linux/fs/f2fs/segment.c
<<
>>
Prefs
   1/*
   2 * fs/f2fs/segment.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/fs.h>
  12#include <linux/f2fs_fs.h>
  13#include <linux/bio.h>
  14#include <linux/blkdev.h>
  15#include <linux/prefetch.h>
  16#include <linux/kthread.h>
  17#include <linux/swap.h>
  18#include <linux/timer.h>
  19#include <linux/freezer.h>
  20#include <linux/sched/signal.h>
  21
  22#include "f2fs.h"
  23#include "segment.h"
  24#include "node.h"
  25#include "gc.h"
  26#include "trace.h"
  27#include <trace/events/f2fs.h>
  28
  29#define __reverse_ffz(x) __reverse_ffs(~(x))
  30
  31static struct kmem_cache *discard_entry_slab;
  32static struct kmem_cache *discard_cmd_slab;
  33static struct kmem_cache *sit_entry_set_slab;
  34static struct kmem_cache *inmem_entry_slab;
  35
  36static unsigned long __reverse_ulong(unsigned char *str)
  37{
  38        unsigned long tmp = 0;
  39        int shift = 24, idx = 0;
  40
  41#if BITS_PER_LONG == 64
  42        shift = 56;
  43#endif
  44        while (shift >= 0) {
  45                tmp |= (unsigned long)str[idx++] << shift;
  46                shift -= BITS_PER_BYTE;
  47        }
  48        return tmp;
  49}
  50
  51/*
  52 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
  53 * MSB and LSB are reversed in a byte by f2fs_set_bit.
  54 */
  55static inline unsigned long __reverse_ffs(unsigned long word)
  56{
  57        int num = 0;
  58
  59#if BITS_PER_LONG == 64
  60        if ((word & 0xffffffff00000000UL) == 0)
  61                num += 32;
  62        else
  63                word >>= 32;
  64#endif
  65        if ((word & 0xffff0000) == 0)
  66                num += 16;
  67        else
  68                word >>= 16;
  69
  70        if ((word & 0xff00) == 0)
  71                num += 8;
  72        else
  73                word >>= 8;
  74
  75        if ((word & 0xf0) == 0)
  76                num += 4;
  77        else
  78                word >>= 4;
  79
  80        if ((word & 0xc) == 0)
  81                num += 2;
  82        else
  83                word >>= 2;
  84
  85        if ((word & 0x2) == 0)
  86                num += 1;
  87        return num;
  88}
  89
  90/*
  91 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
  92 * f2fs_set_bit makes MSB and LSB reversed in a byte.
  93 * @size must be integral times of unsigned long.
  94 * Example:
  95 *                             MSB <--> LSB
  96 *   f2fs_set_bit(0, bitmap) => 1000 0000
  97 *   f2fs_set_bit(7, bitmap) => 0000 0001
  98 */
  99static unsigned long __find_rev_next_bit(const unsigned long *addr,
 100                        unsigned long size, unsigned long offset)
 101{
 102        const unsigned long *p = addr + BIT_WORD(offset);
 103        unsigned long result = size;
 104        unsigned long tmp;
 105
 106        if (offset >= size)
 107                return size;
 108
 109        size -= (offset & ~(BITS_PER_LONG - 1));
 110        offset %= BITS_PER_LONG;
 111
 112        while (1) {
 113                if (*p == 0)
 114                        goto pass;
 115
 116                tmp = __reverse_ulong((unsigned char *)p);
 117
 118                tmp &= ~0UL >> offset;
 119                if (size < BITS_PER_LONG)
 120                        tmp &= (~0UL << (BITS_PER_LONG - size));
 121                if (tmp)
 122                        goto found;
 123pass:
 124                if (size <= BITS_PER_LONG)
 125                        break;
 126                size -= BITS_PER_LONG;
 127                offset = 0;
 128                p++;
 129        }
 130        return result;
 131found:
 132        return result - size + __reverse_ffs(tmp);
 133}
 134
 135static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
 136                        unsigned long size, unsigned long offset)
 137{
 138        const unsigned long *p = addr + BIT_WORD(offset);
 139        unsigned long result = size;
 140        unsigned long tmp;
 141
 142        if (offset >= size)
 143                return size;
 144
 145        size -= (offset & ~(BITS_PER_LONG - 1));
 146        offset %= BITS_PER_LONG;
 147
 148        while (1) {
 149                if (*p == ~0UL)
 150                        goto pass;
 151
 152                tmp = __reverse_ulong((unsigned char *)p);
 153
 154                if (offset)
 155                        tmp |= ~0UL << (BITS_PER_LONG - offset);
 156                if (size < BITS_PER_LONG)
 157                        tmp |= ~0UL >> size;
 158                if (tmp != ~0UL)
 159                        goto found;
 160pass:
 161                if (size <= BITS_PER_LONG)
 162                        break;
 163                size -= BITS_PER_LONG;
 164                offset = 0;
 165                p++;
 166        }
 167        return result;
 168found:
 169        return result - size + __reverse_ffz(tmp);
 170}
 171
 172bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
 173{
 174        int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
 175        int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
 176        int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
 177
 178        if (test_opt(sbi, LFS))
 179                return false;
 180        if (sbi->gc_mode == GC_URGENT)
 181                return true;
 182
 183        return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
 184                        SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
 185}
 186
 187void f2fs_register_inmem_page(struct inode *inode, struct page *page)
 188{
 189        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 190        struct f2fs_inode_info *fi = F2FS_I(inode);
 191        struct inmem_pages *new;
 192
 193        f2fs_trace_pid(page);
 194
 195        set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
 196        SetPagePrivate(page);
 197
 198        new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
 199
 200        /* add atomic page indices to the list */
 201        new->page = page;
 202        INIT_LIST_HEAD(&new->list);
 203
 204        /* increase reference count with clean state */
 205        mutex_lock(&fi->inmem_lock);
 206        get_page(page);
 207        list_add_tail(&new->list, &fi->inmem_pages);
 208        spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
 209        if (list_empty(&fi->inmem_ilist))
 210                list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
 211        spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 212        inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
 213        mutex_unlock(&fi->inmem_lock);
 214
 215        trace_f2fs_register_inmem_page(page, INMEM);
 216}
 217
 218static int __revoke_inmem_pages(struct inode *inode,
 219                                struct list_head *head, bool drop, bool recover)
 220{
 221        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 222        struct inmem_pages *cur, *tmp;
 223        int err = 0;
 224
 225        list_for_each_entry_safe(cur, tmp, head, list) {
 226                struct page *page = cur->page;
 227
 228                if (drop)
 229                        trace_f2fs_commit_inmem_page(page, INMEM_DROP);
 230
 231                lock_page(page);
 232
 233                f2fs_wait_on_page_writeback(page, DATA, true);
 234
 235                if (recover) {
 236                        struct dnode_of_data dn;
 237                        struct node_info ni;
 238
 239                        trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
 240retry:
 241                        set_new_dnode(&dn, inode, NULL, NULL, 0);
 242                        err = f2fs_get_dnode_of_data(&dn, page->index,
 243                                                                LOOKUP_NODE);
 244                        if (err) {
 245                                if (err == -ENOMEM) {
 246                                        congestion_wait(BLK_RW_ASYNC, HZ/50);
 247                                        cond_resched();
 248                                        goto retry;
 249                                }
 250                                err = -EAGAIN;
 251                                goto next;
 252                        }
 253                        f2fs_get_node_info(sbi, dn.nid, &ni);
 254                        if (cur->old_addr == NEW_ADDR) {
 255                                f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
 256                                f2fs_update_data_blkaddr(&dn, NEW_ADDR);
 257                        } else
 258                                f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
 259                                        cur->old_addr, ni.version, true, true);
 260                        f2fs_put_dnode(&dn);
 261                }
 262next:
 263                /* we don't need to invalidate this in the sccessful status */
 264                if (drop || recover)
 265                        ClearPageUptodate(page);
 266                set_page_private(page, 0);
 267                ClearPagePrivate(page);
 268                f2fs_put_page(page, 1);
 269
 270                list_del(&cur->list);
 271                kmem_cache_free(inmem_entry_slab, cur);
 272                dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
 273        }
 274        return err;
 275}
 276
 277void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
 278{
 279        struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
 280        struct inode *inode;
 281        struct f2fs_inode_info *fi;
 282next:
 283        spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
 284        if (list_empty(head)) {
 285                spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 286                return;
 287        }
 288        fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
 289        inode = igrab(&fi->vfs_inode);
 290        spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 291
 292        if (inode) {
 293                if (gc_failure) {
 294                        if (fi->i_gc_failures[GC_FAILURE_ATOMIC])
 295                                goto drop;
 296                        goto skip;
 297                }
 298drop:
 299                set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
 300                f2fs_drop_inmem_pages(inode);
 301                iput(inode);
 302        }
 303skip:
 304        congestion_wait(BLK_RW_ASYNC, HZ/50);
 305        cond_resched();
 306        goto next;
 307}
 308
 309void f2fs_drop_inmem_pages(struct inode *inode)
 310{
 311        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 312        struct f2fs_inode_info *fi = F2FS_I(inode);
 313
 314        mutex_lock(&fi->inmem_lock);
 315        __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
 316        spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
 317        if (!list_empty(&fi->inmem_ilist))
 318                list_del_init(&fi->inmem_ilist);
 319        spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 320        mutex_unlock(&fi->inmem_lock);
 321
 322        clear_inode_flag(inode, FI_ATOMIC_FILE);
 323        fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
 324        stat_dec_atomic_write(inode);
 325}
 326
 327void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
 328{
 329        struct f2fs_inode_info *fi = F2FS_I(inode);
 330        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 331        struct list_head *head = &fi->inmem_pages;
 332        struct inmem_pages *cur = NULL;
 333
 334        f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
 335
 336        mutex_lock(&fi->inmem_lock);
 337        list_for_each_entry(cur, head, list) {
 338                if (cur->page == page)
 339                        break;
 340        }
 341
 342        f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
 343        list_del(&cur->list);
 344        mutex_unlock(&fi->inmem_lock);
 345
 346        dec_page_count(sbi, F2FS_INMEM_PAGES);
 347        kmem_cache_free(inmem_entry_slab, cur);
 348
 349        ClearPageUptodate(page);
 350        set_page_private(page, 0);
 351        ClearPagePrivate(page);
 352        f2fs_put_page(page, 0);
 353
 354        trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
 355}
 356
 357static int __f2fs_commit_inmem_pages(struct inode *inode)
 358{
 359        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 360        struct f2fs_inode_info *fi = F2FS_I(inode);
 361        struct inmem_pages *cur, *tmp;
 362        struct f2fs_io_info fio = {
 363                .sbi = sbi,
 364                .ino = inode->i_ino,
 365                .type = DATA,
 366                .op = REQ_OP_WRITE,
 367                .op_flags = REQ_SYNC | REQ_PRIO,
 368                .io_type = FS_DATA_IO,
 369        };
 370        struct list_head revoke_list;
 371        pgoff_t last_idx = ULONG_MAX;
 372        int err = 0;
 373
 374        INIT_LIST_HEAD(&revoke_list);
 375
 376        list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
 377                struct page *page = cur->page;
 378
 379                lock_page(page);
 380                if (page->mapping == inode->i_mapping) {
 381                        trace_f2fs_commit_inmem_page(page, INMEM);
 382
 383                        set_page_dirty(page);
 384                        f2fs_wait_on_page_writeback(page, DATA, true);
 385                        if (clear_page_dirty_for_io(page)) {
 386                                inode_dec_dirty_pages(inode);
 387                                f2fs_remove_dirty_inode(inode);
 388                        }
 389retry:
 390                        fio.page = page;
 391                        fio.old_blkaddr = NULL_ADDR;
 392                        fio.encrypted_page = NULL;
 393                        fio.need_lock = LOCK_DONE;
 394                        err = f2fs_do_write_data_page(&fio);
 395                        if (err) {
 396                                if (err == -ENOMEM) {
 397                                        congestion_wait(BLK_RW_ASYNC, HZ/50);
 398                                        cond_resched();
 399                                        goto retry;
 400                                }
 401                                unlock_page(page);
 402                                break;
 403                        }
 404                        /* record old blkaddr for revoking */
 405                        cur->old_addr = fio.old_blkaddr;
 406                        last_idx = page->index;
 407                }
 408                unlock_page(page);
 409                list_move_tail(&cur->list, &revoke_list);
 410        }
 411
 412        if (last_idx != ULONG_MAX)
 413                f2fs_submit_merged_write_cond(sbi, inode, 0, last_idx, DATA);
 414
 415        if (err) {
 416                /*
 417                 * try to revoke all committed pages, but still we could fail
 418                 * due to no memory or other reason, if that happened, EAGAIN
 419                 * will be returned, which means in such case, transaction is
 420                 * already not integrity, caller should use journal to do the
 421                 * recovery or rewrite & commit last transaction. For other
 422                 * error number, revoking was done by filesystem itself.
 423                 */
 424                err = __revoke_inmem_pages(inode, &revoke_list, false, true);
 425
 426                /* drop all uncommitted pages */
 427                __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
 428        } else {
 429                __revoke_inmem_pages(inode, &revoke_list, false, false);
 430        }
 431
 432        return err;
 433}
 434
 435int f2fs_commit_inmem_pages(struct inode *inode)
 436{
 437        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 438        struct f2fs_inode_info *fi = F2FS_I(inode);
 439        int err;
 440
 441        f2fs_balance_fs(sbi, true);
 442        f2fs_lock_op(sbi);
 443
 444        set_inode_flag(inode, FI_ATOMIC_COMMIT);
 445
 446        mutex_lock(&fi->inmem_lock);
 447        err = __f2fs_commit_inmem_pages(inode);
 448
 449        spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
 450        if (!list_empty(&fi->inmem_ilist))
 451                list_del_init(&fi->inmem_ilist);
 452        spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 453        mutex_unlock(&fi->inmem_lock);
 454
 455        clear_inode_flag(inode, FI_ATOMIC_COMMIT);
 456
 457        f2fs_unlock_op(sbi);
 458        return err;
 459}
 460
 461/*
 462 * This function balances dirty node and dentry pages.
 463 * In addition, it controls garbage collection.
 464 */
 465void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
 466{
 467#ifdef CONFIG_F2FS_FAULT_INJECTION
 468        if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
 469                f2fs_show_injection_info(FAULT_CHECKPOINT);
 470                f2fs_stop_checkpoint(sbi, false);
 471        }
 472#endif
 473
 474        /* balance_fs_bg is able to be pending */
 475        if (need && excess_cached_nats(sbi))
 476                f2fs_balance_fs_bg(sbi);
 477
 478        /*
 479         * We should do GC or end up with checkpoint, if there are so many dirty
 480         * dir/node pages without enough free segments.
