift = 2,
 129                .cs_sel_mask = 1 << 2,
 130                .cs_num = 2,
 131        },
 132        {       /* LPSS_SPT_SSP */
 133                .offset = 0x200,
 134                .reg_general = -1,
 135                .reg_ssp = 0x20,
 136                .reg_cs_ctrl = 0x24,
 137                .reg_capabilities = -1,
 138                .rx_threshold = 1,
 139                .tx_threshold_lo = 32,
 140                .tx_threshold_hi = 56,
 141        },
 142        {       /* LPSS_BXT_SSP */
 143                .offset = 0x200,
 144                .reg_general = -1,
 145                .reg_ssp = 0x20,
 146                .reg_cs_ctrl = 0x24,
 147                .reg_capabilities = 0xfc,
 148                .rx_threshold = 1,
 149                .tx_threshold_lo = 16,
 150                .tx_threshold_hi = 48,
 151                .cs_sel_shift = 8,
 152                .cs_sel_mask = 3 << 8,
 153        },
 154        {       /* LPSS_CNL_SSP */
 155                .offset = 0x200,
 156                .reg_general = -1,
 157                .reg_ssp = 0x20,
 158                .reg_cs_ctrl = 0x24,
 159                .reg_capabilities = 0xfc,
 160                .rx_threshold = 1,
 161                .tx_threshold_lo = 32,
 162                .tx_threshold_hi = 56,
 163                .cs_sel_shift = 8,
 164                .cs_sel_mask = 3 << 8,
 165        },
 166};
 167
 168static inline const struct lpss_config
 169*lpss_get_config(const struct driver_data *drv_data)
 170{
 171        return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
 172}
 173
 174static bool is_lpss_ssp(const struct driver_data *drv_data)
 175{
 176        switch (drv_data->ssp_type) {
 177        case LPSS_LPT_SSP:
 178        case LPSS_BYT_SSP:
 179        case LPSS_BSW_SSP:
 180        case LPSS_SPT_SSP:
 181        case LPSS_BXT_SSP:
 182        case LPSS_CNL_SSP:
 183                return true;
 184        default:
 185                return false;
 186        }
 187}
 188
 189static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
 190{
 191        return drv_data->ssp_type == QUARK_X1000_SSP;
 192}
 193
 194static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
 195{
 196        switch (drv_data->ssp_type) {
 197        case QUARK_X1000_SSP:
 198                return QUARK_X1000_SSCR1_CHANGE_MASK;
 199        case CE4100_SSP:
 200                return CE4100_SSCR1_CHANGE_MASK;
 201        default:
 202                return SSCR1_CHANGE_MASK;
 203        }
 204}
 205
 206static u32
 207pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
 208{
 209        switch (drv_data->ssp_type) {
 210        case QUARK_X1000_SSP:
 211                return RX_THRESH_QUARK_X1000_DFLT;
 212        case CE4100_SSP:
 213                return RX_THRESH_CE4100_DFLT;
 214        default:
 215                return RX_THRESH_DFLT;
 216        }
 217}
 218
 219static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
 220{
 221        u32 mask;
 222
 223        switch (drv_data->ssp_type) {
 224        case QUARK_X1000_SSP:
 225                mask = QUARK_X1000_SSSR_TFL_MASK;
 226                break;
 227        case CE4100_SSP:
 228                mask = CE4100_SSSR_TFL_MASK;
 229                break;
 230        default:
 231                mask = SSSR_TFL_MASK;
 232                break;
 233        }
 234
 235        return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
 236}
 237
 238static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
 239                                     u32 *sccr1_reg)
 240{
 241        u32 mask;
 242
 243        switch (drv_data->ssp_type) {
 244        case QUARK_X1000_SSP:
 245                mask = QUARK_X1000_SSCR1_RFT;
 246                break;
 247        case CE4100_SSP:
 248                mask = CE4100_SSCR1_RFT;
 249                break;
 250        default:
 251                mask = SSCR1_RFT;
 252                break;
 253        }
 254        *sccr1_reg &= ~mask;
 255}
 256
 257static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
 258                                   u32 *sccr1_reg, u32 threshold)
 259{
 260        switch (drv_data->ssp_type) {
 261        case QUARK_X1000_SSP:
 262                *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
 263                break;
 264        case CE4100_SSP:
 265                *sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
 266                break;
 267        default:
 268                *sccr1_reg |= SSCR1_RxTresh(threshold);
 269                break;
 270        }
 271}
 272
 273static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
 274                                  u32 clk_div, u8 bits)
 275{
 276        switch (drv_data->ssp_type) {
 277        case QUARK_X1000_SSP:
 278                return clk_div
 279                        | QUARK_X1000_SSCR0_Motorola
 280                        | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
 281                        | SSCR0_SSE;
 282        default:
 283                return clk_div
 284                        | SSCR0_Motorola
 285                        | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
 286                        | SSCR0_SSE
 287                        | (bits > 16 ? SSCR0_EDSS : 0);
 288        }
 289}
 290
 291/*
 292 * Read and write LPSS SSP private registers. Caller must first check that
 293 * is_lpss_ssp() returns true before these can be called.
 294 */
 295static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
 296{
 297        WARN_ON(!drv_data->lpss_base);
 298        return readl(drv_data->lpss_base + offset);
 299}
 300
 301static void __lpss_ssp_write_priv(struct driver_data *drv_data,
 302                                  unsigned offset, u32 value)
 303{
 304        WARN_ON(!drv_data->lpss_base);
 305        writel(value, drv_data->lpss_base + offset);
 306}
 307
 308/*
 309 * lpss_ssp_setup - perform LPSS SSP specific setup
 310 * @drv_data: pointer to the driver private data
 311 *
 312 * Perform LPSS SSP specific setup. This function must be called first if
 313 * one is going to use LPSS SSP private registers.
 314 */
 315static void lpss_ssp_setup(struct driver_data *drv_data)
 316{
 317        const struct lpss_config *config;
 318        u32 value;
 319
 320        config = lpss_get_config(drv_data);
 321        drv_data->lpss_base = drv_data->ioaddr + config->offset;
 322
 323        /* Enable software chip select control */
 324        value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 325        value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
 326        value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
 327        __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
 328
 329        /* Enable multiblock DMA transfers */
 330        if (drv_data->master_info->enable_dma) {
 331                __lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
 332
 333                if (config->reg_general >= 0) {
 334                        value = __lpss_ssp_read_priv(drv_data,
 335                                                     config->reg_general);
 336                        value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
 337                        __lpss_ssp_write_priv(drv_data,
 338                                              config->reg_general, value);
 339                }
 340        }
 341}
 342
 343static void lpss_ssp_select_cs(struct spi_device *spi,
 344                               const struct lpss_config *config)
 345{
 346        struct driver_data *drv_data =
 347                spi_controller_get_devdata(spi->controller);
 348        u32 value, cs;
 349
 350        if (!config->cs_sel_mask)
 351                return;
 352
 353        value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 354
 355        cs = spi->chip_select;
 356        cs <<= config->cs_sel_shift;
 357        if (cs != (value & config->cs_sel_mask)) {
 358                /*
 359                 * When switching another chip select output active the
 360                 * output must be selected first and wait 2 ssp_clk cycles
 361                 * before changing state to active. Otherwise a short
 362                 * glitch will occur on the previous chip select since
 363                 * output select is latched but state control is not.
