linux/fs/namei.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/namei.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8/*
   9 * Some corrections by tytso.
  10 */
  11
  12/* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
  13 * lookup logic.
  14 */
  15/* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
  16 */
  17
  18#include <linux/init.h>
  19#include <linux/export.h>
  20#include <linux/kernel.h>
  21#include <linux/slab.h>
  22#include <linux/fs.h>
  23#include <linux/namei.h>
  24#include <linux/pagemap.h>
  25#include <linux/fsnotify.h>
  26#include <linux/personality.h>
  27#include <linux/security.h>
  28#include <linux/ima.h>
  29#include <linux/syscalls.h>
  30#include <linux/mount.h>
  31#include <linux/audit.h>
  32#include <linux/capability.h>
  33#include <linux/file.h>
  34#include <linux/fcntl.h>
  35#include <linux/device_cgroup.h>
  36#include <linux/fs_struct.h>
  37#include <linux/posix_acl.h>
  38#include <linux/hash.h>
  39#include <linux/bitops.h>
  40#include <linux/init_task.h>
  41#include <linux/uaccess.h>
  42#include <linux/build_bug.h>
  43
  44#include "internal.h"
  45#include "mount.h"
  46
  47/* [Feb-1997 T. Schoebel-Theuer]
  48 * Fundamental changes in the pathname lookup mechanisms (namei)
  49 * were necessary because of omirr.  The reason is that omirr needs
  50 * to know the _real_ pathname, not the user-supplied one, in case
  51 * of symlinks (and also when transname replacements occur).
  52 *
  53 * The new code replaces the old recursive symlink resolution with
  54 * an iterative one (in case of non-nested symlink chains).  It does
  55 * this with calls to <fs>_follow_link().
  56 * As a side effect, dir_namei(), _namei() and follow_link() are now 
  57 * replaced with a single function lookup_dentry() that can handle all 
  58 * the special cases of the former code.
  59 *
  60 * With the new dcache, the pathname is stored at each inode, at least as
  61 * long as the refcount of the inode is positive.  As a side effect, the
  62 * size of the dcache depends on the inode cache and thus is dynamic.
  63 *
  64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
  65 * resolution to correspond with current state of the code.
  66 *
  67 * Note that the symlink resolution is not *completely* iterative.
  68 * There is still a significant amount of tail- and mid- recursion in
  69 * the algorithm.  Also, note that <fs>_readlink() is not used in
  70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
  71 * may return different results than <fs>_follow_link().  Many virtual
  72 * filesystems (including /proc) exhibit this behavior.
  73 */
  74
  75/* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
  76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
  77 * and the name already exists in form of a symlink, try to create the new
  78 * name indicated by the symlink. The old code always complained that the
  79 * name already exists, due to not following the symlink even if its target
  80 * is nonexistent.  The new semantics affects also mknod() and link() when
  81 * the name is a symlink pointing to a non-existent name.
  82 *
  83 * I don't know which semantics is the right one, since I have no access
  84 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
  85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
  86 * "old" one. Personally, I think the new semantics is much more logical.
  87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
  88 * file does succeed in both HP-UX and SunOs, but not in Solaris
  89 * and in the old Linux semantics.
  90 */
  91
  92/* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
  93 * semantics.  See the comments in "open_namei" and "do_link" below.
  94 *
  95 * [10-Sep-98 Alan Modra] Another symlink change.
  96 */
  97
  98/* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
  99 *      inside the path - always follow.
 100 *      in the last component in creation/removal/renaming - never follow.
 101 *      if LOOKUP_FOLLOW passed - follow.
 102 *      if the pathname has trailing slashes - follow.
 103 *      otherwise - don't follow.
 104 * (applied in that order).
 105 *
 106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
 107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
 108 * During the 2.4 we need to fix the userland stuff depending on it -
 109 * hopefully we will be able to get rid of that wart in 2.5. So far only
 110 * XEmacs seems to be relying on it...
 111 */
 112/*
 113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
 114 * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
 115 * any extra contention...
 116 */
 117
 118/* In order to reduce some races, while at the same time doing additional
 119 * checking and hopefully speeding things up, we copy filenames to the
 120 * kernel data space before using them..
 121 *
 122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
 123 * PATH_MAX includes the nul terminator --RR.
 124 */
 125
 126#define EMBEDDED_NAME_MAX       (PATH_MAX - offsetof(struct filename, iname))
 127
 128struct filename *
 129getname_flags(const char __user *filename, int flags, int *empty)
 130{
 131        struct filename *result;
 132        char *kname;
 133        int len;
 134        BUILD_BUG_ON(offsetof(struct filename, iname) % sizeof(long) != 0);
 135
 136        result = audit_reusename(filename);
 137        if (result)
 138                return result;
 139
 140        result = __getname();
 141        if (unlikely(!result))
 142                return ERR_PTR(-ENOMEM);
 143
 144        /*
 145         * First, try to embed the struct filename inside the names_cache
 146         * allocation
 147         */
 148        kname = (char *)result->iname;
 149        result->name = kname;
 150
 151        len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
 152        if (unlikely(len < 0)) {
 153                __putname(result);
 154                return ERR_PTR(len);
 155        }
 156
 157        /*
 158         * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
 159         * separate struct filename so we can dedicate the entire
 160         * names_cache allocation for the pathname, and re-do the copy from
 161         * userland.
 162         */
 163        if (unlikely(len == EMBEDDED_NAME_MAX)) {
 164                const size_t size = offsetof(struct filename, iname[1]);
 165                kname = (char *)result;
 166
 167                /*
 168                 * size is chosen that way we to guarantee that
 169                 * result->iname[0] is within the same object and that
 170                 * kname can't be equal to result->iname, no matter what.
 171                 */
 172                result = kzalloc(size, GFP_KERNEL);
 173                if (unlikely(!result)) {
 174                        __putname(kname);
 175                        return ERR_PTR(-ENOMEM);
 176                }
 177                result->name = kname;
 178                len = strncpy_from_user(kname, filename, PATH_MAX);
 179                if (unlikely(len < 0)) {
 180                        __putname(kname);
 181                        kfree(result);
 182                        return ERR_PTR(len);
 183                }
 184                if (unlikely(len == PATH_MAX)) {
 185                        __putname(kname);
 186                        kfree(result);
 187                        return ERR_PTR(-ENAMETOOLONG);
 188                }
 189        }
 190
 191        result->refcnt = 1;
 192        /* The empty path is special. */
 193        if (unlikely(!len)) {
 194                if (empty)
 195                        *empty = 1;
 196                if (!(flags & LOOKUP_EMPTY)) {
 197                        putname(result);
 198                        return ERR_PTR(-ENOENT);
 199                }
 200        }
 201
 202        result->uptr = filename;
 203        result->aname = NULL;
 204        audit_getname(result);
 205        return result;
 206}
 207
 208struct filename *
 209getname(const char __user * filename)
 210{
 211        return getname_flags(filename, 0, NULL);
 212}
 213
 214struct filename *
 215getname_kernel(const char * filename)
 216{
 217        struct filename *result;
 218        int len = strlen(filename) + 1;
 219
 220        result = __getname();
 221        if (unlikely(!result))
 222                return ERR_PTR(-ENOMEM);
 223
 224        if (len <= EMBEDDED_NAME_MAX) {
 225                result->name = (char *)result->iname;
 226        } else if (len <= PATH_MAX) {
 227                const size_t size = offsetof(struct filename, iname[1]);
 228                struct filename *tmp;
 229
 230                tmp = kmalloc(size, GFP_KERNEL);
 231                if (unlikely(!tmp)) {
 232                        __putname(result);
 233                        return ERR_PTR(-ENOMEM);
 234                }
 235                tmp->name = (char *)result;
 236                result = tmp;
 237        } else {
 238                __putname(result);
 239                return ERR_PTR(-ENAMETOOLONG);
 240        }
 241        memcpy((char *)result->name, filename, len);
 242        result->uptr = NULL;
 243        result->aname = NULL;
 244        result->refcnt = 1;
 245        audit_getname(result);
 246
 247        return result;
 248}
 249
 250void putname(struct filename *name)
 251{
 252        BUG_ON(name->refcnt <= 0);
 253
 254        if (--name->refcnt > 0)
 255                return;
 256
 257        if (name->name != name->iname) {
 258                __putname(name->name);
 259                kfree(name);
 260        } else
 261                __putname(name);
 262}
 263
 264static int check_acl(struct inode *inode, int mask)
 265{
 266#ifdef CONFIG_FS_POSIX_ACL
 267        struct posix_acl *acl;
 268
 269        if (mask & MAY_NOT_BLOCK) {
 270                acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
 271                if (!acl)
 272                        return -EAGAIN;
 273                /* no ->get_acl() calls in RCU mode... */
 274                if (is_uncached_acl(acl))
 275                        return -ECHILD;
 276                return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
 277        }
 278
 279        acl = get_acl(inode, ACL_TYPE_ACCESS);
 280        if (IS_ERR(acl))
 281                return PTR_ERR(acl);
 282        if (acl) {
 283                int error = posix_acl_permission(inode, acl, mask);
 284                posix_acl_release(acl);
 285                return error;
 286        }
 287#endif
 288
 289        return -EAGAIN;
 290}
 291
 292/*
 293 * This does the basic permission checking
 294 */
 295static int acl_permission_check(struct inode *inode, int mask)
 296{
 297        unsigned int mode = inode->i_mode;
 298
 299        if (likely(uid_eq(current_fsuid(), inode->i_uid)))
 300                mode >>= 6;
 301        else {
 302                if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
 303                        int error = check_acl(inode, mask);
 304                        if (error != -EAGAIN)
 305                                return error;
 306                }
 307
 308                if (in_group_p(inode->i_gid))
 309                        mode >>= 3;
 310        }
 311
 312        /*
 313         * If the DACs are ok we don't need any capability check.
 314         */
 315        if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
 316                return 0;
 317        return -EACCES;
 318}
 319
 320/**
 321 * generic_permission -  check for access rights on a Posix-like filesystem
 322 * @inode:      inode to check access rights for
 323 * @mask:       right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
 324 *
 325 * Used to check for read/write/execute permissions on a file.
 326 * We use "fsuid" for this, letting us set arbitrary permissions
 327 * for filesystem access without changing the "normal" uids which
 328 * are used for other things.
 329 *
 330 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
 331 * request cannot be satisfied (eg. requires blocking or too much complexity).
 332 * It would then be called again in ref-walk mode.
 333 */
 334int generic_permission(struct inode *inode, int mask)
 335{
 336        int ret;
 337
 338        /*
 339         * Do the basic permission checks.
 340         */
 341        ret = acl_permission_check(inode, mask);
 342        if (ret != -EACCES)
 343                return ret;
 344
 345        if (S_ISDIR(inode->i_mode)) {
 346                /* DACs are overridable for directories */
 347                if (!(mask & MAY_WRITE))
 348                        if (capable_wrt_inode_uidgid(inode,
 349                                                     CAP_DAC_READ_SEARCH))
 350                                return 0;
 351                if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
 352                        return 0;
 353                return -EACCES;
 354        }
 355
 356        /*
 357         * Searching includes executable on directories, else just read.
 358         */
 359        mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
 360        if (mask == MAY_READ)
 361                if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
 362                        return 0;
 363        /*
 364         * Read/write DACs are always overridable.
 365         * Executable DACs are overridable when there is
 366         * at least one exec bit set.
 367         */
 368        if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
 369                if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
 370                        return 0;
 371
 372        return -EACCES;
 373}
 374EXPORT_SYMBOL(generic_permission);
 375
 376/*
 377 * We _really_ want to just do "generic_permission()" without
 378 * even looking at the inode->i_op values. So we keep a cache
 379 * flag in inode->i_opflags, that says "this has not special
 380 * permission function, use the fast case".
 381 */
 382static inline int do_inode_permission(struct inode *inode, int mask)
 383{
 384        if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
 385                if (likely(inode->i_op->permission))
 386                        return inode->i_op->permission(inode, mask);
 387
 388                /* This gets set once for the inode lifetime */
 389                spin_lock(&inode->i_lock);
 390                inode->i_opflags |= IOP_FASTPERM;
 391                spin_unlock(&inode->i_lock);
 392        }
 393        return generic_permission(inode, mask);
 394}
 395
 396/**
 397 * sb_permission - Check superblock-level permissions
 398 * @sb: Superblock of inode to check permission on
 399 * @inode: Inode to check permission on
 400 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 401 *
 402 * Separate out file-system wide checks from inode-specific permission checks.
 403 */
 404static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
 405{
 406        if (unlikely(mask & MAY_WRITE)) {
 407                umode_t mode = inode->i_mode;
 408
 409                /* Nobody gets write access to a read-only fs. */
 410                if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
 411                        return -EROFS;
 412        }
 413        return 0;
 414}
 415
 416/**
 417 * inode_permission - Check for access rights to a given inode
 418 * @inode: Inode to check permission on
 419 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 420 *
 421 * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
 422 * this, letting us set arbitrary permissions for filesystem access without
 423 * changing the "normal" UIDs which are used for other things.
 424 *
 425 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
 426 */
 427int inode_permission(struct inode *inode, int mask)
 428{
 429        int retval;
 430
 431        retval = sb_permission(inode->i_sb, inode, mask);
 432        if (retval)
 433                return retval;
 434
 435        if (unlikely(mask & MAY_WRITE)) {
 436                /*
 437                 * Nobody gets write access to an immutable file.
 438                 */
 439                if (IS_IMMUTABLE(inode))
 440                        return -EPERM;
 441
 442                /*
 443                 * Updating mtime will likely cause i_uid and i_gid to be
 444                 * written back improperly if their true value is unknown
 445                 * to the vfs.
 446                 */
 447                if (HAS_UNMAPPED_ID(inode))
 448                        return -EACCES;
 449        }
 450
 451        retval = do_inode_permission(inode, mask);
 452        if (retval)
 453                return retval;
 454
 455        retval = devcgroup_inode_permission(inode, mask);
 456        if (retval)
 457                return retval;
 458
 459        return security_inode_permission(inode, mask);
 460}
 461EXPORT_SYMBOL(inode_permission);
 462
 463/**
 464 * path_get - get a reference to a path
 465 * @path: path to get the reference to
 466 *
 467 * Given a path increment the reference count to the dentry and the vfsmount.
 468 */
 469void path_get(const struct path *path)
 470{
 471        mntget(path->mnt);
 472        dget(path->dentry);
 473}
 474EXPORT_SYMBOL(path_get);
 475
 476/**
 477 * path_put - put a reference to a path
 478 * @path: path to put the reference to
 479 *
 480 * Given a path decrement the reference count to the dentry and the vfsmount.
 481 */
 482void path_put(const struct path *path)
 483{
 484        dput(path->dentry);
 485        mntput(path->mnt);
 486}
 487EXPORT_SYMBOL(path_put);
 488
 489#define EMBEDDED_LEVELS 2
 490struct nameidata {
 491        struct path     path;
 492        struct qstr     last;
 493        struct path     root;
 494        struct inode    *inode; /* path.dentry.d_inode */
 495        unsigned int    flags;
 496        unsigned        seq, m_seq;
 497        int             last_type;
 498        unsigned        depth;
 499        int             total_link_count;
 500        struct saved {
 501                struct path link;
 502                struct delayed_call done;
 503                const char *name;
 504                unsigned seq;
 505        } *stack, internal[EMBEDDED_LEVELS];
 506        struct filename *name;
 507        struct nameidata *saved;
 508        struct inode    *link_inode;
 509        unsigned        root_seq;
 510        int             dfd;
 511} __randomize_layout;
 512
 513static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
 514{
 515        struct nameidata *old = current->nameidata;
 516        p->stack = p->internal;
 517        p->dfd = dfd;
 518        p->name = name;
 519        p->total_link_count = old ? old->total_link_count : 0;
 520        p->saved = old;
 521        current->nameidata = p;
 522}
 523
 524static void restore_nameidata(void)
 525{
 526        struct nameidata *now = current->nameidata, *old = now->saved;
 527
 528        current->nameidata = old;
 529        if (old)
 530                old->total_link_count = now->total_link_count;
 531        if (now->stack != now->internal)
 532                kfree(now->stack);
 533}
 534
 535static int __nd_alloc_stack(struct nameidata *nd)
 536{
 537        struct saved *p;
 538
 539        if (nd->flags & LOOKUP_RCU) {
 540                p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
 541                                  GFP_ATOMIC);
 542                if (unlikely(!p))
 543                        return -ECHILD;
 544        } else {
 545                p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
 546                                  GFP_KERNEL);
 547                if (unlikely(!p))
 548                        return -ENOMEM;
 549        }
 550        memcpy(p, nd->internal, sizeof(nd->internal));
 551        nd->stack = p;
 552        return 0;
 553}
 554
 555/**
 556 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
 557 * @path: nameidate to verify
 558 *
 559 * Rename can sometimes move a file or directory outside of a bind
 560 * mount, path_connected allows those cases to be detected.
 561 */
 562static bool path_connected(const struct path *path)
 563{
 564        struct vfsmount *mnt = path->mnt;
 565        struct super_block *sb = mnt->mnt_sb;
 566
 567        /* Bind mounts and multi-root filesystems can have disconnected paths */
 568        if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
 569                return true;
 570
 571        return is_subdir(path->dentry, mnt->mnt_root);
 572}
 573
 574static inline int nd_alloc_stack(struct nameidata *nd)
 575{
 576        if (likely(nd->depth != EMBEDDED_LEVELS))
 577                return 0;
 578        if (likely(nd->stack != nd->internal))
 579                return 0;
 580        return __nd_alloc_stack(nd);
 581}
 582
 583static void drop_links(struct nameidata *nd)
 584{
 585        int i = nd->depth;
 586        while (i--) {
 587                struct saved *last = nd->stack + i;
 588                do_delayed_call(&last->done);
 589                clear_delayed_call(&last->done);
 590        }
 591}
 592
 593static void terminate_walk(struct nameidata *nd)
 594{
 595        drop_links(nd);
 596        if (!(nd->flags & LOOKUP_RCU)) {
 597                int i;
 598                path_put(&nd->path);
 599                for (i = 0; i < nd->depth; i++)
 600                        path_put(&nd->stack[i].link);
 601                if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
 602                        path_put(&nd->root);
 603                        nd->root.mnt = NULL;
 604                }
 605        } else {
 606                nd->flags &= ~LOOKUP_RCU;
 607                if (!(nd->flags & LOOKUP_ROOT))
 608                        nd->root.mnt = NULL;
 609                rcu_read_unlock();
 610        }
 611        nd->depth = 0;
 612}
 613
 614/* path_put is needed afterwards regardless of success or failure */
 615static bool legitimize_path(struct nameidata *nd,
 616                            struct path *path, unsigned seq)
 617{
 618        int res = __legitimize_mnt(path->mnt, nd->m_seq);
 619        if (unlikely(res)) {
 620                if (res > 0)
 621                        path->mnt = NULL;
 622                path->dentry = NULL;
 623                return false;
 624        }
 625        if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
 626                path->dentry = NULL;
 627                return false;
 628        }
 629        return !read_seqcount_retry(&path->dentry->d_seq, seq);
 630}
 631
 632static bool legitimize_links(struct nameidata *nd)
 633{
 634        int i;
 635        for (i = 0; i < nd->depth; i++) {
 636                struct saved *last = nd->stack + i;
 637                if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
 638                        drop_links(nd);
 639                        nd->depth = i + 1;
 640                        return false;
 641                }
 642        }
 643        return true;
 644}
 645
 646/*
 647 * Path walking has 2 modes, rcu-walk and ref-walk (see
 648 * Documentation/filesystems/path-lookup.txt).  In situations when we can't
 649 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
 650 * normal reference counts on dentries and vfsmounts to transition to ref-walk
 651 * mode.  Refcounts are grabbed at the last known good point before rcu-walk
 652 * got stuck, so ref-walk may continue from there. If this is not successful
 653 * (eg. a seqcount has changed), then failure is returned and it's up to caller
 654 * to restart the path walk from the beginning in ref-walk mode.
