linux/fs/gfs2/lock_dlm.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
   3 * Copyright 2004-2011 Red Hat, Inc.
   4 *
   5 * This copyrighted material is made available to anyone wishing to use,
   6 * modify, copy, or redistribute it subject to the terms and conditions
   7 * of the GNU General Public License version 2.
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/fs.h>
  13#include <linux/dlm.h>
  14#include <linux/slab.h>
  15#include <linux/types.h>
  16#include <linux/delay.h>
  17#include <linux/gfs2_ondisk.h>
  18#include <linux/sched/signal.h>
  19
  20#include "incore.h"
  21#include "glock.h"
  22#include "util.h"
  23#include "sys.h"
  24#include "trace_gfs2.h"
  25
  26/**
  27 * gfs2_update_stats - Update time based stats
  28 * @mv: Pointer to mean/variance structure to update
  29 * @sample: New data to include
  30 *
  31 * @delta is the difference between the current rtt sample and the
  32 * running average srtt. We add 1/8 of that to the srtt in order to
  33 * update the current srtt estimate. The variance estimate is a bit
  34 * more complicated. We subtract the abs value of the @delta from
  35 * the current variance estimate and add 1/4 of that to the running
  36 * total.
  37 *
  38 * Note that the index points at the array entry containing the smoothed
  39 * mean value, and the variance is always in the following entry
  40 *
  41 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
  42 * All times are in units of integer nanoseconds. Unlike the TCP/IP case,
  43 * they are not scaled fixed point.
  44 */
  45
  46static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
  47                                     s64 sample)
  48{
  49        s64 delta = sample - s->stats[index];
  50        s->stats[index] += (delta >> 3);
  51        index++;
  52        s->stats[index] += ((abs(delta) - s->stats[index]) >> 2);
  53}
  54
  55/**
  56 * gfs2_update_reply_times - Update locking statistics
  57 * @gl: The glock to update
  58 *
  59 * This assumes that gl->gl_dstamp has been set earlier.
  60 *
  61 * The rtt (lock round trip time) is an estimate of the time
  62 * taken to perform a dlm lock request. We update it on each
  63 * reply from the dlm.
  64 *
  65 * The blocking flag is set on the glock for all dlm requests
  66 * which may potentially block due to lock requests from other nodes.
  67 * DLM requests where the current lock state is exclusive, the
  68 * requested state is null (or unlocked) or where the TRY or
  69 * TRY_1CB flags are set are classified as non-blocking. All
  70 * other DLM requests are counted as (potentially) blocking.
  71 */
  72static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
  73{
  74        struct gfs2_pcpu_lkstats *lks;
  75        const unsigned gltype = gl->gl_name.ln_type;
  76        unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
  77                         GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
  78        s64 rtt;
  79
  80        preempt_disable();
  81        rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
  82        lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
  83        gfs2_update_stats(&gl->gl_stats, index, rtt);           /* Local */
  84        gfs2_update_stats(&lks->lkstats[gltype], index, rtt);   /* Global */
  85        preempt_enable();
  86
  87        trace_gfs2_glock_lock_time(gl, rtt);
  88}
  89
  90/**
  91 * gfs2_update_request_times - Update locking statistics
  92 * @gl: The glock to update
  93 *
  94 * The irt (lock inter-request times) measures the average time
  95 * between requests to the dlm. It is updated immediately before
  96 * each dlm call.
  97 */
  98
  99static inline void gfs2_update_request_times(struct gfs2_glock *gl)
 100{
 101        struct gfs2_pcpu_lkstats *lks;
 102        const unsigned gltype = gl->gl_name.ln_type;
 103        ktime_t dstamp;
 104        s64 irt;
 105
 106        preempt_disable();
 107        dstamp = gl->gl_dstamp;
 108        gl->gl_dstamp = ktime_get_real();
 109        irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
 110        lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
 111        gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt);           /* Local */
 112        gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt);   /* Global */
 113        preempt_enable();
 114}
 115 
 116static void gdlm_ast(void *arg)
 117{
 118        struct gfs2_glock *gl = arg;
 119        unsigned ret = gl->gl_state;
 120
 121        gfs2_update_reply_times(gl);
 122        BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
 123
 124        if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
 125                memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
 126
 127        switch (gl->gl_lksb.sb_status) {
 128        case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
 129                gfs2_glock_free(gl);
 130                return;
 131        case -DLM_ECANCEL: /* Cancel while getting lock */
 132                ret |= LM_OUT_CANCELED;
 133                goto out;
 134        case -EAGAIN: /* Try lock fails */
 135        case -EDEADLK: /* Deadlock detected */
 136                goto out;
 137        case -ETIMEDOUT: /* Canceled due to timeout */
 138                ret |= LM_OUT_ERROR;
 139                goto out;
 140        case 0: /* Success */
 141                break;
 142        default: /* Something unexpected */
 143                BUG();
 144        }
 145
 146        ret = gl->gl_req;
 147        if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
 148                if (gl->gl_req == LM_ST_SHARED)
 149                        ret = LM_ST_DEFERRED;
 150                else if (gl->gl_req == LM_ST_DEFERRED)
 151                        ret = LM_ST_SHARED;
 152                else
 153                        BUG();
 154        }
 155
 156        set_bit(GLF_INITIAL, &gl->gl_flags);
 157        gfs2_glock_complete(gl, ret);
 158        return;
 159out:
 160        if (!test_bit(GLF_INITIAL, &gl->gl_flags))
 161                gl->gl_lksb.sb_lkid = 0;
 162        gfs2_glock_complete(gl, ret);
 163}
 164
 165static void gdlm_bast(void *arg, int mode)
 166{
 167        struct gfs2_glock *gl = arg;
 168
 169        switch (mode) {
 170        case DLM_LOCK_EX:
 171                gfs2_glock_cb(gl, LM_ST_UNLOCKED);
 172                break;
 173        case DLM_LOCK_CW:
 174                gfs2_glock_cb(gl, LM_ST_DEFERRED);
 175                break;