 481         */
 482        if (has_not_enough_free_secs(sbi, 0, 0)) {
 483                mutex_lock(&sbi->gc_mutex);
 484                f2fs_gc(sbi, false, false, NULL_SEGNO);
 485        }
 486}
 487
 488void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
 489{
 490        if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
 491                return;
 492
 493        /* try to shrink extent cache when there is no enough memory */
 494        if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
 495                f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
 496
 497        /* check the # of cached NAT entries */
 498        if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
 499                f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
 500
 501        if (!f2fs_available_free_memory(sbi, FREE_NIDS))
 502                f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
 503        else
 504                f2fs_build_free_nids(sbi, false, false);
 505
 506        if (!is_idle(sbi) && !excess_dirty_nats(sbi))
 507                return;
 508
 509        /* checkpoint is the only way to shrink partial cached entries */
 510        if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
 511                        !f2fs_available_free_memory(sbi, INO_ENTRIES) ||
 512                        excess_prefree_segs(sbi) ||
 513                        excess_dirty_nats(sbi) ||
 514                        f2fs_time_over(sbi, CP_TIME)) {
 515                if (test_opt(sbi, DATA_FLUSH)) {
 516                        struct blk_plug plug;
 517
 518                        blk_start_plug(&plug);
 519                        f2fs_sync_dirty_inodes(sbi, FILE_INODE);
 520                        blk_finish_plug(&plug);
 521                }
 522                f2fs_sync_fs(sbi->sb, true);
 523                stat_inc_bg_cp_count(sbi->stat_info);
 524        }
 525}
 526
 527static int __submit_flush_wait(struct f2fs_sb_info *sbi,
 528                                struct block_device *bdev)
 529{
 530        struct bio *bio = f2fs_bio_alloc(sbi, 0, true);
 531        int ret;
 532
 533        bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
 534        bio_set_dev(bio, bdev);
 535        ret = submit_bio_wait(bio);
 536        bio_put(bio);
 537
 538        trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
 539                                test_opt(sbi, FLUSH_MERGE), ret);
 540        return ret;
 541}
 542
 543static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
 544{
 545        int ret = 0;
 546        int i;
 547
 548        if (!sbi->s_ndevs)
 549                return __submit_flush_wait(sbi, sbi->sb->s_bdev);
 550
 551        for (i = 0; i < sbi->s_ndevs; i++) {
 552                if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
 553                        continue;
 554                ret = __submit_flush_wait(sbi, FDEV(i).bdev);
 555                if (ret)
 556                        break;
 557        }
 558        return ret;
 559}
 560
 561static int issue_flush_thread(void *data)
 562{
 563        struct f2fs_sb_info *sbi = data;
 564        struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 565        wait_queue_head_t *q = &fcc->flush_wait_queue;
 566repeat:
 567        if (kthread_should_stop())
 568                return 0;
 569
 570        sb_start_intwrite(sbi->sb);
 571
 572        if (!llist_empty(&fcc->issue_list)) {
 573                struct flush_cmd *cmd, *next;
 574                int ret;
 575
 576                fcc->dispatch_list = llist_del_all(&fcc->issue_list);
 577                fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
 578
 579                cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
 580
 581                ret = submit_flush_wait(sbi, cmd->ino);
 582                atomic_inc(&fcc->issued_flush);
 583
 584                llist_for_each_entry_safe(cmd, next,
 585                                          fcc->dispatch_list, llnode) {
 586                        cmd->ret = ret;
 587                        complete(&cmd->wait);
 588                }
 589                fcc->dispatch_list = NULL;
 590        }
 591
 592        sb_end_intwrite(sbi->sb);
 593
 594        wait_event_interruptible(*q,
 595                kthread_should_stop() || !llist_empty(&fcc->issue_list));
 596        goto repeat;
 597}
 598
 599int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
 600{
 601        struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 602        struct flush_cmd cmd;
 603        int ret;
 604
 605        if (test_opt(sbi, NOBARRIER))
 606                return 0;
 607
 608        if (!test_opt(sbi, FLUSH_MERGE)) {
 609                ret = submit_flush_wait(sbi, ino);
 610                atomic_inc(&fcc->issued_flush);
 611                return ret;
 612        }
 613
 614        if (atomic_inc_return(&fcc->issing_flush) == 1 || sbi->s_ndevs > 1) {
 615                ret = submit_flush_wait(sbi, ino);
 616                atomic_dec(&fcc->issing_flush);
 617
 618                atomic_inc(&fcc->issued_flush);
 619                return ret;
 620        }
 621
 622        cmd.ino = ino;
 623        init_completion(&cmd.wait);
 624
 625        llist_add(&cmd.llnode, &fcc->issue_list);
 626
 627        /* update issue_list before we wake up issue_flush thread */
 628        smp_mb();
 629
 630        if (waitqueue_active(&fcc->flush_wait_queue))
 631                wake_up(&fcc->flush_wait_queue);
 632
 633        if (fcc->f2fs_issue_flush) {
 634                wait_for_completion(&cmd.wait);
 635                atomic_dec(&fcc->issing_flush);
 636        } else {
 637                struct llist_node *list;
 638
 639                list = llist_del_all(&fcc->issue_list);
 640                if (!list) {
 641                        wait_for_completion(&cmd.wait);
 642                        atomic_dec(&fcc->issing_flush);
 643                } else {
 644                        struct flush_cmd *tmp, *next;
 645
 646                        ret = submit_flush_wait(sbi, ino);
 647
 648                        llist_for_each_entry_safe(tmp, next, list, llnode) {
 649                                if (tmp == &cmd) {
 650                                        cmd.ret = ret;
 651                                        atomic_dec(&fcc->issing_flush);
 652                                        continue;
 653                                }
 654                                tmp->ret = ret;
 655                                complete(&tmp->wait);
 656                        }
 657                }
 658        }
 659
 660        return cmd.ret;
 661}
 662
 663int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
 664{
 665        dev_t dev = sbi->sb->s_bdev->bd_dev;
 666        struct flush_cmd_control *fcc;
 667        int err = 0;
 668
 669        if (SM_I(sbi)->fcc_info) {
 670                fcc = SM_I(sbi)->fcc_info;
 671                if (fcc->f2fs_issue_flush)
 672                        return err;
 673                goto init_thread;
 674        }
 675
 676        fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
 677        if (!fcc)
 678                return -ENOMEM;
 679        atomic_set(&fcc->issued_flush, 0);
 680        atomic_set(&fcc->issing_flush, 0);
 681        init_waitqueue_head(&fcc->flush_wait_queue);
 682        init_llist_head(&fcc->issue_list);
 683        SM_I(sbi)->fcc_info = fcc;
 684        if (!test_opt(sbi, FLUSH_MERGE))
 685                return err;
 686
 687init_thread:
 688        fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
 689                                "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
 690        if (IS_ERR(fcc->f2fs_issue_flush)) {
 691                err = PTR_ERR(fcc->f2fs_issue_flush);
 692                kfree(fcc);
 693                SM_I(sbi)->fcc_info = NULL;
 694                return err;
 695        }
 696
 697        return err;
 698}
 699
 700void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
 701{
 702        struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 703
 704        if (fcc && fcc->f2fs_issue_flush) {
 705                struct task_struct *flush_thread = fcc->f2fs_issue_flush;
 706
 707                fcc->f2fs_issue_flush = NULL;
 708                kthread_stop(flush_thread);
 709        }
 710        if (free) {
 711                kfree(fcc);
 712                SM_I(sbi)->fcc_info = NULL;
 713        }
 714}
 715
 716int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
 717{
 718        int ret = 0, i;
 719
 720        if (!sbi->s_ndevs)
 721                return 0;
 722
 723        for (i = 1; i < sbi->s_ndevs; i++) {
 724                if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
 725                        continue;
 726                ret = __submit_flush_wait(sbi, FDEV(i).bdev);
 727                if (ret)
 728                        break;
 729
 730                spin_lock(&sbi->dev_lock);
 731                f2fs_clear_bit(i, (char *)&sbi->dirty_device);
 732                spin_unlock(&sbi->dev_lock);
 733        }
 734
 735        return ret;
 736}
 737
 738static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 739                enum dirty_type dirty_type)
 740{
 741        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 742
 743        /* need not be added */
 744        if (IS_CURSEG(sbi, segno))
 745                return;
 746
 747        if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 748                dirty_i->nr_dirty[dirty_type]++;
 749
 750        if (dirty_type == DIRTY) {
 751                struct seg_entry *sentry = get_seg_entry(sbi, segno);
 752                enum dirty_type t = sentry->type;
 753
 754                if (unlikely(t >= DIRTY)) {
 755                        f2fs_bug_on(sbi, 1);
 756                        return;
 757                }
 758                if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
 759                        dirty_i->nr_dirty[t]++;
 760        }
 761}
 762
 763static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 764                enum dirty_type dirty_type)
 765{
 766        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 767
 768        if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 769                dirty_i->nr_dirty[dirty_type]--;
 770
 771        if (dirty_type == DIRTY) {
 772                struct seg_entry *sentry = get_seg_entry(sbi, segno);
 773                enum dirty_type t = sentry->type;
 774
 775                if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
 776                        dirty_i->nr_dirty[t]--;
 777
 778                if (get_valid_blocks(sbi, segno, true) == 0)
 779                        clear_bit(GET_SEC_FROM_SEG(sbi, segno),
 780                                                dirty_i->victim_secmap);
 781        }
 782}
 783
 784/*
 785 * Should not occur error such as -ENOMEM.
 786 * Adding dirty entry into seglist is not critical operation.
 787 * If a given segment is one of current working segments, it won't be added.
 788 */
 789static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
 790{
 791        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 792        unsigned short valid_blocks;
 793
 794        if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
 795                return;
 796
 797        mutex_lock(&dirty_i->seglist_lock);
 798
 799        valid_blocks = get_valid_blocks(sbi, segno, false);
 800
 801        if (valid_blocks == 0) {
 802                __locate_dirty_segment(sbi, segno, PRE);
 803                __remove_dirty_segment(sbi, segno, DIRTY);
 804        } else if (valid_blocks < sbi->blocks_per_seg) {
 805                __locate_dirty_segment(sbi, segno, DIRTY);
 806        } else {
 807                /* Recovery routine with SSR needs this */
 808                __remove_dirty_segment(sbi, segno, DIRTY);
 809        }
 810
 811        mutex_unlock(&dirty_i->seglist_lock);
 812}
 813
 814static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
 815                struct block_device *bdev, block_t lstart,
 816                block_t start, block_t len)
 817{
 818        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 819        struct list_head *pend_list;
 820        struct discard_cmd *dc;
 821
 822        f2fs_bug_on(sbi, !len);
 823
 824        pend_list = &dcc->pend_list[plist_idx(len)];
 825
 826        dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
 827        INIT_LIST_HEAD(&dc->list);
 828        dc->bdev = bdev;
 829        dc->lstart = lstart;
 830        dc->start = start;
 831        dc->len = len;
 832        dc->ref = 0;
 833        dc->state = D_PREP;
 834        dc->error = 0;
 835        init_completion(&dc->wait);
 836        list_add_tail(&dc->list, pend_list);
 837        atomic_inc(&dcc->discard_cmd_cnt);
 838        dcc->undiscard_blks += len;
 839
 840        return dc;
 841}
 842
 843static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
 844                                struct block_device *bdev, block_t lstart,
 845                                block_t start, block_t len,
 846                                struct rb_node *parent, struct rb_node **p)
 847{
 848        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 849        struct discard_cmd *dc;
 850
 851        dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
 852
 853        rb_link_node(&dc->rb_node, parent, p);
 854        rb_insert_color(&dc->rb_node, &dcc->root);
 855
 856        return dc;
 857}
 858
 859static void __detach_discard_cmd(struct discard_cmd_control *dcc,
 860                                                        struct discard_cmd *dc)
 861{
 862        if (dc->state == D_DONE)
 863                atomic_dec(&dcc->issing_discard);
 864
 865        list_del(&dc->list);
 866        rb_erase(&dc->rb_node, &dcc->root);
 867        dcc->undiscard_blks -= dc->len;
 868
 869        kmem_cache_free(discard_cmd_slab, dc);
 870
 871        atomic_dec(&dcc->discard_cmd_cnt);
 872}
 873
 874static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
 875                                                        struct discard_cmd *dc)
 876{
 877        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 878
 879        trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
 880
 881        f2fs_bug_on(sbi, dc->ref);
 882
 883        if (dc->error == -EOPNOTSUPP)
 884                dc->error = 0;
 885
 886        if (dc->error)
 887                f2fs_msg(sbi->sb, KERN_INFO,
 888                        "Issue discard(%u, %u, %u) failed, ret: %d",
 889                        dc->lstart, dc->start, dc->len, dc->error);
 890        __detach_discard_cmd(dcc, dc);
 891}
 892
 893static void f2fs_submit_discard_endio(struct bio *bio)
 894{
 895        struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
 896
 897        dc->error = blk_status_to_errno(bio->bi_status);
 898        dc->state = D_DONE;
 899        complete_all(&dc->wait);
 900        bio_put(bio);
 901}
 902
 903static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
 904                                block_t start, block_t end)
 905{
 906#ifdef CONFIG_F2FS_CHECK_FS
 907        struct seg_entry *sentry;
 908        unsigned int segno;
 909        block_t blk = start;
 910        unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
 911        unsigned long *map;
 912
 913        while (blk < end) {
 914                segno = GET_SEGNO(sbi, blk);
 915                sentry = get_seg_entry(sbi, segno);
 916                offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
 917
 918                if (end < START_BLOCK(sbi, segno + 1))
 919                        size = GET_BLKOFF_FROM_SEG0(sbi, end);
 920                else
 921                        size = max_blocks;
 922                map = (unsigned long *)(sentry->cur_valid_map);
 923                offset = __find_rev_next_bit(map, size, offset);
 924                f2fs_bug_on(sbi, offset != size);
 925                blk = START_BLOCK(sbi, segno + 1);
 926        }
 927#endif
 928}
 929
 930static void __init_discard_policy(struct f2fs_sb_info *sbi,
 931                                struct discard_policy *dpolicy,
 932                                int discard_type, unsigned int granularity)
 933{
 934        /* common policy */
 935        dpolicy->type = discard_type;
 936        dpolicy->sync = true;
 937        dpolicy->granularity = granularity;
 938
 939        dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
 940        dpolicy->io_aware_gran = MAX_PLIST_NUM;
 941
 942        if (discard_type == DPOLICY_BG) {
 943                dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
 944                dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
 945                dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
 946                dpolicy->io_aware = true;
 947                dpolicy->sync = false;
 948                if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
 949                        dpolicy->granularity = 1;
 950                        dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
 951                }
 952        } else if (discard_type == DPOLICY_FORCE) {
 953                dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
 954                dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
 955                dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
 956                dpolicy->io_aware = false;
 957        } else if (discard_type == DPOLICY_FSTRIM) {
 958                dpolicy->io_aware = false;
 959        } else if (discard_type == DPOLICY_UMOUNT) {
 960                dpolicy->max_requests = UINT_MAX;
 961                dpolicy->io_aware = false;
 962        }
 963}
 964
 965
 966/* this function is copied from blkdev_issue_discard from block/blk-lib.c */
 967static void __submit_discard_cmd(struct f2fs_sb_info *sbi,
 968                                                struct discard_policy *dpolicy,
 969                                                struct discard_cmd *dc)
 970{
 971        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 972        struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
 973                                        &(dcc->fstrim_list) : &(dcc->wait_list);
 974        struct bio *bio = NULL;
 975        int flag = dpolicy->sync ? REQ_SYNC : 0;
 976
 977        if (dc->state != D_PREP)
 978                return;
 979
 980        if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
 981                return;
 982