 364                 */
 365                value &= ~config->cs_sel_mask;
 366                value |= cs;
 367                __lpss_ssp_write_priv(drv_data,
 368                                      config->reg_cs_ctrl, value);
 369                ndelay(1000000000 /
 370                       (drv_data->master->max_speed_hz / 2));
 371        }
 372}
 373
 374static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
 375{
 376        struct driver_data *drv_data =
 377                spi_controller_get_devdata(spi->controller);
 378        const struct lpss_config *config;
 379        u32 value;
 380
 381        config = lpss_get_config(drv_data);
 382
 383        if (enable)
 384                lpss_ssp_select_cs(spi, config);
 385
 386        value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 387        if (enable)
 388                value &= ~LPSS_CS_CONTROL_CS_HIGH;
 389        else
 390                value |= LPSS_CS_CONTROL_CS_HIGH;
 391        __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
 392}
 393
 394static void cs_assert(struct spi_device *spi)
 395{
 396        struct chip_data *chip = spi_get_ctldata(spi);
 397        struct driver_data *drv_data =
 398                spi_controller_get_devdata(spi->controller);
 399
 400        if (drv_data->ssp_type == CE4100_SSP) {
 401                pxa2xx_spi_write(drv_data, SSSR, chip->frm);
 402                return;
 403        }
 404
 405        if (chip->cs_control) {
 406                chip->cs_control(PXA2XX_CS_ASSERT);
 407                return;
 408        }
 409
 410        if (chip->gpiod_cs) {
 411                gpiod_set_value(chip->gpiod_cs, chip->gpio_cs_inverted);
 412                return;
 413        }
 414
 415        if (is_lpss_ssp(drv_data))
 416                lpss_ssp_cs_control(spi, true);
 417}
 418
 419static void cs_deassert(struct spi_device *spi)
 420{
 421        struct chip_data *chip = spi_get_ctldata(spi);
 422        struct driver_data *drv_data =
 423                spi_controller_get_devdata(spi->controller);
 424        unsigned long timeout;
 425
 426        if (drv_data->ssp_type == CE4100_SSP)
 427                return;
 428
 429        /* Wait until SSP becomes idle before deasserting the CS */
 430        timeout = jiffies + msecs_to_jiffies(10);
 431        while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
 432               !time_after(jiffies, timeout))
 433                cpu_relax();
 434
 435        if (chip->cs_control) {
 436                chip->cs_control(PXA2XX_CS_DEASSERT);
 437                return;
 438        }
 439
 440        if (chip->gpiod_cs) {
 441                gpiod_set_value(chip->gpiod_cs, !chip->gpio_cs_inverted);
 442                return;
 443        }
 444
 445        if (is_lpss_ssp(drv_data))
 446                lpss_ssp_cs_control(spi, false);
 447}
 448
 449static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
 450{
 451        if (level)
 452                cs_deassert(spi);
 453        else
 454                cs_assert(spi);
 455}
 456
 457int pxa2xx_spi_flush(struct driver_data *drv_data)
 458{
 459        unsigned long limit = loops_per_jiffy << 1;
 460
 461        do {
 462                while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 463                        pxa2xx_spi_read(drv_data, SSDR);
 464        } while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
 465        write_SSSR_CS(drv_data, SSSR_ROR);
 466
 467        return limit;
 468}
 469
 470static int null_writer(struct driver_data *drv_data)
 471{
 472        u8 n_bytes = drv_data->n_bytes;
 473
 474        if (pxa2xx_spi_txfifo_full(drv_data)
 475                || (drv_data->tx == drv_data->tx_end))
 476                return 0;
 477
 478        pxa2xx_spi_write(drv_data, SSDR, 0);
 479        drv_data->tx += n_bytes;
 480
 481        return 1;
 482}
 483
 484static int null_reader(struct driver_data *drv_data)
 485{
 486        u8 n_bytes = drv_data->n_bytes;
 487
 488        while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 489               && (drv_data->rx < drv_data->rx_end)) {
 490                pxa2xx_spi_read(drv_data, SSDR);
 491                drv_data->rx += n_bytes;
 492        }
 493
 494        return drv_data->rx == drv_data->rx_end;
 495}
 496
 497static int u8_writer(struct driver_data *drv_data)
 498{
 499        if (pxa2xx_spi_txfifo_full(drv_data)
 500                || (drv_data->tx == drv_data->tx_end))
 501                return 0;
 502
 503        pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
 504        ++drv_data->tx;
 505
 506        return 1;
 507}
 508
 509static int u8_reader(struct driver_data *drv_data)
 510{
 511        while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 512               && (drv_data->rx < drv_data->rx_end)) {
 513                *(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 514                ++drv_data->rx;
 515        }
 516
 517        return drv_data->rx == drv_data->rx_end;
 518}
 519
 520static int u16_writer(struct driver_data *drv_data)
 521{
 522        if (pxa2xx_spi_txfifo_full(drv_data)
 523                || (drv_data->tx == drv_data->tx_end))
 524                return 0;
 525
 526        pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
 527        drv_data->tx += 2;
 528
 529        return 1;
 530}
 531
 532static int u16_reader(struct driver_data *drv_data)
 533{
 534        while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 535               && (drv_data->rx < drv_data->rx_end)) {
 536                *(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 537                drv_data->rx += 2;
 538        }
 539
 540        return drv_data->rx == drv_data->rx_end;
 541}
 542
 543static int u32_writer(struct driver_data *drv_data)
 544{
 545        if (pxa2xx_spi_txfifo_full(drv_data)
 546                || (drv_data->tx == drv_data->tx_end))
 547                return 0;
 548
 549        pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
 550        drv_data->tx += 4;
 551
 552        return 1;
 553}
 554
 555static int u32_reader(struct driver_data *drv_data)
 556{
 557        while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 558               && (drv_data->rx < drv_data->rx_end)) {
 559                *(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 560                drv_data->rx += 4;
 561        }
 562
 563        return drv_data->rx == drv_data->rx_end;
 564}
 565
 566static void reset_sccr1(struct driver_data *drv_data)
 567{
 568        struct chip_data *chip =
 569                spi_get_ctldata(drv_data->master->cur_msg->spi);
 570        u32 sccr1_reg;
 571
 572        sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
 573        switch (drv_data->ssp_type) {
 574        case QUARK_X1000_SSP:
 575                sccr1_reg &= ~QUARK_X1000_SSCR1_RFT;
 576                break;
 577        case CE4100_SSP:
 578                sccr1_reg &= ~CE4100_SSCR1_RFT;
 579                break;
 580        default:
 581                sccr1_reg &= ~SSCR1_RFT;
 582                break;
 583        }
 584        sccr1_reg |= chip->threshold;
 585        pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 586}
 587
 588static void int_error_stop(struct driver_data *drv_data, const char* msg)
 589{
 590        /* Stop and reset SSP */