 655 */
 656
 657/**
 658 * unlazy_walk - try to switch to ref-walk mode.
 659 * @nd: nameidata pathwalk data
 660 * Returns: 0 on success, -ECHILD on failure
 661 *
 662 * unlazy_walk attempts to legitimize the current nd->path and nd->root
 663 * for ref-walk mode.
 664 * Must be called from rcu-walk context.
 665 * Nothing should touch nameidata between unlazy_walk() failure and
 666 * terminate_walk().
 667 */
 668static int unlazy_walk(struct nameidata *nd)
 669{
 670        struct dentry *parent = nd->path.dentry;
 671
 672        BUG_ON(!(nd->flags & LOOKUP_RCU));
 673
 674        nd->flags &= ~LOOKUP_RCU;
 675        if (unlikely(!legitimize_links(nd)))
 676                goto out2;
 677        if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
 678                goto out1;
 679        if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
 680                if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq)))
 681                        goto out;
 682        }
 683        rcu_read_unlock();
 684        BUG_ON(nd->inode != parent->d_inode);
 685        return 0;
 686
 687out2:
 688        nd->path.mnt = NULL;
 689        nd->path.dentry = NULL;
 690out1:
 691        if (!(nd->flags & LOOKUP_ROOT))
 692                nd->root.mnt = NULL;
 693out:
 694        rcu_read_unlock();
 695        return -ECHILD;
 696}
 697
 698/**
 699 * unlazy_child - try to switch to ref-walk mode.
 700 * @nd: nameidata pathwalk data
 701 * @dentry: child of nd->path.dentry
 702 * @seq: seq number to check dentry against
 703 * Returns: 0 on success, -ECHILD on failure
 704 *
 705 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
 706 * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
 707 * @nd.  Must be called from rcu-walk context.
 708 * Nothing should touch nameidata between unlazy_child() failure and
 709 * terminate_walk().
 710 */
 711static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
 712{
 713        BUG_ON(!(nd->flags & LOOKUP_RCU));
 714
 715        nd->flags &= ~LOOKUP_RCU;
 716        if (unlikely(!legitimize_links(nd)))
 717                goto out2;
 718        if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
 719                goto out2;
 720        if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
 721                goto out1;
 722
 723        /*
 724         * We need to move both the parent and the dentry from the RCU domain
 725         * to be properly refcounted. And the sequence number in the dentry
 726         * validates *both* dentry counters, since we checked the sequence
 727         * number of the parent after we got the child sequence number. So we
 728         * know the parent must still be valid if the child sequence number is
 729         */
 730        if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
 731                goto out;
 732        if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) {
 733                rcu_read_unlock();
 734                dput(dentry);
 735                goto drop_root_mnt;
 736        }
 737        /*
 738         * Sequence counts matched. Now make sure that the root is
 739         * still valid and get it if required.
 740         */
 741        if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
 742                if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
 743                        rcu_read_unlock();
 744                        dput(dentry);
 745                        return -ECHILD;
 746                }
 747        }
 748
 749        rcu_read_unlock();
 750        return 0;
 751
 752out2:
 753        nd->path.mnt = NULL;
 754out1:
 755        nd->path.dentry = NULL;
 756out:
 757        rcu_read_unlock();
 758drop_root_mnt:
 759        if (!(nd->flags & LOOKUP_ROOT))
 760                nd->root.mnt = NULL;
 761        return -ECHILD;
 762}
 763
 764static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
 765{
 766        if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
 767                return dentry->d_op->d_revalidate(dentry, flags);
 768        else
 769                return 1;
 770}
 771
 772/**
 773 * complete_walk - successful completion of path walk
 774 * @nd:  pointer nameidata
 775 *
 776 * If we had been in RCU mode, drop out of it and legitimize nd->path.
 777 * Revalidate the final result, unless we'd already done that during
 778 * the path walk or the filesystem doesn't ask for it.  Return 0 on
 779 * success, -error on failure.  In case of failure caller does not
 780 * need to drop nd->path.
 781 */
 782static int complete_walk(struct nameidata *nd)
 783{
 784        struct dentry *dentry = nd->path.dentry;
 785        int status;
 786
 787        if (nd->flags & LOOKUP_RCU) {
 788                if (!(nd->flags & LOOKUP_ROOT))
 789                        nd->root.mnt = NULL;
 790                if (unlikely(unlazy_walk(nd)))
 791                        return -ECHILD;
 792        }
 793
 794        if (likely(!(nd->flags & LOOKUP_JUMPED)))
 795                return 0;
 796
 797        if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
 798                return 0;
 799
 800        status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
 801        if (status > 0)
 802                return 0;
 803
 804        if (!status)
 805                status = -ESTALE;
 806
 807        return status;
 808}
 809
 810static void set_root(struct nameidata *nd)
 811{
 812        struct fs_struct *fs = current->fs;
 813
 814        if (nd->flags & LOOKUP_RCU) {
 815                unsigned seq;
 816
 817                do {
 818                        seq = read_seqcount_begin(&fs->seq);
 819                        nd->root = fs->root;
 820                        nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
 821                } while (read_seqcount_retry(&fs->seq, seq));
 822        } else {
 823                get_fs_root(fs, &nd->root);
 824        }
 825}
 826
 827static void path_put_conditional(struct path *path, struct nameidata *nd)
 828{
 829        dput(path->dentry);
 830        if (path->mnt != nd->path.mnt)
 831                mntput(path->mnt);
 832}
 833
 834static inline void path_to_nameidata(const struct path *path,
 835                                        struct nameidata *nd)
 836{
 837        if (!(nd->flags & LOOKUP_RCU)) {
 838                dput(nd->path.dentry);
 839                if (nd->path.mnt != path->mnt)
 840                        mntput(nd->path.mnt);
 841        }
 842        nd->path.mnt = path->mnt;
 843        nd->path.dentry = path->dentry;
 844}
 845
 846static int nd_jump_root(struct nameidata *nd)
 847{
 848        if (nd->flags & LOOKUP_RCU) {
 849                struct dentry *d;
 850                nd->path = nd->root;
 851                d = nd->path.dentry;
 852                nd->inode = d->d_inode;
 853                nd->seq = nd->root_seq;
 854                if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
 855                        return -ECHILD;
 856        } else {
 857                path_put(&nd->path);
 858                nd->path = nd->root;
 859                path_get(&nd->path);
 860                nd->inode = nd->path.dentry->d_inode;
 861        }
 862        nd->flags |= LOOKUP_JUMPED;
 863        return 0;
 864}
 865
 866/*
 867 * Helper to directly jump to a known parsed path from ->get_link,
 868 * caller must have taken a reference to path beforehand.
 869 */
 870void nd_jump_link(struct path *path)
 871{
 872        struct nameidata *nd = current->nameidata;
 873        path_put(&nd->path);
 874
 875        nd->path = *path;
 876        nd->inode = nd->path.dentry->d_inode;
 877        nd->flags |= LOOKUP_JUMPED;
 878}
 879
 880static inline void put_link(struct nameidata *nd)
 881{
 882        struct saved *last = nd->stack + --nd->depth;
 883        do_delayed_call(&last->done);
 884        if (!(nd->flags & LOOKUP_RCU))
 885                path_put(&last->link);
 886}
 887
 888int sysctl_protected_symlinks __read_mostly = 0;
 889int sysctl_protected_hardlinks __read_mostly = 0;
 890
 891/**
 892 * may_follow_link - Check symlink following for unsafe situations
 893 * @nd: nameidata pathwalk data
 894 *
 895 * In the case of the sysctl_protected_symlinks sysctl being enabled,
 896 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
 897 * in a sticky world-writable directory. This is to protect privileged
 898 * processes from failing races against path names that may change out
 899 * from under them by way of other users creating malicious symlinks.
 900 * It will permit symlinks to be followed only when outside a sticky
 901 * world-writable directory, or when the uid of the symlink and follower
 902 * match, or when the directory owner matches the symlink's owner.
 903 *
 904 * Returns 0 if following the symlink is allowed, -ve on error.
 905 */
 906static inline int may_follow_link(struct nameidata *nd)
 907{
 908        const struct inode *inode;
 909        const struct inode *parent;
 910        kuid_t puid;
 911
 912        if (!sysctl_protected_symlinks)
 913                return 0;
 914
 915        /* Allowed if owner and follower match. */
 916        inode = nd->link_inode;
 917        if (uid_eq(current_cred()->fsuid, inode->i_uid))
 918                return 0;
 919
 920        /* Allowed if parent directory not sticky and world-writable. */
 921        parent = nd->inode;
 922        if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
 923                return 0;
 924
 925        /* Allowed if parent directory and link owner match. */
 926        puid = parent->i_uid;
 927        if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
 928                return 0;
 929
 930        if (nd->flags & LOOKUP_RCU)
 931                return -ECHILD;
 932
 933        audit_inode(nd->name, nd->stack[0].link.dentry, 0);
 934        audit_log_link_denied("follow_link");
 935        return -EACCES;
 936}
 937
 938/**
 939 * safe_hardlink_source - Check for safe hardlink conditions
 940 * @inode: the source inode to hardlink from
 941 *
 942 * Return false if at least one of the following conditions:
 943 *    - inode is not a regular file
 944 *    - inode is setuid
 945 *    - inode is setgid and group-exec
 946 *    - access failure for read and write
 947 *
 948 * Otherwise returns true.
 949 */
 950static bool safe_hardlink_source(struct inode *inode)
 951{
 952        umode_t mode = inode->i_mode;
 953
 954        /* Special files should not get pinned to the filesystem. */
 955        if (!S_ISREG(mode))
 956                return false;
 957
 958        /* Setuid files should not get pinned to the filesystem. */
 959        if (mode & S_ISUID)
 960                return false;
 961
 962        /* Executable setgid files should not get pinned to the filesystem. */
 963        if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
 964                return false;
 965
 966        /* Hardlinking to unreadable or unwritable sources is dangerous. */
 967        if (inode_permission(inode, MAY_READ | MAY_WRITE))
 968                return false;
 969
 970        return true;
 971}
 972
 973/**
 974 * may_linkat - Check permissions for creating a hardlink
 975 * @link: the source to hardlink from
 976 *
 977 * Block hardlink when all of:
 978 *  - sysctl_protected_hardlinks enabled
 979 *  - fsuid does not match inode
 980 *  - hardlink source is unsafe (see safe_hardlink_source() above)
 981 *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
 982 *
 983 * Returns 0 if successful, -ve on error.
 984 */
 985static int may_linkat(struct path *link)
 986{
 987        struct inode *inode = link->dentry->d_inode;
 988
 989        /* Inode writeback is not safe when the uid or gid are invalid. */
 990        if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
 991                return -EOVERFLOW;
 992
 993        if (!sysctl_protected_hardlinks)
 994                return 0;
 995
 996        /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
 997         * otherwise, it must be a safe source.
 998         */
 999        if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1000                return 0;
1001
1002        audit_log_link_denied("linkat");
1003        return -EPERM;
1004}
1005
1006static __always_inline
1007const char *get_link(struct nameidata *nd)
1008{
1009        struct saved *last = nd->stack + nd->depth - 1;
1010        struct dentry *dentry = last->link.dentry;
1011        struct inode *inode = nd->link_inode;
1012        int error;
1013        const char *res;
1014
1015        if (!(nd->flags & LOOKUP_RCU)) {
1016                touch_atime(&last->link);
1017                cond_resched();
1018        } else if (atime_needs_update(&last->link, inode)) {
1019                if (unlikely(unlazy_walk(nd)))
1020                        return ERR_PTR(-ECHILD);
1021                touch_atime(&last->link);
1022        }
1023
1024        error = security_inode_follow_link(dentry, inode,
1025                                           nd->flags & LOOKUP_RCU);
1026        if (unlikely(error))
1027                return ERR_PTR(error);
1028
1029        nd->last_type = LAST_BIND;
1030        res = inode->i_link;
1031        if (!res) {
1032                const char * (*get)(struct dentry *, struct inode *,
1033                                struct delayed_call *);
1034                get = inode->i_op->get_link;
1035                if (nd->flags & LOOKUP_RCU) {
1036                        res = get(NULL, inode, &last->done);
1037                        if (res == ERR_PTR(-ECHILD)) {
1038                                if (unlikely(unlazy_walk(nd)))
1039                                        return ERR_PTR(-ECHILD);
1040                                res = get(dentry, inode, &last->done);
1041                        }
1042                } else {
1043                        res = get(dentry, inode, &last->done);
1044                }
1045                if (IS_ERR_OR_NULL(res))
1046                        return res;
1047        }
1048        if (*res == '/') {
1049                if (!nd->root.mnt)
1050                        set_root(nd);
1051                if (unlikely(nd_jump_root(nd)))
1052                        return ERR_PTR(-ECHILD);
1053                while (unlikely(*++res == '/'))
1054                        ;
1055        }
1056        if (!*res)
1057                res = NULL;
1058        return res;
1059}
1060
1061/*
1062 * follow_up - Find the mountpoint of path's vfsmount
1063 *
1064 * Given a path, find the mountpoint of its source file system.
1065 * Replace @path with the path of the mountpoint in the parent mount.
1066 * Up is towards /.
1067 *
1068 * Return 1 if we went up a level and 0 if we were already at the
1069 * root.
1070 */
1071int follow_up(struct path *path)
1072{
1073        struct mount *mnt = real_mount(path->mnt);
1074        struct mount *parent;
1075        struct dentry *mountpoint;
1076
1077        read_seqlock_excl(&mount_lock);
1078        parent = mnt->mnt_parent;
1079        if (parent == mnt) {
1080                read_sequnlock_excl(&mount_lock);
1081                return 0;
1082        }
1083        mntget(&parent->mnt);
1084        mountpoint = dget(mnt->mnt_mountpoint);
1085        read_sequnlock_excl(&mount_lock);
1086        dput(path->dentry);
1087        path->dentry = mountpoint;
1088        mntput(path->mnt);
1089        path->mnt = &parent->mnt;
1090        return 1;
1091}
1092EXPORT_SYMBOL(follow_up);
1093
1094/*
1095 * Perform an automount
1096 * - return -EISDIR to tell follow_managed() to stop and return the path we
1097 *   were called with.
1098 */
1099static int follow_automount(struct path *path, struct nameidata *nd,
1100                            bool *need_mntput)
1101{
1102        struct vfsmount *mnt;
1103        int err;
1104
1105        if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1106                return -EREMOTE;
1107
1108        /* We don't want to mount if someone's just doing a stat -
1109         * unless they're stat'ing a directory and appended a '/' to
1110         * the name.
1111         *
1112         * We do, however, want to mount if someone wants to open or
1113         * create a file of any type under the mountpoint, wants to
1114         * traverse through the mountpoint or wants to open the
1115         * mounted directory.  Also, autofs may mark negative dentries
1116         * as being automount points.  These will need the attentions
1117         * of the daemon to instantiate them before they can be used.
1118         */
1119        if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1120                           LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1121            path->dentry->d_inode)
1122                return -EISDIR;
1123
1124        nd->total_link_count++;
1125        if (nd->total_link_count >= 40)
1126                return -ELOOP;
1127
1128        mnt = path->dentry->d_op->d_automount(path);
1129        if (IS_ERR(mnt)) {
1130                /*
1131                 * The filesystem is allowed to return -EISDIR here to indicate
1132                 * it doesn't want to automount.  For instance, autofs would do
1133                 * this so that its userspace daemon can mount on this dentry.
1134                 *
1135                 * However, we can only permit this if it's a terminal point in
1136                 * the path being looked up; if it wasn't then the remainder of
1137                 * the path is inaccessible and we should say so.
1138                 */
1139                if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1140                        return -EREMOTE;
1141                return PTR_ERR(mnt);
1142        }
1143
1144        if (!mnt) /* mount collision */
1145                return 0;
1146
1147        if (!*need_mntput) {
1148                /* lock_mount() may release path->mnt on error */
1149                mntget(path->mnt);
1150                *need_mntput = true;
1151        }
1152        err = finish_automount(mnt, path);
1153
1154        switch (err) {
1155        case -EBUSY:
1156                /* Someone else made a mount here whilst we were busy */
1157                return 0;
1158        case 0:
1159                path_put(path);
1160                path->mnt = mnt;
1161                path->dentry = dget(mnt->mnt_root);
1162                return 0;
1163        default:
1164                return err;
1165        }
1166
1167}
1168
1169/*
1170 * Handle a dentry that is managed in some way.
1171 * - Flagged for transit management (autofs)
1172 * - Flagged as mountpoint
1173 * - Flagged as automount point
1174 *
1175 * This may only be called in refwalk mode.