 176        case DLM_LOCK_PR:
 177                gfs2_glock_cb(gl, LM_ST_SHARED);
 178                break;
 179        default:
 180                fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode);
 181                BUG();
 182        }
 183}
 184
 185/* convert gfs lock-state to dlm lock-mode */
 186
 187static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate)
 188{
 189        switch (lmstate) {
 190        case LM_ST_UNLOCKED:
 191                return DLM_LOCK_NL;
 192        case LM_ST_EXCLUSIVE:
 193                return DLM_LOCK_EX;
 194        case LM_ST_DEFERRED:
 195                return DLM_LOCK_CW;
 196        case LM_ST_SHARED:
 197                return DLM_LOCK_PR;
 198        }
 199        fs_err(sdp, "unknown LM state %d\n", lmstate);
 200        BUG();
 201        return -1;
 202}
 203
 204static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
 205                      const int req)
 206{
 207        u32 lkf = 0;
 208
 209        if (gl->gl_lksb.sb_lvbptr)
 210                lkf |= DLM_LKF_VALBLK;
 211
 212        if (gfs_flags & LM_FLAG_TRY)
 213                lkf |= DLM_LKF_NOQUEUE;
 214
 215        if (gfs_flags & LM_FLAG_TRY_1CB) {
 216                lkf |= DLM_LKF_NOQUEUE;
 217                lkf |= DLM_LKF_NOQUEUEBAST;
 218        }
 219
 220        if (gfs_flags & LM_FLAG_PRIORITY) {
 221                lkf |= DLM_LKF_NOORDER;
 222                lkf |= DLM_LKF_HEADQUE;
 223        }
 224
 225        if (gfs_flags & LM_FLAG_ANY) {
 226                if (req == DLM_LOCK_PR)
 227                        lkf |= DLM_LKF_ALTCW;
 228                else if (req == DLM_LOCK_CW)
 229                        lkf |= DLM_LKF_ALTPR;
 230                else
 231                        BUG();
 232        }
 233
 234        if (gl->gl_lksb.sb_lkid != 0) {
 235                lkf |= DLM_LKF_CONVERT;
 236                if (test_bit(GLF_BLOCKING, &gl->gl_flags))
 237                        lkf |= DLM_LKF_QUECVT;
 238        }
 239
 240        return lkf;
 241}
 242
 243static void gfs2_reverse_hex(char *c, u64 value)
 244{
 245        *c = '0';
 246        while (value) {
 247                *c-- = hex_asc[value & 0x0f];
 248                value >>= 4;
 249        }
 250}
 251
 252static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
 253                     unsigned int flags)
 254{
 255        struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
 256        int req;
 257        u32 lkf;
 258        char strname[GDLM_STRNAME_BYTES] = "";
 259
 260        req = make_mode(gl->gl_name.ln_sbd, req_state);
 261        lkf = make_flags(gl, flags, req);
 262        gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
 263        gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
 264        if (gl->gl_lksb.sb_lkid) {
 265                gfs2_update_request_times(gl);
 266        } else {
 267                memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
 268                strname[GDLM_STRNAME_BYTES - 1] = '\0';
 269                gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
 270                gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
 271                gl->gl_dstamp = ktime_get_real();
 272        }
 273        /*
 274         * Submit the actual lock request.
 275         */
 276
 277        return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
 278                        GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
 279}
 280
 281static void gdlm_put_lock(struct gfs2_glock *gl)
 282{
 283        struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
 284        struct lm_lockstruct *ls = &sdp->sd_lockstruct;
 285        int lvb_needs_unlock = 0;
 286        int error;
 287
 288        if (gl->gl_lksb.sb_lkid == 0) {
 289                gfs2_glock_free(gl);
 290                return;
 291        }
 292
 293        clear_bit(GLF_BLOCKING, &gl->gl_flags);
 294        gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
 295        gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
 296        gfs2_update_request_times(gl);
 297
 298        /* don't want to skip dlm_unlock writing the lvb when lock is ex */
 299
 300        if (gl->gl_lksb.sb_lvbptr && (gl->gl_state == LM_ST_EXCLUSIVE))
 301                lvb_needs_unlock = 1;
 302
 303        if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
 304            !lvb_needs_unlock) {
 305                gfs2_glock_free(gl);
 306                return;
 307        }
 308
 309        error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
 310                           NULL, gl);
 311        if (error) {
 312                fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n",
 313                       gl->gl_name.ln_type,
 314                       (unsigned long long)gl->gl_name.ln_number, error);
 315                return;
 316        }
 317}
 318
 319static void gdlm_cancel(struct gfs2_glock *gl)
 320{
 321        struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
 322        dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
 323}
 324
 325/*
 326 * dlm/gfs2 recovery coordination using dlm_recover callbacks
 327 *
 328 *  1. dlm_controld sees lockspace members change
 329 *  2. dlm_controld blocks dlm-kernel locking activity
 330 *  3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
 331 *  4. dlm_controld starts and finishes its own user level recovery
 332 *  5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
 333 *  6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
 334 *  7. dlm_recoverd does its own lock recovery
 335 *  8. dlm_recoverd unblocks dlm-kernel locking activity
 336 *  9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
 337 * 10. gfs2_control updates control_lock lvb with new generation and jid bits
 338 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
 339 * 12. gfs2_recover dequeues and recovers journals of failed nodes
 340 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
 341 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
 342 * 15. gfs2_control unblocks normal locking when all journals are recovered
 343 *
 344 * - failures during recovery
 345 *
 346 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
 347 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
 348 * recovering for a prior failure.  gfs2_control needs a way to detect
 349 * this so it can leave BLOCK_LOCKS set in step 15.  This is managed using
 350 * the recover_block and recover_start values.