 983        trace_f2fs_issue_discard(dc->bdev, dc->start, dc->len);
 984
 985        dc->error = __blkdev_issue_discard(dc->bdev,
 986                                SECTOR_FROM_BLOCK(dc->start),
 987                                SECTOR_FROM_BLOCK(dc->len),
 988                                GFP_NOFS, 0, &bio);
 989        if (!dc->error) {
 990                /* should keep before submission to avoid D_DONE right away */
 991                dc->state = D_SUBMIT;
 992                atomic_inc(&dcc->issued_discard);
 993                atomic_inc(&dcc->issing_discard);
 994                if (bio) {
 995                        bio->bi_private = dc;
 996                        bio->bi_end_io = f2fs_submit_discard_endio;
 997                        bio->bi_opf |= flag;
 998                        submit_bio(bio);
 999                        list_move_tail(&dc->list, wait_list);
1000                        __check_sit_bitmap(sbi, dc->start, dc->start + dc->len);
1001
1002                        f2fs_update_iostat(sbi, FS_DISCARD, 1);
1003                }
1004        } else {
1005                __remove_discard_cmd(sbi, dc);
1006        }
1007}
1008
1009static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
1010                                struct block_device *bdev, block_t lstart,
1011                                block_t start, block_t len,
1012                                struct rb_node **insert_p,
1013                                struct rb_node *insert_parent)
1014{
1015        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1016        struct rb_node **p;
1017        struct rb_node *parent = NULL;
1018        struct discard_cmd *dc = NULL;
1019
1020        if (insert_p && insert_parent) {
1021                parent = insert_parent;
1022                p = insert_p;
1023                goto do_insert;
1024        }
1025
1026        p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart);
1027do_insert:
1028        dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p);
1029        if (!dc)
1030                return NULL;
1031
1032        return dc;
1033}
1034
1035static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1036                                                struct discard_cmd *dc)
1037{
1038        list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1039}
1040
1041static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1042                                struct discard_cmd *dc, block_t blkaddr)
1043{
1044        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1045        struct discard_info di = dc->di;
1046        bool modified = false;
1047
1048        if (dc->state == D_DONE || dc->len == 1) {
1049                __remove_discard_cmd(sbi, dc);
1050                return;
1051        }
1052
1053        dcc->undiscard_blks -= di.len;
1054
1055        if (blkaddr > di.lstart) {
1056                dc->len = blkaddr - dc->lstart;
1057                dcc->undiscard_blks += dc->len;
1058                __relocate_discard_cmd(dcc, dc);
1059                modified = true;
1060        }
1061
1062        if (blkaddr < di.lstart + di.len - 1) {
1063                if (modified) {
1064                        __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1065                                        di.start + blkaddr + 1 - di.lstart,
1066                                        di.lstart + di.len - 1 - blkaddr,
1067                                        NULL, NULL);
1068                } else {
1069                        dc->lstart++;
1070                        dc->len--;
1071                        dc->start++;
1072                        dcc->undiscard_blks += dc->len;
1073                        __relocate_discard_cmd(dcc, dc);
1074                }
1075        }
1076}
1077
1078static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1079                                struct block_device *bdev, block_t lstart,
1080                                block_t start, block_t len)
1081{
1082        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1083        struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1084        struct discard_cmd *dc;
1085        struct discard_info di = {0};
1086        struct rb_node **insert_p = NULL, *insert_parent = NULL;
1087        block_t end = lstart + len;
1088
1089        mutex_lock(&dcc->cmd_lock);
1090
1091        dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1092                                        NULL, lstart,
1093                                        (struct rb_entry **)&prev_dc,
1094                                        (struct rb_entry **)&next_dc,
1095                                        &insert_p, &insert_parent, true);
1096        if (dc)
1097                prev_dc = dc;
1098
1099        if (!prev_dc) {
1100                di.lstart = lstart;
1101                di.len = next_dc ? next_dc->lstart - lstart : len;
1102                di.len = min(di.len, len);
1103                di.start = start;
1104        }
1105
1106        while (1) {
1107                struct rb_node *node;
1108                bool merged = false;
1109                struct discard_cmd *tdc = NULL;
1110
1111                if (prev_dc) {
1112                        di.lstart = prev_dc->lstart + prev_dc->len;
1113                        if (di.lstart < lstart)
1114                                di.lstart = lstart;
1115                        if (di.lstart >= end)
1116                                break;
1117
1118                        if (!next_dc || next_dc->lstart > end)
1119                                di.len = end - di.lstart;
1120                        else
1121                                di.len = next_dc->lstart - di.lstart;
1122                        di.start = start + di.lstart - lstart;
1123                }
1124
1125                if (!di.len)
1126                        goto next;
1127
1128                if (prev_dc && prev_dc->state == D_PREP &&
1129                        prev_dc->bdev == bdev &&
1130                        __is_discard_back_mergeable(&di, &prev_dc->di)) {
1131                        prev_dc->di.len += di.len;
1132                        dcc->undiscard_blks += di.len;
1133                        __relocate_discard_cmd(dcc, prev_dc);
1134                        di = prev_dc->di;
1135                        tdc = prev_dc;
1136                        merged = true;
1137                }
1138
1139                if (next_dc && next_dc->state == D_PREP &&
1140                        next_dc->bdev == bdev &&
1141                        __is_discard_front_mergeable(&di, &next_dc->di)) {
1142                        next_dc->di.lstart = di.lstart;
1143                        next_dc->di.len += di.len;
1144                        next_dc->di.start = di.start;
1145                        dcc->undiscard_blks += di.len;
1146                        __relocate_discard_cmd(dcc, next_dc);
1147                        if (tdc)
1148                                __remove_discard_cmd(sbi, tdc);
1149                        merged = true;
1150                }
1151
1152                if (!merged) {
1153                        __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1154                                                        di.len, NULL, NULL);
1155                }
1156 next:
1157                prev_dc = next_dc;
1158                if (!prev_dc)
1159                        break;
1160
1161                node = rb_next(&prev_dc->rb_node);
1162                next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1163        }
1164
1165        mutex_unlock(&dcc->cmd_lock);
1166}
1167
1168static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1169                struct block_device *bdev, block_t blkstart, block_t blklen)
1170{
1171        block_t lblkstart = blkstart;
1172
1173        trace_f2fs_queue_discard(bdev, blkstart, blklen);
1174
1175        if (sbi->s_ndevs) {
1176                int devi = f2fs_target_device_index(sbi, blkstart);
1177
1178                blkstart -= FDEV(devi).start_blk;
1179        }
1180        __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1181        return 0;
1182}
1183
1184static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1185                                        struct discard_policy *dpolicy)
1186{
1187        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1188        struct list_head *pend_list;
1189        struct discard_cmd *dc, *tmp;
1190        struct blk_plug plug;
1191        int i, iter = 0, issued = 0;
1192        bool io_interrupted = false;
1193
1194        for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1195                if (i + 1 < dpolicy->granularity)
1196                        break;
1197                pend_list = &dcc->pend_list[i];
1198
1199                mutex_lock(&dcc->cmd_lock);
1200                if (list_empty(pend_list))
1201                        goto next;
1202                f2fs_bug_on(sbi,
1203                        !f2fs_check_rb_tree_consistence(sbi, &dcc->root));
1204                blk_start_plug(&plug);
1205                list_for_each_entry_safe(dc, tmp, pend_list, list) {
1206                        f2fs_bug_on(sbi, dc->state != D_PREP);
1207
1208                        if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1209                                                                !is_idle(sbi)) {
1210                                io_interrupted = true;
1211                                goto skip;
1212                        }
1213
1214                        __submit_discard_cmd(sbi, dpolicy, dc);
1215                        issued++;
1216skip:
1217                        if (++iter >= dpolicy->max_requests)
1218                                break;
1219                }
1220                blk_finish_plug(&plug);
1221next:
1222                mutex_unlock(&dcc->cmd_lock);
1223
1224                if (iter >= dpolicy->max_requests)
1225                        break;
1226        }
1227
1228        if (!issued && io_interrupted)
1229                issued = -1;
1230
1231        return issued;
1232}
1233
1234static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1235{
1236        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1237        struct list_head *pend_list;
1238        struct discard_cmd *dc, *tmp;
1239        int i;
1240        bool dropped = false;
1241
1242        mutex_lock(&dcc->cmd_lock);
1243        for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1244                pend_list = &dcc->pend_list[i];
1245                list_for_each_entry_safe(dc, tmp, pend_list, list) {
1246                        f2fs_bug_on(sbi, dc->state != D_PREP);
1247                        __remove_discard_cmd(sbi, dc);
1248                        dropped = true;
1249                }
1250        }
1251        mutex_unlock(&dcc->cmd_lock);
1252
1253        return dropped;
1254}
1255
1256void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1257{
1258        __drop_discard_cmd(sbi);
1259}
1260
1261static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1262                                                        struct discard_cmd *dc)
1263{
1264        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1265        unsigned int len = 0;
1266
1267        wait_for_completion_io(&dc->wait);
1268        mutex_lock(&dcc->cmd_lock);
1269        f2fs_bug_on(sbi, dc->state != D_DONE);
1270        dc->ref--;
1271        if (!dc->ref) {
1272                if (!dc->error)
1273                        len = dc->len;
1274                __remove_discard_cmd(sbi, dc);
1275        }
1276        mutex_unlock(&dcc->cmd_lock);
1277
1278        return len;
1279}
1280
1281static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1282                                                struct discard_policy *dpolicy,
1283                                                block_t start, block_t end)
1284{
1285        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1286        struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1287                                        &(dcc->fstrim_list) : &(dcc->wait_list);
1288        struct discard_cmd *dc, *tmp;
1289        bool need_wait;
1290        unsigned int trimmed = 0;
1291
1292next:
1293        need_wait = false;
1294
1295        mutex_lock(&dcc->cmd_lock);
1296        list_for_each_entry_safe(dc, tmp, wait_list, list) {
1297                if (dc->lstart + dc->len <= start || end <= dc->lstart)
1298                        continue;
1299                if (dc->len < dpolicy->granularity)
1300                        continue;
1301                if (dc->state == D_DONE && !dc->ref) {
1302                        wait_for_completion_io(&dc->wait);
1303                        if (!dc->error)
1304                                trimmed += dc->len;
1305                        __remove_discard_cmd(sbi, dc);
1306                } else {
1307                        dc->ref++;
1308                        need_wait = true;
1309                        break;
1310                }
1311        }
1312        mutex_unlock(&dcc->cmd_lock);
1313
1314        if (need_wait) {
1315                trimmed += __wait_one_discard_bio(sbi, dc);
1316                goto next;
1317        }
1318
1319        return trimmed;
1320}
1321
1322static void __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1323                                                struct discard_policy *dpolicy)
1324{
1325        struct discard_policy dp;
1326
1327        if (dpolicy) {
1328                __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1329                return;
1330        }
1331
1332        /* wait all */
1333        __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1334        __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1335        __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1336        __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1337}
1338
1339/* This should be covered by global mutex, &sit_i->sentry_lock */
1340static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1341{
1342        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1343        struct discard_cmd *dc;
1344        bool need_wait = false;
1345
1346        mutex_lock(&dcc->cmd_lock);
1347        dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1348                                                        NULL, blkaddr);
1349        if (dc) {
1350                if (dc->state == D_PREP) {
1351                        __punch_discard_cmd(sbi, dc, blkaddr);
1352                } else {
1353                        dc->ref++;
1354                        need_wait = true;
1355                }
1356        }
1357        mutex_unlock(&dcc->cmd_lock);
1358
1359        if (need_wait)
1360                __wait_one_discard_bio(sbi, dc);
1361}
1362
1363void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1364{
1365        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1366
1367        if (dcc && dcc->f2fs_issue_discard) {
1368                struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1369
1370                dcc->f2fs_issue_discard = NULL;
1371                kthread_stop(discard_thread);
1372        }
1373}
1374
1375/* This comes from f2fs_put_super */
1376bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi)
1377{
1378        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1379        struct discard_policy dpolicy;
1380        bool dropped;
1381
1382        __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1383                                        dcc->discard_granularity);
1384        __issue_discard_cmd(sbi, &dpolicy);
1385        dropped = __drop_discard_cmd(sbi);
1386
1387        /* just to make sure there is no pending discard commands */
1388        __wait_all_discard_cmd(sbi, NULL);
1389        return dropped;
1390}
1391
1392static int issue_discard_thread(void *data)
1393{
1394        struct f2fs_sb_info *sbi = data;
1395        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1396        wait_queue_head_t *q = &dcc->discard_wait_queue;
1397        struct discard_policy dpolicy;
1398        unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1399        int issued;
1400
1401        set_freezable();
1402
1403        do {
1404                __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1405                                        dcc->discard_granularity);
1406
1407                wait_event_interruptible_timeout(*q,
1408                                kthread_should_stop() || freezing(current) ||
1409                                dcc->discard_wake,
1410                                msecs_to_jiffies(wait_ms));
1411
1412                if (dcc->discard_wake)
1413                        dcc->discard_wake = 0;
1414
1415                if (try_to_freeze())
1416                        continue;
1417                if (f2fs_readonly(sbi->sb))
1418                        continue;
1419                if (kthread_should_stop())
1420                        return 0;
1421                if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1422                        wait_ms = dpolicy.max_interval;
1423                        continue;
1424                }
1425
1426                if (sbi->gc_mode == GC_URGENT)
1427                        __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1428
1429                sb_start_intwrite(sbi->sb);
1430
1431                issued = __issue_discard_cmd(sbi, &dpolicy);
1432                if (issued > 0) {
1433                        __wait_all_discard_cmd(sbi, &dpolicy);
1434                        wait_ms = dpolicy.min_interval;
1435                } else if (issued == -1){
1436                        wait_ms = dpolicy.mid_interval;
1437                } else {
1438                        wait_ms = dpolicy.max_interval;
1439                }
1440
1441                sb_end_intwrite(sbi->sb);
1442
1443        } while (!kthread_should_stop());
1444        return 0;
1445}
1446
1447#ifdef CONFIG_BLK_DEV_ZONED
1448static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1449                struct block_device *bdev, block_t blkstart, block_t blklen)
1450{
1451        sector_t sector, nr_sects;
1452        block_t lblkstart = blkstart;
1453        int devi = 0;
1454
1455        if (sbi->s_ndevs) {
1456                devi = f2fs_target_device_index(sbi, blkstart);
1457                blkstart -= FDEV(devi).start_blk;
1458        }
1459
1460        /*
1461         * We need to know the type of the zone: for conventional zones,
1462         * use regular discard if the drive supports it. For sequential
1463         * zones, reset the zone write pointer.