1176 *
1177 * Serialization is taken care of in namespace.c
1178 */
1179static int follow_managed(struct path *path, struct nameidata *nd)
1180{
1181        struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1182        unsigned managed;
1183        bool need_mntput = false;
1184        int ret = 0;
1185
1186        /* Given that we're not holding a lock here, we retain the value in a
1187         * local variable for each dentry as we look at it so that we don't see
1188         * the components of that value change under us */
1189        while (managed = READ_ONCE(path->dentry->d_flags),
1190               managed &= DCACHE_MANAGED_DENTRY,
1191               unlikely(managed != 0)) {
1192                /* Allow the filesystem to manage the transit without i_mutex
1193                 * being held. */
1194                if (managed & DCACHE_MANAGE_TRANSIT) {
1195                        BUG_ON(!path->dentry->d_op);
1196                        BUG_ON(!path->dentry->d_op->d_manage);
1197                        ret = path->dentry->d_op->d_manage(path, false);
1198                        if (ret < 0)
1199                                break;
1200                }
1201
1202                /* Transit to a mounted filesystem. */
1203                if (managed & DCACHE_MOUNTED) {
1204                        struct vfsmount *mounted = lookup_mnt(path);
1205                        if (mounted) {
1206                                dput(path->dentry);
1207                                if (need_mntput)
1208                                        mntput(path->mnt);
1209                                path->mnt = mounted;
1210                                path->dentry = dget(mounted->mnt_root);
1211                                need_mntput = true;
1212                                continue;
1213                        }
1214
1215                        /* Something is mounted on this dentry in another
1216                         * namespace and/or whatever was mounted there in this
1217                         * namespace got unmounted before lookup_mnt() could
1218                         * get it */
1219                }
1220
1221                /* Handle an automount point */
1222                if (managed & DCACHE_NEED_AUTOMOUNT) {
1223                        ret = follow_automount(path, nd, &need_mntput);
1224                        if (ret < 0)
1225                                break;
1226                        continue;
1227                }
1228
1229                /* We didn't change the current path point */
1230                break;
1231        }
1232
1233        if (need_mntput && path->mnt == mnt)
1234                mntput(path->mnt);
1235        if (ret == -EISDIR || !ret)
1236                ret = 1;
1237        if (need_mntput)
1238                nd->flags |= LOOKUP_JUMPED;
1239        if (unlikely(ret < 0))
1240                path_put_conditional(path, nd);
1241        return ret;
1242}
1243
1244int follow_down_one(struct path *path)
1245{
1246        struct vfsmount *mounted;
1247
1248        mounted = lookup_mnt(path);
1249        if (mounted) {
1250                dput(path->dentry);
1251                mntput(path->mnt);
1252                path->mnt = mounted;
1253                path->dentry = dget(mounted->mnt_root);
1254                return 1;
1255        }
1256        return 0;
1257}
1258EXPORT_SYMBOL(follow_down_one);
1259
1260static inline int managed_dentry_rcu(const struct path *path)
1261{
1262        return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1263                path->dentry->d_op->d_manage(path, true) : 0;
1264}
1265
1266/*
1267 * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1268 * we meet a managed dentry that would need blocking.
1269 */
1270static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1271                               struct inode **inode, unsigned *seqp)
1272{
1273        for (;;) {
1274                struct mount *mounted;
1275                /*
1276                 * Don't forget we might have a non-mountpoint managed dentry
1277                 * that wants to block transit.
1278                 */
1279                switch (managed_dentry_rcu(path)) {
1280                case -ECHILD:
1281                default:
1282                        return false;
1283                case -EISDIR:
1284                        return true;
1285                case 0:
1286                        break;
1287                }
1288
1289                if (!d_mountpoint(path->dentry))
1290                        return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1291
1292                mounted = __lookup_mnt(path->mnt, path->dentry);
1293                if (!mounted)
1294                        break;
1295                path->mnt = &mounted->mnt;
1296                path->dentry = mounted->mnt.mnt_root;
1297                nd->flags |= LOOKUP_JUMPED;
1298                *seqp = read_seqcount_begin(&path->dentry->d_seq);
1299                /*
1300                 * Update the inode too. We don't need to re-check the
1301                 * dentry sequence number here after this d_inode read,
1302                 * because a mount-point is always pinned.
1303                 */
1304                *inode = path->dentry->d_inode;
1305        }
1306        return !read_seqretry(&mount_lock, nd->m_seq) &&
1307                !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1308}
1309
1310static int follow_dotdot_rcu(struct nameidata *nd)
1311{
1312        struct inode *inode = nd->inode;
1313
1314        while (1) {
1315                if (path_equal(&nd->path, &nd->root))
1316                        break;
1317                if (nd->path.dentry != nd->path.mnt->mnt_root) {
1318                        struct dentry *old = nd->path.dentry;
1319                        struct dentry *parent = old->d_parent;
1320                        unsigned seq;
1321
1322                        inode = parent->d_inode;
1323                        seq = read_seqcount_begin(&parent->d_seq);
1324                        if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1325                                return -ECHILD;
1326                        nd->path.dentry = parent;
1327                        nd->seq = seq;
1328                        if (unlikely(!path_connected(&nd->path)))
1329                                return -ENOENT;
1330                        break;
1331                } else {
1332                        struct mount *mnt = real_mount(nd->path.mnt);
1333                        struct mount *mparent = mnt->mnt_parent;
1334                        struct dentry *mountpoint = mnt->mnt_mountpoint;
1335                        struct inode *inode2 = mountpoint->d_inode;
1336                        unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1337                        if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1338                                return -ECHILD;
1339                        if (&mparent->mnt == nd->path.mnt)
1340                                break;
1341                        /* we know that mountpoint was pinned */
1342                        nd->path.dentry = mountpoint;
1343                        nd->path.mnt = &mparent->mnt;
1344                        inode = inode2;
1345                        nd->seq = seq;
1346                }
1347        }
1348        while (unlikely(d_mountpoint(nd->path.dentry))) {
1349                struct mount *mounted;
1350                mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1351                if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1352                        return -ECHILD;
1353                if (!mounted)
1354                        break;
1355                nd->path.mnt = &mounted->mnt;
1356                nd->path.dentry = mounted->mnt.mnt_root;
1357                inode = nd->path.dentry->d_inode;
1358                nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1359        }
1360        nd->inode = inode;
1361        return 0;
1362}
1363
1364/*
1365 * Follow down to the covering mount currently visible to userspace.  At each
1366 * point, the filesystem owning that dentry may be queried as to whether the
1367 * caller is permitted to proceed or not.
1368 */
1369int follow_down(struct path *path)
1370{
1371        unsigned managed;
1372        int ret;
1373
1374        while (managed = READ_ONCE(path->dentry->d_flags),
1375               unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1376                /* Allow the filesystem to manage the transit without i_mutex
1377                 * being held.
1378                 *
1379                 * We indicate to the filesystem if someone is trying to mount
1380                 * something here.  This gives autofs the chance to deny anyone
1381                 * other than its daemon the right to mount on its
1382                 * superstructure.
1383                 *
1384                 * The filesystem may sleep at this point.
1385                 */
1386                if (managed & DCACHE_MANAGE_TRANSIT) {
1387                        BUG_ON(!path->dentry->d_op);
1388                        BUG_ON(!path->dentry->d_op->d_manage);
1389                        ret = path->dentry->d_op->d_manage(path, false);
1390                        if (ret < 0)
1391                                return ret == -EISDIR ? 0 : ret;
1392                }
1393
1394                /* Transit to a mounted filesystem. */
1395                if (managed & DCACHE_MOUNTED) {
1396                        struct vfsmount *mounted = lookup_mnt(path);
1397                        if (!mounted)
1398                                break;
1399                        dput(path->dentry);
1400                        mntput(path->mnt);
1401                        path->mnt = mounted;
1402                        path->dentry = dget(mounted->mnt_root);
1403                        continue;
1404                }
1405
1406                /* Don't handle automount points here */
1407                break;
1408        }
1409        return 0;
1410}
1411EXPORT_SYMBOL(follow_down);
1412
1413/*
1414 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1415 */
1416static void follow_mount(struct path *path)
1417{
1418        while (d_mountpoint(path->dentry)) {
1419                struct vfsmount *mounted = lookup_mnt(path);
1420                if (!mounted)
1421                        break;
1422                dput(path->dentry);
1423                mntput(path->mnt);
1424                path->mnt = mounted;
1425                path->dentry = dget(mounted->mnt_root);
1426        }
1427}
1428
1429static int path_parent_directory(struct path *path)
1430{
1431        struct dentry *old = path->dentry;
1432        /* rare case of legitimate dget_parent()... */
1433        path->dentry = dget_parent(path->dentry);
1434        dput(old);
1435        if (unlikely(!path_connected(path)))
1436                return -ENOENT;
1437        return 0;
1438}
1439
1440static int follow_dotdot(struct nameidata *nd)
1441{
1442        while(1) {
1443                if (path_equal(&nd->path, &nd->root))
1444                        break;
1445                if (nd->path.dentry != nd->path.mnt->mnt_root) {
1446                        int ret = path_parent_directory(&nd->path);
1447                        if (ret)
1448                                return ret;
1449                        break;
1450                }
1451                if (!follow_up(&nd->path))
1452                        break;
1453        }
1454        follow_mount(&nd->path);
1455        nd->inode = nd->path.dentry->d_inode;
1456        return 0;
1457}
1458
1459/*
1460 * This looks up the name in dcache and possibly revalidates the found dentry.
1461 * NULL is returned if the dentry does not exist in the cache.
1462 */
1463static struct dentry *lookup_dcache(const struct qstr *name,
1464                                    struct dentry *dir,
1465                                    unsigned int flags)
1466{
1467        struct dentry *dentry = d_lookup(dir, name);
1468        if (dentry) {
1469                int error = d_revalidate(dentry, flags);
1470                if (unlikely(error <= 0)) {
1471                        if (!error)
1472                                d_invalidate(dentry);
1473                        dput(dentry);
1474                        return ERR_PTR(error);
1475                }
1476        }
1477        return dentry;
1478}
1479
1480/*
1481 * Parent directory has inode locked exclusive.  This is one
1482 * and only case when ->lookup() gets called on non in-lookup
1483 * dentries - as the matter of fact, this only gets called
1484 * when directory is guaranteed to have no in-lookup children
1485 * at all.
1486 */
1487static struct dentry *__lookup_hash(const struct qstr *name,
1488                struct dentry *base, unsigned int flags)
1489{
1490        struct dentry *dentry = lookup_dcache(name, base, flags);
1491        struct dentry *old;
1492        struct inode *dir = base->d_inode;
1493
1494        if (dentry)
1495                return dentry;
1496
1497        /* Don't create child dentry for a dead directory. */
1498        if (unlikely(IS_DEADDIR(dir)))
1499                return ERR_PTR(-ENOENT);
1500
1501        dentry = d_alloc(base, name);
1502        if (unlikely(!dentry))
1503                return ERR_PTR(-ENOMEM);
1504
1505        old = dir->i_op->lookup(dir, dentry, flags);
1506        if (unlikely(old)) {
1507                dput(dentry);
1508                dentry = old;
1509        }
1510        return dentry;
1511}
1512
1513static int lookup_fast(struct nameidata *nd,
1514                       struct path *path, struct inode **inode,
1515                       unsigned *seqp)
1516{
1517        struct vfsmount *mnt = nd->path.mnt;
1518        struct dentry *dentry, *parent = nd->path.dentry;
1519        int status = 1;
1520        int err;
1521
1522        /*
1523         * Rename seqlock is not required here because in the off chance
1524         * of a false negative due to a concurrent rename, the caller is
1525         * going to fall back to non-racy lookup.
1526         */
1527        if (nd->flags & LOOKUP_RCU) {
1528                unsigned seq;
1529                bool negative;
1530                dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1531                if (unlikely(!dentry)) {
1532                        if (unlazy_walk(nd))
1533                                return -ECHILD;
1534                        return 0;
1535                }
1536
1537                /*
1538                 * This sequence count validates that the inode matches
1539                 * the dentry name information from lookup.
1540                 */
1541                *inode = d_backing_inode(dentry);
1542                negative = d_is_negative(dentry);
1543                if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1544                        return -ECHILD;
1545
1546                /*
1547                 * This sequence count validates that the parent had no
1548                 * changes while we did the lookup of the dentry above.
1549                 *
1550                 * The memory barrier in read_seqcount_begin of child is
1551                 *  enough, we can use __read_seqcount_retry here.
1552                 */
1553                if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1554                        return -ECHILD;
1555
1556                *seqp = seq;
1557                status = d_revalidate(dentry, nd->flags);
1558                if (likely(status > 0)) {
1559                        /*
1560                         * Note: do negative dentry check after revalidation in
1561                         * case that drops it.
1562                         */
1563                        if (unlikely(negative))
1564                                return -ENOENT;
1565                        path->mnt = mnt;
1566                        path->dentry = dentry;
1567                        if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1568                                return 1;
1569                }
1570                if (unlazy_child(nd, dentry, seq))
1571                        return -ECHILD;
1572                if (unlikely(status == -ECHILD))
1573                        /* we'd been told to redo it in non-rcu mode */
1574                        status = d_revalidate(dentry, nd->flags);
1575        } else {
1576                dentry = __d_lookup(parent, &nd->last);
1577                if (unlikely(!dentry))
1578                        return 0;
1579                status = d_revalidate(dentry, nd->flags);
1580        }
1581        if (unlikely(status <= 0)) {
1582                if (!status)
1583                        d_invalidate(dentry);
1584                dput(dentry);
1585                return status;
1586        }
1587        if (unlikely(d_is_negative(dentry))) {
1588                dput(dentry);
1589                return -ENOENT;
1590        }
1591
1592        path->mnt = mnt;
1593        path->dentry = dentry;
1594        err = follow_managed(path, nd);
1595        if (likely(err > 0))
1596                *inode = d_backing_inode(path->dentry);
1597        return err;
1598}
1599
1600/* Fast lookup failed, do it the slow way */
1601static struct dentry *__lookup_slow(const struct qstr *name,
1602                                    struct dentry *dir,
1603                                    unsigned int flags)
1604{
1605        struct dentry *dentry, *old;
1606        struct inode *inode = dir->d_inode;
1607        DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1608
1609        /* Don't go there if it's already dead */
1610        if (unlikely(IS_DEADDIR(inode)))
1611                return ERR_PTR(-ENOENT);
1612again:
1613        dentry = d_alloc_parallel(dir, name, &wq);
1614        if (IS_ERR(dentry))
1615                return dentry;
1616        if (unlikely(!d_in_lookup(dentry))) {
1617                if (!(flags & LOOKUP_NO_REVAL)) {
1618                        int error = d_revalidate(dentry, flags);
1619                        if (unlikely(error <= 0)) {
1620                                if (!error) {
1621                                        d_invalidate(dentry);
1622                                        dput(dentry);
1623                                        goto again;
1624                                }
1625                                dput(dentry);
1626                                dentry = ERR_PTR(error);
1627                        }
1628                }
1629        } else {
1630                old = inode->i_op->lookup(inode, dentry, flags);
1631                d_lookup_done(dentry);
1632                if (unlikely(old)) {
1633                        dput(dentry);
1634                        dentry = old;
1635                }
1636        }
1637        return dentry;
1638}
1639
1640static struct dentry *lookup_slow(const struct qstr *name,
1641                                  struct dentry *dir,
1642                                  unsigned int flags)
1643{
1644        struct inode *inode = dir->d_inode;
1645        struct dentry *res;
1646        inode_lock_shared(inode);
1647        res = __lookup_slow(name, dir, flags);
1648        inode_unlock_shared(inode);
1649        return res;
1650}
1651
1652static inline int may_lookup(struct nameidata *nd)
1653{
1654        if (nd->flags & LOOKUP_RCU) {
1655                int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1656                if (err != -ECHILD)
1657                        return err;
1658                if (unlazy_walk(nd))
1659                        return -ECHILD;
1660        }
1661        return inode_permission(nd->inode, MAY_EXEC);
1662}
1663
1664static inline int handle_dots(struct nameidata *nd, int type)
1665{
1666        if (type == LAST_DOTDOT) {
1667                if (!nd->root.mnt)
1668                        set_root(nd);
1669                if (nd->flags & LOOKUP_RCU) {
1670                        return follow_dotdot_rcu(nd);
1671                } else
1672                        return follow_dotdot(nd);
1673        }
1674        return 0;
1675}
1676
1677static int pick_link(struct nameidata *nd, struct path *link,
1678                     struct inode *inode, unsigned seq)
1679{
1680        int error;
1681        struct saved *last;
1682        if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1683                path_to_nameidata(link, nd);
1684                return -ELOOP;
1685        }
1686        if (!(nd->flags & LOOKUP_RCU)) {
1687                if (link->mnt == nd->path.mnt)
1688                        mntget(link->mnt);
1689        }
1690        error = nd_alloc_stack(nd);
1691        if (unlikely(error)) {
1692                if (error == -ECHILD) {
1693                        if (unlikely(!legitimize_path(nd, link, seq))) {
1694                                drop_links(nd);
1695                                nd->depth = 0;
1696                                nd->flags &= ~LOOKUP_RCU;
1697                                nd->path.mnt = NULL;
1698                                nd->path.dentry = NULL;
1699                                if (!(nd->flags & LOOKUP_ROOT))
1700                                        nd->root.mnt = NULL;
1701                                rcu_read_unlock();
1702                        } else if (likely(unlazy_walk(nd)) == 0)
1703                                error = nd_alloc_stack(nd);
1704                }
1705                if (error) {
1706                        path_put(link);
1707                        return error;
1708                }
1709        }
1710
1711        last = nd->stack + nd->depth++;
1712        last->link = *link;
1713        clear_delayed_call(&last->done);
1714        nd->link_inode = inode;
1715        last->seq = seq;
1716        return 1;
1717}
1718
1719enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1720
1721/*
1722 * Do we need to follow links? We _really_ want to be able
1723 * to do this check without having to look at inode->i_op,
1724 * so we keep a cache of "no, this doesn't need follow_link"
1725 * for the common case.
1726 */
1727static inline int step_into(struct nameidata *nd, struct path *path,
1728                            int flags, struct inode *inode, unsigned seq)
1729{
1730        if (!(flags & WALK_MORE) && nd->depth)
1731                put_link(nd);
1732        if (likely(!d_is_symlink(path->dentry)) ||
1733           !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1734                /* not a symlink or should not follow */
1735                path_to_nameidata(path, nd);
1736                nd->inode = inode;
1737                nd->seq = seq;
1738                return 0;
1739        }
1740        /* make sure that d_is_symlink above matches inode */
1741        if (nd->flags & LOOKUP_RCU) {
1742                if (read_seqcount_retry(&path->dentry->d_seq, seq))
1743                        return -ECHILD;
1744        }
1745        return pick_link(nd, path, inode, seq);
1746}
1747
1748static int walk_component(struct nameidata *nd, int flags)
1749{
1750        struct path path;
1751        struct inode *inode;
1752        unsigned seq;
1753        int err;
1754        /*
1755         * "." and ".." are special - ".." especially so because it has
1756         * to be able to know about the current root directory and
1757         * parent relationships.