 351 *
 352 * recover_done() provides a new lockspace generation number each time it
 353 * is called (step 9).  This generation number is saved as recover_start.
 354 * When recover_prep() is called, it sets BLOCK_LOCKS and sets
 355 * recover_block = recover_start.  So, while recover_block is equal to
 356 * recover_start, BLOCK_LOCKS should remain set.  (recover_spin must
 357 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
 358 *
 359 * - more specific gfs2 steps in sequence above
 360 *
 361 *  3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
 362 *  6. recover_slot records any failed jids (maybe none)
 363 *  9. recover_done sets recover_start = new generation number
 364 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
 365 * 12. gfs2_recover does journal recoveries for failed jids identified above
 366 * 14. gfs2_control clears control_lock lvb bits for recovered jids
 367 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
 368 *     again) then do nothing, otherwise if recover_start > recover_block
 369 *     then clear BLOCK_LOCKS.
 370 *
 371 * - parallel recovery steps across all nodes
 372 *
 373 * All nodes attempt to update the control_lock lvb with the new generation
 374 * number and jid bits, but only the first to get the control_lock EX will
 375 * do so; others will see that it's already done (lvb already contains new
 376 * generation number.)
 377 *
 378 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
 379 * . All nodes attempt to set control_lock lvb gen + bits for the new gen
 380 * . One node gets control_lock first and writes the lvb, others see it's done
 381 * . All nodes attempt to recover jids for which they see control_lock bits set
 382 * . One node succeeds for a jid, and that one clears the jid bit in the lvb
 383 * . All nodes will eventually see all lvb bits clear and unblock locks
 384 *
 385 * - is there a problem with clearing an lvb bit that should be set
 386 *   and missing a journal recovery?
 387 *
 388 * 1. jid fails
 389 * 2. lvb bit set for step 1
 390 * 3. jid recovered for step 1
 391 * 4. jid taken again (new mount)
 392 * 5. jid fails (for step 4)
 393 * 6. lvb bit set for step 5 (will already be set)
 394 * 7. lvb bit cleared for step 3
 395 *
 396 * This is not a problem because the failure in step 5 does not
 397 * require recovery, because the mount in step 4 could not have
 398 * progressed far enough to unblock locks and access the fs.  The
 399 * control_mount() function waits for all recoveries to be complete
 400 * for the latest lockspace generation before ever unblocking locks
 401 * and returning.  The mount in step 4 waits until the recovery in
 402 * step 1 is done.
 403 *
 404 * - special case of first mounter: first node to mount the fs
 405 *
 406 * The first node to mount a gfs2 fs needs to check all the journals
 407 * and recover any that need recovery before other nodes are allowed
 408 * to mount the fs.  (Others may begin mounting, but they must wait
 409 * for the first mounter to be done before taking locks on the fs
 410 * or accessing the fs.)  This has two parts:
 411 *
 412 * 1. The mounted_lock tells a node it's the first to mount the fs.
 413 * Each node holds the mounted_lock in PR while it's mounted.
 414 * Each node tries to acquire the mounted_lock in EX when it mounts.
 415 * If a node is granted the mounted_lock EX it means there are no
 416 * other mounted nodes (no PR locks exist), and it is the first mounter.
 417 * The mounted_lock is demoted to PR when first recovery is done, so
 418 * others will fail to get an EX lock, but will get a PR lock.
 419 *
 420 * 2. The control_lock blocks others in control_mount() while the first
 421 * mounter is doing first mount recovery of all journals.
 422 * A mounting node needs to acquire control_lock in EX mode before
 423 * it can proceed.  The first mounter holds control_lock in EX while doing
 424 * the first mount recovery, blocking mounts from other nodes, then demotes
 425 * control_lock to NL when it's done (others_may_mount/first_done),
 426 * allowing other nodes to continue mounting.
 427 *
 428 * first mounter:
 429 * control_lock EX/NOQUEUE success
 430 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
 431 * set first=1
 432 * do first mounter recovery
 433 * mounted_lock EX->PR
 434 * control_lock EX->NL, write lvb generation
 435 *
 436 * other mounter:
 437 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
 438 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
 439 * mounted_lock PR/NOQUEUE success
 440 * read lvb generation
 441 * control_lock EX->NL
 442 * set first=0
 443 *
 444 * - mount during recovery
 445 *
 446 * If a node mounts while others are doing recovery (not first mounter),
 447 * the mounting node will get its initial recover_done() callback without
 448 * having seen any previous failures/callbacks.
 449 *
 450 * It must wait for all recoveries preceding its mount to be finished
 451 * before it unblocks locks.  It does this by repeating the "other mounter"
 452 * steps above until the lvb generation number is >= its mount generation
 453 * number (from initial recover_done) and all lvb bits are clear.
 454 *
 455 * - control_lock lvb format
 456 *
 457 * 4 bytes generation number: the latest dlm lockspace generation number
 458 * from recover_done callback.  Indicates the jid bitmap has been updated
 459 * to reflect all slot failures through that generation.
 460 * 4 bytes unused.