1464         */
1465        switch (get_blkz_type(sbi, bdev, blkstart)) {
1466
1467        case BLK_ZONE_TYPE_CONVENTIONAL:
1468                if (!blk_queue_discard(bdev_get_queue(bdev)))
1469                        return 0;
1470                return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1471        case BLK_ZONE_TYPE_SEQWRITE_REQ:
1472        case BLK_ZONE_TYPE_SEQWRITE_PREF:
1473                sector = SECTOR_FROM_BLOCK(blkstart);
1474                nr_sects = SECTOR_FROM_BLOCK(blklen);
1475
1476                if (sector & (bdev_zone_sectors(bdev) - 1) ||
1477                                nr_sects != bdev_zone_sectors(bdev)) {
1478                        f2fs_msg(sbi->sb, KERN_INFO,
1479                                "(%d) %s: Unaligned discard attempted (block %x + %x)",
1480                                devi, sbi->s_ndevs ? FDEV(devi).path: "",
1481                                blkstart, blklen);
1482                        return -EIO;
1483                }
1484                trace_f2fs_issue_reset_zone(bdev, blkstart);
1485                return blkdev_reset_zones(bdev, sector,
1486                                          nr_sects, GFP_NOFS);
1487        default:
1488                /* Unknown zone type: broken device ? */
1489                return -EIO;
1490        }
1491}
1492#endif
1493
1494static int __issue_discard_async(struct f2fs_sb_info *sbi,
1495                struct block_device *bdev, block_t blkstart, block_t blklen)
1496{
1497#ifdef CONFIG_BLK_DEV_ZONED
1498        if (f2fs_sb_has_blkzoned(sbi->sb) &&
1499                                bdev_zoned_model(bdev) != BLK_ZONED_NONE)
1500                return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1501#endif
1502        return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1503}
1504
1505static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1506                                block_t blkstart, block_t blklen)
1507{
1508        sector_t start = blkstart, len = 0;
1509        struct block_device *bdev;
1510        struct seg_entry *se;
1511        unsigned int offset;
1512        block_t i;
1513        int err = 0;
1514
1515        bdev = f2fs_target_device(sbi, blkstart, NULL);
1516
1517        for (i = blkstart; i < blkstart + blklen; i++, len++) {
1518                if (i != start) {
1519                        struct block_device *bdev2 =
1520                                f2fs_target_device(sbi, i, NULL);
1521
1522                        if (bdev2 != bdev) {
1523                                err = __issue_discard_async(sbi, bdev,
1524                                                start, len);
1525                                if (err)
1526                                        return err;
1527                                bdev = bdev2;
1528                                start = i;
1529                                len = 0;
1530                        }
1531                }
1532
1533                se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1534                offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1535
1536                if (!f2fs_test_and_set_bit(offset, se->discard_map))
1537                        sbi->discard_blks--;
1538        }
1539
1540        if (len)
1541                err = __issue_discard_async(sbi, bdev, start, len);
1542        return err;
1543}
1544
1545static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1546                                                        bool check_only)
1547{
1548        int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1549        int max_blocks = sbi->blocks_per_seg;
1550        struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1551        unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1552        unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1553        unsigned long *discard_map = (unsigned long *)se->discard_map;
1554        unsigned long *dmap = SIT_I(sbi)->tmp_map;
1555        unsigned int start = 0, end = -1;
1556        bool force = (cpc->reason & CP_DISCARD);
1557        struct discard_entry *de = NULL;
1558        struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1559        int i;
1560
1561        if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
1562                return false;
1563
1564        if (!force) {
1565                if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
1566                        SM_I(sbi)->dcc_info->nr_discards >=
1567                                SM_I(sbi)->dcc_info->max_discards)
1568                        return false;
1569        }
1570
1571        /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1572        for (i = 0; i < entries; i++)
1573                dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1574                                (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1575
1576        while (force || SM_I(sbi)->dcc_info->nr_discards <=
1577                                SM_I(sbi)->dcc_info->max_discards) {
1578                start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1579                if (start >= max_blocks)
1580                        break;
1581
1582                end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1583                if (force && start && end != max_blocks
1584                                        && (end - start) < cpc->trim_minlen)
1585                        continue;
1586
1587                if (check_only)
1588                        return true;
1589
1590                if (!de) {
1591                        de = f2fs_kmem_cache_alloc(discard_entry_slab,
1592                                                                GFP_F2FS_ZERO);
1593                        de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1594                        list_add_tail(&de->list, head);
1595                }
1596
1597                for (i = start; i < end; i++)
1598                        __set_bit_le(i, (void *)de->discard_map);
1599
1600                SM_I(sbi)->dcc_info->nr_discards += end - start;
1601        }
1602        return false;
1603}
1604
1605static void release_discard_addr(struct discard_entry *entry)
1606{
1607        list_del(&entry->list);
1608        kmem_cache_free(discard_entry_slab, entry);
1609}
1610
1611void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1612{
1613        struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1614        struct discard_entry *entry, *this;
1615
1616        /* drop caches */
1617        list_for_each_entry_safe(entry, this, head, list)
1618                release_discard_addr(entry);
1619}
1620
1621/*
1622 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1623 */
1624static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1625{
1626        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1627        unsigned int segno;
1628
1629        mutex_lock(&dirty_i->seglist_lock);
1630        for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1631                __set_test_and_free(sbi, segno);
1632        mutex_unlock(&dirty_i->seglist_lock);
1633}
1634
1635void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1636                                                struct cp_control *cpc)
1637{
1638        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1639        struct list_head *head = &dcc->entry_list;
1640        struct discard_entry *entry, *this;
1641        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1642        unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1643        unsigned int start = 0, end = -1;
1644        unsigned int secno, start_segno;
1645        bool force = (cpc->reason & CP_DISCARD);
1646
1647        mutex_lock(&dirty_i->seglist_lock);
1648
1649        while (1) {
1650                int i;
1651                start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1652                if (start >= MAIN_SEGS(sbi))
1653                        break;
1654                end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1655                                                                start + 1);
1656
1657                for (i = start; i < end; i++)
1658                        clear_bit(i, prefree_map);
1659
1660                dirty_i->nr_dirty[PRE] -= end - start;
1661
1662                if (!test_opt(sbi, DISCARD))
1663                        continue;
1664
1665                if (force && start >= cpc->trim_start &&
1666                                        (end - 1) <= cpc->trim_end)
1667                                continue;
1668
1669                if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
1670                        f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1671                                (end - start) << sbi->log_blocks_per_seg);
1672                        continue;
1673                }
1674next:
1675                secno = GET_SEC_FROM_SEG(sbi, start);
1676                start_segno = GET_SEG_FROM_SEC(sbi, secno);
1677                if (!IS_CURSEC(sbi, secno) &&
1678                        !get_valid_blocks(sbi, start, true))
1679                        f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1680                                sbi->segs_per_sec << sbi->log_blocks_per_seg);
1681
1682                start = start_segno + sbi->segs_per_sec;
1683                if (start < end)
1684                        goto next;
1685                else
1686                        end = start - 1;
1687        }
1688        mutex_unlock(&dirty_i->seglist_lock);
1689
1690        /* send small discards */
1691        list_for_each_entry_safe(entry, this, head, list) {
1692                unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1693                bool is_valid = test_bit_le(0, entry->discard_map);
1694
1695find_next:
1696                if (is_valid) {
1697                        next_pos = find_next_zero_bit_le(entry->discard_map,
1698                                        sbi->blocks_per_seg, cur_pos);
1699                        len = next_pos - cur_pos;
1700
1701                        if (f2fs_sb_has_blkzoned(sbi->sb) ||
1702                            (force && len < cpc->trim_minlen))
1703                                goto skip;
1704
1705                        f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
1706                                                                        len);
1707                        total_len += len;
1708                } else {
1709                        next_pos = find_next_bit_le(entry->discard_map,
1710                                        sbi->blocks_per_seg, cur_pos);
1711                }
1712skip:
1713                cur_pos = next_pos;
1714                is_valid = !is_valid;
1715
1716                if (cur_pos < sbi->blocks_per_seg)
1717                        goto find_next;
1718
1719                release_discard_addr(entry);
1720                dcc->nr_discards -= total_len;
1721        }
1722
1723        wake_up_discard_thread(sbi, false);
1724}
1725
1726static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
1727{
1728        dev_t dev = sbi->sb->s_bdev->bd_dev;
1729        struct discard_cmd_control *dcc;
1730        int err = 0, i;
1731
1732        if (SM_I(sbi)->dcc_info) {
1733                dcc = SM_I(sbi)->dcc_info;
1734                goto init_thread;
1735        }
1736
1737        dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
1738        if (!dcc)
1739                return -ENOMEM;
1740
1741        dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
1742        INIT_LIST_HEAD(&dcc->entry_list);
1743        for (i = 0; i < MAX_PLIST_NUM; i++)
1744                INIT_LIST_HEAD(&dcc->pend_list[i]);
1745        INIT_LIST_HEAD(&dcc->wait_list);
1746        INIT_LIST_HEAD(&dcc->fstrim_list);
1747        mutex_init(&dcc->cmd_lock);
1748        atomic_set(&dcc->issued_discard, 0);
1749        atomic_set(&dcc->issing_discard, 0);
1750        atomic_set(&dcc->discard_cmd_cnt, 0);
1751        dcc->nr_discards = 0;
1752        dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
1753        dcc->undiscard_blks = 0;
1754        dcc->root = RB_ROOT;
1755
1756        init_waitqueue_head(&dcc->discard_wait_queue);
1757        SM_I(sbi)->dcc_info = dcc;
1758init_thread:
1759        dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
1760                                "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
1761        if (IS_ERR(dcc->f2fs_issue_discard)) {
1762                err = PTR_ERR(dcc->f2fs_issue_discard);
1763                kfree(dcc);
1764                SM_I(sbi)->dcc_info = NULL;
1765                return err;
1766        }
1767
1768        return err;
1769}
1770
1771static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
1772{
1773        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1774
1775        if (!dcc)
1776                return;
1777
1778        f2fs_stop_discard_thread(sbi);
1779
1780        kfree(dcc);
1781        SM_I(sbi)->dcc_info = NULL;
1782}
1783
1784static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
1785{
1786        struct sit_info *sit_i = SIT_I(sbi);
1787
1788        if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
1789                sit_i->dirty_sentries++;
1790                return false;
1791        }
1792
1793        return true;
1794}
1795
1796static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
1797                                        unsigned int segno, int modified)
1798{
1799        struct seg_entry *se = get_seg_entry(sbi, segno);
1800        se->type = type;
1801        if (modified)
1802                __mark_sit_entry_dirty(sbi, segno);
1803}
1804
1805static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
1806{
1807        struct seg_entry *se;
1808        unsigned int segno, offset;
1809        long int new_vblocks;
1810        bool exist;
1811#ifdef CONFIG_F2FS_CHECK_FS
1812        bool mir_exist;
1813#endif
1814
1815        segno = GET_SEGNO(sbi, blkaddr);
1816
1817        se = get_seg_entry(sbi, segno);
1818        new_vblocks = se->valid_blocks + del;
1819        offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1820
1821        f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
1822                                (new_vblocks > sbi->blocks_per_seg)));
1823
1824        se->valid_blocks = new_vblocks;
1825        se->mtime = get_mtime(sbi, false);
1826        if (se->mtime > SIT_I(sbi)->max_mtime)
1827                SIT_I(sbi)->max_mtime = se->mtime;
1828
1829        /* Update valid block bitmap */
1830        if (del > 0) {
1831                exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
1832#ifdef CONFIG_F2FS_CHECK_FS
1833                mir_exist = f2fs_test_and_set_bit(offset,
1834                                                se->cur_valid_map_mir);
1835                if (unlikely(exist != mir_exist)) {
1836                        f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
1837                                "when setting bitmap, blk:%u, old bit:%d",
1838                                blkaddr, exist);
1839                        f2fs_bug_on(sbi, 1);
1840                }
1841#endif
1842                if (unlikely(exist)) {
1843                        f2fs_msg(sbi->sb, KERN_ERR,
1844                                "Bitmap was wrongly set, blk:%u", blkaddr);
1845                        f2fs_bug_on(sbi, 1);
1846                        se->valid_blocks--;
1847                        del = 0;
1848                }
1849
1850                if (f2fs_discard_en(sbi) &&
1851                        !f2fs_test_and_set_bit(offset, se->discard_map))
1852                        sbi->discard_blks--;
1853
1854                /* don't overwrite by SSR to keep node chain */
1855                if (IS_NODESEG(se->type)) {
1856                        if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
1857                                se->ckpt_valid_blocks++;
1858                }
1859        } else {
1860                exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
1861#ifdef CONFIG_F2FS_CHECK_FS
1862                mir_exist = f2fs_test_and_clear_bit(offset,
1863                                                se->cur_valid_map_mir);
1864                if (unlikely(exist != mir_exist)) {
1865                        f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
1866                                "when clearing bitmap, blk:%u, old bit:%d",
1867                                blkaddr, exist);
1868                        f2fs_bug_on(sbi, 1);
1869                }
1870#endif
1871                if (unlikely(!exist)) {
1872                        f2fs_msg(sbi->sb, KERN_ERR,
1873                                "Bitmap was wrongly cleared, blk:%u", blkaddr);
1874                        f2fs_bug_on(sbi, 1);
1875                        se->valid_blocks++;
1876                        del = 0;
1877                }
1878
1879                if (f2fs_discard_en(sbi) &&
1880                        f2fs_test_and_clear_bit(offset, se->discard_map))
1881                        sbi->discard_blks++;
1882        }
1883        if (!f2fs_test_bit(offset, se->ckpt_valid_map))
1884                se->ckpt_valid_blocks += del;
1885
1886        __mark_sit_entry_dirty(sbi, segno);
1887
1888        /* update total number of valid blocks to be written in ckpt area */
1889        SIT_I(sbi)->written_valid_blocks += del;
1890
1891        if (sbi->segs_per_sec > 1)
1892                get_sec_entry(sbi, segno)->valid_blocks += del;
1893}
1894
1895void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
1896{
1897        unsigned int segno = GET_SEGNO(sbi, addr);
1898        struct sit_info *sit_i = SIT_I(sbi);
1899
1900        f2fs_bug_on(sbi, addr == NULL_ADDR);
1901        if (addr == NEW_ADDR)
1902                return;
1903
1904        /* add it into sit main buffer */
1905        down_write(&sit_i->sentry_lock);
1906
1907        update_sit_entry(sbi, addr, -1);
1908
1909        /* add it into dirty seglist */
1910        locate_dirty_segment(sbi, segno);
1911
1912        up_write(&sit_i->sentry_lock);
1913}
1914
1915bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
1916{
1917        struct sit_info *sit_i = SIT_I(sbi);
1918        unsigned int segno, offset;
1919        struct seg_entry *se;
1920        bool is_cp = false;
1921
1922        if (!is_valid_blkaddr(blkaddr))
1923                return true;
1924
1925        down_read(&sit_i->sentry_lock);
1926
1927        segno = GET_SEGNO(sbi, blkaddr);
1928        se = get_seg_entry(sbi, segno);
1929        offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1930
1931        if (f2fs_test_bit(offset, se->ckpt_valid_map))
1932                is_cp = true;
1933
1934        up_read(&sit_i->sentry_lock);
1935
1936        return is_cp;
1937}
1938
1939/*
1940 * This function should be resided under the curseg_mutex lock
1941 */
1942static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
1943                                        struct f2fs_summary *sum)
1944{
1945        struct curseg_info *curseg = CURSEG_I(sbi, type);
1946        void *addr = curseg->sum_blk;
1947        addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
1948        memcpy(addr, sum, sizeof(struct f2fs_summary));
1949}
1950
1951/*
1952 * Calculate the number of current summary pages for writing
1953 */
1954int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
1955{
1956        int valid_sum_count = 0;
1957        int i, sum_in_page;
1958
1959        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1960                if (sbi->ckpt->alloc_type[i] == SSR)
1961                        valid_sum_count += sbi->blocks_per_seg;
1962                else {
1963                        if (for_ra)
1964                                valid_sum_count += le16_to_cpu(
1965                                        F2FS_CKPT(sbi)->cur_data_blkoff[i]);
1966                        else
1967                                valid_sum_count += curseg_blkoff(sbi, i);
1968                }
1969        }
1970
1971        sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
1972                        SUM_FOOTER_SIZE) / SUMMARY_SIZE;
1973        if (valid_sum_count <= sum_in_page)
1974                return 1;
1975        else if ((valid_sum_count - sum_in_page) <=
1976                (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
1977                return 2;
1978        return 3;
1979}
1980
1981/*
1982 * Caller should put this summary page
1983 */
1984struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
1985{
1986        return f2fs_get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
1987}
1988
1989void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
1990                                        void *src, block_t blk_addr)
1991{
1992        struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1993
1994        memcpy(page_address(page), src, PAGE_SIZE);
1995        set_page_dirty(page);
1996        f2fs_put_page(page, 1);
1997}
1998
1999static void write_sum_page(struct f2fs_sb_info *sbi,
2000                        struct f2fs_summary_block *sum_blk, block_t blk_addr)
2001{
2002        f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2003}
2004
2005static void write_current_sum_page(struct f2fs_sb_info *sbi,
2006                                                int type, block_t blk_addr)
2007{
2008        struct curseg_info *curseg = CURSEG_I(sbi, type);
2009        struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2010        struct f2fs_summary_block *src = curseg->sum_blk;
2011        struct f2fs_summary_block *dst;
2012
2013        dst = (struct f2fs_summary_block *)page_address(page);
2014        memset(dst, 0, PAGE_SIZE);
2015
2016        mutex_lock(&curseg->curseg_mutex);
2017
2018        down_read(&curseg->journal_rwsem);
2019        memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2020        up_read(&curseg->journal_rwsem);
2021
2022        memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2023        memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2024
2025        mutex_unlock(&curseg->curseg_mutex);
2026
2027        set_page_dirty(page);
2028        f2fs_put_page(page, 1);
2029}
2030
2031static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2032{
2033        struct curseg_info *curseg = CURSEG_I(sbi, type);
2034        unsigned int segno = curseg->segno + 1;
2035        struct free_segmap_info *free_i = FREE_I(sbi);
2036
2037        if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2038                return !test_bit(segno, free_i->free_segmap);
2039        return 0;
2040}
2041
2042/*
2043 * Find a new segment from the free segments bitmap to right order
2044 * This function should be returned with success, otherwise BUG
2045 */
2046static void get_new_segment(struct f2fs_sb_info *sbi,
2047                        unsigned int *newseg, bool new_sec, int dir)
2048{
2049        struct free_segmap_info *free_i = FREE_I(sbi);
2050        unsigned int segno, secno, zoneno;
2051        unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2052        unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2053        unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2054        unsigned int left_start = hint;
2055        bool init = true;
2056        int go_left = 0;
2057        int i;
2058
2059        spin_lock(&free_i->segmap_lock);
2060
2061        if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2062                segno = find_next_zero_bit(free_i->free_segmap,
2063                        GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2064                if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2065                        goto got_it;
2066        }
2067find_other_zone:
2068        secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2069        if (secno >= MAIN_SECS(sbi)) {
2070                if (dir == ALLOC_RIGHT) {
2071                        secno = find_next_zero_bit(free_i->free_secmap,
2072                                                        MAIN_SECS(sbi), 0);
2073                        f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2074                } else {
2075                        go_left = 1;
2076                        left_start = hint - 1;
2077                }
2078        }
2079        if (go_left == 0)
2080                goto skip_left;
2081
2082        while (test_bit(left_start, free_i->free_secmap)) {
2083                if (left_start > 0) {
2084                        left_start--;
2085                        continue;
2086                }
2087                left_start = find_next_zero_bit(free_i->free_secmap,
2088                                                        MAIN_SECS(sbi), 0);
2089                f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2090                break;
2091        }
2092        secno = left_start;
2093skip_left:
2094        segno = GET_SEG_FROM_SEC(sbi, secno);
2095        zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2096
2097        /* give up on finding another zone */
2098        if (!init)
2099                goto got_it;
2100        if (sbi->secs_per_zone == 1)
2101                goto got_it;
2102        if (zoneno == old_zoneno)
2103                goto got_it;
2104        if (dir == ALLOC_LEFT) {
2105                if (!go_left && zoneno + 1 >= total_zones)
2106                        goto got_it;
2107                if (go_left && zoneno == 0)
2108                        goto got_it;
2109        }
2110        for (i = 0; i < NR_CURSEG_TYPE; i++)
2111                if (CURSEG_I(sbi, i)->zone == zoneno)
2112                        break;
2113
2114        if (i < NR_CURSEG_TYPE) {
2115                /* zone is in user, try another */
2116                if (go_left)
2117                        hint = zoneno * sbi->secs_per_zone - 1;
2118                else if (zoneno + 1 >= total_zones)
2119                        hint = 0;
2120                else
2121                        hint = (zoneno + 1) * sbi->secs_per_zone;
2122                init = false;
2123                goto find_other_zone;
2124        }
2125got_it:
2126        /* set it as dirty segment in free segmap */
2127        f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2128        __set_inuse(sbi, segno);
2129        *newseg = segno;
2130        spin_unlock(&free_i->segmap_lock);
2131}
2132
2133static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2134{
2135        struct curseg_info *curseg = CURSEG_I(sbi, type);
2136        struct summary_footer *sum_footer;
2137
2138        curseg->segno = curseg->next_segno;
2139        curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2140        curseg->next_blkoff = 0;
2141        curseg->next_segno = NULL_SEGNO;
2142
2143        sum_footer = &(curseg->sum_blk->footer);
2144        memset(sum_footer, 0, sizeof(struct summary_footer));
2145        if (IS_DATASEG(type))
2146                SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2147        if (IS_NODESEG(type))
2148                SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2149        __set_sit_entry_type(sbi, type, curseg->segno, modified);
2150}
2151
2152static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2153{
2154        /* if segs_per_sec is large than 1, we need to keep original policy. */
2155        if (sbi->segs_per_sec != 1)
2156                return CURSEG_I(sbi, type)->segno;
2157
2158        if (test_opt(sbi, NOHEAP) &&
2159                (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2160                return 0;
2161
2162        if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2163                return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2164
2165        /* find segments from 0 to reuse freed segments */
2166        if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2167                return 0;
2168
2169        return CURSEG_I(sbi, type)->segno;
2170}
2171
2172/*
2173 * Allocate a current working segment.