 591        write_SSSR_CS(drv_data, drv_data->clear_sr);
 592        reset_sccr1(drv_data);
 593        if (!pxa25x_ssp_comp(drv_data))
 594                pxa2xx_spi_write(drv_data, SSTO, 0);
 595        pxa2xx_spi_flush(drv_data);
 596        pxa2xx_spi_write(drv_data, SSCR0,
 597                         pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
 598
 599        dev_err(&drv_data->pdev->dev, "%s\n", msg);
 600
 601        drv_data->master->cur_msg->status = -EIO;
 602        spi_finalize_current_transfer(drv_data->master);
 603}
 604
 605static void int_transfer_complete(struct driver_data *drv_data)
 606{
 607        /* Clear and disable interrupts */
 608        write_SSSR_CS(drv_data, drv_data->clear_sr);
 609        reset_sccr1(drv_data);
 610        if (!pxa25x_ssp_comp(drv_data))
 611                pxa2xx_spi_write(drv_data, SSTO, 0);
 612
 613        spi_finalize_current_transfer(drv_data->master);
 614}
 615
 616static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
 617{
 618        u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
 619                       drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
 620
 621        u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
 622
 623        if (irq_status & SSSR_ROR) {
 624                int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
 625                return IRQ_HANDLED;
 626        }
 627
 628        if (irq_status & SSSR_TINT) {
 629                pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
 630                if (drv_data->read(drv_data)) {
 631                        int_transfer_complete(drv_data);
 632                        return IRQ_HANDLED;
 633                }
 634        }
 635
 636        /* Drain rx fifo, Fill tx fifo and prevent overruns */
 637        do {
 638                if (drv_data->read(drv_data)) {
 639                        int_transfer_complete(drv_data);
 640                        return IRQ_HANDLED;
 641                }
 642        } while (drv_data->write(drv_data));
 643
 644        if (drv_data->read(drv_data)) {
 645                int_transfer_complete(drv_data);
 646                return IRQ_HANDLED;
 647        }
 648
 649        if (drv_data->tx == drv_data->tx_end) {
 650                u32 bytes_left;
 651                u32 sccr1_reg;
 652
 653                sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
 654                sccr1_reg &= ~SSCR1_TIE;
 655
 656                /*
 657                 * PXA25x_SSP has no timeout, set up rx threshould for the
 658                 * remaining RX bytes.
 659                 */
 660                if (pxa25x_ssp_comp(drv_data)) {
 661                        u32 rx_thre;
 662
 663                        pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
 664
 665                        bytes_left = drv_data->rx_end - drv_data->rx;
 666                        switch (drv_data->n_bytes) {
 667                        case 4:
 668                                bytes_left >>= 1;
 669                        case 2:
 670                                bytes_left >>= 1;
 671                        }
 672
 673                        rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
 674                        if (rx_thre > bytes_left)
 675                                rx_thre = bytes_left;
 676
 677                        pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
 678                }
 679                pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 680        }
 681
 682        /* We did something */
 683        return IRQ_HANDLED;
 684}
 685
 686static void handle_bad_msg(struct driver_data *drv_data)
 687{
 688        pxa2xx_spi_write(drv_data, SSCR0,
 689                         pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
 690        pxa2xx_spi_write(drv_data, SSCR1,
 691                         pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1);
 692        if (!pxa25x_ssp_comp(drv_data))
 693                pxa2xx_spi_write(drv_data, SSTO, 0);
 694        write_SSSR_CS(drv_data, drv_data->clear_sr);
 695
 696        dev_err(&drv_data->pdev->dev,
 697                "bad message state in interrupt handler\n");
 698}
 699
 700static irqreturn_t ssp_int(int irq, void *dev_id)
 701{
 702        struct driver_data *drv_data = dev_id;
 703        u32 sccr1_reg;
 704        u32 mask = drv_data->mask_sr;
 705        u32 status;
 706
 707        /*
 708         * The IRQ might be shared with other peripherals so we must first
 709         * check that are we RPM suspended or not. If we are we assume that
 710         * the IRQ was not for us (we shouldn't be RPM suspended when the
 711         * interrupt is enabled).
 712         */
 713        if (pm_runtime_suspended(&drv_data->pdev->dev))
 714                return IRQ_NONE;
 715
 716        /*
 717         * If the device is not yet in RPM suspended state and we get an
 718         * interrupt that is meant for another device, check if status bits
 719         * are all set to one. That means that the device is already
 720         * powered off.
 721         */
 722        status = pxa2xx_spi_read(drv_data, SSSR);
 723        if (status == ~0)
 724                return IRQ_NONE;
 725
 726        sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
 727
 728        /* Ignore possible writes if we don't need to write */
 729        if (!(sccr1_reg & SSCR1_TIE))
 730                mask &= ~SSSR_TFS;
 731
 732        /* Ignore RX timeout interrupt if it is disabled */
 733        if (!(sccr1_reg & SSCR1_TINTE))
 734                mask &= ~SSSR_TINT;
 735
 736        if (!(status & mask))
 737                return IRQ_NONE;
 738
 739        pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
 740        pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 741
 742        if (!drv_data->master->cur_msg) {
 743                handle_bad_msg(drv_data);
 744                /* Never fail */
 745                return IRQ_HANDLED;
 746        }
 747
 748        return drv_data->transfer_handler(drv_data);
 749}
 750
 751/*
 752 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
 753 * input frequency by fractions of 2^24. It also has a divider by 5.
 754 *
 755 * There are formulas to get baud rate value for given input frequency and
 756 * divider parameters, such as DDS_CLK_RATE and SCR:
 757 *
 758 * Fsys = 200MHz
 759 *
 760 * Fssp = Fsys * DDS_CLK_RATE / 2^24                    (1)
 761 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))           (2)
 762 *
 763 * DDS_CLK_RATE either 2^n or 2^n / 5.
 764 * SCR is in range 0 .. 255
 765 *
 766 * Divisor = 5^i * 2^j * 2 * k
 767 *       i = [0, 1]      i = 1 iff j = 0 or j > 3
 768 *       j = [0, 23]     j = 0 iff i = 1
 769 *       k = [1, 256]
 770 * Special case: j = 0, i = 1: Divisor = 2 / 5
 771 *
 772 * Accordingly to the specification the recommended values for DDS_CLK_RATE
 773 * are:
 774 *      Case 1:         2^n, n = [0, 23]
 775 *      Case 2:         2^24 * 2 / 5 (0x666666)
 776 *      Case 3:         less than or equal to 2^24 / 5 / 16 (0x33333)
 777 *
 778 * In all cases the lowest possible value is better.
 779 *
 780 * The function calculates parameters for all cases and chooses the one closest
 781 * to the asked baud rate.