 461 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
 462 * that jid N needs recovery.
 463 */
 464
 465#define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
 466
 467static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
 468                             char *lvb_bits)
 469{
 470        __le32 gen;
 471        memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
 472        memcpy(&gen, lvb_bits, sizeof(__le32));
 473        *lvb_gen = le32_to_cpu(gen);
 474}
 475
 476static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
 477                              char *lvb_bits)
 478{
 479        __le32 gen;
 480        memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
 481        gen = cpu_to_le32(lvb_gen);
 482        memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
 483}
 484
 485static int all_jid_bits_clear(char *lvb)
 486{
 487        return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
 488                        GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
 489}
 490
 491static void sync_wait_cb(void *arg)
 492{
 493        struct lm_lockstruct *ls = arg;
 494        complete(&ls->ls_sync_wait);
 495}
 496
 497static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
 498{
 499        struct lm_lockstruct *ls = &sdp->sd_lockstruct;
 500        int error;
 501
 502        error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
 503        if (error) {
 504                fs_err(sdp, "%s lkid %x error %d\n",
 505                       name, lksb->sb_lkid, error);
 506                return error;
 507        }
 508
 509        wait_for_completion(&ls->ls_sync_wait);
 510
 511        if (lksb->sb_status != -DLM_EUNLOCK) {
 512                fs_err(sdp, "%s lkid %x status %d\n",
 513                       name, lksb->sb_lkid, lksb->sb_status);
 514                return -1;
 515        }
 516        return 0;
 517}
 518
 519static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
 520                     unsigned int num, struct dlm_lksb *lksb, char *name)
 521{
 522        struct lm_lockstruct *ls = &sdp->sd_lockstruct;
 523        char strname[GDLM_STRNAME_BYTES];
 524        int error, status;
 525
 526        memset(strname, 0, GDLM_STRNAME_BYTES);
 527        snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
 528
 529        error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
 530                         strname, GDLM_STRNAME_BYTES - 1,
 531                         0, sync_wait_cb, ls, NULL);
 532        if (error) {
 533                fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
 534                       name, lksb->sb_lkid, flags, mode, error);
 535                return error;
 536        }
 537
 538        wait_for_completion(&ls->ls_sync_wait);
 539
 540        status = lksb->sb_status;
 541
 542        if (status && status != -EAGAIN) {
 543                fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
 544                       name, lksb->sb_lkid, flags, mode, status);
 545        }
 546
 547        return status;
 548}
 549
 550static int mounted_unlock(struct gfs2_sbd *sdp)
 551{
 552        struct lm_lockstruct *ls = &sdp->sd_lockstruct;
 553        return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
 554}
 555
 556static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
 557{
 558        struct lm_lockstruct *ls = &sdp->sd_lockstruct;
 559        return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
 560                         &ls->ls_mounted_lksb, "mounted_lock");
 561}
 562
 563static int control_unlock(struct gfs2_sbd *sdp)
 564{
 565        struct lm_lockstruct *ls = &sdp->sd_lockstruct;
 566        return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
 567}
 568
 569static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
 570{
 571        struct lm_lockstruct *ls = &sdp->sd_lockstruct;
 572        return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
 573                         &ls->ls_control_lksb, "control_lock");
 574}
 575
 576static void gfs2_control_func(struct work_struct *work)
 577{
 578        struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
 579        struct lm_lockstruct *ls = &sdp->sd_lockstruct;
 580        uint32_t block_gen, start_gen, lvb_gen, flags;
 581        int recover_set = 0;
 582        int write_lvb = 0;
 583        int recover_size;
 584        int i, error;
 585
 586        spin_lock(&ls->ls_recover_spin);
 587        /*
 588         * No MOUNT_DONE means we're still mounting; control_mount()
 589         * will set this flag, after which this thread will take over
 590         * all further clearing of BLOCK_LOCKS.
 591         *
 592         * FIRST_MOUNT means this node is doing first mounter recovery,
 593         * for which recovery control is handled by
 594         * control_mount()/control_first_done(), not this thread.
 595         */
 596        if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
 597             test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
 598                spin_unlock(&ls->ls_recover_spin);
 599                return;
 600        }
 601        block_gen = ls->ls_recover_block;
 602        start_gen = ls->ls_recover_start;
 603        spin_unlock(&ls->ls_recover_spin);
 604
 605        /*
 606         * Equal block_gen and start_gen implies we are between
 607         * recover_prep and recover_done callbacks, which means
 608         * dlm recovery is in progress and dlm locking is blocked.
 609         * There's no point trying to do any work until recover_done.
 610         */
 611
 612        if (block_gen == start_gen)
 613                return;
 614
 615        /*
 616         * Propagate recover_submit[] and recover_result[] to lvb:
 617         * dlm_recoverd adds to recover_submit[] jids needing recovery
 618         * gfs2_recover adds to recover_result[] journal recovery results
 619         *
 620         * set lvb bit for jids in recover_submit[] if the lvb has not
 621         * yet been updated for the generation of the failure
 622         *
 623         * clear lvb bit for jids in recover_result[] if the result of
 624         * the journal recovery is SUCCESS
 625         */
 626
 627        error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
 628        if (error) {
 629                fs_err(sdp, "control lock EX error %d\n", error);
 630                return;
 631        }
 632
 633        control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
 634
 635        spin_lock(&ls->ls_recover_spin);
 636        if (block_gen != ls->ls_recover_block ||
 637            start_gen != ls->ls_recover_start) {
 638                fs_info(sdp, "recover generation %u block1 %u %u\n",
 639                        start_gen, block_gen, ls->ls_recover_block);
 640                spin_unlock(&ls->ls_recover_spin);
 641                control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
 642                return;
 643        }
 644
 645        recover_size = ls->ls_recover_size;
 646
 647        if (lvb_gen <= start_gen) {
 648                /*
 649                 * Clear lvb bits for jids we've successfully recovered.