2174 * This function always allocates a free segment in LFS manner.
2175 */
2176static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2177{
2178        struct curseg_info *curseg = CURSEG_I(sbi, type);
2179        unsigned int segno = curseg->segno;
2180        int dir = ALLOC_LEFT;
2181
2182        write_sum_page(sbi, curseg->sum_blk,
2183                                GET_SUM_BLOCK(sbi, segno));
2184        if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2185                dir = ALLOC_RIGHT;
2186
2187        if (test_opt(sbi, NOHEAP))
2188                dir = ALLOC_RIGHT;
2189
2190        segno = __get_next_segno(sbi, type);
2191        get_new_segment(sbi, &segno, new_sec, dir);
2192        curseg->next_segno = segno;
2193        reset_curseg(sbi, type, 1);
2194        curseg->alloc_type = LFS;
2195}
2196
2197static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2198                        struct curseg_info *seg, block_t start)
2199{
2200        struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2201        int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2202        unsigned long *target_map = SIT_I(sbi)->tmp_map;
2203        unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2204        unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2205        int i, pos;
2206
2207        for (i = 0; i < entries; i++)
2208                target_map[i] = ckpt_map[i] | cur_map[i];
2209
2210        pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2211
2212        seg->next_blkoff = pos;
2213}
2214
2215/*
2216 * If a segment is written by LFS manner, next block offset is just obtained
2217 * by increasing the current block offset. However, if a segment is written by
2218 * SSR manner, next block offset obtained by calling __next_free_blkoff
2219 */
2220static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2221                                struct curseg_info *seg)
2222{
2223        if (seg->alloc_type == SSR)
2224                __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2225        else
2226                seg->next_blkoff++;
2227}
2228
2229/*
2230 * This function always allocates a used segment(from dirty seglist) by SSR
2231 * manner, so it should recover the existing segment information of valid blocks
2232 */
2233static void change_curseg(struct f2fs_sb_info *sbi, int type)
2234{
2235        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2236        struct curseg_info *curseg = CURSEG_I(sbi, type);
2237        unsigned int new_segno = curseg->next_segno;
2238        struct f2fs_summary_block *sum_node;
2239        struct page *sum_page;
2240
2241        write_sum_page(sbi, curseg->sum_blk,
2242                                GET_SUM_BLOCK(sbi, curseg->segno));
2243        __set_test_and_inuse(sbi, new_segno);
2244
2245        mutex_lock(&dirty_i->seglist_lock);
2246        __remove_dirty_segment(sbi, new_segno, PRE);
2247        __remove_dirty_segment(sbi, new_segno, DIRTY);
2248        mutex_unlock(&dirty_i->seglist_lock);
2249
2250        reset_curseg(sbi, type, 1);
2251        curseg->alloc_type = SSR;
2252        __next_free_blkoff(sbi, curseg, 0);
2253
2254        sum_page = f2fs_get_sum_page(sbi, new_segno);
2255        sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2256        memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2257        f2fs_put_page(sum_page, 1);
2258}
2259
2260static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2261{
2262        struct curseg_info *curseg = CURSEG_I(sbi, type);
2263        const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2264        unsigned segno = NULL_SEGNO;
2265        int i, cnt;
2266        bool reversed = false;
2267
2268        /* f2fs_need_SSR() already forces to do this */
2269        if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2270                curseg->next_segno = segno;
2271                return 1;
2272        }
2273
2274        /* For node segments, let's do SSR more intensively */
2275        if (IS_NODESEG(type)) {
2276                if (type >= CURSEG_WARM_NODE) {
2277                        reversed = true;
2278                        i = CURSEG_COLD_NODE;
2279                } else {
2280                        i = CURSEG_HOT_NODE;
2281                }
2282                cnt = NR_CURSEG_NODE_TYPE;
2283        } else {
2284                if (type >= CURSEG_WARM_DATA) {
2285                        reversed = true;
2286                        i = CURSEG_COLD_DATA;
2287                } else {
2288                        i = CURSEG_HOT_DATA;
2289                }
2290                cnt = NR_CURSEG_DATA_TYPE;
2291        }
2292
2293        for (; cnt-- > 0; reversed ? i-- : i++) {
2294                if (i == type)
2295                        continue;
2296                if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2297                        curseg->next_segno = segno;
2298                        return 1;
2299                }
2300        }
2301        return 0;
2302}
2303
2304/*
2305 * flush out current segment and replace it with new segment
2306 * This function should be returned with success, otherwise BUG
2307 */
2308static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2309                                                int type, bool force)
2310{
2311        struct curseg_info *curseg = CURSEG_I(sbi, type);
2312
2313        if (force)
2314                new_curseg(sbi, type, true);
2315        else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2316                                        type == CURSEG_WARM_NODE)
2317                new_curseg(sbi, type, false);
2318        else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
2319                new_curseg(sbi, type, false);
2320        else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2321                change_curseg(sbi, type);
2322        else
2323                new_curseg(sbi, type, false);
2324
2325        stat_inc_seg_type(sbi, curseg);
2326}
2327
2328void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2329{
2330        struct curseg_info *curseg;
2331        unsigned int old_segno;
2332        int i;
2333
2334        down_write(&SIT_I(sbi)->sentry_lock);
2335
2336        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2337                curseg = CURSEG_I(sbi, i);
2338                old_segno = curseg->segno;
2339                SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2340                locate_dirty_segment(sbi, old_segno);
2341        }
2342
2343        up_write(&SIT_I(sbi)->sentry_lock);
2344}
2345
2346static const struct segment_allocation default_salloc_ops = {
2347        .allocate_segment = allocate_segment_by_default,
2348};
2349
2350bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2351                                                struct cp_control *cpc)
2352{
2353        __u64 trim_start = cpc->trim_start;
2354        bool has_candidate = false;
2355
2356        down_write(&SIT_I(sbi)->sentry_lock);
2357        for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2358                if (add_discard_addrs(sbi, cpc, true)) {
2359                        has_candidate = true;
2360                        break;
2361                }
2362        }
2363        up_write(&SIT_I(sbi)->sentry_lock);
2364
2365        cpc->trim_start = trim_start;
2366        return has_candidate;
2367}
2368
2369static void __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2370                                        struct discard_policy *dpolicy,
2371                                        unsigned int start, unsigned int end)
2372{
2373        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2374        struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2375        struct rb_node **insert_p = NULL, *insert_parent = NULL;
2376        struct discard_cmd *dc;
2377        struct blk_plug plug;
2378        int issued;
2379
2380next:
2381        issued = 0;
2382
2383        mutex_lock(&dcc->cmd_lock);
2384        f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, &dcc->root));
2385
2386        dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2387                                        NULL, start,
2388                                        (struct rb_entry **)&prev_dc,
2389                                        (struct rb_entry **)&next_dc,
2390                                        &insert_p, &insert_parent, true);
2391        if (!dc)
2392                dc = next_dc;
2393
2394        blk_start_plug(&plug);
2395
2396        while (dc && dc->lstart <= end) {
2397                struct rb_node *node;
2398
2399                if (dc->len < dpolicy->granularity)
2400                        goto skip;
2401
2402                if (dc->state != D_PREP) {
2403                        list_move_tail(&dc->list, &dcc->fstrim_list);
2404                        goto skip;
2405                }
2406
2407                __submit_discard_cmd(sbi, dpolicy, dc);
2408
2409                if (++issued >= dpolicy->max_requests) {
2410                        start = dc->lstart + dc->len;
2411
2412                        blk_finish_plug(&plug);
2413                        mutex_unlock(&dcc->cmd_lock);
2414                        __wait_all_discard_cmd(sbi, NULL);
2415                        congestion_wait(BLK_RW_ASYNC, HZ/50);
2416                        goto next;
2417                }
2418skip:
2419                node = rb_next(&dc->rb_node);
2420                dc = rb_entry_safe(node, struct discard_cmd, rb_node);
2421
2422                if (fatal_signal_pending(current))
2423                        break;
2424        }
2425
2426        blk_finish_plug(&plug);
2427        mutex_unlock(&dcc->cmd_lock);
2428}
2429
2430int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2431{
2432        __u64 start = F2FS_BYTES_TO_BLK(range->start);
2433        __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2434        unsigned int start_segno, end_segno;
2435        block_t start_block, end_block;
2436        struct cp_control cpc;
2437        struct discard_policy dpolicy;
2438        unsigned long long trimmed = 0;
2439        int err = 0;
2440
2441        if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2442                return -EINVAL;
2443
2444        if (end <= MAIN_BLKADDR(sbi))
2445                return -EINVAL;
2446
2447        if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2448                f2fs_msg(sbi->sb, KERN_WARNING,
2449                        "Found FS corruption, run fsck to fix.");
2450                return -EIO;
2451        }
2452
2453        /* start/end segment number in main_area */
2454        start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2455        end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2456                                                GET_SEGNO(sbi, end);
2457
2458        cpc.reason = CP_DISCARD;
2459        cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2460        cpc.trim_start = start_segno;
2461        cpc.trim_end = end_segno;
2462
2463        if (sbi->discard_blks == 0)
2464                goto out;
2465
2466        mutex_lock(&sbi->gc_mutex);
2467        err = f2fs_write_checkpoint(sbi, &cpc);
2468        mutex_unlock(&sbi->gc_mutex);
2469        if (err)
2470                goto out;
2471
2472        start_block = START_BLOCK(sbi, start_segno);
2473        end_block = START_BLOCK(sbi, end_segno + 1);
2474
2475        __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2476        __issue_discard_cmd_range(sbi, &dpolicy, start_block, end_block);
2477
2478        /*
2479         * We filed discard candidates, but actually we don't need to wait for
2480         * all of them, since they'll be issued in idle time along with runtime
2481         * discard option. User configuration looks like using runtime discard
2482         * or periodic fstrim instead of it.
2483         */
2484        if (!test_opt(sbi, DISCARD)) {
2485                trimmed = __wait_discard_cmd_range(sbi, &dpolicy,
2486                                        start_block, end_block);
2487                range->len = F2FS_BLK_TO_BYTES(trimmed);
2488        }
2489out:
2490        return err;
2491}
2492
2493static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2494{
2495        struct curseg_info *curseg = CURSEG_I(sbi, type);
2496        if (curseg->next_blkoff < sbi->blocks_per_seg)
2497                return true;
2498        return false;
2499}
2500
2501int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
2502{
2503        switch (hint) {
2504        case WRITE_LIFE_SHORT:
2505                return CURSEG_HOT_DATA;
2506        case WRITE_LIFE_EXTREME:
2507                return CURSEG_COLD_DATA;
2508        default:
2509                return CURSEG_WARM_DATA;
2510        }
2511}
2512
2513/* This returns write hints for each segment type. This hints will be
2514 * passed down to block layer. There are mapping tables which depend on
2515 * the mount option 'whint_mode'.