 782 */
 783static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
 784{
 785        unsigned long xtal = 200000000;
 786        unsigned long fref = xtal / 2;          /* mandatory division by 2,
 787                                                   see (2) */
 788                                                /* case 3 */
 789        unsigned long fref1 = fref / 2;         /* case 1 */
 790        unsigned long fref2 = fref * 2 / 5;     /* case 2 */
 791        unsigned long scale;
 792        unsigned long q, q1, q2;
 793        long r, r1, r2;
 794        u32 mul;
 795
 796        /* Case 1 */
 797
 798        /* Set initial value for DDS_CLK_RATE */
 799        mul = (1 << 24) >> 1;
 800
 801        /* Calculate initial quot */
 802        q1 = DIV_ROUND_UP(fref1, rate);
 803
 804        /* Scale q1 if it's too big */
 805        if (q1 > 256) {
 806                /* Scale q1 to range [1, 512] */
 807                scale = fls_long(q1 - 1);
 808                if (scale > 9) {
 809                        q1 >>= scale - 9;
 810                        mul >>= scale - 9;
 811                }
 812
 813                /* Round the result if we have a remainder */
 814                q1 += q1 & 1;
 815        }
 816
 817        /* Decrease DDS_CLK_RATE as much as we can without loss in precision */
 818        scale = __ffs(q1);
 819        q1 >>= scale;
 820        mul >>= scale;
 821
 822        /* Get the remainder */
 823        r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
 824
 825        /* Case 2 */
 826
 827        q2 = DIV_ROUND_UP(fref2, rate);
 828        r2 = abs(fref2 / q2 - rate);
 829
 830        /*
 831         * Choose the best between two: less remainder we have the better. We
 832         * can't go case 2 if q2 is greater than 256 since SCR register can
 833         * hold only values 0 .. 255.
 834         */
 835        if (r2 >= r1 || q2 > 256) {
 836                /* case 1 is better */
 837                r = r1;
 838                q = q1;
 839        } else {
 840                /* case 2 is better */
 841                r = r2;
 842                q = q2;
 843                mul = (1 << 24) * 2 / 5;
 844        }
 845
 846        /* Check case 3 only if the divisor is big enough */
 847        if (fref / rate >= 80) {
 848                u64 fssp;
 849                u32 m;
 850
 851                /* Calculate initial quot */
 852                q1 = DIV_ROUND_UP(fref, rate);
 853                m = (1 << 24) / q1;
 854
 855                /* Get the remainder */
 856                fssp = (u64)fref * m;
 857                do_div(fssp, 1 << 24);
 858                r1 = abs(fssp - rate);
 859
 860                /* Choose this one if it suits better */
 861                if (r1 < r) {
 862                        /* case 3 is better */
 863                        q = 1;
 864                        mul = m;
 865                }
 866        }
 867
 868        *dds = mul;
 869        return q - 1;
 870}
 871
 872static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
 873{
 874        unsigned long ssp_clk = drv_data->master->max_speed_hz;
 875        const struct ssp_device *ssp = drv_data->ssp;
 876
 877        rate = min_t(int, ssp_clk, rate);
 878
 879        if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
 880                return (ssp_clk / (2 * rate) - 1) & 0xff;
 881        else
 882                return (ssp_clk / rate - 1) & 0xfff;
 883}
 884
 885static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
 886                                           int rate)
 887{
 888        struct chip_data *chip =
 889                spi_get_ctldata(drv_data->master->cur_msg->spi);
 890        unsigned int clk_div;
 891
 892        switch (drv_data->ssp_type) {
 893        case QUARK_X1000_SSP:
 894                clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
 895                break;
 896        default:
 897                clk_div = ssp_get_clk_div(drv_data, rate);
 898                break;
 899        }
 900        return clk_div << 8;
 901}
 902
 903static bool pxa2xx_spi_can_dma(struct spi_controller *master,
 904                               struct spi_device *spi,
 905                               struct spi_transfer *xfer)
 906{
 907        struct chip_data *chip = spi_get_ctldata(spi);
 908
 909        return chip->enable_dma &&
 910               xfer->len <= MAX_DMA_LEN &&
 911               xfer->len >= chip->dma_burst_size;
 912}
 913
 914static int pxa2xx_spi_transfer_one(struct spi_controller *master,
 915                                   struct spi_device *spi,
 916                                   struct spi_transfer *transfer)
 917{
 918        struct driver_data *drv_data = spi_controller_get_devdata(master);
 919        struct spi_message *message = master->cur_msg;
 920        struct chip_data *chip = spi_get_ctldata(message->spi);
 921        u32 dma_thresh = chip->dma_threshold;
 922        u32 dma_burst = chip->dma_burst_size;
 923        u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
 924        u32 clk_div;
 925        u8 bits;
 926        u32 speed;
 927        u32 cr0;
 928        u32 cr1;
 929        int err;
 930        int dma_mapped;
 931
 932        /* Check if we can DMA this transfer */
 933        if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
 934
 935                /* reject already-mapped transfers; PIO won't always work */
 936                if (message->is_dma_mapped
 937                                || transfer->rx_dma || transfer->tx_dma) {
 938                        dev_err(&drv_data->pdev->dev,
 939                                "Mapped transfer length of %u is greater than %d\n",
 940                                transfer->len, MAX_DMA_LEN);
 941                        return -EINVAL;
 942                }
 943
 944                /* warn ... we force this to PIO mode */
 945                dev_warn_ratelimited(&message->spi->dev,
 946                                     "DMA disabled for transfer length %ld greater than %d\n",
 947                                     (long)transfer->len, MAX_DMA_LEN);
 948        }
 949
 950        /* Setup the transfer state based on the type of transfer */
 951        if (pxa2xx_spi_flush(drv_data) == 0) {
 952                dev_err(&drv_data->pdev->dev, "Flush failed\n");
 953                return -EIO;
 954        }
 955        drv_data->n_bytes = chip->n_bytes;
 956        drv_data->tx = (void *)transfer->tx_buf;
 957        drv_data->tx_end = drv_data->tx + transfer->len;
 958        drv_data->rx = transfer->rx_buf;
 959        drv_data->rx_end = drv_data->rx + transfer->len;
 960        drv_data->write = drv_data->tx ? chip->write : null_writer;
 961        drv_data->read = drv_data->rx ? chip->read : null_reader;
 962
 963        /* Change speed and bit per word on a per transfer */
 964        bits = transfer->bits_per_word;
 965        speed = transfer->speed_hz;
 966
 967        clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
 968
 969        if (bits <= 8) {
 970                drv_data->n_bytes = 1;
 971                drv_data->read = drv_data->read != null_reader ?
 972                                        u8_reader : null_reader;
 973                drv_data->write = drv_data->write != null_writer ?
 974                                        u8_writer : null_writer;
 975        } else if (bits <= 16) {
 976                drv_data->n_bytes = 2;
 977                drv_data->read = drv_data->read != null_reader ?
 978                                        u16_reader : null_reader;
 979                drv_data->write = drv_data->write != null_writer ?
 980                                        u16_writer : null_writer;
 981        } else if (bits <= 32) {
 982                drv_data->n_bytes = 4;
 983                drv_data->read = drv_data->read != null_reader ?
 984                                        u32_reader : null_reader;
 985                drv_data->write = drv_data->write != null_writer ?