1758         */
1759        if (unlikely(nd->last_type != LAST_NORM)) {
1760                err = handle_dots(nd, nd->last_type);
1761                if (!(flags & WALK_MORE) && nd->depth)
1762                        put_link(nd);
1763                return err;
1764        }
1765        err = lookup_fast(nd, &path, &inode, &seq);
1766        if (unlikely(err <= 0)) {
1767                if (err < 0)
1768                        return err;
1769                path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1770                                          nd->flags);
1771                if (IS_ERR(path.dentry))
1772                        return PTR_ERR(path.dentry);
1773
1774                path.mnt = nd->path.mnt;
1775                err = follow_managed(&path, nd);
1776                if (unlikely(err < 0))
1777                        return err;
1778
1779                if (unlikely(d_is_negative(path.dentry))) {
1780                        path_to_nameidata(&path, nd);
1781                        return -ENOENT;
1782                }
1783
1784                seq = 0;        /* we are already out of RCU mode */
1785                inode = d_backing_inode(path.dentry);
1786        }
1787
1788        return step_into(nd, &path, flags, inode, seq);
1789}
1790
1791/*
1792 * We can do the critical dentry name comparison and hashing
1793 * operations one word at a time, but we are limited to:
1794 *
1795 * - Architectures with fast unaligned word accesses. We could
1796 *   do a "get_unaligned()" if this helps and is sufficiently
1797 *   fast.
1798 *
1799 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1800 *   do not trap on the (extremely unlikely) case of a page
1801 *   crossing operation.
1802 *
1803 * - Furthermore, we need an efficient 64-bit compile for the
1804 *   64-bit case in order to generate the "number of bytes in
1805 *   the final mask". Again, that could be replaced with a
1806 *   efficient population count instruction or similar.
1807 */
1808#ifdef CONFIG_DCACHE_WORD_ACCESS
1809
1810#include <asm/word-at-a-time.h>
1811
1812#ifdef HASH_MIX
1813
1814/* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1815
1816#elif defined(CONFIG_64BIT)
1817/*
1818 * Register pressure in the mixing function is an issue, particularly
1819 * on 32-bit x86, but almost any function requires one state value and
1820 * one temporary.  Instead, use a function designed for two state values
1821 * and no temporaries.
1822 *
1823 * This function cannot create a collision in only two iterations, so
1824 * we have two iterations to achieve avalanche.  In those two iterations,
1825 * we have six layers of mixing, which is enough to spread one bit's
1826 * influence out to 2^6 = 64 state bits.
1827 *
1828 * Rotate constants are scored by considering either 64 one-bit input
1829 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1830 * probability of that delta causing a change to each of the 128 output
1831 * bits, using a sample of random initial states.
1832 *
1833 * The Shannon entropy of the computed probabilities is then summed
1834 * to produce a score.  Ideally, any input change has a 50% chance of
1835 * toggling any given output bit.
1836 *
1837 * Mixing scores (in bits) for (12,45):
1838 * Input delta: 1-bit      2-bit
1839 * 1 round:     713.3    42542.6
1840 * 2 rounds:   2753.7   140389.8
1841 * 3 rounds:   5954.1   233458.2
1842 * 4 rounds:   7862.6   256672.2
1843 * Perfect:    8192     258048
1844 *            (64*128) (64*63/2 * 128)
1845 */
1846#define HASH_MIX(x, y, a)       \
1847        (       x ^= (a),       \
1848        y ^= x, x = rol64(x,12),\
1849        x += y, y = rol64(y,45),\
1850        y *= 9                  )
1851
1852/*
1853 * Fold two longs into one 32-bit hash value.  This must be fast, but
1854 * latency isn't quite as critical, as there is a fair bit of additional
1855 * work done before the hash value is used.
1856 */
1857static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1858{
1859        y ^= x * GOLDEN_RATIO_64;
1860        y *= GOLDEN_RATIO_64;
1861        return y >> 32;
1862}
1863
1864#else   /* 32-bit case */
1865
1866/*
1867 * Mixing scores (in bits) for (7,20):
1868 * Input delta: 1-bit      2-bit
1869 * 1 round:     330.3     9201.6
1870 * 2 rounds:   1246.4    25475.4
1871 * 3 rounds:   1907.1    31295.1
1872 * 4 rounds:   2042.3    31718.6
1873 * Perfect:    2048      31744
1874 *            (32*64)   (32*31/2 * 64)
1875 */
1876#define HASH_MIX(x, y, a)       \
1877        (       x ^= (a),       \
1878        y ^= x, x = rol32(x, 7),\
1879        x += y, y = rol32(y,20),\
1880        y *= 9                  )
1881
1882static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1883{
1884        /* Use arch-optimized multiply if one exists */
1885        return __hash_32(y ^ __hash_32(x));
1886}
1887
1888#endif
1889
1890/*
1891 * Return the hash of a string of known length.  This is carfully
1892 * designed to match hash_name(), which is the more critical function.
1893 * In particular, we must end by hashing a final word containing 0..7
1894 * payload bytes, to match the way that hash_name() iterates until it
1895 * finds the delimiter after the name.
1896 */
1897unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1898{
1899        unsigned long a, x = 0, y = (unsigned long)salt;
1900
1901        for (;;) {
1902                if (!len)
1903                        goto done;
1904                a = load_unaligned_zeropad(name);
1905                if (len < sizeof(unsigned long))
1906                        break;
1907                HASH_MIX(x, y, a);
1908                name += sizeof(unsigned long);
1909                len -= sizeof(unsigned long);
1910        }
1911        x ^= a & bytemask_from_count(len);
1912done:
1913        return fold_hash(x, y);
1914}
1915EXPORT_SYMBOL(full_name_hash);
1916
1917/* Return the "hash_len" (hash and length) of a null-terminated string */
1918u64 hashlen_string(const void *salt, const char *name)
1919{
1920        unsigned long a = 0, x = 0, y = (unsigned long)salt;
1921        unsigned long adata, mask, len;
1922        const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1923
1924        len = 0;
1925        goto inside;
1926
1927        do {
1928                HASH_MIX(x, y, a);
1929                len += sizeof(unsigned long);
1930inside:
1931                a = load_unaligned_zeropad(name+len);
1932        } while (!has_zero(a, &adata, &constants));
1933
1934        adata = prep_zero_mask(a, adata, &constants);
1935        mask = create_zero_mask(adata);
1936        x ^= a & zero_bytemask(mask);
1937
1938        return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1939}
1940EXPORT_SYMBOL(hashlen_string);
1941
1942/*
1943 * Calculate the length and hash of the path component, and
1944 * return the "hash_len" as the result.
1945 */
1946static inline u64 hash_name(const void *salt, const char *name)
1947{
1948        unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1949        unsigned long adata, bdata, mask, len;
1950        const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1951
1952        len = 0;
1953        goto inside;
1954
1955        do {
1956                HASH_MIX(x, y, a);
1957                len += sizeof(unsigned long);
1958inside:
1959                a = load_unaligned_zeropad(name+len);
1960                b = a ^ REPEAT_BYTE('/');
1961        } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1962
1963        adata = prep_zero_mask(a, adata, &constants);
1964        bdata = prep_zero_mask(b, bdata, &constants);
1965        mask = create_zero_mask(adata | bdata);
1966        x ^= a & zero_bytemask(mask);
1967
1968        return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1969}
1970
1971#else   /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1972
1973/* Return the hash of a string of known length */
1974unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1975{
1976        unsigned long hash = init_name_hash(salt);
1977        while (len--)
1978                hash = partial_name_hash((unsigned char)*name++, hash);
1979        return end_name_hash(hash);
1980}
1981EXPORT_SYMBOL(full_name_hash);
1982
1983/* Return the "hash_len" (hash and length) of a null-terminated string */
1984u64 hashlen_string(const void *salt, const char *name)
1985{
1986        unsigned long hash = init_name_hash(salt);
1987        unsigned long len = 0, c;
1988
1989        c = (unsigned char)*name;
1990        while (c) {
1991                len++;
1992                hash = partial_name_hash(c, hash);
1993                c = (unsigned char)name[len];
1994        }
1995        return hashlen_create(end_name_hash(hash), len);
1996}
1997EXPORT_SYMBOL(hashlen_string);
1998
1999/*
2000 * We know there's a real path component here of at least
2001 * one character.
2002 */
2003static inline u64 hash_name(const void *salt, const char *name)
2004{
2005        unsigned long hash = init_name_hash(salt);
2006        unsigned long len = 0, c;
2007
2008        c = (unsigned char)*name;
2009        do {
2010                len++;
2011                hash = partial_name_hash(c, hash);
2012                c = (unsigned char)name[len];
2013        } while (c && c != '/');
2014        return hashlen_create(end_name_hash(hash), len);
2015}
2016
2017#endif
2018
2019/*
2020 * Name resolution.
2021 * This is the basic name resolution function, turning a pathname into
2022 * the final dentry. We expect 'base' to be positive and a directory.
2023 *
2024 * Returns 0 and nd will have valid dentry and mnt on success.
2025 * Returns error and drops reference to input namei data on failure.
2026 */
2027static int link_path_walk(const char *name, struct nameidata *nd)
2028{
2029        int err;
2030
2031        while (*name=='/')
2032                name++;
2033        if (!*name)
2034                return 0;
2035
2036        /* At this point we know we have a real path component. */
2037        for(;;) {
2038                u64 hash_len;
2039                int type;
2040
2041                err = may_lookup(nd);
2042                if (err)
2043                        return err;
2044
2045                hash_len = hash_name(nd->path.dentry, name);
2046
2047                type = LAST_NORM;
2048                if (name[0] == '.') switch (hashlen_len(hash_len)) {
2049                        case 2:
2050                                if (name[1] == '.') {
2051                                        type = LAST_DOTDOT;
2052                                        nd->flags |= LOOKUP_JUMPED;
2053                                }
2054                                break;
2055                        case 1:
2056                                type = LAST_DOT;
2057                }
2058                if (likely(type == LAST_NORM)) {
2059                        struct dentry *parent = nd->path.dentry;
2060                        nd->flags &= ~LOOKUP_JUMPED;
2061                        if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2062                                struct qstr this = { { .hash_len = hash_len }, .name = name };
2063                                err = parent->d_op->d_hash(parent, &this);
2064                                if (err < 0)
2065                                        return err;
2066                                hash_len = this.hash_len;
2067                                name = this.name;
2068                        }
2069                }
2070
2071                nd->last.hash_len = hash_len;
2072                nd->last.name = name;
2073                nd->last_type = type;
2074
2075                name += hashlen_len(hash_len);
2076                if (!*name)
2077                        goto OK;
2078                /*
2079                 * If it wasn't NUL, we know it was '/'. Skip that
2080                 * slash, and continue until no more slashes.
2081                 */
2082                do {
2083                        name++;
2084                } while (unlikely(*name == '/'));
2085                if (unlikely(!*name)) {
2086OK:
2087                        /* pathname body, done */
2088                        if (!nd->depth)
2089                                return 0;
2090                        name = nd->stack[nd->depth - 1].name;
2091                        /* trailing symlink, done */
2092                        if (!name)
2093                                return 0;
2094                        /* last component of nested symlink */
2095                        err = walk_component(nd, WALK_FOLLOW);
2096                } else {
2097                        /* not the last component */
2098                        err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2099                }
2100                if (err < 0)
2101                        return err;
2102
2103                if (err) {
2104                        const char *s = get_link(nd);
2105
2106                        if (IS_ERR(s))
2107                                return PTR_ERR(s);
2108                        err = 0;
2109                        if (unlikely(!s)) {
2110                                /* jumped */
2111                                put_link(nd);
2112                        } else {
2113                                nd->stack[nd->depth - 1].name = name;
2114                                name = s;
2115                                continue;
2116                        }
2117                }
2118                if (unlikely(!d_can_lookup(nd->path.dentry))) {
2119                        if (nd->flags & LOOKUP_RCU) {
2120                                if (unlazy_walk(nd))
2121                                        return -ECHILD;
2122                        }
2123                        return -ENOTDIR;
2124                }
2125        }
2126}
2127
2128static const char *path_init(struct nameidata *nd, unsigned flags)
2129{
2130        const char *s = nd->name->name;
2131
2132        if (!*s)
2133                flags &= ~LOOKUP_RCU;
2134
2135        nd->last_type = LAST_ROOT; /* if there are only slashes... */
2136        nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2137        nd->depth = 0;
2138        if (flags & LOOKUP_ROOT) {
2139                struct dentry *root = nd->root.dentry;
2140                struct inode *inode = root->d_inode;
2141                if (*s && unlikely(!d_can_lookup(root)))
2142                        return ERR_PTR(-ENOTDIR);
2143                nd->path = nd->root;
2144                nd->inode = inode;
2145                if (flags & LOOKUP_RCU) {
2146                        rcu_read_lock();
2147                        nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2148                        nd->root_seq = nd->seq;
2149                        nd->m_seq = read_seqbegin(&mount_lock);
2150                } else {
2151                        path_get(&nd->path);
2152                }
2153                return s;
2154        }
2155
2156        nd->root.mnt = NULL;
2157        nd->path.mnt = NULL;
2158        nd->path.dentry = NULL;
2159
2160        nd->m_seq = read_seqbegin(&mount_lock);
2161        if (*s == '/') {
2162                if (flags & LOOKUP_RCU)
2163                        rcu_read_lock();
2164                set_root(nd);
2165                if (likely(!nd_jump_root(nd)))
2166                        return s;
2167                nd->root.mnt = NULL;
2168                rcu_read_unlock();
2169                return ERR_PTR(-ECHILD);
2170        } else if (nd->dfd == AT_FDCWD) {
2171                if (flags & LOOKUP_RCU) {
2172                        struct fs_struct *fs = current->fs;
2173                        unsigned seq;
2174
2175                        rcu_read_lock();
2176
2177                        do {
2178                                seq = read_seqcount_begin(&fs->seq);
2179                                nd->path = fs->pwd;
2180                                nd->inode = nd->path.dentry->d_inode;
2181                                nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2182                        } while (read_seqcount_retry(&fs->seq, seq));
2183                } else {
2184                        get_fs_pwd(current->fs, &nd->path);
2185                        nd->inode = nd->path.dentry->d_inode;
2186                }
2187                return s;
2188        } else {
2189                /* Caller must check execute permissions on the starting path component */
2190                struct fd f = fdget_raw(nd->dfd);
2191                struct dentry *dentry;
2192
2193                if (!f.file)
2194                        return ERR_PTR(-EBADF);
2195
2196                dentry = f.file->f_path.dentry;
2197
2198                if (*s) {
2199                        if (!d_can_lookup(dentry)) {
2200                                fdput(f);
2201                                return ERR_PTR(-ENOTDIR);
2202                        }
2203                }
2204
2205                nd->path = f.file->f_path;
2206                if (flags & LOOKUP_RCU) {
2207                        rcu_read_lock();
2208                        nd->inode = nd->path.dentry->d_inode;
2209                        nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2210                } else {
2211                        path_get(&nd->path);
2212                        nd->inode = nd->path.dentry->d_inode;
2213                }
2214                fdput(f);
2215                return s;
2216        }
2217}
2218
2219static const char *trailing_symlink(struct nameidata *nd)
2220{
2221        const char *s;
2222        int error = may_follow_link(nd);
2223        if (unlikely(error))
2224                return ERR_PTR(error);
2225        nd->flags |= LOOKUP_PARENT;
2226        nd->stack[0].name = NULL;
2227        s = get_link(nd);
2228        return s ? s : "";
2229}
2230
2231static inline int lookup_last(struct nameidata *nd)
2232{
2233        if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2234                nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2235
2236        nd->flags &= ~LOOKUP_PARENT;
2237        return walk_component(nd, 0);
2238}
2239
2240static int handle_lookup_down(struct nameidata *nd)
2241{
2242        struct path path = nd->path;
2243        struct inode *inode = nd->inode;
2244        unsigned seq = nd->seq;
2245        int err;
2246
2247        if (nd->flags & LOOKUP_RCU) {
2248                /*
2249                 * don't bother with unlazy_walk on failure - we are
2250                 * at the very beginning of walk, so we lose nothing
2251                 * if we simply redo everything in non-RCU mode
2252                 */
2253                if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2254                        return -ECHILD;
2255        } else {
2256                dget(path.dentry);
2257                err = follow_managed(&path, nd);
2258                if (unlikely(err < 0))
2259                        return err;
2260                inode = d_backing_inode(path.dentry);
2261                seq = 0;
2262        }
2263        path_to_nameidata(&path, nd);
2264        nd->inode = inode;
2265        nd->seq = seq;
2266        return 0;
2267}
2268
2269/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2270static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2271{
2272        const char *s = path_init(nd, flags);
2273        int err;
2274
2275        if (IS_ERR(s))
2276                return PTR_ERR(s);
2277
2278        if (unlikely(flags & LOOKUP_DOWN)) {
2279                err = handle_lookup_down(nd);
2280                if (unlikely(err < 0)) {
2281                        terminate_walk(nd);
2282                        return err;
2283                }
2284        }
2285
2286        while (!(err = link_path_walk(s, nd))
2287                && ((err = lookup_last(nd)) > 0)) {
2288                s = trailing_symlink(nd);
2289                if (IS_ERR(s)) {
2290                        err = PTR_ERR(s);
2291                        break;
2292                }
2293        }
2294        if (!err)
2295                err = complete_walk(nd);
2296
2297        if (!err && nd->flags & LOOKUP_DIRECTORY)
2298                if (!d_can_lookup(nd->path.dentry))
2299                        err = -ENOTDIR;
2300        if (!err) {
2301                *path = nd->path;
2302                nd->path.mnt = NULL;
2303                nd->path.dentry = NULL;
2304        }
2305        terminate_walk(nd);
2306        return err;
2307}
2308
2309static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2310                           struct path *path, struct path *root)
2311{
2312        int retval;
2313        struct nameidata nd;
2314        if (IS_ERR(name))
2315                return PTR_ERR(name);
2316        if (unlikely(root)) {
2317                nd.root = *root;
2318                flags |= LOOKUP_ROOT;
2319        }
2320        set_nameidata(&nd, dfd, name);
2321        retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2322        if (unlikely(retval == -ECHILD))
2323                retval = path_lookupat(&nd, flags, path);
2324        if (unlikely(retval == -ESTALE))
2325                retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2326
2327        if (likely(!retval))
2328                audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2329        restore_nameidata();
2330        putname(name);
2331        return retval;
2332}
2333
2334/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2335static int path_parentat(struct nameidata *nd, unsigned flags,
2336                                struct path *parent)
2337{
2338        const char *s = path_init(nd, flags);
2339        int err;
2340        if (IS_ERR(s))
2341                return PTR_ERR(s);
2342        err = link_path_walk(s, nd);
2343        if (!err)
2344                err = complete_walk(nd);
2345        if (!err) {
2346                *parent = nd->path;
2347                nd->path.mnt = NULL;
2348                nd->path.dentry = NULL;
2349        }
2350        terminate_walk(nd);
2351        return err;
2352}
2353
2354static struct filename *filename_parentat(int dfd, struct filename *name,
2355                                unsigned int flags, struct path *parent,
2356                                struct qstr *last, int *type)
2357{
2358        int retval;
2359        struct nameidata nd;
2360
2361        if (IS_ERR(name))
2362                return name;
2363        set_nameidata(&nd, dfd, name);
2364        retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2365        if (unlikely(retval == -ECHILD))
2366                retval = path_parentat(&nd, flags, parent);
2367        if (unlikely(retval == -ESTALE))
2368                retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2369        if (likely(!retval)) {
2370                *last = nd.last;
2371                *type = nd.last_type;
2372                audit_inode(name, parent->dentry, LOOKUP_PARENT);
2373        } else {
2374                putname(name);
2375                name = ERR_PTR(retval);
2376        }
2377        restore_nameidata();
2378        return name;
2379}
2380
2381/* does lookup, returns the object with parent locked */
2382struct dentry *kern_path_locked(const char *name, struct path *path)
2383{
2384        struct filename *filename;
2385        struct dentry *d;
2386        struct qstr last;
2387        int type;
2388
2389        filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2390                                    &last, &type);
2391        if (IS_ERR(filename))
2392                return ERR_CAST(filename);
2393        if (unlikely(type != LAST_NORM)) {
2394                path_put(path);
2395                putname(filename);
2396                return ERR_PTR(-EINVAL);
2397        }
2398        inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2399        d = __lookup_hash(&last, path->dentry, 0);
2400        if (IS_ERR(d)) {
2401                inode_unlock(path->dentry->d_inode);
2402                path_put(path);
2403        }
2404        putname(filename);
2405        return d;
2406}
2407
2408int kern_path(const char *name, unsigned int flags, struct path *path)
2409{
2410        return filename_lookup(AT_FDCWD, getname_kernel(name),
2411                               flags, path, NULL);
2412}
2413EXPORT_SYMBOL(kern_path);
2414
2415/**
2416 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2417 * @dentry:  pointer to dentry of the base directory
2418 * @mnt: pointer to vfs mount of the base directory
2419 * @name: pointer to file name
2420 * @flags: lookup flags
2421 * @path: pointer to struct path to fill
2422 */
2423int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2424                    const char *name, unsigned int flags,
2425                    struct path *path)
2426{
2427        struct path root = {.mnt = mnt, .dentry = dentry};
2428        /* the first argument of filename_lookup() is ignored with root */
2429        return filename_lookup(AT_FDCWD, getname_kernel(name),
2430                               flags , path, &root);
2431}
2432EXPORT_SYMBOL(vfs_path_lookup);
2433
2434static int lookup_one_len_common(const char *name, struct dentry *base,
2435                                 int len, struct qstr *this)
2436{
2437        this->name = name;
2438        this->len = len;
2439        this->hash = full_name_hash(base, name, len);
2440        if (!len)
2441                return -EACCES;
2442
2443        if (unlikely(name[0] == '.')) {
2444                if (len < 2 || (len == 2 && name[1] == '.'))