2516 *
2517 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2518 *
2519 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2520 *
2521 * User                  F2FS                     Block
2522 * ----                  ----                     -----
2523 *                       META                     WRITE_LIFE_NOT_SET
2524 *                       HOT_NODE                 "
2525 *                       WARM_NODE                "
2526 *                       COLD_NODE                "
2527 * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2528 * extension list        "                        "
2529 *
2530 * -- buffered io
2531 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2532 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2533 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2534 * WRITE_LIFE_NONE       "                        "
2535 * WRITE_LIFE_MEDIUM     "                        "
2536 * WRITE_LIFE_LONG       "                        "
2537 *
2538 * -- direct io
2539 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2540 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2541 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2542 * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2543 * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2544 * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2545 *
2546 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2547 *
2548 * User                  F2FS                     Block
2549 * ----                  ----                     -----
2550 *                       META                     WRITE_LIFE_MEDIUM;
2551 *                       HOT_NODE                 WRITE_LIFE_NOT_SET
2552 *                       WARM_NODE                "
2553 *                       COLD_NODE                WRITE_LIFE_NONE
2554 * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2555 * extension list        "                        "
2556 *
2557 * -- buffered io
2558 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2559 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2560 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
2561 * WRITE_LIFE_NONE       "                        "
2562 * WRITE_LIFE_MEDIUM     "                        "
2563 * WRITE_LIFE_LONG       "                        "
2564 *
2565 * -- direct io
2566 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2567 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2568 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2569 * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2570 * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2571 * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2572 */
2573
2574enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2575                                enum page_type type, enum temp_type temp)
2576{
2577        if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
2578                if (type == DATA) {
2579                        if (temp == WARM)
2580                                return WRITE_LIFE_NOT_SET;
2581                        else if (temp == HOT)
2582                                return WRITE_LIFE_SHORT;
2583                        else if (temp == COLD)
2584                                return WRITE_LIFE_EXTREME;
2585                } else {
2586                        return WRITE_LIFE_NOT_SET;
2587                }
2588        } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
2589                if (type == DATA) {
2590                        if (temp == WARM)
2591                                return WRITE_LIFE_LONG;
2592                        else if (temp == HOT)
2593                                return WRITE_LIFE_SHORT;
2594                        else if (temp == COLD)
2595                                return WRITE_LIFE_EXTREME;
2596                } else if (type == NODE) {
2597                        if (temp == WARM || temp == HOT)
2598                                return WRITE_LIFE_NOT_SET;
2599                        else if (temp == COLD)
2600                                return WRITE_LIFE_NONE;
2601                } else if (type == META) {
2602                        return WRITE_LIFE_MEDIUM;
2603                }
2604        }
2605        return WRITE_LIFE_NOT_SET;
2606}
2607
2608static int __get_segment_type_2(struct f2fs_io_info *fio)
2609{
2610        if (fio->type == DATA)
2611                return CURSEG_HOT_DATA;
2612        else
2613                return CURSEG_HOT_NODE;
2614}
2615
2616static int __get_segment_type_4(struct f2fs_io_info *fio)
2617{
2618        if (fio->type == DATA) {
2619                struct inode *inode = fio->page->mapping->host;
2620
2621                if (S_ISDIR(inode->i_mode))
2622                        return CURSEG_HOT_DATA;
2623                else
2624                        return CURSEG_COLD_DATA;
2625        } else {
2626                if (IS_DNODE(fio->page) && is_cold_node(fio->page))
2627                        return CURSEG_WARM_NODE;
2628                else
2629                        return CURSEG_COLD_NODE;
2630        }
2631}
2632
2633static int __get_segment_type_6(struct f2fs_io_info *fio)
2634{
2635        if (fio->type == DATA) {
2636                struct inode *inode = fio->page->mapping->host;
2637
2638                if (is_cold_data(fio->page) || file_is_cold(inode))
2639                        return CURSEG_COLD_DATA;
2640                if (file_is_hot(inode) ||
2641                                is_inode_flag_set(inode, FI_HOT_DATA) ||
2642                                is_inode_flag_set(inode, FI_ATOMIC_FILE) ||
2643                                is_inode_flag_set(inode, FI_VOLATILE_FILE))
2644                        return CURSEG_HOT_DATA;
2645                return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
2646        } else {
2647                if (IS_DNODE(fio->page))
2648                        return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
2649                                                CURSEG_HOT_NODE;
2650                return CURSEG_COLD_NODE;
2651        }
2652}
2653
2654static int __get_segment_type(struct f2fs_io_info *fio)
2655{
2656        int type = 0;
2657
2658        switch (F2FS_OPTION(fio->sbi).active_logs) {
2659        case 2:
2660                type = __get_segment_type_2(fio);
2661                break;
2662        case 4:
2663                type = __get_segment_type_4(fio);
2664                break;
2665        case 6:
2666                type = __get_segment_type_6(fio);
2667                break;
2668        default:
2669                f2fs_bug_on(fio->sbi, true);
2670        }
2671
2672        if (IS_HOT(type))
2673                fio->temp = HOT;
2674        else if (IS_WARM(type))
2675                fio->temp = WARM;
2676        else
2677                fio->temp = COLD;
2678        return type;
2679}
2680
2681void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2682                block_t old_blkaddr, block_t *new_blkaddr,
2683                struct f2fs_summary *sum, int type,
2684                struct f2fs_io_info *fio, bool add_list)
2685{
2686        struct sit_info *sit_i = SIT_I(sbi);
2687        struct curseg_info *curseg = CURSEG_I(sbi, type);
2688
2689        down_read(&SM_I(sbi)->curseg_lock);
2690
2691        mutex_lock(&curseg->curseg_mutex);
2692        down_write(&sit_i->sentry_lock);
2693
2694        *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
2695
2696        f2fs_wait_discard_bio(sbi, *new_blkaddr);
2697
2698        /*
2699         * __add_sum_entry should be resided under the curseg_mutex
2700         * because, this function updates a summary entry in the
2701         * current summary block.
2702         */
2703        __add_sum_entry(sbi, type, sum);
2704
2705        __refresh_next_blkoff(sbi, curseg);
2706
2707        stat_inc_block_count(sbi, curseg);
2708
2709        /*
2710         * SIT information should be updated before segment allocation,
2711         * since SSR needs latest valid block information.
2712         */
2713        update_sit_entry(sbi, *new_blkaddr, 1);
2714        if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
2715                update_sit_entry(sbi, old_blkaddr, -1);
2716
2717        if (!__has_curseg_space(sbi, type))
2718                sit_i->s_ops->allocate_segment(sbi, type, false);
2719
2720        /*
2721         * segment dirty status should be updated after segment allocation,
2722         * so we just need to update status only one time after previous
2723         * segment being closed.
2724         */
2725        locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
2726        locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
2727
2728        up_write(&sit_i->sentry_lock);
2729
2730        if (page && IS_NODESEG(type)) {
2731                fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
2732
2733                f2fs_inode_chksum_set(sbi, page);
2734        }
2735
2736        if (add_list) {
2737                struct f2fs_bio_info *io;
2738
2739                INIT_LIST_HEAD(&fio->list);
2740                fio->in_list = true;
2741                fio->retry = false;
2742                io = sbi->write_io[fio->type] + fio->temp;
2743                spin_lock(&io->io_lock);
2744                list_add_tail(&fio->list, &io->io_list);
2745                spin_unlock(&io->io_lock);
2746        }
2747
2748        mutex_unlock(&curseg->curseg_mutex);
2749
2750        up_read(&SM_I(sbi)->curseg_lock);
2751}
2752
2753static void update_device_state(struct f2fs_io_info *fio)
2754{
2755        struct f2fs_sb_info *sbi = fio->sbi;
2756        unsigned int devidx;
2757
2758        if (!sbi->s_ndevs)
2759                return;
2760
2761        devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
2762
2763        /* update device state for fsync */
2764        f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
2765
2766        /* update device state for checkpoint */
2767        if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
2768                spin_lock(&sbi->dev_lock);
2769                f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
2770                spin_unlock(&sbi->dev_lock);
2771        }
2772}
2773
2774static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
2775{
2776        int type = __get_segment_type(fio);
2777        bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA);
2778
2779        if (keep_order)
2780                down_read(&fio->sbi->io_order_lock);
2781reallocate:
2782        f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
2783                        &fio->new_blkaddr, sum, type, fio, true);
2784
2785        /* writeout dirty page into bdev */
2786        f2fs_submit_page_write(fio);
2787        if (fio->retry) {
2788                fio->old_blkaddr = fio->new_blkaddr;
2789                goto reallocate;
2790        }
2791
2792        update_device_state(fio);
2793
2794        if (keep_order)
2795                up_read(&fio->sbi->io_order_lock);
2796}
2797
2798void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2799                                        enum iostat_type io_type)
2800{
2801        struct f2fs_io_info fio = {
2802                .sbi = sbi,
2803                .type = META,
2804                .temp = HOT,
2805                .op = REQ_OP_WRITE,
2806                .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
2807                .old_blkaddr = page->index,
2808                .new_blkaddr = page->index,
2809                .page = page,
2810                .encrypted_page = NULL,
2811                .in_list = false,
2812        };
2813
2814        if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
2815                fio.op_flags &= ~REQ_META;
2816
2817        set_page_writeback(page);
2818        ClearPageError(page);
2819        f2fs_submit_page_write(&fio);
2820
2821        f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
2822}
2823
2824void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
2825{
2826        struct f2fs_summary sum;
2827
2828        set_summary(&sum, nid, 0, 0);
2829        do_write_page(&sum, fio);
2830
2831        f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
2832}
2833
2834void f2fs_outplace_write_data(struct dnode_of_data *dn,
2835                                        struct f2fs_io_info *fio)
2836{
2837        struct f2fs_sb_info *sbi = fio->sbi;
2838        struct f2fs_summary sum;
2839        struct node_info ni;
2840
2841        f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
2842        f2fs_get_node_info(sbi, dn->nid, &ni);
2843        set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
2844        do_write_page(&sum, fio);
2845        f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
2846
2847        f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
2848}
2849
2850int f2fs_inplace_write_data(struct f2fs_io_info *fio)
2851{
2852        int err;
2853        struct f2fs_sb_info *sbi = fio->sbi;
2854
2855        fio->new_blkaddr = fio->old_blkaddr;
2856        /* i/o temperature is needed for passing down write hints */
2857        __get_segment_type(fio);
2858
2859        f2fs_bug_on(sbi, !IS_DATASEG(get_seg_entry(sbi,
2860                        GET_SEGNO(sbi, fio->new_blkaddr))->type));
2861
2862        stat_inc_inplace_blocks(fio->sbi);
2863
2864        err = f2fs_submit_page_bio(fio);
2865        if (!err)
2866                update_device_state(fio);
2867
2868        f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
2869
2870        return err;
2871}
2872
2873static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
2874                                                unsigned int segno)
2875{
2876        int i;
2877
2878        for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
2879                if (CURSEG_I(sbi, i)->segno == segno)
2880                        break;
2881        }
2882        return i;
2883}
2884
2885void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2886                                block_t old_blkaddr, block_t new_blkaddr,
2887                                bool recover_curseg, bool recover_newaddr)
2888{
2889        struct sit_info *sit_i = SIT_I(sbi);
2890        struct curseg_info *curseg;
2891        unsigned int segno, old_cursegno;
2892        struct seg_entry *se;
2893        int type;
2894        unsigned short old_blkoff;
2895
2896        segno = GET_SEGNO(sbi, new_blkaddr);
2897        se = get_seg_entry(sbi, segno);
2898        type = se->type;
2899
2900        down_write(&SM_I(sbi)->curseg_lock);
2901
2902        if (!recover_curseg) {
2903                /* for recovery flow */
2904                if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
2905                        if (old_blkaddr == NULL_ADDR)
2906                                type = CURSEG_COLD_DATA;
2907                        else
2908                                type = CURSEG_WARM_DATA;
2909                }
2910        } else {
2911                if (IS_CURSEG(sbi, segno)) {
2912                        /* se->type is volatile as SSR allocation */
2913                        type = __f2fs_get_curseg(sbi, segno);
2914                        f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
2915                } else {
2916                        type = CURSEG_WARM_DATA;
2917                }
2918        }
2919
2920        f2fs_bug_on(sbi, !IS_DATASEG(type));
2921        curseg = CURSEG_I(sbi, type);
2922
2923        mutex_lock(&curseg->curseg_mutex);
2924        down_write(&sit_i->sentry_lock);
2925
2926        old_cursegno = curseg->segno;
2927        old_blkoff = curseg->next_blkoff;
2928
2929        /* change the current segment */
2930        if (segno != curseg->segno) {
2931                curseg->next_segno = segno;
2932                change_curseg(sbi, type);
2933        }
2934
2935        curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
2936        __add_sum_entry(sbi, type, sum);
2937
2938        if (!recover_curseg || recover_newaddr)
2939                update_sit_entry(sbi, new_blkaddr, 1);
2940        if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
2941                update_sit_entry(sbi, old_blkaddr, -1);
2942
2943        locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
2944        locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
2945
2946        locate_dirty_segment(sbi, old_cursegno);
2947
2948        if (recover_curseg) {
2949                if (old_cursegno != curseg->segno) {
2950                        curseg->next_segno = old_cursegno;
2951                        change_curseg(sbi, type);
2952                }
2953                curseg->next_blkoff = old_blkoff;
2954        }
2955
2956        up_write(&sit_i->sentry_lock);
2957        mutex_unlock(&curseg->curseg_mutex);
2958        up_write(&SM_I(sbi)->curseg_lock);
2959}
2960
2961void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2962                                block_t old_addr, block_t new_addr,
2963                                unsigned char version, bool recover_curseg,
2964                                bool recover_newaddr)
2965{
2966        struct f2fs_summary sum;
2967
2968        set_summary(&sum, dn->nid, dn->ofs_in_node, version);
2969
2970        f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
2971                                        recover_curseg, recover_newaddr);
2972
2973        f2fs_update_data_blkaddr(dn, new_addr);
2974}
2975
2976void f2fs_wait_on_page_writeback(struct page *page,
2977                                enum page_type type, bool ordered)
2978{
2979        if (PageWriteback(page)) {
2980                struct f2fs_sb_info *sbi = F2FS_P_SB(page);
2981
2982                f2fs_submit_merged_write_cond(sbi, page->mapping->host,
2983                                                0, page->index, type);
2984                if (ordered)
2985                        wait_on_page_writeback(page);
2986                else
2987                        wait_for_stable_page(page);
2988        }
2989}
2990
2991void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr)
2992{
2993        struct page *cpage;
2994
2995        if (!is_valid_blkaddr(blkaddr))
2996                return;
2997
2998        cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
2999        if (cpage) {
3000                f2fs_wait_on_page_writeback(cpage, DATA, true);
3001                f2fs_put_page(cpage, 1);
3002        }
3003}
3004
3005static void read_compacted_summaries(struct f2fs_sb_info *sbi)
3006{
3007        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3008        struct curseg_info *seg_i;
3009        unsigned char *kaddr;
3010        struct page *page;
3011        block_t start;
3012        int i, j, offset;
3013
3014        start = start_sum_block(sbi);
3015
3016        page = f2fs_get_meta_page(sbi, start++);
3017        kaddr = (unsigned char *)page_address(page);
3018
3019        /* Step 1: restore nat cache */
3020        seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3021        memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3022
3023        /* Step 2: restore sit cache */
3024        seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3025        memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3026        offset = 2 * SUM_JOURNAL_SIZE;
3027
3028        /* Step 3: restore summary entries */
3029        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3030                unsigned short blk_off;
3031                unsigned int segno;
3032
3033                seg_i = CURSEG_I(sbi, i);
3034                segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3035                blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3036                seg_i->next_segno = segno;
3037                reset_curseg(sbi, i, 0);
3038                seg_i->alloc_type = ckpt->alloc_type[i];
3039                seg_i->next_blkoff = blk_off;
3040
3041                if (seg_i->alloc_type == SSR)
3042                        blk_off = sbi->blocks_per_seg;
3043
3044                for (j = 0; j < blk_off; j++) {
3045                        struct f2fs_summary *s;
3046                        s = (struct f2fs_summary *)(kaddr + offset);
3047                        seg_i->sum_blk->entries[j] = *s;
3048                        offset += SUMMARY_SIZE;
3049                        if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3050                                                SUM_FOOTER_SIZE)
3051                                continue;
3052
3053                        f2fs_put_page(page, 1);
3054                        page = NULL;
3055
3056                        page = f2fs_get_meta_page(sbi, start++);
3057                        kaddr = (unsigned char *)page_address(page);
3058                        offset = 0;
3059                }
3060        }
3061        f2fs_put_page(page, 1);
3062}
3063