 986                                        u32_writer : null_writer;
 987        }
 988        /*
 989         * if bits/word is changed in dma mode, then must check the
 990         * thresholds and burst also
 991         */
 992        if (chip->enable_dma) {
 993                if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
 994                                                message->spi,
 995                                                bits, &dma_burst,
 996                                                &dma_thresh))
 997                        dev_warn_ratelimited(&message->spi->dev,
 998                                             "DMA burst size reduced to match bits_per_word\n");
 999        }
1000
1001        dma_mapped = master->can_dma &&
1002                     master->can_dma(master, message->spi, transfer) &&
1003                     master->cur_msg_mapped;
1004        if (dma_mapped) {
1005
1006                /* Ensure we have the correct interrupt handler */
1007                drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1008
1009                err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1010                if (err)
1011                        return err;
1012
1013                /* Clear status and start DMA engine */
1014                cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1015                pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1016
1017                pxa2xx_spi_dma_start(drv_data);
1018        } else {
1019                /* Ensure we have the correct interrupt handler */
1020                drv_data->transfer_handler = interrupt_transfer;
1021
1022                /* Clear status  */
1023                cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1024                write_SSSR_CS(drv_data, drv_data->clear_sr);
1025        }
1026
1027        /* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1028        cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1029        if (!pxa25x_ssp_comp(drv_data))
1030                dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1031                        master->max_speed_hz
1032                                / (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1033                        dma_mapped ? "DMA" : "PIO");
1034        else
1035                dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1036                        master->max_speed_hz / 2
1037                                / (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1038                        dma_mapped ? "DMA" : "PIO");
1039
1040        if (is_lpss_ssp(drv_data)) {
1041                if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
1042                    != chip->lpss_rx_threshold)
1043                        pxa2xx_spi_write(drv_data, SSIRF,
1044                                         chip->lpss_rx_threshold);
1045                if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
1046                    != chip->lpss_tx_threshold)
1047                        pxa2xx_spi_write(drv_data, SSITF,
1048                                         chip->lpss_tx_threshold);
1049        }
1050
1051        if (is_quark_x1000_ssp(drv_data) &&
1052            (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1053                pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1054
1055        /* see if we need to reload the config registers */
1056        if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1057            || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1058            != (cr1 & change_mask)) {
1059                /* stop the SSP, and update the other bits */
1060                pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1061                if (!pxa25x_ssp_comp(drv_data))
1062                        pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1063                /* first set CR1 without interrupt and service enables */
1064                pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1065                /* restart the SSP */
1066                pxa2xx_spi_write(drv_data, SSCR0, cr0);
1067
1068        } else {
1069                if (!pxa25x_ssp_comp(drv_data))
1070                        pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1071        }
1072
1073        /*
1074         * Release the data by enabling service requests and interrupts,
1075         * without changing any mode bits
1076         */
1077        pxa2xx_spi_write(drv_data, SSCR1, cr1);
1078
1079        return 1;
1080}
1081
1082static void pxa2xx_spi_handle_err(struct spi_controller *master,
1083                                 struct spi_message *msg)
1084{
1085        struct driver_data *drv_data = spi_controller_get_devdata(master);
1086
1087        /* Disable the SSP */
1088        pxa2xx_spi_write(drv_data, SSCR0,
1089                         pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1090        /* Clear and disable interrupts and service requests */
1091        write_SSSR_CS(drv_data, drv_data->clear_sr);
1092        pxa2xx_spi_write(drv_data, SSCR1,
1093                         pxa2xx_spi_read(drv_data, SSCR1)
1094                         & ~(drv_data->int_cr1 | drv_data->dma_cr1));
1095        if (!pxa25x_ssp_comp(drv_data))
1096                pxa2xx_spi_write(drv_data, SSTO, 0);
1097
1098        /*
1099         * Stop the DMA if running. Note DMA callback handler may have unset
1100         * the dma_running already, which is fine as stopping is not needed
1101         * then but we shouldn't rely this flag for anything else than
1102         * stopping. For instance to differentiate between PIO and DMA
1103         * transfers.
1104         */
1105        if (atomic_read(&drv_data->dma_running))
1106                pxa2xx_spi_dma_stop(drv_data);
1107}
1108
1109static int pxa2xx_spi_unprepare_transfer(struct spi_controller *master)
1110{
1111        struct driver_data *drv_data = spi_controller_get_devdata(master);
1112
1113        /* Disable the SSP now */
1114        pxa2xx_spi_write(drv_data, SSCR0,
1115                         pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1116
1117        return 0;
1118}
1119
1120static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1121                    struct pxa2xx_spi_chip *chip_info)
1122{
1123        struct driver_data *drv_data =
1124                spi_controller_get_devdata(spi->controller);
1125        struct gpio_desc *gpiod;
1126        int err = 0;
1127
1128        if (chip == NULL)
1129                return 0;
1130
1131        if (drv_data->cs_gpiods) {
1132                gpiod = drv_data->cs_gpiods[spi->chip_select];
1133                if (gpiod) {
1134                        chip->gpiod_cs = gpiod;
1135                        chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1136                        gpiod_set_value(gpiod, chip->gpio_cs_inverted);
1137                }
1138
1139                return 0;
1140        }
1141
1142        if (chip_info == NULL)
1143                return 0;
1144
1145        /* NOTE: setup() can be called multiple times, possibly with
1146         * different chip_info, release previously requested GPIO
1147         */
1148        if (chip->gpiod_cs) {
1149                gpiod_put(chip->gpiod_cs);
1150                chip->gpiod_cs = NULL;
1151        }
1152
1153        /* If (*cs_control) is provided, ignore GPIO chip select */
1154        if (chip_info->cs_control) {
1155                chip->cs_control = chip_info->cs_control;
1156                return 0;
1157        }
1158
1159        if (gpio_is_valid(chip_info->gpio_cs)) {
1160                err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1161                if (err) {
1162                        dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1163                                chip_info->gpio_cs);
1164                        return err;
1165                }
1166
1167                gpiod = gpio_to_desc(chip_info->gpio_cs);
1168                chip->gpiod_cs = gpiod;
1169                chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1170
1171                err = gpiod_direction_output(gpiod, !chip->gpio_cs_inverted);
1172        }
1173
1174        return err;
1175}
1176
1177static int setup(struct spi_device *spi)
1178{
1179        struct pxa2xx_spi_chip *chip_info;
1180        struct chip_data *chip;
1181        const struct lpss_config *config;
1182        struct driver_data *drv_data =
1183                spi_controller_get_devdata(spi->controller);
1184        uint tx_thres, tx_hi_thres, rx_thres;
1185
1186        switch (drv_data->ssp_type) {
1187        case QUARK_X1000_SSP:
1188                tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1189                tx_hi_thres = 0;
1190                rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1191                break;
1192        case CE4100_SSP:
1193                tx_thres = TX_THRESH_CE4100_DFLT;
1194                tx_hi_thres = 0;
1195                rx_thres = RX_THRESH_CE4100_DFLT;
1196                break;
1197        case LPSS_LPT_SSP:
1198        case LPSS_BYT_SSP:
1199        case LPSS_BSW_SSP:
1200        case LPSS_SPT_SSP:
1201        case LPSS_BXT_SSP:
1202        case LPSS_CNL_SSP:
1203                config = lpss_get_config(drv_data);
1204                tx_thres = config->tx_threshold_lo;
1205                tx_hi_thres = config->tx_threshold_hi;
1206                rx_thres = config->rx_threshold;
1207                break;
1208        default:
1209                tx_thres = TX_THRESH_DFLT;
1210                tx_hi_thres = 0;
1211                rx_thres = RX_THRESH_DFLT;
1212                break;
1213        }
1214
1215        /* Only alloc on first setup */
1216        chip = spi_get_ctldata(spi);
1217        if (!chip) {
1218                chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1219                if (!chip)
1220                        return -ENOMEM;
1221
1222                if (drv_data->ssp_type == CE4100_SSP) {
1223                        if (spi->chip_select > 4) {
1224                                dev_err(&spi->dev,
1225                                        "failed setup: cs number must not be > 4.\n");
1226                                kfree(chip);
1227                                return -EINVAL;
1228                        }
1229
1230                        chip->frm = spi->chip_select;
1231                }
1232                chip->enable_dma = drv_data->master_info->enable_dma;
1233                chip->timeout = TIMOUT_DFLT;
1234        }
1235
1236        /* protocol drivers may change the chip settings, so...