2445                        return -EACCES;
2446        }
2447
2448        while (len--) {
2449                unsigned int c = *(const unsigned char *)name++;
2450                if (c == '/' || c == '\0')
2451                        return -EACCES;
2452        }
2453        /*
2454         * See if the low-level filesystem might want
2455         * to use its own hash..
2456         */
2457        if (base->d_flags & DCACHE_OP_HASH) {
2458                int err = base->d_op->d_hash(base, this);
2459                if (err < 0)
2460                        return err;
2461        }
2462
2463        return inode_permission(base->d_inode, MAY_EXEC);
2464}
2465
2466/**
2467 * try_lookup_one_len - filesystem helper to lookup single pathname component
2468 * @name:       pathname component to lookup
2469 * @base:       base directory to lookup from
2470 * @len:        maximum length @len should be interpreted to
2471 *
2472 * Look up a dentry by name in the dcache, returning NULL if it does not
2473 * currently exist.  The function does not try to create a dentry.
2474 *
2475 * Note that this routine is purely a helper for filesystem usage and should
2476 * not be called by generic code.
2477 *
2478 * The caller must hold base->i_mutex.
2479 */
2480struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2481{
2482        struct qstr this;
2483        int err;
2484
2485        WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2486
2487        err = lookup_one_len_common(name, base, len, &this);
2488        if (err)
2489                return ERR_PTR(err);
2490
2491        return lookup_dcache(&this, base, 0);
2492}
2493EXPORT_SYMBOL(try_lookup_one_len);
2494
2495/**
2496 * lookup_one_len - filesystem helper to lookup single pathname component
2497 * @name:       pathname component to lookup
2498 * @base:       base directory to lookup from
2499 * @len:        maximum length @len should be interpreted to
2500 *
2501 * Note that this routine is purely a helper for filesystem usage and should
2502 * not be called by generic code.
2503 *
2504 * The caller must hold base->i_mutex.
2505 */
2506struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2507{
2508        struct dentry *dentry;
2509        struct qstr this;
2510        int err;
2511
2512        WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2513
2514        err = lookup_one_len_common(name, base, len, &this);
2515        if (err)
2516                return ERR_PTR(err);
2517
2518        dentry = lookup_dcache(&this, base, 0);
2519        return dentry ? dentry : __lookup_slow(&this, base, 0);
2520}
2521EXPORT_SYMBOL(lookup_one_len);
2522
2523/**
2524 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2525 * @name:       pathname component to lookup
2526 * @base:       base directory to lookup from
2527 * @len:        maximum length @len should be interpreted to
2528 *
2529 * Note that this routine is purely a helper for filesystem usage and should
2530 * not be called by generic code.
2531 *
2532 * Unlike lookup_one_len, it should be called without the parent
2533 * i_mutex held, and will take the i_mutex itself if necessary.
2534 */
2535struct dentry *lookup_one_len_unlocked(const char *name,
2536                                       struct dentry *base, int len)
2537{
2538        struct qstr this;
2539        int err;
2540        struct dentry *ret;
2541
2542        err = lookup_one_len_common(name, base, len, &this);
2543        if (err)
2544                return ERR_PTR(err);
2545
2546        ret = lookup_dcache(&this, base, 0);
2547        if (!ret)
2548                ret = lookup_slow(&this, base, 0);
2549        return ret;
2550}
2551EXPORT_SYMBOL(lookup_one_len_unlocked);
2552
2553#ifdef CONFIG_UNIX98_PTYS
2554int path_pts(struct path *path)
2555{
2556        /* Find something mounted on "pts" in the same directory as
2557         * the input path.
2558         */
2559        struct dentry *child, *parent;
2560        struct qstr this;
2561        int ret;
2562
2563        ret = path_parent_directory(path);
2564        if (ret)
2565                return ret;
2566
2567        parent = path->dentry;
2568        this.name = "pts";
2569        this.len = 3;
2570        child = d_hash_and_lookup(parent, &this);
2571        if (!child)
2572                return -ENOENT;
2573
2574        path->dentry = child;
2575        dput(parent);
2576        follow_mount(path);
2577        return 0;
2578}
2579#endif
2580
2581int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2582                 struct path *path, int *empty)
2583{
2584        return filename_lookup(dfd, getname_flags(name, flags, empty),
2585                               flags, path, NULL);
2586}
2587EXPORT_SYMBOL(user_path_at_empty);
2588
2589/**
2590 * mountpoint_last - look up last component for umount
2591 * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2592 *
2593 * This is a special lookup_last function just for umount. In this case, we
2594 * need to resolve the path without doing any revalidation.
2595 *
2596 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2597 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2598 * in almost all cases, this lookup will be served out of the dcache. The only
2599 * cases where it won't are if nd->last refers to a symlink or the path is
2600 * bogus and it doesn't exist.
2601 *
2602 * Returns:
2603 * -error: if there was an error during lookup. This includes -ENOENT if the
2604 *         lookup found a negative dentry.
2605 *
2606 * 0:      if we successfully resolved nd->last and found it to not to be a
2607 *         symlink that needs to be followed.
2608 *
2609 * 1:      if we successfully resolved nd->last and found it to be a symlink
2610 *         that needs to be followed.
2611 */
2612static int
2613mountpoint_last(struct nameidata *nd)
2614{
2615        int error = 0;
2616        struct dentry *dir = nd->path.dentry;
2617        struct path path;
2618
2619        /* If we're in rcuwalk, drop out of it to handle last component */
2620        if (nd->flags & LOOKUP_RCU) {
2621                if (unlazy_walk(nd))
2622                        return -ECHILD;
2623        }
2624
2625        nd->flags &= ~LOOKUP_PARENT;
2626
2627        if (unlikely(nd->last_type != LAST_NORM)) {
2628                error = handle_dots(nd, nd->last_type);
2629                if (error)
2630                        return error;
2631                path.dentry = dget(nd->path.dentry);
2632        } else {
2633                path.dentry = d_lookup(dir, &nd->last);
2634                if (!path.dentry) {
2635                        /*
2636                         * No cached dentry. Mounted dentries are pinned in the
2637                         * cache, so that means that this dentry is probably
2638                         * a symlink or the path doesn't actually point
2639                         * to a mounted dentry.
2640                         */
2641                        path.dentry = lookup_slow(&nd->last, dir,
2642                                             nd->flags | LOOKUP_NO_REVAL);
2643                        if (IS_ERR(path.dentry))
2644                                return PTR_ERR(path.dentry);
2645                }
2646        }
2647        if (d_is_negative(path.dentry)) {
2648                dput(path.dentry);
2649                return -ENOENT;
2650        }
2651        path.mnt = nd->path.mnt;
2652        return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2653}
2654
2655/**
2656 * path_mountpoint - look up a path to be umounted
2657 * @nd:         lookup context
2658 * @flags:      lookup flags
2659 * @path:       pointer to container for result
2660 *
2661 * Look up the given name, but don't attempt to revalidate the last component.
2662 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2663 */
2664static int
2665path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2666{
2667        const char *s = path_init(nd, flags);
2668        int err;
2669        if (IS_ERR(s))
2670                return PTR_ERR(s);
2671        while (!(err = link_path_walk(s, nd)) &&
2672                (err = mountpoint_last(nd)) > 0) {
2673                s = trailing_symlink(nd);
2674                if (IS_ERR(s)) {
2675                        err = PTR_ERR(s);
2676                        break;
2677                }
2678        }
2679        if (!err) {
2680                *path = nd->path;
2681                nd->path.mnt = NULL;
2682                nd->path.dentry = NULL;
2683                follow_mount(path);
2684        }
2685        terminate_walk(nd);
2686        return err;
2687}
2688
2689static int
2690filename_mountpoint(int dfd, struct filename *name, struct path *path,
2691                        unsigned int flags)
2692{
2693        struct nameidata nd;
2694        int error;
2695        if (IS_ERR(name))
2696                return PTR_ERR(name);
2697        set_nameidata(&nd, dfd, name);
2698        error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2699        if (unlikely(error == -ECHILD))
2700                error = path_mountpoint(&nd, flags, path);
2701        if (unlikely(error == -ESTALE))
2702                error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2703        if (likely(!error))
2704                audit_inode(name, path->dentry, 0);
2705        restore_nameidata();
2706        putname(name);
2707        return error;
2708}
2709
2710/**
2711 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2712 * @dfd:        directory file descriptor
2713 * @name:       pathname from userland
2714 * @flags:      lookup flags
2715 * @path:       pointer to container to hold result
2716 *
2717 * A umount is a special case for path walking. We're not actually interested
2718 * in the inode in this situation, and ESTALE errors can be a problem. We
2719 * simply want track down the dentry and vfsmount attached at the mountpoint
2720 * and avoid revalidating the last component.
2721 *
2722 * Returns 0 and populates "path" on success.
2723 */
2724int
2725user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2726                        struct path *path)
2727{
2728        return filename_mountpoint(dfd, getname(name), path, flags);
2729}
2730
2731int
2732kern_path_mountpoint(int dfd, const char *name, struct path *path,
2733                        unsigned int flags)
2734{
2735        return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2736}
2737EXPORT_SYMBOL(kern_path_mountpoint);
2738
2739int __check_sticky(struct inode *dir, struct inode *inode)
2740{
2741        kuid_t fsuid = current_fsuid();
2742
2743        if (uid_eq(inode->i_uid, fsuid))
2744                return 0;
2745        if (uid_eq(dir->i_uid, fsuid))
2746                return 0;
2747        return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2748}
2749EXPORT_SYMBOL(__check_sticky);
2750
2751/*
2752 *      Check whether we can remove a link victim from directory dir, check
2753 *  whether the type of victim is right.
2754 *  1. We can't do it if dir is read-only (done in permission())
2755 *  2. We should have write and exec permissions on dir
2756 *  3. We can't remove anything from append-only dir
2757 *  4. We can't do anything with immutable dir (done in permission())
2758 *  5. If the sticky bit on dir is set we should either
2759 *      a. be owner of dir, or
2760 *      b. be owner of victim, or
2761 *      c. have CAP_FOWNER capability
2762 *  6. If the victim is append-only or immutable we can't do antyhing with
2763 *     links pointing to it.
2764 *  7. If the victim has an unknown uid or gid we can't change the inode.
2765 *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2766 *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2767 * 10. We can't remove a root or mountpoint.
2768 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2769 *     nfs_async_unlink().
2770 */
2771static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2772{
2773        struct inode *inode = d_backing_inode(victim);
2774        int error;
2775
2776        if (d_is_negative(victim))
2777                return -ENOENT;
2778        BUG_ON(!inode);
2779
2780        BUG_ON(victim->d_parent->d_inode != dir);
2781
2782        /* Inode writeback is not safe when the uid or gid are invalid. */
2783        if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
2784                return -EOVERFLOW;
2785
2786        audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2787
2788        error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2789        if (error)
2790                return error;
2791        if (IS_APPEND(dir))
2792                return -EPERM;
2793
2794        if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2795            IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2796                return -EPERM;
2797        if (isdir) {
2798                if (!d_is_dir(victim))
2799                        return -ENOTDIR;
2800                if (IS_ROOT(victim))
2801                        return -EBUSY;
2802        } else if (d_is_dir(victim))
2803                return -EISDIR;
2804        if (IS_DEADDIR(dir))
2805                return -ENOENT;
2806        if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2807                return -EBUSY;
2808        return 0;
2809}
2810
2811/*      Check whether we can create an object with dentry child in directory
2812 *  dir.
2813 *  1. We can't do it if child already exists (open has special treatment for
2814 *     this case, but since we are inlined it's OK)
2815 *  2. We can't do it if dir is read-only (done in permission())
2816 *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2817 *  4. We should have write and exec permissions on dir
2818 *  5. We can't do it if dir is immutable (done in permission())
2819 */
2820static inline int may_create(struct inode *dir, struct dentry *child)
2821{
2822        struct user_namespace *s_user_ns;
2823        audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2824        if (child->d_inode)
2825                return -EEXIST;
2826        if (IS_DEADDIR(dir))
2827                return -ENOENT;
2828        s_user_ns = dir->i_sb->s_user_ns;
2829        if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2830            !kgid_has_mapping(s_user_ns, current_fsgid()))
2831                return -EOVERFLOW;
2832        return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2833}
2834
2835/*
2836 * p1 and p2 should be directories on the same fs.
2837 */
2838struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2839{
2840        struct dentry *p;
2841
2842        if (p1 == p2) {
2843                inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2844                return NULL;
2845        }
2846
2847        mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2848
2849        p = d_ancestor(p2, p1);
2850        if (p) {
2851                inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2852                inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2853                return p;
2854        }
2855
2856        p = d_ancestor(p1, p2);
2857        if (p) {
2858                inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2859                inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2860                return p;
2861        }
2862
2863        inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2864        inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2865        return NULL;
2866}
2867EXPORT_SYMBOL(lock_rename);
2868
2869void unlock_rename(struct dentry *p1, struct dentry *p2)
2870{
2871        inode_unlock(p1->d_inode);
2872        if (p1 != p2) {
2873                inode_unlock(p2->d_inode);
2874                mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2875        }
2876}
2877EXPORT_SYMBOL(unlock_rename);
2878
2879int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2880                bool want_excl)
2881{
2882        int error = may_create(dir, dentry);
2883        if (error)
2884                return error;
2885
2886        if (!dir->i_op->create)
2887                return -EACCES; /* shouldn't it be ENOSYS? */
2888        mode &= S_IALLUGO;
2889        mode |= S_IFREG;
2890        error = security_inode_create(dir, dentry, mode);
2891        if (error)
2892                return error;
2893        error = dir->i_op->create(dir, dentry, mode, want_excl);
2894        if (!error)
2895                fsnotify_create(dir, dentry);
2896        return error;
2897}
2898EXPORT_SYMBOL(vfs_create);
2899
2900int vfs_mkobj(struct dentry *dentry, umode_t mode,
2901                int (*f)(struct dentry *, umode_t, void *),
2902                void *arg)
2903{
2904        struct inode *dir = dentry->d_parent->d_inode;
2905        int error = may_create(dir, dentry);
2906        if (error)
2907                return error;
2908
2909        mode &= S_IALLUGO;
2910        mode |= S_IFREG;
2911        error = security_inode_create(dir, dentry, mode);
2912        if (error)
2913                return error;
2914        error = f(dentry, mode, arg);
2915        if (!error)
2916                fsnotify_create(dir, dentry);
2917        return error;
2918}
2919EXPORT_SYMBOL(vfs_mkobj);
2920
2921bool may_open_dev(const struct path *path)
2922{
2923        return !(path->mnt->mnt_flags & MNT_NODEV) &&
2924                !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2925}
2926
2927static int may_open(const struct path *path, int acc_mode, int flag)
2928{
2929        struct dentry *dentry = path->dentry;
2930        struct inode *inode = dentry->d_inode;
2931        int error;
2932
2933        if (!inode)
2934                return -ENOENT;
2935
2936        switch (inode->i_mode & S_IFMT) {
2937        case S_IFLNK:
2938                return -ELOOP;
2939        case S_IFDIR:
2940                if (acc_mode & MAY_WRITE)
2941                        return -EISDIR;
2942                break;
2943        case S_IFBLK:
2944        case S_IFCHR:
2945                if (!may_open_dev(path))
2946                        return -EACCES;
2947                /*FALLTHRU*/
2948        case S_IFIFO:
2949        case S_IFSOCK:
2950                flag &= ~O_TRUNC;
2951                break;
2952        }
2953
2954        error = inode_permission(inode, MAY_OPEN | acc_mode);
2955        if (error)
2956                return error;
2957
2958        /*
2959         * An append-only file must be opened in append mode for writing.
2960         */
2961        if (IS_APPEND(inode)) {
2962                if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2963                        return -EPERM;
2964                if (flag & O_TRUNC)
2965                        return -EPERM;
2966        }
2967
2968        /* O_NOATIME can only be set by the owner or superuser */
2969        if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2970                return -EPERM;
2971
2972        return 0;
2973}
2974
2975static int handle_truncate(struct file *filp)
2976{
2977        const struct path *path = &filp->f_path;
2978        struct inode *inode = path->dentry->d_inode;
2979        int error = get_write_access(inode);
2980        if (error)
2981                return error;
2982        /*
2983         * Refuse to truncate files with mandatory locks held on them.