 650                 * Because all nodes attempt to recover failed journals,
 651                 * a journal can be recovered multiple times successfully
 652                 * in succession.  Only the first will really do recovery,
 653                 * the others find it clean, but still report a successful
 654                 * recovery.  So, another node may have already recovered
 655                 * the jid and cleared the lvb bit for it.
 656                 */
 657                for (i = 0; i < recover_size; i++) {
 658                        if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
 659                                continue;
 660
 661                        ls->ls_recover_result[i] = 0;
 662
 663                        if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
 664                                continue;
 665
 666                        __clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
 667                        write_lvb = 1;
 668                }
 669        }
 670
 671        if (lvb_gen == start_gen) {
 672                /*
 673                 * Failed slots before start_gen are already set in lvb.
 674                 */
 675                for (i = 0; i < recover_size; i++) {
 676                        if (!ls->ls_recover_submit[i])
 677                                continue;
 678                        if (ls->ls_recover_submit[i] < lvb_gen)
 679                                ls->ls_recover_submit[i] = 0;
 680                }
 681        } else if (lvb_gen < start_gen) {
 682                /*
 683                 * Failed slots before start_gen are not yet set in lvb.
 684                 */
 685                for (i = 0; i < recover_size; i++) {
 686                        if (!ls->ls_recover_submit[i])
 687                                continue;
 688                        if (ls->ls_recover_submit[i] < start_gen) {
 689                                ls->ls_recover_submit[i] = 0;
 690                                __set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
 691                        }
 692                }
 693                /* even if there are no bits to set, we need to write the
 694                   latest generation to the lvb */
 695                write_lvb = 1;
 696        } else {
 697                /*
 698                 * we should be getting a recover_done() for lvb_gen soon
 699                 */
 700        }
 701        spin_unlock(&ls->ls_recover_spin);
 702
 703        if (write_lvb) {
 704                control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
 705                flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
 706        } else {
 707                flags = DLM_LKF_CONVERT;
 708        }
 709
 710        error = control_lock(sdp, DLM_LOCK_NL, flags);
 711        if (error) {
 712                fs_err(sdp, "control lock NL error %d\n", error);
 713                return;
 714        }
 715
 716        /*
 717         * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
 718         * and clear a jid bit in the lvb if the recovery is a success.
 719         * Eventually all journals will be recovered, all jid bits will
 720         * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
 721         */
 722
 723        for (i = 0; i < recover_size; i++) {
 724                if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
 725                        fs_info(sdp, "recover generation %u jid %d\n",
 726                                start_gen, i);
 727                        gfs2_recover_set(sdp, i);
 728                        recover_set++;
 729                }
 730        }
 731        if (recover_set)
 732                return;
 733
 734        /*
 735         * No more jid bits set in lvb, all recovery is done, unblock locks
 736         * (unless a new recover_prep callback has occured blocking locks
 737         * again while working above)
 738         */
 739
 740        spin_lock(&ls->ls_recover_spin);
 741        if (ls->ls_recover_block == block_gen &&
 742            ls->ls_recover_start == start_gen) {
 743                clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
 744                spin_unlock(&ls->ls_recover_spin);
 745                fs_info(sdp, "recover generation %u done\n", start_gen);
 746                gfs2_glock_thaw(sdp);
 747        } else {
 748                fs_info(sdp, "recover generation %u block2 %u %u\n",
 749                        start_gen, block_gen, ls->ls_recover_block);
 750                spin_unlock(&ls->ls_recover_spin);
 751        }
 752}
 753
 754static int control_mount(struct gfs2_sbd *sdp)
 755{
 756        struct lm_lockstruct *ls = &sdp->sd_lockstruct;
 757        uint32_t start_gen, block_gen, mount_gen, lvb_gen;
 758        int mounted_mode;
 759        int retries = 0;
 760        int error;
 761
 762        memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
 763        memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
 764        memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
 765        ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
 766        init_completion(&ls->ls_sync_wait);
 767
 768        set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
 769
 770        error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
 771        if (error) {
 772                fs_err(sdp, "control_mount control_lock NL error %d\n", error);
 773                return error;
 774        }
 775
 776        error = mounted_lock(sdp, DLM_LOCK_NL, 0);
 777        if (error) {
 778                fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
 779                control_unlock(sdp);
 780                return error;
 781        }
 782        mounted_mode = DLM_LOCK_NL;
 783
 784restart:
 785        if (retries++ && signal_pending(current)) {
 786                error = -EINTR;
 787                goto fail;
 788        }
 789
 790        /*
 791         * We always start with both locks in NL. control_lock is
 792         * demoted to NL below so we don't need to do it here.
 793         */
 794
 795        if (mounted_mode != DLM_LOCK_NL) {
 796                error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
 797                if (error)
 798                        goto fail;
 799                mounted_mode = DLM_LOCK_NL;
 800        }
 801
 802        /*
 803         * Other nodes need to do some work in dlm recovery and gfs2_control
 804         * before the recover_done and control_lock will be ready for us below.
 805         * A delay here is not required but often avoids having to retry.
 806         */
 807
 808        msleep_interruptible(500);
 809
 810        /*
 811         * Acquire control_lock in EX and mounted_lock in either EX or PR.