1237         * if chip_info exists, use it */
1238        chip_info = spi->controller_data;
1239
1240        /* chip_info isn't always needed */
1241        chip->cr1 = 0;
1242        if (chip_info) {
1243                if (chip_info->timeout)
1244                        chip->timeout = chip_info->timeout;
1245                if (chip_info->tx_threshold)
1246                        tx_thres = chip_info->tx_threshold;
1247                if (chip_info->tx_hi_threshold)
1248                        tx_hi_thres = chip_info->tx_hi_threshold;
1249                if (chip_info->rx_threshold)
1250                        rx_thres = chip_info->rx_threshold;
1251                chip->dma_threshold = 0;
1252                if (chip_info->enable_loopback)
1253                        chip->cr1 = SSCR1_LBM;
1254        }
1255
1256        chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1257        chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1258                                | SSITF_TxHiThresh(tx_hi_thres);
1259
1260        /* set dma burst and threshold outside of chip_info path so that if
1261         * chip_info goes away after setting chip->enable_dma, the
1262         * burst and threshold can still respond to changes in bits_per_word */
1263        if (chip->enable_dma) {
1264                /* set up legal burst and threshold for dma */
1265                if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1266                                                spi->bits_per_word,
1267                                                &chip->dma_burst_size,
1268                                                &chip->dma_threshold)) {
1269                        dev_warn(&spi->dev,
1270                                 "in setup: DMA burst size reduced to match bits_per_word\n");
1271                }
1272        }
1273
1274        switch (drv_data->ssp_type) {
1275        case QUARK_X1000_SSP:
1276                chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1277                                   & QUARK_X1000_SSCR1_RFT)
1278                                   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1279                                   & QUARK_X1000_SSCR1_TFT);
1280                break;
1281        case CE4100_SSP:
1282                chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1283                        (CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1284                break;
1285        default:
1286                chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1287                        (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1288                break;
1289        }
1290
1291        chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1292        chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1293                        | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1294
1295        if (spi->mode & SPI_LOOP)
1296                chip->cr1 |= SSCR1_LBM;
1297
1298        if (spi->bits_per_word <= 8) {
1299                chip->n_bytes = 1;
1300                chip->read = u8_reader;
1301                chip->write = u8_writer;
1302        } else if (spi->bits_per_word <= 16) {
1303                chip->n_bytes = 2;
1304                chip->read = u16_reader;
1305                chip->write = u16_writer;
1306        } else if (spi->bits_per_word <= 32) {
1307                chip->n_bytes = 4;
1308                chip->read = u32_reader;
1309                chip->write = u32_writer;
1310        }
1311
1312        spi_set_ctldata(spi, chip);
1313
1314        if (drv_data->ssp_type == CE4100_SSP)
1315                return 0;
1316
1317        return setup_cs(spi, chip, chip_info);
1318}
1319
1320static void cleanup(struct spi_device *spi)
1321{
1322        struct chip_data *chip = spi_get_ctldata(spi);
1323        struct driver_data *drv_data =
1324                spi_controller_get_devdata(spi->controller);
1325
1326        if (!chip)
1327                return;
1328
1329        if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods &&
1330            chip->gpiod_cs)
1331                gpiod_put(chip->gpiod_cs);
1332
1333        kfree(chip);
1334}
1335
1336#ifdef CONFIG_PCI
1337#ifdef CONFIG_ACPI
1338
1339static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1340        { "INT33C0", LPSS_LPT_SSP },
1341        { "INT33C1", LPSS_LPT_SSP },
1342        { "INT3430", LPSS_LPT_SSP },
1343        { "INT3431", LPSS_LPT_SSP },
1344        { "80860F0E", LPSS_BYT_SSP },
1345        { "8086228E", LPSS_BSW_SSP },
1346        { },
1347};
1348MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1349
1350static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1351{
1352        unsigned int devid;
1353        int port_id = -1;
1354
1355        if (adev && adev->pnp.unique_id &&
1356            !kstrtouint(adev->pnp.unique_id, 0, &devid))
1357                port_id = devid;
1358        return port_id;
1359}
1360#else /* !CONFIG_ACPI */
1361static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1362{
1363        return -1;
1364}
1365#endif
1366
1367/*
1368 * PCI IDs of compound devices that integrate both host controller and private
1369 * integrated DMA engine. Please note these are not used in module
1370 * autoloading and probing in this module but matching the LPSS SSP type.