2984         */
2985        error = locks_verify_locked(filp);
2986        if (!error)
2987                error = security_path_truncate(path);
2988        if (!error) {
2989                error = do_truncate(path->dentry, 0,
2990                                    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2991                                    filp);
2992        }
2993        put_write_access(inode);
2994        return error;
2995}
2996
2997static inline int open_to_namei_flags(int flag)
2998{
2999        if ((flag & O_ACCMODE) == 3)
3000                flag--;
3001        return flag;
3002}
3003
3004static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
3005{
3006        struct user_namespace *s_user_ns;
3007        int error = security_path_mknod(dir, dentry, mode, 0);
3008        if (error)
3009                return error;
3010
3011        s_user_ns = dir->dentry->d_sb->s_user_ns;
3012        if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
3013            !kgid_has_mapping(s_user_ns, current_fsgid()))
3014                return -EOVERFLOW;
3015
3016        error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
3017        if (error)
3018                return error;
3019
3020        return security_inode_create(dir->dentry->d_inode, dentry, mode);
3021}
3022
3023/*
3024 * Attempt to atomically look up, create and open a file from a negative
3025 * dentry.
3026 *
3027 * Returns 0 if successful.  The file will have been created and attached to
3028 * @file by the filesystem calling finish_open().
3029 *
3030 * Returns 1 if the file was looked up only or didn't need creating.  The
3031 * caller will need to perform the open themselves.  @path will have been
3032 * updated to point to the new dentry.  This may be negative.
3033 *
3034 * Returns an error code otherwise.
3035 */
3036static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3037                        struct path *path, struct file *file,
3038                        const struct open_flags *op,
3039                        int open_flag, umode_t mode,
3040                        int *opened)
3041{
3042        struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3043        struct inode *dir =  nd->path.dentry->d_inode;
3044        int error;
3045
3046        if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
3047                open_flag &= ~O_TRUNC;
3048
3049        if (nd->flags & LOOKUP_DIRECTORY)
3050                open_flag |= O_DIRECTORY;
3051
3052        file->f_path.dentry = DENTRY_NOT_SET;
3053        file->f_path.mnt = nd->path.mnt;
3054        error = dir->i_op->atomic_open(dir, dentry, file,
3055                                       open_to_namei_flags(open_flag),
3056                                       mode, opened);
3057        d_lookup_done(dentry);
3058        if (!error) {
3059                /*
3060                 * We didn't have the inode before the open, so check open
3061                 * permission here.
3062                 */
3063                int acc_mode = op->acc_mode;
3064                if (*opened & FILE_CREATED) {
3065                        WARN_ON(!(open_flag & O_CREAT));
3066                        fsnotify_create(dir, dentry);
3067                        acc_mode = 0;
3068                }
3069                error = may_open(&file->f_path, acc_mode, open_flag);
3070                if (WARN_ON(error > 0))
3071                        error = -EINVAL;
3072        } else if (error > 0) {
3073                if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3074                        error = -EIO;
3075                } else {
3076                        if (file->f_path.dentry) {
3077                                dput(dentry);
3078                                dentry = file->f_path.dentry;
3079                        }
3080                        if (*opened & FILE_CREATED)
3081                                fsnotify_create(dir, dentry);
3082                        if (unlikely(d_is_negative(dentry))) {
3083                                error = -ENOENT;
3084                        } else {
3085                                path->dentry = dentry;
3086                                path->mnt = nd->path.mnt;
3087                                return 1;
3088                        }
3089                }
3090        }
3091        dput(dentry);
3092        return error;
3093}
3094
3095/*
3096 * Look up and maybe create and open the last component.
3097 *
3098 * Must be called with i_mutex held on parent.
3099 *
3100 * Returns 0 if the file was successfully atomically created (if necessary) and
3101 * opened.  In this case the file will be returned attached to @file.
3102 *
3103 * Returns 1 if the file was not completely opened at this time, though lookups
3104 * and creations will have been performed and the dentry returned in @path will
3105 * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
3106 * specified then a negative dentry may be returned.
3107 *
3108 * An error code is returned otherwise.
3109 *
3110 * FILE_CREATE will be set in @*opened if the dentry was created and will be
3111 * cleared otherwise prior to returning.
3112 */
3113static int lookup_open(struct nameidata *nd, struct path *path,
3114                        struct file *file,
3115                        const struct open_flags *op,
3116                        bool got_write, int *opened)
3117{
3118        struct dentry *dir = nd->path.dentry;
3119        struct inode *dir_inode = dir->d_inode;
3120        int open_flag = op->open_flag;
3121        struct dentry *dentry;
3122        int error, create_error = 0;
3123        umode_t mode = op->mode;
3124        DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3125
3126        if (unlikely(IS_DEADDIR(dir_inode)))
3127                return -ENOENT;
3128
3129        *opened &= ~FILE_CREATED;
3130        dentry = d_lookup(dir, &nd->last);
3131        for (;;) {
3132                if (!dentry) {
3133                        dentry = d_alloc_parallel(dir, &nd->last, &wq);
3134                        if (IS_ERR(dentry))
3135                                return PTR_ERR(dentry);
3136                }
3137                if (d_in_lookup(dentry))
3138                        break;
3139
3140                error = d_revalidate(dentry, nd->flags);
3141                if (likely(error > 0))
3142                        break;
3143                if (error)
3144                        goto out_dput;
3145                d_invalidate(dentry);
3146                dput(dentry);
3147                dentry = NULL;
3148        }
3149        if (dentry->d_inode) {
3150                /* Cached positive dentry: will open in f_op->open */
3151                goto out_no_open;
3152        }
3153
3154        /*
3155         * Checking write permission is tricky, bacuse we don't know if we are
3156         * going to actually need it: O_CREAT opens should work as long as the
3157         * file exists.  But checking existence breaks atomicity.  The trick is
3158         * to check access and if not granted clear O_CREAT from the flags.
3159         *
3160         * Another problem is returing the "right" error value (e.g. for an
3161         * O_EXCL open we want to return EEXIST not EROFS).
3162         */
3163        if (open_flag & O_CREAT) {
3164                if (!IS_POSIXACL(dir->d_inode))
3165                        mode &= ~current_umask();
3166                if (unlikely(!got_write)) {
3167                        create_error = -EROFS;
3168                        open_flag &= ~O_CREAT;
3169                        if (open_flag & (O_EXCL | O_TRUNC))
3170                                goto no_open;
3171                        /* No side effects, safe to clear O_CREAT */
3172                } else {
3173                        create_error = may_o_create(&nd->path, dentry, mode);
3174                        if (create_error) {
3175                                open_flag &= ~O_CREAT;
3176                                if (open_flag & O_EXCL)
3177                                        goto no_open;
3178                        }
3179                }
3180        } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3181                   unlikely(!got_write)) {
3182                /*
3183                 * No O_CREATE -> atomicity not a requirement -> fall
3184                 * back to lookup + open
3185                 */
3186                goto no_open;
3187        }
3188
3189        if (dir_inode->i_op->atomic_open) {
3190                error = atomic_open(nd, dentry, path, file, op, open_flag,
3191                                    mode, opened);
3192                if (unlikely(error == -ENOENT) && create_error)
3193                        error = create_error;
3194                return error;
3195        }
3196
3197no_open:
3198        if (d_in_lookup(dentry)) {
3199                struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3200                                                             nd->flags);
3201                d_lookup_done(dentry);
3202                if (unlikely(res)) {
3203                        if (IS_ERR(res)) {
3204                                error = PTR_ERR(res);
3205                                goto out_dput;
3206                        }
3207                        dput(dentry);
3208                        dentry = res;
3209                }
3210        }
3211
3212        /* Negative dentry, just create the file */
3213        if (!dentry->d_inode && (open_flag & O_CREAT)) {
3214                *opened |= FILE_CREATED;
3215                audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3216                if (!dir_inode->i_op->create) {
3217                        error = -EACCES;
3218                        goto out_dput;
3219                }
3220                error = dir_inode->i_op->create(dir_inode, dentry, mode,
3221                                                open_flag & O_EXCL);
3222                if (error)
3223                        goto out_dput;
3224                fsnotify_create(dir_inode, dentry);
3225        }
3226        if (unlikely(create_error) && !dentry->d_inode) {
3227                error = create_error;
3228                goto out_dput;
3229        }
3230out_no_open:
3231        path->dentry = dentry;
3232        path->mnt = nd->path.mnt;
3233        return 1;
3234
3235out_dput:
3236        dput(dentry);
3237        return error;
3238}
3239
3240/*
3241 * Handle the last step of open()
3242 */
3243static int do_last(struct nameidata *nd,
3244                   struct file *file, const struct open_flags *op,
3245                   int *opened)
3246{
3247        struct dentry *dir = nd->path.dentry;
3248        int open_flag = op->open_flag;
3249        bool will_truncate = (open_flag & O_TRUNC) != 0;
3250        bool got_write = false;
3251        int acc_mode = op->acc_mode;
3252        unsigned seq;
3253        struct inode *inode;
3254        struct path path;
3255        int error;
3256
3257        nd->flags &= ~LOOKUP_PARENT;
3258        nd->flags |= op->intent;
3259
3260        if (nd->last_type != LAST_NORM) {
3261                error = handle_dots(nd, nd->last_type);
3262                if (unlikely(error))
3263                        return error;
3264                goto finish_open;
3265        }
3266
3267        if (!(open_flag & O_CREAT)) {
3268                if (nd->last.name[nd->last.len])
3269                        nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3270                /* we _can_ be in RCU mode here */
3271                error = lookup_fast(nd, &path, &inode, &seq);
3272                if (likely(error > 0))
3273                        goto finish_lookup;
3274
3275                if (error < 0)
3276                        return error;
3277
3278                BUG_ON(nd->inode != dir->d_inode);
3279                BUG_ON(nd->flags & LOOKUP_RCU);
3280        } else {
3281                /* create side of things */
3282                /*
3283                 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3284                 * has been cleared when we got to the last component we are
3285                 * about to look up
3286                 */
3287                error = complete_walk(nd);
3288                if (error)
3289                        return error;
3290
3291                audit_inode(nd->name, dir, LOOKUP_PARENT);
3292                /* trailing slashes? */
3293                if (unlikely(nd->last.name[nd->last.len]))
3294                        return -EISDIR;
3295        }
3296
3297        if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3298                error = mnt_want_write(nd->path.mnt);
3299                if (!error)
3300                        got_write = true;
3301                /*
3302                 * do _not_ fail yet - we might not need that or fail with
3303                 * a different error; let lookup_open() decide; we'll be
3304                 * dropping this one anyway.
3305                 */
3306        }
3307        if (open_flag & O_CREAT)
3308                inode_lock(dir->d_inode);
3309        else
3310                inode_lock_shared(dir->d_inode);
3311        error = lookup_open(nd, &path, file, op, got_write, opened);
3312        if (open_flag & O_CREAT)
3313                inode_unlock(dir->d_inode);
3314        else
3315                inode_unlock_shared(dir->d_inode);
3316
3317        if (error <= 0) {
3318                if (error)
3319                        goto out;
3320
3321                if ((*opened & FILE_CREATED) ||
3322                    !S_ISREG(file_inode(file)->i_mode))
3323                        will_truncate = false;
3324
3325                audit_inode(nd->name, file->f_path.dentry, 0);
3326                goto opened;
3327        }
3328
3329        if (*opened & FILE_CREATED) {
3330                /* Don't check for write permission, don't truncate */
3331                open_flag &= ~O_TRUNC;
3332                will_truncate = false;
3333                acc_mode = 0;
3334                path_to_nameidata(&path, nd);
3335                goto finish_open_created;
3336        }
3337
3338        /*
3339         * If atomic_open() acquired write access it is dropped now due to
3340         * possible mount and symlink following (this might be optimized away if
3341         * necessary...)
3342         */
3343        if (got_write) {
3344                mnt_drop_write(nd->path.mnt);
3345                got_write = false;
3346        }
3347
3348        error = follow_managed(&path, nd);
3349        if (unlikely(error < 0))
3350                return error;
3351
3352        if (unlikely(d_is_negative(path.dentry))) {
3353                path_to_nameidata(&path, nd);
3354                return -ENOENT;
3355        }
3356
3357        /*
3358         * create/update audit record if it already exists.
3359         */
3360        audit_inode(nd->name, path.dentry, 0);
3361
3362        if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3363                path_to_nameidata(&path, nd);
3364                return -EEXIST;
3365        }
3366
3367        seq = 0;        /* out of RCU mode, so the value doesn't matter */
3368        inode = d_backing_inode(path.dentry);
3369finish_lookup:
3370        error = step_into(nd, &path, 0, inode, seq);
3371        if (unlikely(error))
3372                return error;
3373finish_open:
3374        /* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3375        error = complete_walk(nd);
3376        if (error)
3377                return error;
3378        audit_inode(nd->name, nd->path.dentry, 0);
3379        error = -EISDIR;
3380        if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3381                goto out;
3382        error = -ENOTDIR;
3383        if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3384                goto out;
3385        if (!d_is_reg(nd->path.dentry))
3386                will_truncate = false;
3387
3388        if (will_truncate) {
3389                error = mnt_want_write(nd->path.mnt);
3390                if (error)
3391                        goto out;
3392                got_write = true;
3393        }
3394finish_open_created:
3395        error = may_open(&nd->path, acc_mode, open_flag);
3396        if (error)
3397                goto out;
3398        BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3399        error = vfs_open(&nd->path, file);
3400        if (error)
3401                goto out;
3402        *opened |= FILE_OPENED;
3403opened:
3404        error = ima_file_check(file, op->acc_mode, *opened);
3405        if (!error && will_truncate)
3406                error = handle_truncate(file);
3407out:
3408        if (unlikely(error > 0)) {
3409                WARN_ON(1);
3410                error = -EINVAL;
3411        }
3412        if (got_write)
3413                mnt_drop_write(nd->path.mnt);
3414        return error;
3415}
3416
3417struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3418{
3419        struct dentry *child = NULL;
3420        struct inode *dir = dentry->d_inode;
3421        struct inode *inode;
3422        int error;
3423
3424        /* we want directory to be writable */
3425        error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3426        if (error)
3427                goto out_err;
3428        error = -EOPNOTSUPP;
3429        if (!dir->i_op->tmpfile)
3430                goto out_err;
3431        error = -ENOMEM;
3432        child = d_alloc(dentry, &slash_name);
3433        if (unlikely(!child))
3434                goto out_err;
3435        error = dir->i_op->tmpfile(dir, child, mode);
3436        if (error)
3437                goto out_err;
3438        error = -ENOENT;
3439        inode = child->d_inode;
3440        if (unlikely(!inode))
3441                goto out_err;
3442        if (!(open_flag & O_EXCL)) {
3443                spin_lock(&inode->i_lock);
3444                inode->i_state |= I_LINKABLE;
3445                spin_unlock(&inode->i_lock);
3446        }
3447        return child;
3448
3449out_err:
3450        dput(child);
3451        return ERR_PTR(error);
3452}
3453EXPORT_SYMBOL(vfs_tmpfile);
3454
3455static int do_tmpfile(struct nameidata *nd, unsigned flags,
3456                const struct open_flags *op,
3457                struct file *file, int *opened)
3458{
3459        struct dentry *child;
3460        struct path path;
3461        int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3462        if (unlikely(error))
3463                return error;
3464        error = mnt_want_write(path.mnt);
3465        if (unlikely(error))
3466                goto out;
3467        child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3468        error = PTR_ERR(child);
3469        if (IS_ERR(child))
3470                goto out2;
3471        dput(path.dentry);
3472        path.dentry = child;
3473        audit_inode(nd->name, child, 0);
3474        /* Don't check for other permissions, the inode was just created */
3475        error = may_open(&path, 0, op->open_flag);
3476        if (error)
3477                goto out2;
3478        file->f_path.mnt = path.mnt;
3479        error = finish_open(file, child, NULL, opened);
3480out2:
3481        mnt_drop_write(path.mnt);
3482out:
3483        path_put(&path);
3484        return error;
3485}
3486
3487static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3488{
3489        struct path path;
3490        int error = path_lookupat(nd, flags, &path);
3491        if (!error) {
3492                audit_inode(nd->name, path.dentry, 0);
3493                error = vfs_open(&path, file);
3494                path_put(&path);
3495        }
3496        return error;
3497}
3498
3499static struct file *path_openat(struct nameidata *nd,
3500                        const struct open_flags *op, unsigned flags)
3501{
3502        const char *s;
3503        struct file *file;
3504        int opened = 0;
3505        int error;
3506
3507        file = alloc_empty_file(op->open_flag, current_cred());
3508        if (IS_ERR(file))
3509                return file;
3510
3511        if (unlikely(file->f_flags & __O_TMPFILE)) {
3512                error = do_tmpfile(nd, flags, op, file, &opened);
3513                goto out2;
3514        }
3515
3516        if (unlikely(file->f_flags & O_PATH)) {
3517                error = do_o_path(nd, flags, file);
3518                if (!error)
3519                        opened |= FILE_OPENED;
3520                goto out2;
3521        }
3522
3523        s = path_init(nd, flags);
3524        if (IS_ERR(s)) {
3525                fput(file);
3526                return ERR_CAST(s);
3527        }
3528        while (!(error = link_path_walk(s, nd)) &&
3529                (error = do_last(nd, file, op, &opened)) > 0) {
3530                nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3531                s = trailing_symlink(nd);
3532                if (IS_ERR(s)) {
3533                        error = PTR_ERR(s);
3534                        break;
3535                }
3536        }
3537        terminate_walk(nd);
3538out2:
3539        if (likely(!error)) {
3540                if (likely(opened & FILE_OPENED))
3541                        return file;
3542                WARN_ON(1);
3543                error = -EINVAL;
3544        }
3545        fput(file);
3546        if (error == -EOPENSTALE) {
3547                if (flags & LOOKUP_RCU)
3548                        error = -ECHILD;
3549                else
3550                        error = -ESTALE;
3551        }
3552        return ERR_PTR(error);
3553}
3554
3555struct file *do_filp_open(int dfd, struct filename *pathname,
3556                const struct open_flags *op)
3557{
3558        struct nameidata nd;
3559        int flags = op->lookup_flags;
3560        struct file *filp;
3561
3562        set_nameidata(&nd, dfd, pathname);
3563        filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3564        if (unlikely(filp == ERR_PTR(-ECHILD)))
3565                filp = path_openat(&nd, op, flags);
3566        if (unlikely(filp == ERR_PTR(-ESTALE)))
3567                filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3568        restore_nameidata();
3569        return filp;
3570}
3571
3572struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3573                const char *name, const struct open_flags *op)
3574{
3575        struct nameidata nd;
3576        struct file *file;
3577        struct filename *filename;
3578        int flags = op->lookup_flags | LOOKUP_ROOT;
3579
3580        nd.root.mnt = mnt;
3581        nd.root.dentry = dentry;
3582
3583        if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3584                return ERR_PTR(-ELOOP);
3585
3586        filename = getname_kernel(name);
3587        if (IS_ERR(filename))
3588                return ERR_CAST(filename);
3589
3590        set_nameidata(&nd, -1, filename);
3591        file = path_openat(&nd, op, flags | LOOKUP_RCU);
3592        if (unlikely(file == ERR_PTR(-ECHILD)))
3593                file = path_openat(&nd, op, flags);
3594        if (unlikely(file == ERR_PTR(-ESTALE)))
3595                file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3596        restore_nameidata();
3597        putname(filename);
3598        return file;
3599}
3600
3601static struct dentry *filename_create(int dfd, struct filename *name,
3602                                struct path *path, unsigned int lookup_flags)
3603{
3604        struct dentry *dentry = ERR_PTR(-EEXIST);
3605        struct qstr last;
3606        int type;
3607        int err2;
3608        int error;
3609        bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3610
3611        /*
3612         * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3613         * other flags passed in are ignored!