 812         * control_lock lvb keeps track of any pending journal recoveries.
 813         * mounted_lock indicates if any other nodes have the fs mounted.
 814         */
 815
 816        error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
 817        if (error == -EAGAIN) {
 818                goto restart;
 819        } else if (error) {
 820                fs_err(sdp, "control_mount control_lock EX error %d\n", error);
 821                goto fail;
 822        }
 823
 824        /**
 825         * If we're a spectator, we don't want to take the lock in EX because
 826         * we cannot do the first-mount responsibility it implies: recovery.
 827         */
 828        if (sdp->sd_args.ar_spectator)
 829                goto locks_done;
 830
 831        error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
 832        if (!error) {
 833                mounted_mode = DLM_LOCK_EX;
 834                goto locks_done;
 835        } else if (error != -EAGAIN) {
 836                fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
 837                goto fail;
 838        }
 839
 840        error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
 841        if (!error) {
 842                mounted_mode = DLM_LOCK_PR;
 843                goto locks_done;
 844        } else {
 845                /* not even -EAGAIN should happen here */
 846                fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
 847                goto fail;
 848        }
 849
 850locks_done:
 851        /*
 852         * If we got both locks above in EX, then we're the first mounter.
 853         * If not, then we need to wait for the control_lock lvb to be
 854         * updated by other mounted nodes to reflect our mount generation.
 855         *
 856         * In simple first mounter cases, first mounter will see zero lvb_gen,
 857         * but in cases where all existing nodes leave/fail before mounting
 858         * nodes finish control_mount, then all nodes will be mounting and
 859         * lvb_gen will be non-zero.
 860         */
 861
 862        control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
 863
 864        if (lvb_gen == 0xFFFFFFFF) {
 865                /* special value to force mount attempts to fail */
 866                fs_err(sdp, "control_mount control_lock disabled\n");
 867                error = -EINVAL;
 868                goto fail;
 869        }
 870
 871        if (mounted_mode == DLM_LOCK_EX) {
 872                /* first mounter, keep both EX while doing first recovery */
 873                spin_lock(&ls->ls_recover_spin);
 874                clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
 875                set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
 876                set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
 877                spin_unlock(&ls->ls_recover_spin);
 878                fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
 879                return 0;
 880        }
 881
 882        error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
 883        if (error)
 884                goto fail;
 885
 886        /*
 887         * We are not first mounter, now we need to wait for the control_lock
 888         * lvb generation to be >= the generation from our first recover_done
 889         * and all lvb bits to be clear (no pending journal recoveries.)
 890         */
 891
 892        if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
 893                /* journals need recovery, wait until all are clear */
 894                fs_info(sdp, "control_mount wait for journal recovery\n");
 895                goto restart;
 896        }
 897
 898        spin_lock(&ls->ls_recover_spin);
 899        block_gen = ls->ls_recover_block;
 900        start_gen = ls->ls_recover_start;
 901        mount_gen = ls->ls_recover_mount;
 902
 903        if (lvb_gen < mount_gen) {
 904                /* wait for mounted nodes to update control_lock lvb to our
 905                   generation, which might include new recovery bits set */
 906                if (sdp->sd_args.ar_spectator) {
 907                        fs_info(sdp, "Recovery is required. Waiting for a "
 908                                "non-spectator to mount.\n");
 909                        msleep_interruptible(1000);
 910                } else {
 911                        fs_info(sdp, "control_mount wait1 block %u start %u "
 912                                "mount %u lvb %u flags %lx\n", block_gen,
 913                                start_gen, mount_gen, lvb_gen,
 914                                ls->ls_recover_flags);
 915                }
 916                spin_unlock(&ls->ls_recover_spin);
 917                goto restart;
 918        }
 919
 920        if (lvb_gen != start_gen) {
 921                /* wait for mounted nodes to update control_lock lvb to the
 922                   latest recovery generation */
 923                fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
 924                        "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
 925                        lvb_gen, ls->ls_recover_flags);
 926                spin_unlock(&ls->ls_recover_spin);
 927                goto restart;
 928        }
 929
 930        if (block_gen == start_gen) {
 931                /* dlm recovery in progress, wait for it to finish */
 932                fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
 933                        "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
 934                        lvb_gen, ls->ls_recover_flags);
 935                spin_unlock(&ls->ls_recover_spin);
 936                goto restart;
 937        }
 938
 939        clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
 940        set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
 941        memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
 942        memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
 943        spin_unlock(&ls->ls_recover_spin);
 944        return 0;
 945
 946fail:
 947        mounted_unlock(sdp);
 948        control_unlock(sdp);
 949        return error;
 950}
 951
 952static int control_first_done(struct gfs2_sbd *sdp)
 953{
 954        struct lm_lockstruct *ls = &sdp->sd_lockstruct;
 955        uint32_t start_gen, block_gen;
 956        int error;
 957
 958restart:
 959        spin_lock(&ls->ls_recover_spin);
 960        start_gen = ls->ls_recover_start;
 961        block_gen = ls->ls_recover_block;
 962
 963        if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
 964            !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
 965            !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
 966                /* sanity check, should not happen */
 967                fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
 968                       start_gen, block_gen, ls->ls_recover_flags);
 969                spin_unlock(&ls->ls_recover_spin);
 970                control_unlock(sdp);
 971                return -1;
 972        }
 973
 974        if (start_gen == block_gen) {
 975                /*
 976                 * Wait for the end of a dlm recovery cycle to switch from
 977                 * first mounter recovery.  We can ignore any recover_slot
 978                 * callbacks between the recover_prep and next recover_done
 979                 * because we are still the first mounter and any failed nodes
 980                 * have not fully mounted, so they don't need recovery.