1371 */
1372static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1373        /* SPT-LP */
1374        { PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1375        { PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1376        /* SPT-H */
1377        { PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1378        { PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1379        /* KBL-H */
1380        { PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1381        { PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1382        /* BXT A-Step */
1383        { PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1384        { PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1385        { PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1386        /* BXT B-Step */
1387        { PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1388        { PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1389        { PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1390        /* GLK */
1391        { PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
1392        { PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
1393        { PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
1394        /* APL */
1395        { PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1396        { PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1397        { PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1398        /* CNL-LP */
1399        { PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
1400        { PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
1401        { PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
1402        /* CNL-H */
1403        { PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
1404        { PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
1405        { PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
1406        { },
1407};
1408
1409static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1410{
1411        struct device *dev = param;
1412
1413        if (dev != chan->device->dev->parent)
1414                return false;
1415
1416        return true;
1417}
1418
1419static struct pxa2xx_spi_master *
1420pxa2xx_spi_init_pdata(struct platform_device *pdev)
1421{
1422        struct pxa2xx_spi_master *pdata;
1423        struct acpi_device *adev;
1424        struct ssp_device *ssp;
1425        struct resource *res;
1426        const struct acpi_device_id *adev_id = NULL;
1427        const struct pci_device_id *pcidev_id = NULL;
1428        int type;
1429
1430        adev = ACPI_COMPANION(&pdev->dev);
1431
1432        if (dev_is_pci(pdev->dev.parent))
1433                pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match,
1434                                         to_pci_dev(pdev->dev.parent));
1435        else if (adev)
1436                adev_id = acpi_match_device(pdev->dev.driver->acpi_match_table,
1437                                            &pdev->dev);
1438        else
1439                return NULL;
1440
1441        if (adev_id)
1442                type = (int)adev_id->driver_data;
1443        else if (pcidev_id)
1444                type = (int)pcidev_id->driver_data;
1445        else
1446                return NULL;
1447
1448        pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1449        if (!pdata)
1450                return NULL;
1451
1452        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1453        if (!res)
1454                return NULL;
1455
1456        ssp = &pdata->ssp;
1457
1458        ssp->phys_base = res->start;
1459        ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1460        if (IS_ERR(ssp->mmio_base))
1461                return NULL;
1462
1463        if (pcidev_id) {
1464                pdata->tx_param = pdev->dev.parent;
1465                pdata->rx_param = pdev->dev.parent;
1466                pdata->dma_filter = pxa2xx_spi_idma_filter;
1467        }
1468
1469        ssp->clk = devm_clk_get(&pdev->dev, NULL);
1470        ssp->irq = platform_get_irq(pdev, 0);
1471        ssp->type = type;
1472        ssp->pdev = pdev;
1473        ssp->port_id = pxa2xx_spi_get_port_id(adev);
1474
1475        pdata->num_chipselect = 1;
1476        pdata->enable_dma = true;
1477
1478        return pdata;
1479}
1480
1481#else /* !CONFIG_PCI */
1482static inline struct pxa2xx_spi_master *
1483pxa2xx_spi_init_pdata(struct platform_device *pdev)
1484{
1485        return NULL;
1486}
1487#endif
1488
1489static int pxa2xx_spi_fw_translate_cs(struct spi_controller *master,
1490                                      unsigned int cs)
1491{
1492        struct driver_data *drv_data = spi_controller_get_devdata(master);
1493
1494        if (has_acpi_companion(&drv_data->pdev->dev)) {
1495                switch (drv_data->ssp_type) {
1496                /*
1497                 * For Atoms the ACPI DeviceSelection used by the Windows
1498                 * driver starts from 1 instead of 0 so translate it here
1499                 * to match what Linux expects.
1500                 */
1501                case LPSS_BYT_SSP:
1502                case LPSS_BSW_SSP:
1503                        return cs - 1;
1504
1505                default:
1506                        break;
1507                }
1508        }
1509
1510        return cs;
1511}
1512
1513static int pxa2xx_spi_probe(struct platform_device *pdev)
1514{
1515        struct device *dev = &pdev->dev;
1516        struct pxa2xx_spi_master *platform_info;
1517        struct spi_controller *master;
1518        struct driver_data *drv_data;
1519        struct ssp_device *ssp;
1520        const struct lpss_config *config;
1521        int status, count;
1522        u32 tmp;
1523
1524        platform_info = dev_get_platdata(dev);
1525        if (!platform_info) {
1526                platform_info = pxa2xx_spi_init_pdata(pdev);
1527                if (!platform_info) {
1528                        dev_err(&pdev->dev, "missing platform data\n");
1529                        return -ENODEV;
1530                }
1531        }
1532
1533        ssp = pxa_ssp_request(pdev->id, pdev->name);
1534        if (!ssp)
1535                ssp = &platform_info->ssp;
1536
1537        if (!ssp->mmio_base) {
1538                dev_err(&pdev->dev, "failed to get ssp\n");
1539                return -ENODEV;
1540        }
1541
1542        master = spi_alloc_master(dev, sizeof(struct driver_data));
1543        if (!master) {
1544                dev_err(&pdev->dev, "cannot alloc spi_master\n");
1545                pxa_ssp_free(ssp);
1546                return -ENOMEM;
1547        }
1548        drv_data = spi_controller_get_devdata(master);
1549        drv_data->master = master;
1550        drv_data->master_info = platform_info;
1551        drv_data->pdev = pdev;
1552        drv_data->ssp = ssp;
1553
1554        master->dev.of_node = pdev->dev.of_node;
1555        /* the spi->mode bits understood by this driver: */
1556        master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1557
1558        master->bus_num = ssp->port_id;
1559        master->dma_alignment = DMA_ALIGNMENT;
1560        master->cleanup = cleanup;
1561        master->setup = setup;
1562        master->set_cs = pxa2xx_spi_set_cs;
1563        master->transfer_one = pxa2xx_spi_transfer_one;
1564        master->handle_err = pxa2xx_spi_handle_err;
1565        master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1566        master->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1567        master->auto_runtime_pm = true;
1568        master->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1569
1570        drv_data->ssp_type = ssp->type;
1571
1572        drv_data->ioaddr = ssp->mmio_base;
1573        drv_data->ssdr_physical = ssp->phys_base + SSDR;
1574        if (pxa25x_ssp_comp(drv_data)) {
1575                switch (drv_data->ssp_type) {
1576                case QUARK_X1000_SSP:
1577                        master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1578                        break;
1579                default:
1580                        master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1581                        break;
1582                }
1583
1584                drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1585                drv_data->dma_cr1 = 0;
1586                drv_data->clear_sr = SSSR_ROR;
1587                drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1588        } else {
1589                master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1590                drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1591                drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1592                drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1593                drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
1594        }
1595
1596        status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1597                        drv_data);
1598        if (status < 0) {
1599                dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1600                goto out_error_master_alloc;
1601        }
1602
1603        /* Setup DMA if requested */
1604        if (platform_info->enable_dma) {