3064static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3065{
3066        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3067        struct f2fs_summary_block *sum;
3068        struct curseg_info *curseg;
3069        struct page *new;
3070        unsigned short blk_off;
3071        unsigned int segno = 0;
3072        block_t blk_addr = 0;
3073
3074        /* get segment number and block addr */
3075        if (IS_DATASEG(type)) {
3076                segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3077                blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3078                                                        CURSEG_HOT_DATA]);
3079                if (__exist_node_summaries(sbi))
3080                        blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
3081                else
3082                        blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3083        } else {
3084                segno = le32_to_cpu(ckpt->cur_node_segno[type -
3085                                                        CURSEG_HOT_NODE]);
3086                blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3087                                                        CURSEG_HOT_NODE]);
3088                if (__exist_node_summaries(sbi))
3089                        blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3090                                                        type - CURSEG_HOT_NODE);
3091                else
3092                        blk_addr = GET_SUM_BLOCK(sbi, segno);
3093        }
3094
3095        new = f2fs_get_meta_page(sbi, blk_addr);
3096        sum = (struct f2fs_summary_block *)page_address(new);
3097
3098        if (IS_NODESEG(type)) {
3099                if (__exist_node_summaries(sbi)) {
3100                        struct f2fs_summary *ns = &sum->entries[0];
3101                        int i;
3102                        for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3103                                ns->version = 0;
3104                                ns->ofs_in_node = 0;
3105                        }
3106                } else {
3107                        f2fs_restore_node_summary(sbi, segno, sum);
3108                }
3109        }
3110
3111        /* set uncompleted segment to curseg */
3112        curseg = CURSEG_I(sbi, type);
3113        mutex_lock(&curseg->curseg_mutex);
3114
3115        /* update journal info */
3116        down_write(&curseg->journal_rwsem);
3117        memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3118        up_write(&curseg->journal_rwsem);
3119
3120        memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3121        memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3122        curseg->next_segno = segno;
3123        reset_curseg(sbi, type, 0);
3124        curseg->alloc_type = ckpt->alloc_type[type];
3125        curseg->next_blkoff = blk_off;
3126        mutex_unlock(&curseg->curseg_mutex);
3127        f2fs_put_page(new, 1);
3128        return 0;
3129}
3130
3131static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3132{
3133        struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3134        struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3135        int type = CURSEG_HOT_DATA;
3136        int err;
3137
3138        if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3139                int npages = f2fs_npages_for_summary_flush(sbi, true);
3140
3141                if (npages >= 2)
3142                        f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3143                                                        META_CP, true);
3144
3145                /* restore for compacted data summary */
3146                read_compacted_summaries(sbi);
3147                type = CURSEG_HOT_NODE;
3148        }
3149
3150        if (__exist_node_summaries(sbi))
3151                f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
3152                                        NR_CURSEG_TYPE - type, META_CP, true);
3153
3154        for (; type <= CURSEG_COLD_NODE; type++) {
3155                err = read_normal_summaries(sbi, type);
3156                if (err)
3157                        return err;
3158        }
3159
3160        /* sanity check for summary blocks */
3161        if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3162                        sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES)
3163                return -EINVAL;
3164
3165        return 0;
3166}
3167
3168static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3169{
3170        struct page *page;
3171        unsigned char *kaddr;
3172        struct f2fs_summary *summary;
3173        struct curseg_info *seg_i;
3174        int written_size = 0;
3175        int i, j;
3176
3177        page = f2fs_grab_meta_page(sbi, blkaddr++);
3178        kaddr = (unsigned char *)page_address(page);
3179        memset(kaddr, 0, PAGE_SIZE);
3180
3181        /* Step 1: write nat cache */
3182        seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3183        memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3184        written_size += SUM_JOURNAL_SIZE;
3185
3186        /* Step 2: write sit cache */
3187        seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3188        memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3189        written_size += SUM_JOURNAL_SIZE;
3190
3191        /* Step 3: write summary entries */
3192        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3193                unsigned short blkoff;
3194                seg_i = CURSEG_I(sbi, i);
3195                if (sbi->ckpt->alloc_type[i] == SSR)
3196                        blkoff = sbi->blocks_per_seg;
3197                else
3198                        blkoff = curseg_blkoff(sbi, i);
3199
3200                for (j = 0; j < blkoff; j++) {
3201                        if (!page) {
3202                                page = f2fs_grab_meta_page(sbi, blkaddr++);
3203                                kaddr = (unsigned char *)page_address(page);
3204                                memset(kaddr, 0, PAGE_SIZE);
3205                                written_size = 0;
3206                        }
3207                        summary = (struct f2fs_summary *)(kaddr + written_size);
3208                        *summary = seg_i->sum_blk->entries[j];
3209                        written_size += SUMMARY_SIZE;
3210
3211                        if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3212                                                        SUM_FOOTER_SIZE)
3213                                continue;
3214
3215                        set_page_dirty(page);
3216                        f2fs_put_page(page, 1);
3217                        page = NULL;
3218                }
3219        }
3220        if (page) {
3221                set_page_dirty(page);
3222                f2fs_put_page(page, 1);
3223        }
3224}
3225
3226static void write_normal_summaries(struct f2fs_sb_info *sbi,
3227                                        block_t blkaddr, int type)
3228{
3229        int i, end;
3230        if (IS_DATASEG(type))
3231                end = type + NR_CURSEG_DATA_TYPE;
3232        else
3233                end = type + NR_CURSEG_NODE_TYPE;
3234
3235        for (i = type; i < end; i++)
3236                write_current_sum_page(sbi, i, blkaddr + (i - type));
3237}
3238
3239void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3240{
3241        if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3242                write_compacted_summaries(sbi, start_blk);
3243        else
3244                write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3245}
3246
3247void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3248{
3249        write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3250}
3251
3252int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3253                                        unsigned int val, int alloc)
3254{
3255        int i;
3256
3257        if (type == NAT_JOURNAL) {
3258                for (i = 0; i < nats_in_cursum(journal); i++) {
3259                        if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3260                                return i;
3261                }
3262                if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3263                        return update_nats_in_cursum(journal, 1);
3264        } else if (type == SIT_JOURNAL) {
3265                for (i = 0; i < sits_in_cursum(journal); i++)
3266                        if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3267                                return i;
3268                if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3269                        return update_sits_in_cursum(journal, 1);
3270        }
3271        return -1;
3272}
3273
3274static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3275                                        unsigned int segno)
3276{
3277        return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
3278}
3279
3280static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3281                                        unsigned int start)
3282{
3283        struct sit_info *sit_i = SIT_I(sbi);
3284        struct page *page;
3285        pgoff_t src_off, dst_off;
3286
3287        src_off = current_sit_addr(sbi, start);
3288        dst_off = next_sit_addr(sbi, src_off);
3289
3290        page = f2fs_grab_meta_page(sbi, dst_off);
3291        seg_info_to_sit_page(sbi, page, start);
3292
3293        set_page_dirty(page);
3294        set_to_next_sit(sit_i, start);
3295
3296        return page;
3297}
3298
3299static struct sit_entry_set *grab_sit_entry_set(void)
3300{
3301        struct sit_entry_set *ses =
3302                        f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3303
3304        ses->entry_cnt = 0;
3305        INIT_LIST_HEAD(&ses->set_list);
3306        return ses;
3307}
3308
3309static void release_sit_entry_set(struct sit_entry_set *ses)
3310{
3311        list_del(&ses->set_list);
3312        kmem_cache_free(sit_entry_set_slab, ses);
3313}
3314
3315static void adjust_sit_entry_set(struct sit_entry_set *ses,
3316                                                struct list_head *head)
3317{
3318        struct sit_entry_set *next = ses;
3319
3320        if (list_is_last(&ses->set_list, head))
3321                return;
3322
3323        list_for_each_entry_continue(next, head, set_list)
3324                if (ses->entry_cnt <= next->entry_cnt)
3325                        break;
3326
3327        list_move_tail(&ses->set_list, &next->set_list);
3328}
3329
3330static void add_sit_entry(unsigned int segno, struct list_head *head)
3331{
3332        struct sit_entry_set *ses;
3333        unsigned int start_segno = START_SEGNO(segno);
3334
3335        list_for_each_entry(ses, head, set_list) {
3336                if (ses->start_segno == start_segno) {
3337                        ses->entry_cnt++;
3338                        adjust_sit_entry_set(ses, head);
3339                        return;
3340                }
3341        }
3342
3343        ses = grab_sit_entry_set();
3344
3345        ses->start_segno = start_segno;
3346        ses->entry_cnt++;
3347        list_add(&ses->set_list, head);
3348}
3349
3350static void add_sits_in_set(struct f2fs_sb_info *sbi)
3351{
3352        struct f2fs_sm_info *sm_info = SM_I(sbi);
3353        struct list_head *set_list = &sm_info->sit_entry_set;
3354        unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3355        unsigned int segno;
3356
3357        for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3358                add_sit_entry(segno, set_list);
3359}
3360
3361static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3362{
3363        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3364        struct f2fs_journal *journal = curseg->journal;
3365        int i;
3366
3367        down_write(&curseg->journal_rwsem);
3368        for (i = 0; i < sits_in_cursum(journal); i++) {
3369                unsigned int segno;
3370                bool dirtied;
3371
3372                segno = le32_to_cpu(segno_in_journal(journal, i));
3373                dirtied = __mark_sit_entry_dirty(sbi, segno);
3374
3375                if (!dirtied)
3376                        add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3377        }
3378        update_sits_in_cursum(journal, -i);
3379        up_write(&curseg->journal_rwsem);
3380}
3381
3382/*
3383 * CP calls this function, which flushes SIT entries including sit_journal,
3384 * and moves prefree segs to free segs.
3385 */
3386void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3387{
3388        struct sit_info *sit_i = SIT_I(sbi);
3389        unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3390        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3391        struct f2fs_journal *journal = curseg->journal;
3392        struct sit_entry_set *ses, *tmp;
3393        struct list_head *head = &SM_I(sbi)->sit_entry_set;
3394        bool to_journal = true;
3395        struct seg_entry *se;
3396
3397        down_write(&sit_i->sentry_lock);
3398
3399        if (!sit_i->dirty_sentries)
3400                goto out;
3401
3402        /*
3403         * add and account sit entries of dirty bitmap in sit entry
3404         * set temporarily
3405         */
3406        add_sits_in_set(sbi);
3407
3408        /*
3409         * if there are no enough space in journal to store dirty sit
3410         * entries, remove all entries from journal and add and account
3411         * them in sit entry set.
3412         */
3413        if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
3414                remove_sits_in_journal(sbi);
3415
3416        /*
3417         * there are two steps to flush sit entries:
3418         * #1, flush sit entries to journal in current cold data summary block.
3419         * #2, flush sit entries to sit page.
3420         */
3421        list_for_each_entry_safe(ses, tmp, head, set_list) {
3422                struct page *page = NULL;
3423                struct f2fs_sit_block *raw_sit = NULL;
3424                unsigned int start_segno = ses->start_segno;
3425                unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3426                                                (unsigned long)MAIN_SEGS(sbi));
3427                unsigned int segno = start_segno;
3428
3429                if (to_journal &&
3430                        !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3431                        to_journal = false;
3432
3433                if (to_journal) {
3434                        down_write(&curseg->journal_rwsem);
3435                } else {
3436                        page = get_next_sit_page(sbi, start_segno);
3437                        raw_sit = page_address(page);
3438                }
3439
3440                /* flush dirty sit entries in region of current sit set */
3441                for_each_set_bit_from(segno, bitmap, end) {
3442                        int offset, sit_offset;
3443
3444                        se = get_seg_entry(sbi, segno);
3445#ifdef CONFIG_F2FS_CHECK_FS
3446                        if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
3447                                                SIT_VBLOCK_MAP_SIZE))
3448                                f2fs_bug_on(sbi, 1);
3449#endif
3450
3451                        /* add discard candidates */
3452                        if (!(cpc->reason & CP_DISCARD)) {
3453                                cpc->trim_start = segno;
3454                                add_discard_addrs(sbi, cpc, false);
3455                        }
3456
3457                        if (to_journal) {
3458                                offset = f2fs_lookup_journal_in_cursum(journal,
3459                                                        SIT_JOURNAL, segno, 1);
3460                                f2fs_bug_on(sbi, offset < 0);
3461                                segno_in_journal(journal, offset) =
3462                                                        cpu_to_le32(segno);
3463                                seg_info_to_raw_sit(se,
3464                                        &sit_in_journal(journal, offset));
3465                                check_block_count(sbi, segno,
3466                                        &sit_in_journal(journal, offset));
3467                        } else {
3468                                sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3469                                seg_info_to_raw_sit(se,
3470                                                &raw_sit->entries[sit_offset]);
3471                                check_block_count(sbi, segno,
3472                                                &raw_sit->entries[sit_offset]);
3473                        }
3474
3475                        __clear_bit(segno, bitmap);
3476                        sit_i->dirty_sentries--;
3477                        ses->entry_cnt--;
3478                }
3479
3480                if (to_journal)
3481                        up_write(&curseg->journal_rwsem);
3482                else
3483                        f2fs_put_page(page, 1);
3484
3485                f2fs_bug_on(sbi, ses->entry_cnt);
3486                release_sit_entry_set(ses);
3487        }
3488
3489        f2fs_bug_on(sbi, !list_empty(head));
3490        f2fs_bug_on(sbi, sit_i->dirty_sentries);
3491out:
3492        if (cpc->reason & CP_DISCARD) {
3493                __u64 trim_start = cpc->trim_start;
3494
3495                for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3496                        add_discard_addrs(sbi, cpc, false);
3497
3498                cpc->trim_start = trim_start;
3499        }
3500        up_write(&sit_i->sentry_lock);
3501
3502        set_prefree_as_free_segments(sbi);
3503}
3504
3505static int build_sit_info(struct f2fs_sb_info *sbi)
3506{
3507        struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3508        struct sit_info *sit_i;
3509        unsigned int sit_segs, start;
3510        char *src_bitmap;
3511        unsigned int bitmap_size;
3512
3513        /* allocate memory for SIT information */
3514        sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
3515        if (!sit_i)
3516                return -ENOMEM;
3517
3518        SM_I(sbi)->sit_info = sit_i;
3519
3520        sit_i->sentries =
3521                f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
3522                                              MAIN_SEGS(sbi)),
3523                              GFP_KERNEL);
3524        if (!sit_i->sentries)
3525                return -ENOMEM;
3526
3527        bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3528        sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size,
3529                                                                GFP_KERNEL);
3530        if (!sit_i->dirty_sentries_bitmap)
3531                return -ENOMEM;
3532
3533        for (start = 0; start < MAIN_SEGS(sbi); start++) {
3534                sit_i->sentries[start].cur_valid_map
3535                        = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3536                sit_i->sentries[start].ckpt_valid_map
3537                        = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3538                if (!sit_i->sentries[start].cur_valid_map ||
3539                                !sit_i->sentries[start].ckpt_valid_map)
3540                        return -ENOMEM;
3541
3542#ifdef CONFIG_F2FS_CHECK_FS
3543                sit_i->sentries[start].cur_valid_map_mir
3544                        = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3545                if (!sit_i->sentries[start].cur_valid_map_mir)
3546                        return -ENOMEM;
3547#endif
3548
3549                if (f2fs_discard_en(sbi)) {
3550                        sit_i->sentries[start].discard_map
3551                                = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE,
3552                                                                GFP_KERNEL);
3553                        if (!sit_i->sentries[start].discard_map)
3554                                return -ENOMEM;
3555                }
3556        }
3557
3558        sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3559        if (!sit_i->tmp_map)
3560                return -ENOMEM;
3561
3562        if (sbi->segs_per_sec > 1) {
3563                sit_i->sec_entries =
3564                        f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
3565                                                      MAIN_SECS(sbi)),
3566                                      GFP_KERNEL);
3567                if (!sit_i->sec_entries)
3568                        return -ENOMEM;
3569        }
3570
3571        /* get information related with SIT */
3572        sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
3573
3574        /* setup SIT bitmap from ckeckpoint pack */