 981                 */
 982                spin_unlock(&ls->ls_recover_spin);
 983                fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
 984
 985                wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
 986                            TASK_UNINTERRUPTIBLE);
 987                goto restart;
 988        }
 989
 990        clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
 991        set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
 992        memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
 993        memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
 994        spin_unlock(&ls->ls_recover_spin);
 995
 996        memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
 997        control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
 998
 999        error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
1000        if (error)
1001                fs_err(sdp, "control_first_done mounted PR error %d\n", error);
1002
1003        error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
1004        if (error)
1005                fs_err(sdp, "control_first_done control NL error %d\n", error);
1006
1007        return error;
1008}
1009
1010/*
1011 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1012 * to accomodate the largest slot number.  (NB dlm slot numbers start at 1,
1013 * gfs2 jids start at 0, so jid = slot - 1)
1014 */
1015
1016#define RECOVER_SIZE_INC 16
1017
1018static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1019                            int num_slots)
1020{
1021        struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1022        uint32_t *submit = NULL;
1023        uint32_t *result = NULL;
1024        uint32_t old_size, new_size;
1025        int i, max_jid;
1026
1027        if (!ls->ls_lvb_bits) {
1028                ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
1029                if (!ls->ls_lvb_bits)
1030                        return -ENOMEM;
1031        }
1032
1033        max_jid = 0;
1034        for (i = 0; i < num_slots; i++) {
1035                if (max_jid < slots[i].slot - 1)
1036                        max_jid = slots[i].slot - 1;
1037        }
1038
1039        old_size = ls->ls_recover_size;
1040
1041        if (old_size >= max_jid + 1)
1042                return 0;
1043
1044        new_size = old_size + RECOVER_SIZE_INC;
1045
1046        submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1047        result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1048        if (!submit || !result) {
1049                kfree(submit);
1050                kfree(result);
1051                return -ENOMEM;
1052        }
1053
1054        spin_lock(&ls->ls_recover_spin);
1055        memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1056        memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1057        kfree(ls->ls_recover_submit);
1058        kfree(ls->ls_recover_result);
1059        ls->ls_recover_submit = submit;
1060        ls->ls_recover_result = result;
1061        ls->ls_recover_size = new_size;
1062        spin_unlock(&ls->ls_recover_spin);
1063        return 0;
1064}
1065
1066static void free_recover_size(struct lm_lockstruct *ls)
1067{
1068        kfree(ls->ls_lvb_bits);
1069        kfree(ls->ls_recover_submit);
1070        kfree(ls->ls_recover_result);
1071        ls->ls_recover_submit = NULL;
1072        ls->ls_recover_result = NULL;
1073        ls->ls_recover_size = 0;
1074        ls->ls_lvb_bits = NULL;
1075}
1076
1077/* dlm calls before it does lock recovery */
1078
1079static void gdlm_recover_prep(void *arg)
1080{
1081        struct gfs2_sbd *sdp = arg;
1082        struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1083
1084        spin_lock(&ls->ls_recover_spin);
1085        ls->ls_recover_block = ls->ls_recover_start;
1086        set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1087
1088        if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1089             test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1090                spin_unlock(&ls->ls_recover_spin);
1091                return;
1092        }
1093        set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1094        spin_unlock(&ls->ls_recover_spin);
1095}
1096
1097/* dlm calls after recover_prep has been completed on all lockspace members;
1098   identifies slot/jid of failed member */
1099
1100static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1101{
1102        struct gfs2_sbd *sdp = arg;
1103        struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1104        int jid = slot->slot - 1;
1105
1106        spin_lock(&ls->ls_recover_spin);
1107        if (ls->ls_recover_size < jid + 1) {
1108                fs_err(sdp, "recover_slot jid %d gen %u short size %d\n",
1109                       jid, ls->ls_recover_block, ls->ls_recover_size);
1110                spin_unlock(&ls->ls_recover_spin);
1111                return;
1112        }
1113
1114        if (ls->ls_recover_submit[jid]) {
1115                fs_info(sdp, "recover_slot jid %d gen %u prev %u\n",
1116                        jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1117        }
1118        ls->ls_recover_submit[jid] = ls->ls_recover_block;
1119        spin_unlock(&ls->ls_recover_spin);
1120}
1121
1122/* dlm calls after recover_slot and after it completes lock recovery */
1123
1124static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1125                              int our_slot, uint32_t generation)
1126{
1127        struct gfs2_sbd *sdp = arg;
1128        struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1129
1130        /* ensure the ls jid arrays are large enough */
1131        set_recover_size(sdp, slots, num_slots);
1132
1133        spin_lock(&ls->ls_recover_spin);
1134        ls->ls_recover_start = generation;
1135
1136        if (!ls->ls_recover_mount) {
1137                ls->ls_recover_mount = generation;
1138                ls->ls_jid = our_slot - 1;
1139        }
1140
1141        if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1142                queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1143
1144        clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1145        smp_mb__after_atomic();
1146        wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1147        spin_unlock(&ls->ls_recover_spin);
1148}
1149
1150/* gfs2_recover thread has a journal recovery result */
1151
1152static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1153                                 unsigned int result)
1154{
1155        struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1156
1157        if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1158                return;