3614         */
3615        lookup_flags &= LOOKUP_REVAL;
3616
3617        name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3618        if (IS_ERR(name))
3619                return ERR_CAST(name);
3620
3621        /*
3622         * Yucky last component or no last component at all?
3623         * (foo/., foo/.., /////)
3624         */
3625        if (unlikely(type != LAST_NORM))
3626                goto out;
3627
3628        /* don't fail immediately if it's r/o, at least try to report other errors */
3629        err2 = mnt_want_write(path->mnt);
3630        /*
3631         * Do the final lookup.
3632         */
3633        lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3634        inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3635        dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3636        if (IS_ERR(dentry))
3637                goto unlock;
3638
3639        error = -EEXIST;
3640        if (d_is_positive(dentry))
3641                goto fail;
3642
3643        /*
3644         * Special case - lookup gave negative, but... we had foo/bar/
3645         * From the vfs_mknod() POV we just have a negative dentry -
3646         * all is fine. Let's be bastards - you had / on the end, you've
3647         * been asking for (non-existent) directory. -ENOENT for you.
3648         */
3649        if (unlikely(!is_dir && last.name[last.len])) {
3650                error = -ENOENT;
3651                goto fail;
3652        }
3653        if (unlikely(err2)) {
3654                error = err2;
3655                goto fail;
3656        }
3657        putname(name);
3658        return dentry;
3659fail:
3660        dput(dentry);
3661        dentry = ERR_PTR(error);
3662unlock:
3663        inode_unlock(path->dentry->d_inode);
3664        if (!err2)
3665                mnt_drop_write(path->mnt);
3666out:
3667        path_put(path);
3668        putname(name);
3669        return dentry;
3670}
3671
3672struct dentry *kern_path_create(int dfd, const char *pathname,
3673                                struct path *path, unsigned int lookup_flags)
3674{
3675        return filename_create(dfd, getname_kernel(pathname),
3676                                path, lookup_flags);
3677}
3678EXPORT_SYMBOL(kern_path_create);
3679
3680void done_path_create(struct path *path, struct dentry *dentry)
3681{
3682        dput(dentry);
3683        inode_unlock(path->dentry->d_inode);
3684        mnt_drop_write(path->mnt);
3685        path_put(path);
3686}
3687EXPORT_SYMBOL(done_path_create);
3688
3689inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3690                                struct path *path, unsigned int lookup_flags)
3691{
3692        return filename_create(dfd, getname(pathname), path, lookup_flags);
3693}
3694EXPORT_SYMBOL(user_path_create);
3695
3696int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3697{
3698        int error = may_create(dir, dentry);
3699
3700        if (error)
3701                return error;
3702
3703        if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
3704            !ns_capable(dentry->d_sb->s_user_ns, CAP_MKNOD))
3705                return -EPERM;
3706
3707        if (!dir->i_op->mknod)
3708                return -EPERM;
3709
3710        error = devcgroup_inode_mknod(mode, dev);
3711        if (error)
3712                return error;
3713
3714        error = security_inode_mknod(dir, dentry, mode, dev);
3715        if (error)
3716                return error;
3717
3718        error = dir->i_op->mknod(dir, dentry, mode, dev);
3719        if (!error)
3720                fsnotify_create(dir, dentry);
3721        return error;
3722}
3723EXPORT_SYMBOL(vfs_mknod);
3724
3725static int may_mknod(umode_t mode)
3726{
3727        switch (mode & S_IFMT) {
3728        case S_IFREG:
3729        case S_IFCHR:
3730        case S_IFBLK:
3731        case S_IFIFO:
3732        case S_IFSOCK:
3733        case 0: /* zero mode translates to S_IFREG */
3734                return 0;
3735        case S_IFDIR:
3736                return -EPERM;
3737        default:
3738                return -EINVAL;
3739        }
3740}
3741
3742long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3743                unsigned int dev)
3744{
3745        struct dentry *dentry;
3746        struct path path;
3747        int error;
3748        unsigned int lookup_flags = 0;
3749
3750        error = may_mknod(mode);
3751        if (error)
3752                return error;
3753retry:
3754        dentry = user_path_create(dfd, filename, &path, lookup_flags);
3755        if (IS_ERR(dentry))
3756                return PTR_ERR(dentry);
3757
3758        if (!IS_POSIXACL(path.dentry->d_inode))
3759                mode &= ~current_umask();
3760        error = security_path_mknod(&path, dentry, mode, dev);
3761        if (error)
3762                goto out;
3763        switch (mode & S_IFMT) {
3764                case 0: case S_IFREG:
3765                        error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3766                        if (!error)
3767                                ima_post_path_mknod(dentry);
3768                        break;
3769                case S_IFCHR: case S_IFBLK:
3770                        error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3771                                        new_decode_dev(dev));
3772                        break;
3773                case S_IFIFO: case S_IFSOCK:
3774                        error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3775                        break;
3776        }
3777out:
3778        done_path_create(&path, dentry);
3779        if (retry_estale(error, lookup_flags)) {
3780                lookup_flags |= LOOKUP_REVAL;
3781                goto retry;
3782        }
3783        return error;
3784}
3785
3786SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3787                unsigned int, dev)
3788{
3789        return do_mknodat(dfd, filename, mode, dev);
3790}
3791
3792SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3793{
3794        return do_mknodat(AT_FDCWD, filename, mode, dev);
3795}
3796
3797int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3798{
3799        int error = may_create(dir, dentry);
3800        unsigned max_links = dir->i_sb->s_max_links;
3801
3802        if (error)
3803                return error;
3804
3805        if (!dir->i_op->mkdir)
3806                return -EPERM;
3807
3808        mode &= (S_IRWXUGO|S_ISVTX);
3809        error = security_inode_mkdir(dir, dentry, mode);
3810        if (error)
3811                return error;
3812
3813        if (max_links && dir->i_nlink >= max_links)
3814                return -EMLINK;
3815
3816        error = dir->i_op->mkdir(dir, dentry, mode);
3817        if (!error)
3818                fsnotify_mkdir(dir, dentry);
3819        return error;
3820}
3821EXPORT_SYMBOL(vfs_mkdir);
3822
3823long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3824{
3825        struct dentry *dentry;
3826        struct path path;
3827        int error;
3828        unsigned int lookup_flags = LOOKUP_DIRECTORY;
3829
3830retry:
3831        dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3832        if (IS_ERR(dentry))
3833                return PTR_ERR(dentry);
3834
3835        if (!IS_POSIXACL(path.dentry->d_inode))
3836                mode &= ~current_umask();
3837        error = security_path_mkdir(&path, dentry, mode);
3838        if (!error)
3839                error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3840        done_path_create(&path, dentry);
3841        if (retry_estale(error, lookup_flags)) {
3842                lookup_flags |= LOOKUP_REVAL;
3843                goto retry;
3844        }
3845        return error;
3846}
3847
3848SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3849{
3850        return do_mkdirat(dfd, pathname, mode);
3851}
3852
3853SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3854{
3855        return do_mkdirat(AT_FDCWD, pathname, mode);
3856}
3857
3858int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3859{
3860        int error = may_delete(dir, dentry, 1);
3861
3862        if (error)
3863                return error;
3864
3865        if (!dir->i_op->rmdir)
3866                return -EPERM;
3867
3868        dget(dentry);
3869        inode_lock(dentry->d_inode);
3870
3871        error = -EBUSY;
3872        if (is_local_mountpoint(dentry))
3873                goto out;
3874
3875        error = security_inode_rmdir(dir, dentry);
3876        if (error)
3877                goto out;
3878
3879        error = dir->i_op->rmdir(dir, dentry);
3880        if (error)
3881                goto out;
3882
3883        shrink_dcache_parent(dentry);
3884        dentry->d_inode->i_flags |= S_DEAD;
3885        dont_mount(dentry);
3886        detach_mounts(dentry);
3887
3888out:
3889        inode_unlock(dentry->d_inode);
3890        dput(dentry);
3891        if (!error)
3892                d_delete(dentry);
3893        return error;
3894}
3895EXPORT_SYMBOL(vfs_rmdir);
3896
3897long do_rmdir(int dfd, const char __user *pathname)
3898{
3899        int error = 0;
3900        struct filename *name;
3901        struct dentry *dentry;
3902        struct path path;
3903        struct qstr last;
3904        int type;
3905        unsigned int lookup_flags = 0;
3906retry:
3907        name = filename_parentat(dfd, getname(pathname), lookup_flags,
3908                                &path, &last, &type);
3909        if (IS_ERR(name))
3910                return PTR_ERR(name);
3911
3912        switch (type) {
3913        case LAST_DOTDOT:
3914                error = -ENOTEMPTY;
3915                goto exit1;
3916        case LAST_DOT:
3917                error = -EINVAL;
3918                goto exit1;
3919        case LAST_ROOT:
3920                error = -EBUSY;
3921                goto exit1;
3922        }
3923
3924        error = mnt_want_write(path.mnt);
3925        if (error)
3926                goto exit1;
3927
3928        inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3929        dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3930        error = PTR_ERR(dentry);
3931        if (IS_ERR(dentry))
3932                goto exit2;
3933        if (!dentry->d_inode) {
3934                error = -ENOENT;
3935                goto exit3;
3936        }
3937        error = security_path_rmdir(&path, dentry);
3938        if (error)
3939                goto exit3;
3940        error = vfs_rmdir(path.dentry->d_inode, dentry);
3941exit3:
3942        dput(dentry);
3943exit2:
3944        inode_unlock(path.dentry->d_inode);
3945        mnt_drop_write(path.mnt);
3946exit1:
3947        path_put(&path);
3948        putname(name);
3949        if (retry_estale(error, lookup_flags)) {
3950                lookup_flags |= LOOKUP_REVAL;
3951                goto retry;
3952        }
3953        return error;
3954}
3955
3956SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3957{
3958        return do_rmdir(AT_FDCWD, pathname);
3959}
3960
3961/**
3962 * vfs_unlink - unlink a filesystem object
3963 * @dir:        parent directory
3964 * @dentry:     victim
3965 * @delegated_inode: returns victim inode, if the inode is delegated.
3966 *
3967 * The caller must hold dir->i_mutex.
3968 *
3969 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3970 * return a reference to the inode in delegated_inode.  The caller
3971 * should then break the delegation on that inode and retry.  Because
3972 * breaking a delegation may take a long time, the caller should drop
3973 * dir->i_mutex before doing so.
3974 *
3975 * Alternatively, a caller may pass NULL for delegated_inode.  This may
3976 * be appropriate for callers that expect the underlying filesystem not
3977 * to be NFS exported.
3978 */
3979int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3980{
3981        struct inode *target = dentry->d_inode;
3982        int error = may_delete(dir, dentry, 0);
3983
3984        if (error)
3985                return error;
3986
3987        if (!dir->i_op->unlink)
3988                return -EPERM;
3989
3990        inode_lock(target);
3991        if (is_local_mountpoint(dentry))
3992                error = -EBUSY;
3993        else {
3994                error = security_inode_unlink(dir, dentry);
3995                if (!error) {
3996                        error = try_break_deleg(target, delegated_inode);
3997                        if (error)
3998                                goto out;
3999                        error = dir->i_op->unlink(dir, dentry);
4000                        if (!error) {
4001                                dont_mount(dentry);
4002                                detach_mounts(dentry);
4003                        }
4004                }
4005        }
4006out:
4007        inode_unlock(target);
4008
4009        /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4010        if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
4011                fsnotify_link_count(target);
4012                d_delete(dentry);
4013        }
4014
4015        return error;
4016}
4017EXPORT_SYMBOL(vfs_unlink);
4018
4019/*
4020 * Make sure that the actual truncation of the file will occur outside its
4021 * directory's i_mutex.  Truncate can take a long time if there is a lot of
4022 * writeout happening, and we don't want to prevent access to the directory
4023 * while waiting on the I/O.
4024 */
4025long do_unlinkat(int dfd, struct filename *name)
4026{
4027        int error;
4028        struct dentry *dentry;
4029        struct path path;
4030        struct qstr last;
4031        int type;
4032        struct inode *inode = NULL;
4033        struct inode *delegated_inode = NULL;
4034        unsigned int lookup_flags = 0;
4035retry:
4036        name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4037        if (IS_ERR(name))
4038                return PTR_ERR(name);
4039
4040        error = -EISDIR;
4041        if (type != LAST_NORM)
4042                goto exit1;
4043
4044        error = mnt_want_write(path.mnt);
4045        if (error)
4046                goto exit1;
4047retry_deleg:
4048        inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4049        dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4050        error = PTR_ERR(dentry);
4051        if (!IS_ERR(dentry)) {
4052                /* Why not before? Because we want correct error value */
4053                if (last.name[last.len])
4054                        goto slashes;
4055                inode = dentry->d_inode;
4056                if (d_is_negative(dentry))
4057                        goto slashes;
4058                ihold(inode);
4059                error = security_path_unlink(&path, dentry);
4060                if (error)
4061                        goto exit2;
4062                error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4063exit2:
4064                dput(dentry);
4065        }
4066        inode_unlock(path.dentry->d_inode);
4067        if (inode)
4068                iput(inode);    /* truncate the inode here */
4069        inode = NULL;
4070        if (delegated_inode) {
4071                error = break_deleg_wait(&delegated_inode);
4072                if (!error)
4073                        goto retry_deleg;
4074        }
4075        mnt_drop_write(path.mnt);
4076exit1:
4077        path_put(&path);
4078        if (retry_estale(error, lookup_flags)) {
4079                lookup_flags |= LOOKUP_REVAL;
4080                inode = NULL;
4081                goto retry;
4082        }
4083        putname(name);
4084        return error;
4085
4086slashes:
4087        if (d_is_negative(dentry))
4088                error = -ENOENT;
4089        else if (d_is_dir(dentry))
4090                error = -EISDIR;
4091        else
4092                error = -ENOTDIR;
4093        goto exit2;
4094}
4095
4096SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4097{
4098        if ((flag & ~AT_REMOVEDIR) != 0)
4099                return -EINVAL;
4100
4101        if (flag & AT_REMOVEDIR)
4102                return do_rmdir(dfd, pathname);
4103
4104        return do_unlinkat(dfd, getname(pathname));
4105}
4106
4107SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4108{
4109        return do_unlinkat(AT_FDCWD, getname(pathname));
4110}
4111
4112int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4113{
4114        int error = may_create(dir, dentry);
4115
4116        if (error)
4117                return error;
4118
4119        if (!dir->i_op->symlink)
4120                return -EPERM;
4121
4122        error = security_inode_symlink(dir, dentry, oldname);
4123        if (error)
4124                return error;
4125
4126        error = dir->i_op->symlink(dir, dentry, oldname);
4127        if (!error)
4128                fsnotify_create(dir, dentry);
4129        return error;
4130}
4131EXPORT_SYMBOL(vfs_symlink);
4132
4133long do_symlinkat(const char __user *oldname, int newdfd,
4134                  const char __user *newname)
4135{
4136        int error;
4137        struct filename *from;
4138        struct dentry *dentry;
4139        struct path path;
4140        unsigned int lookup_flags = 0;
4141
4142        from = getname(oldname);
4143        if (IS_ERR(from))
4144                return PTR_ERR(from);
4145retry:
4146        dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4147        error = PTR_ERR(dentry);
4148        if (IS_ERR(dentry))
4149                goto out_putname;
4150
4151        error = security_path_symlink(&path, dentry, from->name);
4152        if (!error)
4153                error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4154        done_path_create(&path, dentry);
4155        if (retry_estale(error, lookup_flags)) {
4156                lookup_flags |= LOOKUP_REVAL;
4157                goto retry;
4158        }
4159out_putname:
4160        putname(from);
4161        return error;
4162}
4163
4164SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4165                int, newdfd, const char __user *, newname)
4166{
4167        return do_symlinkat(oldname, newdfd, newname);
4168}
4169
4170SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4171{
4172        return do_symlinkat(oldname, AT_FDCWD, newname);
4173}
4174
4175/**
4176 * vfs_link - create a new link
4177 * @old_dentry: object to be linked
4178 * @dir:        new parent
4179 * @new_dentry: where to create the new link
4180 * @delegated_inode: returns inode needing a delegation break
4181 *
4182 * The caller must hold dir->i_mutex
4183 *
4184 * If vfs_link discovers a delegation on the to-be-linked file in need
4185 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4186 * inode in delegated_inode.  The caller should then break the delegation
4187 * and retry.  Because breaking a delegation may take a long time, the
4188 * caller should drop the i_mutex before doing so.
4189 *
4190 * Alternatively, a caller may pass NULL for delegated_inode.  This may
4191 * be appropriate for callers that expect the underlying filesystem not
4192 * to be NFS exported.
4193 */
4194int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4195{
4196        struct inode *inode = old_dentry->d_inode;
4197        unsigned max_links = dir->i_sb->s_max_links;
4198        int error;
4199
4200        if (!inode)
4201                return -ENOENT;
4202
4203        error = may_create(dir, new_dentry);
4204        if (error)
4205                return error;
4206
4207        if (dir->i_sb != inode->i_sb)
4208                return -EXDEV;
4209
4210        /*
4211         * A link to an append-only or immutable file cannot be created.
4212         */
4213        if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4214                return -EPERM;
4215        /*
4216         * Updating the link count will likely cause i_uid and i_gid to
4217         * be writen back improperly if their true value is unknown to
4218         * the vfs.