3575        bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
3576        src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
3577
3578        sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3579        if (!sit_i->sit_bitmap)
3580                return -ENOMEM;
3581
3582#ifdef CONFIG_F2FS_CHECK_FS
3583        sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3584        if (!sit_i->sit_bitmap_mir)
3585                return -ENOMEM;
3586#endif
3587
3588        /* init SIT information */
3589        sit_i->s_ops = &default_salloc_ops;
3590
3591        sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
3592        sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
3593        sit_i->written_valid_blocks = 0;
3594        sit_i->bitmap_size = bitmap_size;
3595        sit_i->dirty_sentries = 0;
3596        sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
3597        sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
3598        sit_i->mounted_time = ktime_get_real_seconds();
3599        init_rwsem(&sit_i->sentry_lock);
3600        return 0;
3601}
3602
3603static int build_free_segmap(struct f2fs_sb_info *sbi)
3604{
3605        struct free_segmap_info *free_i;
3606        unsigned int bitmap_size, sec_bitmap_size;
3607
3608        /* allocate memory for free segmap information */
3609        free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
3610        if (!free_i)
3611                return -ENOMEM;
3612
3613        SM_I(sbi)->free_info = free_i;
3614
3615        bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3616        free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
3617        if (!free_i->free_segmap)
3618                return -ENOMEM;
3619
3620        sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3621        free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
3622        if (!free_i->free_secmap)
3623                return -ENOMEM;
3624
3625        /* set all segments as dirty temporarily */
3626        memset(free_i->free_segmap, 0xff, bitmap_size);
3627        memset(free_i->free_secmap, 0xff, sec_bitmap_size);
3628
3629        /* init free segmap information */
3630        free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
3631        free_i->free_segments = 0;
3632        free_i->free_sections = 0;
3633        spin_lock_init(&free_i->segmap_lock);
3634        return 0;
3635}
3636
3637static int build_curseg(struct f2fs_sb_info *sbi)
3638{
3639        struct curseg_info *array;
3640        int i;
3641
3642        array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
3643                             GFP_KERNEL);
3644        if (!array)
3645                return -ENOMEM;
3646
3647        SM_I(sbi)->curseg_array = array;
3648
3649        for (i = 0; i < NR_CURSEG_TYPE; i++) {
3650                mutex_init(&array[i].curseg_mutex);
3651                array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
3652                if (!array[i].sum_blk)
3653                        return -ENOMEM;
3654                init_rwsem(&array[i].journal_rwsem);
3655                array[i].journal = f2fs_kzalloc(sbi,
3656                                sizeof(struct f2fs_journal), GFP_KERNEL);
3657                if (!array[i].journal)
3658                        return -ENOMEM;
3659                array[i].segno = NULL_SEGNO;
3660                array[i].next_blkoff = 0;
3661        }
3662        return restore_curseg_summaries(sbi);
3663}
3664
3665static int build_sit_entries(struct f2fs_sb_info *sbi)
3666{
3667        struct sit_info *sit_i = SIT_I(sbi);
3668        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3669        struct f2fs_journal *journal = curseg->journal;
3670        struct seg_entry *se;
3671        struct f2fs_sit_entry sit;
3672        int sit_blk_cnt = SIT_BLK_CNT(sbi);
3673        unsigned int i, start, end;
3674        unsigned int readed, start_blk = 0;
3675        int err = 0;
3676        block_t total_node_blocks = 0;
3677
3678        do {
3679                readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
3680                                                        META_SIT, true);
3681
3682                start = start_blk * sit_i->sents_per_block;
3683                end = (start_blk + readed) * sit_i->sents_per_block;
3684
3685                for (; start < end && start < MAIN_SEGS(sbi); start++) {
3686                        struct f2fs_sit_block *sit_blk;
3687                        struct page *page;
3688
3689                        se = &sit_i->sentries[start];
3690                        page = get_current_sit_page(sbi, start);
3691                        sit_blk = (struct f2fs_sit_block *)page_address(page);
3692                        sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
3693                        f2fs_put_page(page, 1);
3694
3695                        err = check_block_count(sbi, start, &sit);
3696                        if (err)
3697                                return err;
3698                        seg_info_from_raw_sit(se, &sit);
3699                        if (IS_NODESEG(se->type))
3700                                total_node_blocks += se->valid_blocks;
3701
3702                        /* build discard map only one time */
3703                        if (f2fs_discard_en(sbi)) {
3704                                if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3705                                        memset(se->discard_map, 0xff,
3706                                                SIT_VBLOCK_MAP_SIZE);
3707                                } else {
3708                                        memcpy(se->discard_map,
3709                                                se->cur_valid_map,
3710                                                SIT_VBLOCK_MAP_SIZE);
3711                                        sbi->discard_blks +=
3712                                                sbi->blocks_per_seg -
3713                                                se->valid_blocks;
3714                                }
3715                        }
3716
3717                        if (sbi->segs_per_sec > 1)
3718                                get_sec_entry(sbi, start)->valid_blocks +=
3719                                                        se->valid_blocks;
3720                }
3721                start_blk += readed;
3722        } while (start_blk < sit_blk_cnt);
3723
3724        down_read(&curseg->journal_rwsem);
3725        for (i = 0; i < sits_in_cursum(journal); i++) {
3726                unsigned int old_valid_blocks;
3727
3728                start = le32_to_cpu(segno_in_journal(journal, i));
3729                if (start >= MAIN_SEGS(sbi)) {
3730                        f2fs_msg(sbi->sb, KERN_ERR,
3731                                        "Wrong journal entry on segno %u",
3732                                        start);
3733                        set_sbi_flag(sbi, SBI_NEED_FSCK);
3734                        err = -EINVAL;
3735                        break;
3736                }
3737
3738                se = &sit_i->sentries[start];
3739                sit = sit_in_journal(journal, i);
3740
3741                old_valid_blocks = se->valid_blocks;
3742                if (IS_NODESEG(se->type))
3743                        total_node_blocks -= old_valid_blocks;
3744
3745                err = check_block_count(sbi, start, &sit);
3746                if (err)
3747                        break;
3748                seg_info_from_raw_sit(se, &sit);
3749                if (IS_NODESEG(se->type))
3750                        total_node_blocks += se->valid_blocks;
3751
3752                if (f2fs_discard_en(sbi)) {
3753                        if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3754                                memset(se->discard_map, 0xff,
3755                                                        SIT_VBLOCK_MAP_SIZE);
3756                        } else {
3757                                memcpy(se->discard_map, se->cur_valid_map,
3758                                                        SIT_VBLOCK_MAP_SIZE);
3759                                sbi->discard_blks += old_valid_blocks;
3760                                sbi->discard_blks -= se->valid_blocks;
3761                        }
3762                }
3763
3764                if (sbi->segs_per_sec > 1) {
3765                        get_sec_entry(sbi, start)->valid_blocks +=
3766                                                        se->valid_blocks;
3767                        get_sec_entry(sbi, start)->valid_blocks -=
3768                                                        old_valid_blocks;
3769                }
3770        }
3771        up_read(&curseg->journal_rwsem);
3772
3773        if (!err && total_node_blocks != valid_node_count(sbi)) {
3774                f2fs_msg(sbi->sb, KERN_ERR,
3775                        "SIT is corrupted node# %u vs %u",
3776                        total_node_blocks, valid_node_count(sbi));
3777                set_sbi_flag(sbi, SBI_NEED_FSCK);
3778                err = -EINVAL;
3779        }
3780
3781        return err;
3782}
3783
3784static void init_free_segmap(struct f2fs_sb_info *sbi)
3785{
3786        unsigned int start;
3787        int type;
3788
3789        for (start = 0; start < MAIN_SEGS(sbi); start++) {
3790                struct seg_entry *sentry = get_seg_entry(sbi, start);
3791                if (!sentry->valid_blocks)
3792                        __set_free(sbi, start);
3793                else
3794                        SIT_I(sbi)->written_valid_blocks +=
3795                                                sentry->valid_blocks;
3796        }
3797
3798        /* set use the current segments */
3799        for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
3800                struct curseg_info *curseg_t = CURSEG_I(sbi, type);
3801                __set_test_and_inuse(sbi, curseg_t->segno);
3802        }
3803}
3804
3805static void init_dirty_segmap(struct f2fs_sb_info *sbi)
3806{
3807        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3808        struct free_segmap_info *free_i = FREE_I(sbi);
3809        unsigned int segno = 0, offset = 0;
3810        unsigned short valid_blocks;
3811
3812        while (1) {
3813                /* find dirty segment based on free segmap */
3814                segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
3815                if (segno >= MAIN_SEGS(sbi))
3816                        break;
3817                offset = segno + 1;
3818                valid_blocks = get_valid_blocks(sbi, segno, false);
3819                if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
3820                        continue;
3821                if (valid_blocks > sbi->blocks_per_seg) {
3822                        f2fs_bug_on(sbi, 1);
3823                        continue;
3824                }
3825                mutex_lock(&dirty_i->seglist_lock);
3826                __locate_dirty_segment(sbi, segno, DIRTY);
3827                mutex_unlock(&dirty_i->seglist_lock);
3828        }
3829}
3830
3831static int init_victim_secmap(struct f2fs_sb_info *sbi)
3832{
3833        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3834        unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3835
3836        dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
3837        if (!dirty_i->victim_secmap)
3838                return -ENOMEM;
3839        return 0;
3840}
3841
3842static int build_dirty_segmap(struct f2fs_sb_info *sbi)
3843{
3844        struct dirty_seglist_info *dirty_i;
3845        unsigned int bitmap_size, i;
3846
3847        /* allocate memory for dirty segments list information */
3848        dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
3849                                                                GFP_KERNEL);
3850        if (!dirty_i)
3851                return -ENOMEM;
3852
3853        SM_I(sbi)->dirty_info = dirty_i;
3854        mutex_init(&dirty_i->seglist_lock);
3855
3856        bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3857
3858        for (i = 0; i < NR_DIRTY_TYPE; i++) {
3859                dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
3860                                                                GFP_KERNEL);
3861                if (!dirty_i->dirty_segmap[i])
3862                        return -ENOMEM;
3863        }
3864
3865        init_dirty_segmap(sbi);
3866        return init_victim_secmap(sbi);
3867}
3868
3869/*
3870 * Update min, max modified time for cost-benefit GC algorithm
3871 */
3872static void init_min_max_mtime(struct f2fs_sb_info *sbi)
3873{
3874        struct sit_info *sit_i = SIT_I(sbi);
3875        unsigned int segno;
3876
3877        down_write(&sit_i->sentry_lock);
3878
3879        sit_i->min_mtime = ULLONG_MAX;
3880
3881        for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
3882                unsigned int i;
3883                unsigned long long mtime = 0;
3884
3885                for (i = 0; i < sbi->segs_per_sec; i++)
3886                        mtime += get_seg_entry(sbi, segno + i)->mtime;
3887
3888                mtime = div_u64(mtime, sbi->segs_per_sec);
3889
3890                if (sit_i->min_mtime > mtime)
3891                        sit_i->min_mtime = mtime;
3892        }
3893        sit_i->max_mtime = get_mtime(sbi, false);
3894        up_write(&sit_i->sentry_lock);
3895}
3896
3897int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
3898{
3899        struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3900        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3901        struct f2fs_sm_info *sm_info;
3902        int err;
3903
3904        sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
3905        if (!sm_info)
3906                return -ENOMEM;
3907
3908        /* init sm info */
3909        sbi->sm_info = sm_info;
3910        sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
3911        sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
3912        sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
3913        sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
3914        sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
3915        sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
3916        sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
3917        sm_info->rec_prefree_segments = sm_info->main_segments *
3918                                        DEF_RECLAIM_PREFREE_SEGMENTS / 100;
3919        if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
3920                sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
3921
3922        if (!test_opt(sbi, LFS))
3923                sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
3924        sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
3925        sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
3926        sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
3927        sm_info->min_ssr_sections = reserved_sections(sbi);
3928
3929        INIT_LIST_HEAD(&sm_info->sit_entry_set);
3930
3931        init_rwsem(&sm_info->curseg_lock);
3932
3933        if (!f2fs_readonly(sbi->sb)) {
3934                err = f2fs_create_flush_cmd_control(sbi);
3935                if (err)
3936                        return err;
3937        }
3938
3939        err = create_discard_cmd_control(sbi);
3940        if (err)
3941                return err;
3942
3943        err = build_sit_info(sbi);
3944        if (err)
3945                return err;
3946        err = build_free_segmap(sbi);
3947        if (err)
3948                return err;
3949        err = build_curseg(sbi);
3950        if (err)
3951                return err;
3952
3953        /* reinit free segmap based on SIT */
3954        err = build_sit_entries(sbi);
3955        if (err)
3956                return err;
3957
3958        init_free_segmap(sbi);
3959        err = build_dirty_segmap(sbi);
3960        if (err)
3961                return err;
3962
3963        init_min_max_mtime(sbi);
3964        return 0;
3965}
3966
3967static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
3968                enum dirty_type dirty_type)
3969{
3970        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3971
3972        mutex_lock(&dirty_i->seglist_lock);
3973        kvfree(dirty_i->dirty_segmap[dirty_type]);
3974        dirty_i->nr_dirty[dirty_type] = 0;
3975        mutex_unlock(&dirty_i->seglist_lock);
3976}
3977
3978static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
3979{
3980        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3981        kvfree(dirty_i->victim_secmap);
3982}
3983
3984static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
3985{
3986        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3987        int i;
3988
3989        if (!dirty_i)
3990                return;
3991
3992        /* discard pre-free/dirty segments list */
3993        for (i = 0; i < NR_DIRTY_TYPE; i++)
3994                discard_dirty_segmap(sbi, i);
3995
3996        destroy_victim_secmap(sbi);
3997        SM_I(sbi)->dirty_info = NULL;
3998        kfree(dirty_i);
3999}
4000
4001static void destroy_curseg(struct f2fs_sb_info *sbi)
4002{
4003        struct curseg_info *array = SM_I(sbi)->curseg_array;
4004        int i;
4005
4006        if (!array)
4007                return;
4008        SM_I(sbi)->curseg_array = NULL;
4009        for (i = 0; i < NR_CURSEG_TYPE; i++) {
4010                kfree(array[i].sum_blk);
4011                kfree(array[i].journal);
4012        }
4013        kfree(array);
4014}
4015
4016static void destroy_free_segmap(struct f2fs_sb_info *sbi)
4017{
4018        struct free_segmap_info *free_i = SM_I(sbi)->free_info;
4019        if (!free_i)
4020                return;
4021        SM_I(sbi)->free_info = NULL;
4022        kvfree(free_i->free_segmap);
4023        kvfree(free_i->free_secmap);
4024        kfree(free_i);
4025}
4026
4027static void destroy_sit_info(struct f2fs_sb_info *sbi)
4028{
4029        struct sit_info *sit_i = SIT_I(sbi);
4030        unsigned int start;
4031
4032        if (!sit_i)
4033                return;
4034
4035        if (sit_i->sentries) {
4036                for (start = 0; start < MAIN_SEGS(sbi); start++) {
4037                        kfree(sit_i->sentries[start].cur_valid_map);
4038#ifdef CONFIG_F2FS_CHECK_FS
4039                        kfree(sit_i->sentries[start].cur_valid_map_mir);
4040#endif
4041                        kfree(sit_i->sentries[start].ckpt_valid_map);
4042                        kfree(sit_i->sentries[start].discard_map);
4043                }
4044        }
4045        kfree(sit_i->tmp_map);
4046
4047        kvfree(sit_i->sentries);
4048        kvfree(sit_i->sec_entries);
4049        kvfree(sit_i->dirty_sentries_bitmap);
4050
4051        SM_I(sbi)->sit_info = NULL;
4052        kfree(sit_i->sit_bitmap);
4053#ifdef CONFIG_F2FS_CHECK_FS
4054        kfree(sit_i->sit_bitmap_mir);
4055#endif
4056        kfree(sit_i);
4057}
4058
4059void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
4060{
4061        struct f2fs_sm_info *sm_info = SM_I(sbi);
4062
4063        if (!sm_info)
4064                return;
4065        f2fs_destroy_flush_cmd_control(sbi, true);
4066        destroy_discard_cmd_control(sbi);
4067        destroy_dirty_segmap(sbi);
4068        destroy_curseg(sbi);
4069        destroy_free_segmap(sbi);
4070        destroy_sit_info(sbi);
4071        sbi->sm_info = NULL;
4072        kfree(sm_info);
4073}
4074
4075int __init f2fs_create_segment_manager_caches(void)
4076{
4077        discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
4078                        sizeof(struct discard_entry));
4079        if (!discard_entry_slab)
4080                goto fail;
4081
4082        discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
4083                        sizeof(struct discard_cmd));
4084        if (!discard_cmd_slab)
4085                goto destroy_discard_entry;
4086
4087        sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
4088                        sizeof(struct sit_entry_set));
4089        if (!sit_entry_set_slab)
4090                goto destroy_discard_cmd;
4091
4092        inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
4093                        sizeof(struct inmem_pages));
4094        if (!inmem_entry_slab)
4095                goto destroy_sit_entry_set;
4096        return 0;
4097
4098destroy_sit_entry_set:
4099        kmem_cache_destroy(sit_entry_set_slab);
4100destroy_discard_cmd:
4101        kmem_cache_destroy(discard_cmd_slab);
4102destroy_discard_entry:
4103        kmem_cache_destroy(discard_entry_slab);
4104fail:
4105        return -ENOMEM;
4106}
4107
4108void f2fs_destroy_segment_manager_caches(void)
4109{
4110        kmem_cache_destroy(sit_entry_set_slab);
4111        kmem_cache_destroy(discard_cmd_slab);
4112        kmem_cache_destroy(discard_entry_slab);
4113        kmem_cache_destroy(inmem_entry_slab);
4114}
4115