1159
1160        /* don't care about the recovery of own journal during mount */
1161        if (jid == ls->ls_jid)
1162                return;
1163
1164        spin_lock(&ls->ls_recover_spin);
1165        if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1166                spin_unlock(&ls->ls_recover_spin);
1167                return;
1168        }
1169        if (ls->ls_recover_size < jid + 1) {
1170                fs_err(sdp, "recovery_result jid %d short size %d\n",
1171                       jid, ls->ls_recover_size);
1172                spin_unlock(&ls->ls_recover_spin);
1173                return;
1174        }
1175
1176        fs_info(sdp, "recover jid %d result %s\n", jid,
1177                result == LM_RD_GAVEUP ? "busy" : "success");
1178
1179        ls->ls_recover_result[jid] = result;
1180
1181        /* GAVEUP means another node is recovering the journal; delay our
1182           next attempt to recover it, to give the other node a chance to
1183           finish before trying again */
1184
1185        if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1186                queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1187                                   result == LM_RD_GAVEUP ? HZ : 0);
1188        spin_unlock(&ls->ls_recover_spin);
1189}
1190
1191static const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1192        .recover_prep = gdlm_recover_prep,
1193        .recover_slot = gdlm_recover_slot,
1194        .recover_done = gdlm_recover_done,
1195};
1196
1197static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1198{
1199        struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1200        char cluster[GFS2_LOCKNAME_LEN];
1201        const char *fsname;
1202        uint32_t flags;
1203        int error, ops_result;
1204
1205        /*
1206         * initialize everything
1207         */
1208
1209        INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1210        spin_lock_init(&ls->ls_recover_spin);
1211        ls->ls_recover_flags = 0;
1212        ls->ls_recover_mount = 0;
1213        ls->ls_recover_start = 0;
1214        ls->ls_recover_block = 0;
1215        ls->ls_recover_size = 0;
1216        ls->ls_recover_submit = NULL;
1217        ls->ls_recover_result = NULL;
1218        ls->ls_lvb_bits = NULL;
1219
1220        error = set_recover_size(sdp, NULL, 0);
1221        if (error)
1222                goto fail;
1223
1224        /*
1225         * prepare dlm_new_lockspace args
1226         */
1227
1228        fsname = strchr(table, ':');
1229        if (!fsname) {
1230                fs_info(sdp, "no fsname found\n");
1231                error = -EINVAL;
1232                goto fail_free;
1233        }
1234        memset(cluster, 0, sizeof(cluster));
1235        memcpy(cluster, table, strlen(table) - strlen(fsname));
1236        fsname++;
1237
1238        flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL;
1239
1240        /*
1241         * create/join lockspace
1242         */
1243
1244        error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1245                                  &gdlm_lockspace_ops, sdp, &ops_result,
1246                                  &ls->ls_dlm);
1247        if (error) {
1248                fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1249                goto fail_free;
1250        }
1251
1252        if (ops_result < 0) {
1253                /*
1254                 * dlm does not support ops callbacks,
1255                 * old dlm_controld/gfs_controld are used, try without ops.
1256                 */
1257                fs_info(sdp, "dlm lockspace ops not used\n");
1258                free_recover_size(ls);
1259                set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1260                return 0;
1261        }
1262
1263        if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1264                fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1265                error = -EINVAL;
1266                goto fail_release;
1267        }
1268
1269        /*
1270         * control_mount() uses control_lock to determine first mounter,
1271         * and for later mounts, waits for any recoveries to be cleared.
1272         */
1273
1274        error = control_mount(sdp);
1275        if (error) {
1276                fs_err(sdp, "mount control error %d\n", error);
1277                goto fail_release;
1278        }
1279
1280        ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1281        clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1282        smp_mb__after_atomic();
1283        wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1284        return 0;
1285
1286fail_release:
1287        dlm_release_lockspace(ls->ls_dlm, 2);
1288fail_free:
1289        free_recover_size(ls);
1290fail:
1291        return error;
1292}
1293
1294static void gdlm_first_done(struct gfs2_sbd *sdp)
1295{
1296        struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1297        int error;
1298
1299        if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1300                return;
1301
1302        error = control_first_done(sdp);
1303        if (error)
1304                fs_err(sdp, "mount first_done error %d\n", error);
1305}
1306
1307static void gdlm_unmount(struct gfs2_sbd *sdp)
1308{
1309        struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1310
1311        if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1312                goto release;
1313
1314        /* wait for gfs2_control_wq to be done with this mount */
1315
1316        spin_lock(&ls->ls_recover_spin);
1317        set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1318        spin_unlock(&ls->ls_recover_spin);
1319        flush_delayed_work(&sdp->sd_control_work);
1320
1321        /* mounted_lock and control_lock will be purged in dlm recovery */
1322release:
1323        if (ls->ls_dlm) {
1324                dlm_release_lockspace(ls->ls_dlm, 2);
1325                ls->ls_dlm = NULL;
1326        }
1327
1328        free_recover_size(ls);
1329}
1330
1331static const match_table_t dlm_tokens = {
1332        { Opt_jid, "jid=%d"},
1333        { Opt_id, "id=%d"},
1334        { Opt_first, "first=%d"},
1335        { Opt_nodir, "nodir=%d"},
1336        { Opt_err, NULL },
1337};
1338
1339const struct lm_lockops gfs2_dlm_ops = {
1340        .lm_proto_name = "lock_dlm",
1341        .lm_mount = gdlm_mount,
1342        .lm_first_done = gdlm_first_done,
1343        .lm_recovery_result = gdlm_recovery_result,
1344        .lm_unmount = gdlm_unmount,
1345        .lm_put_lock = gdlm_put_lock,
1346        .lm_lock = gdlm_lock,
1347        .lm_cancel = gdlm_cancel,
1348        .lm_tokens = &dlm_tokens,
1349};
1350
1351