1605                status = pxa2xx_spi_dma_setup(drv_data);
1606                if (status) {
1607                        dev_dbg(dev, "no DMA channels available, using PIO\n");
1608                        platform_info->enable_dma = false;
1609                } else {
1610                        master->can_dma = pxa2xx_spi_can_dma;
1611                }
1612        }
1613
1614        /* Enable SOC clock */
1615        status = clk_prepare_enable(ssp->clk);
1616        if (status)
1617                goto out_error_dma_irq_alloc;
1618
1619        master->max_speed_hz = clk_get_rate(ssp->clk);
1620
1621        /* Load default SSP configuration */
1622        pxa2xx_spi_write(drv_data, SSCR0, 0);
1623        switch (drv_data->ssp_type) {
1624        case QUARK_X1000_SSP:
1625                tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1626                      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1627                pxa2xx_spi_write(drv_data, SSCR1, tmp);
1628
1629                /* using the Motorola SPI protocol and use 8 bit frame */
1630                tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1631                pxa2xx_spi_write(drv_data, SSCR0, tmp);
1632                break;
1633        case CE4100_SSP:
1634                tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1635                      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1636                pxa2xx_spi_write(drv_data, SSCR1, tmp);
1637                tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1638                pxa2xx_spi_write(drv_data, SSCR0, tmp);
1639                break;
1640        default:
1641                tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1642                      SSCR1_TxTresh(TX_THRESH_DFLT);
1643                pxa2xx_spi_write(drv_data, SSCR1, tmp);
1644                tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1645                pxa2xx_spi_write(drv_data, SSCR0, tmp);
1646                break;
1647        }
1648
1649        if (!pxa25x_ssp_comp(drv_data))
1650                pxa2xx_spi_write(drv_data, SSTO, 0);
1651
1652        if (!is_quark_x1000_ssp(drv_data))
1653                pxa2xx_spi_write(drv_data, SSPSP, 0);
1654
1655        if (is_lpss_ssp(drv_data)) {
1656                lpss_ssp_setup(drv_data);
1657                config = lpss_get_config(drv_data);
1658                if (config->reg_capabilities >= 0) {
1659                        tmp = __lpss_ssp_read_priv(drv_data,
1660                                                   config->reg_capabilities);
1661                        tmp &= LPSS_CAPS_CS_EN_MASK;
1662                        tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1663                        platform_info->num_chipselect = ffz(tmp);
1664                } else if (config->cs_num) {
1665                        platform_info->num_chipselect = config->cs_num;
1666                }
1667        }
1668        master->num_chipselect = platform_info->num_chipselect;
1669
1670        count = gpiod_count(&pdev->dev, "cs");
1671        if (count > 0) {
1672                int i;
1673
1674                master->num_chipselect = max_t(int, count,
1675                        master->num_chipselect);
1676
1677                drv_data->cs_gpiods = devm_kcalloc(&pdev->dev,
1678                        master->num_chipselect, sizeof(struct gpio_desc *),
1679                        GFP_KERNEL);
1680                if (!drv_data->cs_gpiods) {
1681                        status = -ENOMEM;
1682                        goto out_error_clock_enabled;
1683                }
1684
1685                for (i = 0; i < master->num_chipselect; i++) {
1686                        struct gpio_desc *gpiod;
1687
1688                        gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1689                        if (IS_ERR(gpiod)) {
1690                                /* Means use native chip select */
1691                                if (PTR_ERR(gpiod) == -ENOENT)
1692                                        continue;
1693
1694                                status = (int)PTR_ERR(gpiod);
1695                                goto out_error_clock_enabled;
1696                        } else {
1697                                drv_data->cs_gpiods[i] = gpiod;
1698                        }
1699                }
1700        }
1701
1702        pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1703        pm_runtime_use_autosuspend(&pdev->dev);
1704        pm_runtime_set_active(&pdev->dev);
1705        pm_runtime_enable(&pdev->dev);
1706
1707        /* Register with the SPI framework */
1708        platform_set_drvdata(pdev, drv_data);
1709        status = devm_spi_register_controller(&pdev->dev, master);
1710        if (status != 0) {
1711                dev_err(&pdev->dev, "problem registering spi master\n");
1712                goto out_error_clock_enabled;
1713        }
1714
1715        return status;
1716
1717out_error_clock_enabled:
1718        pm_runtime_put_noidle(&pdev->dev);
1719        pm_runtime_disable(&pdev->dev);
1720        clk_disable_unprepare(ssp->clk);
1721
1722out_error_dma_irq_alloc:
1723        pxa2xx_spi_dma_release(drv_data);
1724        free_irq(ssp->irq, drv_data);
1725
1726out_error_master_alloc:
1727        spi_controller_put(master);
1728        pxa_ssp_free(ssp);
1729        return status;
1730}
1731
1732static int pxa2xx_spi_remove(struct platform_device *pdev)
1733{
1734        struct driver_data *drv_data = platform_get_drvdata(pdev);
1735        struct ssp_device *ssp;
1736
1737        if (!drv_data)
1738                return 0;
1739        ssp = drv_data->ssp;
1740
1741        pm_runtime_get_sync(&pdev->dev);
1742
1743        /* Disable the SSP at the peripheral and SOC level */
1744        pxa2xx_spi_write(drv_data, SSCR0, 0);
1745        clk_disable_unprepare(ssp->clk);
1746
1747        /* Release DMA */
1748        if (drv_data->master_info->enable_dma)
1749                pxa2xx_spi_dma_release(drv_data);
1750
1751        pm_runtime_put_noidle(&pdev->dev);
1752        pm_runtime_disable(&pdev->dev);
1753
1754        /* Release IRQ */
1755        free_irq(ssp->irq, drv_data);
1756
1757        /* Release SSP */
1758        pxa_ssp_free(ssp);
1759
1760        return 0;
1761}
1762
1763static void pxa2xx_spi_shutdown(struct platform_device *pdev)
1764{
1765        int status = 0;
1766
1767        if ((status = pxa2xx_spi_remove(pdev)) != 0)
1768                dev_err(&pdev->dev, "shutdown failed with %d\n", status);
1769}
1770
1771#ifdef CONFIG_PM_SLEEP
1772static int pxa2xx_spi_suspend(struct device *dev)
1773{
1774        struct driver_data *drv_data = dev_get_drvdata(dev);
1775        struct ssp_device *ssp = drv_data->ssp;
1776        int status;
1777
1778        status = spi_controller_suspend(drv_data->master);
1779        if (status != 0)
1780                return status;
1781        pxa2xx_spi_write(drv_data, SSCR0, 0);
1782
1783        if (!pm_runtime_suspended(dev))
1784                clk_disable_unprepare(ssp->clk);
1785
1786        return 0;
1787}
1788
1789static int pxa2xx_spi_resume(struct device *dev)
1790{
1791        struct driver_data *drv_data = dev_get_drvdata(dev);
1792        struct ssp_device *ssp = drv_data->ssp;
1793        int status;
1794
1795        /* Enable the SSP clock */
1796        if (!pm_runtime_suspended(dev)) {
1797                status = clk_prepare_enable(ssp->clk);
1798                if (status)
1799                        return status;
1800        }
1801
1802        /* Restore LPSS private register bits */
1803        if (is_lpss_ssp(drv_data))
1804                lpss_ssp_setup(drv_data);
1805
1806        /* Start the queue running */
1807        return spi_controller_resume(drv_data->master);
1808}
1809#endif
1810
1811#ifdef CONFIG_PM
1812static int pxa2xx_spi_runtime_suspend(struct device *dev)
1813{
1814        struct driver_data *drv_data = dev_get_drvdata(dev);
1815
1816        clk_disable_unprepare(drv_data->ssp->clk);
1817        return 0;
1818}
1819
1820static int pxa2xx_spi_runtime_resume(struct device *dev)
1821{
1822        struct driver_data *drv_data = dev_get_drvdata(dev);
1823        int status;
1824
1825        status = clk_prepare_enable(drv_data->ssp->clk);
1826        return status;
1827}
1828#endif
1829
1830static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1831        SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1832        SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1833                           pxa2xx_spi_runtime_resume, NULL)
1834};
1835
1836static struct platform_driver driver = {
1837        .driver = {
1838                .name   = "pxa2xx-spi",
1839                .pm     = &pxa2xx_spi_pm_ops,
1840                .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1841        },
1842        .probe = pxa2xx_spi_probe,
1843        .remove = pxa2xx_spi_remove,
1844        .shutdown = pxa2xx_spi_shutdown,
1845};
1846
1847static int __init pxa2xx_spi_init(void)
1848{
1849        return platform_driver_register(&driver);
1850}
1851subsys_initcall(pxa2xx_spi_init);
1852
1853static void __exit pxa2xx_spi_exit(void)
1854{
1855        platform_driver_unregister(&driver);
1856}
1857module_exit(pxa2xx_spi_exit);
1858