4219         */
4220        if (HAS_UNMAPPED_ID(inode))
4221                return -EPERM;
4222        if (!dir->i_op->link)
4223                return -EPERM;
4224        if (S_ISDIR(inode->i_mode))
4225                return -EPERM;
4226
4227        error = security_inode_link(old_dentry, dir, new_dentry);
4228        if (error)
4229                return error;
4230
4231        inode_lock(inode);
4232        /* Make sure we don't allow creating hardlink to an unlinked file */
4233        if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4234                error =  -ENOENT;
4235        else if (max_links && inode->i_nlink >= max_links)
4236                error = -EMLINK;
4237        else {
4238                error = try_break_deleg(inode, delegated_inode);
4239                if (!error)
4240                        error = dir->i_op->link(old_dentry, dir, new_dentry);
4241        }
4242
4243        if (!error && (inode->i_state & I_LINKABLE)) {
4244                spin_lock(&inode->i_lock);
4245                inode->i_state &= ~I_LINKABLE;
4246                spin_unlock(&inode->i_lock);
4247        }
4248        inode_unlock(inode);
4249        if (!error)
4250                fsnotify_link(dir, inode, new_dentry);
4251        return error;
4252}
4253EXPORT_SYMBOL(vfs_link);
4254
4255/*
4256 * Hardlinks are often used in delicate situations.  We avoid
4257 * security-related surprises by not following symlinks on the
4258 * newname.  --KAB
4259 *
4260 * We don't follow them on the oldname either to be compatible
4261 * with linux 2.0, and to avoid hard-linking to directories
4262 * and other special files.  --ADM
4263 */
4264int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4265              const char __user *newname, int flags)
4266{
4267        struct dentry *new_dentry;
4268        struct path old_path, new_path;
4269        struct inode *delegated_inode = NULL;
4270        int how = 0;
4271        int error;
4272
4273        if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4274                return -EINVAL;
4275        /*
4276         * To use null names we require CAP_DAC_READ_SEARCH
4277         * This ensures that not everyone will be able to create
4278         * handlink using the passed filedescriptor.
4279         */
4280        if (flags & AT_EMPTY_PATH) {
4281                if (!capable(CAP_DAC_READ_SEARCH))
4282                        return -ENOENT;
4283                how = LOOKUP_EMPTY;
4284        }
4285
4286        if (flags & AT_SYMLINK_FOLLOW)
4287                how |= LOOKUP_FOLLOW;
4288retry:
4289        error = user_path_at(olddfd, oldname, how, &old_path);
4290        if (error)
4291                return error;
4292
4293        new_dentry = user_path_create(newdfd, newname, &new_path,
4294                                        (how & LOOKUP_REVAL));
4295        error = PTR_ERR(new_dentry);
4296        if (IS_ERR(new_dentry))
4297                goto out;
4298
4299        error = -EXDEV;
4300        if (old_path.mnt != new_path.mnt)
4301                goto out_dput;
4302        error = may_linkat(&old_path);
4303        if (unlikely(error))
4304                goto out_dput;
4305        error = security_path_link(old_path.dentry, &new_path, new_dentry);
4306        if (error)
4307                goto out_dput;
4308        error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4309out_dput:
4310        done_path_create(&new_path, new_dentry);
4311        if (delegated_inode) {
4312                error = break_deleg_wait(&delegated_inode);
4313                if (!error) {
4314                        path_put(&old_path);
4315                        goto retry;
4316                }
4317        }
4318        if (retry_estale(error, how)) {
4319                path_put(&old_path);
4320                how |= LOOKUP_REVAL;
4321                goto retry;
4322        }
4323out:
4324        path_put(&old_path);
4325
4326        return error;
4327}
4328
4329SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4330                int, newdfd, const char __user *, newname, int, flags)
4331{
4332        return do_linkat(olddfd, oldname, newdfd, newname, flags);
4333}
4334
4335SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4336{
4337        return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4338}
4339
4340/**
4341 * vfs_rename - rename a filesystem object
4342 * @old_dir:    parent of source
4343 * @old_dentry: source
4344 * @new_dir:    parent of destination
4345 * @new_dentry: destination
4346 * @delegated_inode: returns an inode needing a delegation break
4347 * @flags:      rename flags
4348 *
4349 * The caller must hold multiple mutexes--see lock_rename()).
4350 *
4351 * If vfs_rename discovers a delegation in need of breaking at either
4352 * the source or destination, it will return -EWOULDBLOCK and return a
4353 * reference to the inode in delegated_inode.  The caller should then
4354 * break the delegation and retry.  Because breaking a delegation may
4355 * take a long time, the caller should drop all locks before doing
4356 * so.
4357 *
4358 * Alternatively, a caller may pass NULL for delegated_inode.  This may
4359 * be appropriate for callers that expect the underlying filesystem not
4360 * to be NFS exported.
4361 *
4362 * The worst of all namespace operations - renaming directory. "Perverted"
4363 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4364 * Problems:
4365 *
4366 *      a) we can get into loop creation.
4367 *      b) race potential - two innocent renames can create a loop together.
4368 *         That's where 4.4 screws up. Current fix: serialization on
4369 *         sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4370 *         story.
4371 *      c) we have to lock _four_ objects - parents and victim (if it exists),
4372 *         and source (if it is not a directory).
4373 *         And that - after we got ->i_mutex on parents (until then we don't know
4374 *         whether the target exists).  Solution: try to be smart with locking
4375 *         order for inodes.  We rely on the fact that tree topology may change
4376 *         only under ->s_vfs_rename_mutex _and_ that parent of the object we
4377 *         move will be locked.  Thus we can rank directories by the tree
4378 *         (ancestors first) and rank all non-directories after them.
4379 *         That works since everybody except rename does "lock parent, lookup,
4380 *         lock child" and rename is under ->s_vfs_rename_mutex.
4381 *         HOWEVER, it relies on the assumption that any object with ->lookup()
4382 *         has no more than 1 dentry.  If "hybrid" objects will ever appear,
4383 *         we'd better make sure that there's no link(2) for them.
4384 *      d) conversion from fhandle to dentry may come in the wrong moment - when
4385 *         we are removing the target. Solution: we will have to grab ->i_mutex
4386 *         in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4387 *         ->i_mutex on parents, which works but leads to some truly excessive
4388 *         locking].
4389 */
4390int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4391               struct inode *new_dir, struct dentry *new_dentry,
4392               struct inode **delegated_inode, unsigned int flags)
4393{
4394        int error;
4395        bool is_dir = d_is_dir(old_dentry);
4396        struct inode *source = old_dentry->d_inode;
4397        struct inode *target = new_dentry->d_inode;
4398        bool new_is_dir = false;
4399        unsigned max_links = new_dir->i_sb->s_max_links;
4400        struct name_snapshot old_name;
4401
4402        if (source == target)
4403                return 0;
4404
4405        error = may_delete(old_dir, old_dentry, is_dir);
4406        if (error)
4407                return error;
4408
4409        if (!target) {
4410                error = may_create(new_dir, new_dentry);
4411        } else {
4412                new_is_dir = d_is_dir(new_dentry);
4413
4414                if (!(flags & RENAME_EXCHANGE))
4415                        error = may_delete(new_dir, new_dentry, is_dir);
4416                else
4417                        error = may_delete(new_dir, new_dentry, new_is_dir);
4418        }
4419        if (error)
4420                return error;
4421
4422        if (!old_dir->i_op->rename)
4423                return -EPERM;
4424
4425        /*
4426         * If we are going to change the parent - check write permissions,
4427         * we'll need to flip '..'.
4428         */
4429        if (new_dir != old_dir) {
4430                if (is_dir) {
4431                        error = inode_permission(source, MAY_WRITE);
4432                        if (error)
4433                                return error;
4434                }
4435                if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4436                        error = inode_permission(target, MAY_WRITE);
4437                        if (error)
4438                                return error;
4439                }
4440        }
4441
4442        error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4443                                      flags);
4444        if (error)
4445                return error;
4446
4447        take_dentry_name_snapshot(&old_name, old_dentry);
4448        dget(new_dentry);
4449        if (!is_dir || (flags & RENAME_EXCHANGE))
4450                lock_two_nondirectories(source, target);
4451        else if (target)
4452                inode_lock(target);
4453
4454        error = -EBUSY;
4455        if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4456                goto out;
4457
4458        if (max_links && new_dir != old_dir) {
4459                error = -EMLINK;
4460                if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4461                        goto out;
4462                if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4463                    old_dir->i_nlink >= max_links)
4464                        goto out;
4465        }
4466        if (!is_dir) {
4467                error = try_break_deleg(source, delegated_inode);
4468                if (error)
4469                        goto out;
4470        }
4471        if (target && !new_is_dir) {
4472                error = try_break_deleg(target, delegated_inode);
4473                if (error)
4474                        goto out;
4475        }
4476        error = old_dir->i_op->rename(old_dir, old_dentry,
4477                                       new_dir, new_dentry, flags);
4478        if (error)
4479                goto out;
4480
4481        if (!(flags & RENAME_EXCHANGE) && target) {
4482                if (is_dir) {
4483                        shrink_dcache_parent(new_dentry);
4484                        target->i_flags |= S_DEAD;
4485                }
4486                dont_mount(new_dentry);
4487                detach_mounts(new_dentry);
4488        }
4489        if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4490                if (!(flags & RENAME_EXCHANGE))
4491                        d_move(old_dentry, new_dentry);
4492                else
4493                        d_exchange(old_dentry, new_dentry);
4494        }
4495out:
4496        if (!is_dir || (flags & RENAME_EXCHANGE))
4497                unlock_two_nondirectories(source, target);
4498        else if (target)
4499                inode_unlock(target);
4500        dput(new_dentry);
4501        if (!error) {
4502                fsnotify_move(old_dir, new_dir, old_name.name, is_dir,
4503                              !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4504                if (flags & RENAME_EXCHANGE) {
4505                        fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4506                                      new_is_dir, NULL, new_dentry);
4507                }
4508        }
4509        release_dentry_name_snapshot(&old_name);
4510
4511        return error;
4512}
4513EXPORT_SYMBOL(vfs_rename);
4514
4515static int do_renameat2(int olddfd, const char __user *oldname, int newdfd,
4516                        const char __user *newname, unsigned int flags)
4517{
4518        struct dentry *old_dentry, *new_dentry;
4519        struct dentry *trap;
4520        struct path old_path, new_path;
4521        struct qstr old_last, new_last;
4522        int old_type, new_type;
4523        struct inode *delegated_inode = NULL;
4524        struct filename *from;
4525        struct filename *to;
4526        unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4527        bool should_retry = false;
4528        int error;
4529
4530        if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4531                return -EINVAL;
4532
4533        if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4534            (flags & RENAME_EXCHANGE))
4535                return -EINVAL;
4536
4537        if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4538                return -EPERM;
4539
4540        if (flags & RENAME_EXCHANGE)
4541                target_flags = 0;
4542
4543retry:
4544        from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4545                                &old_path, &old_last, &old_type);
4546        if (IS_ERR(from)) {
4547                error = PTR_ERR(from);
4548                goto exit;
4549        }
4550
4551        to = filename_parentat(newdfd, getname(newname), lookup_flags,
4552                                &new_path, &new_last, &new_type);
4553        if (IS_ERR(to)) {
4554                error = PTR_ERR(to);
4555                goto exit1;
4556        }
4557
4558        error = -EXDEV;
4559        if (old_path.mnt != new_path.mnt)
4560                goto exit2;
4561
4562        error = -EBUSY;
4563        if (old_type != LAST_NORM)
4564                goto exit2;
4565
4566        if (flags & RENAME_NOREPLACE)
4567                error = -EEXIST;
4568        if (new_type != LAST_NORM)
4569                goto exit2;
4570
4571        error = mnt_want_write(old_path.mnt);
4572        if (error)
4573                goto exit2;
4574
4575retry_deleg:
4576        trap = lock_rename(new_path.dentry, old_path.dentry);
4577
4578        old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4579        error = PTR_ERR(old_dentry);
4580        if (IS_ERR(old_dentry))
4581                goto exit3;
4582        /* source must exist */
4583        error = -ENOENT;
4584        if (d_is_negative(old_dentry))
4585                goto exit4;
4586        new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4587        error = PTR_ERR(new_dentry);
4588        if (IS_ERR(new_dentry))
4589                goto exit4;
4590        error = -EEXIST;
4591        if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4592                goto exit5;
4593        if (flags & RENAME_EXCHANGE) {
4594                error = -ENOENT;
4595                if (d_is_negative(new_dentry))
4596                        goto exit5;
4597
4598                if (!d_is_dir(new_dentry)) {
4599                        error = -ENOTDIR;
4600                        if (new_last.name[new_last.len])
4601                                goto exit5;
4602                }
4603        }
4604        /* unless the source is a directory trailing slashes give -ENOTDIR */
4605        if (!d_is_dir(old_dentry)) {
4606                error = -ENOTDIR;
4607                if (old_last.name[old_last.len])
4608                        goto exit5;
4609                if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4610                        goto exit5;
4611        }
4612        /* source should not be ancestor of target */
4613        error = -EINVAL;
4614        if (old_dentry == trap)
4615                goto exit5;
4616        /* target should not be an ancestor of source */
4617        if (!(flags & RENAME_EXCHANGE))
4618                error = -ENOTEMPTY;
4619        if (new_dentry == trap)
4620                goto exit5;
4621
4622        error = security_path_rename(&old_path, old_dentry,
4623                                     &new_path, new_dentry, flags);
4624        if (error)
4625                goto exit5;
4626        error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4627                           new_path.dentry->d_inode, new_dentry,
4628                           &delegated_inode, flags);
4629exit5:
4630        dput(new_dentry);
4631exit4:
4632        dput(old_dentry);
4633exit3:
4634        unlock_rename(new_path.dentry, old_path.dentry);
4635        if (delegated_inode) {
4636                error = break_deleg_wait(&delegated_inode);
4637                if (!error)
4638                        goto retry_deleg;
4639        }
4640        mnt_drop_write(old_path.mnt);
4641exit2:
4642        if (retry_estale(error, lookup_flags))
4643                should_retry = true;
4644        path_put(&new_path);
4645        putname(to);
4646exit1:
4647        path_put(&old_path);
4648        putname(from);
4649        if (should_retry) {
4650                should_retry = false;
4651                lookup_flags |= LOOKUP_REVAL;
4652                goto retry;
4653        }
4654exit:
4655        return error;
4656}
4657
4658SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4659                int, newdfd, const char __user *, newname, unsigned int, flags)
4660{
4661        return do_renameat2(olddfd, oldname, newdfd, newname, flags);
4662}
4663
4664SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4665                int, newdfd, const char __user *, newname)
4666{
4667        return do_renameat2(olddfd, oldname, newdfd, newname, 0);
4668}
4669
4670SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4671{
4672        return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4673}
4674
4675int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4676{
4677        int error = may_create(dir, dentry);
4678        if (error)
4679                return error;
4680
4681        if (!dir->i_op->mknod)
4682                return -EPERM;
4683
4684        return dir->i_op->mknod(dir, dentry,
4685                                S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4686}
4687EXPORT_SYMBOL(vfs_whiteout);
4688
4689int readlink_copy(char __user *buffer, int buflen, const char *link)
4690{
4691        int len = PTR_ERR(link);
4692        if (IS_ERR(link))
4693                goto out;
4694
4695        len = strlen(link);
4696        if (len > (unsigned) buflen)
4697                len = buflen;
4698        if (copy_to_user(buffer, link, len))
4699                len = -EFAULT;
4700out:
4701        return len;
4702}
4703
4704/*
4705 * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4706 * have ->get_link() not calling nd_jump_link().  Using (or not using) it
4707 * for any given inode is up to filesystem.
4708 */
4709static int generic_readlink(struct dentry *dentry, char __user *buffer,
4710                            int buflen)
4711{
4712        DEFINE_DELAYED_CALL(done);
4713        struct inode *inode = d_inode(dentry);
4714        const char *link = inode->i_link;
4715        int res;
4716
4717        if (!link) {
4718                link = inode->i_op->get_link(dentry, inode, &done);
4719                if (IS_ERR(link))
4720                        return PTR_ERR(link);
4721        }
4722        res = readlink_copy(buffer, buflen, link);
4723        do_delayed_call(&done);
4724        return res;
4725}
4726
4727/**
4728 * vfs_readlink - copy symlink body into userspace buffer
4729 * @dentry: dentry on which to get symbolic link
4730 * @buffer: user memory pointer
4731 * @buflen: size of buffer
4732 *
4733 * Does not touch atime.  That's up to the caller if necessary
4734 *
4735 * Does not call security hook.
4736 */
4737int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4738{
4739        struct inode *inode = d_inode(dentry);
4740
4741        if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4742                if (unlikely(inode->i_op->readlink))
4743                        return inode->i_op->readlink(dentry, buffer, buflen);
4744
4745                if (!d_is_symlink(dentry))
4746                        return -EINVAL;
4747
4748                spin_lock(&inode->i_lock);
4749                inode->i_opflags |= IOP_DEFAULT_READLINK;
4750                spin_unlock(&inode->i_lock);
4751        }
4752
4753        return generic_readlink(dentry, buffer, buflen);
4754}
4755EXPORT_SYMBOL(vfs_readlink);
4756
4757/**
4758 * vfs_get_link - get symlink body
4759 * @dentry: dentry on which to get symbolic link
4760 * @done: caller needs to free returned data with this
4761 *
4762 * Calls security hook and i_op->get_link() on the supplied inode.
4763 *
4764 * It does not touch atime.  That's up to the caller if necessary.
4765 *
4766 * Does not work on "special" symlinks like /proc/$$/fd/N
4767 */
4768const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4769{
4770        const char *res = ERR_PTR(-EINVAL);
4771        struct inode *inode = d_inode(dentry);
4772
4773        if (d_is_symlink(dentry)) {
4774                res = ERR_PTR(security_inode_readlink(dentry));
4775                if (!res)
4776                        res = inode->i_op->get_link(dentry, inode, done);
4777        }
4778        return res;
4779}
4780EXPORT_SYMBOL(vfs_get_link);
4781
4782/* get the link contents into pagecache */
4783const char *page_get_link(struct dentry *dentry, struct inode *inode,
4784                          struct delayed_call *callback)
4785{
4786        char *kaddr;
4787        struct page *page;
4788        struct address_space *mapping = inode->i_mapping;
4789
4790        if (!dentry) {
4791                page = find_get_page(mapping, 0);
4792                if (!page)
4793                        return ERR_PTR(-ECHILD);
4794                if (!PageUptodate(page)) {
4795                        put_page(page);
4796                        return ERR_PTR(-ECHILD);
4797                }
4798        } else {
4799                page = read_mapping_page(mapping, 0, NULL);
4800                if (IS_ERR(page))
4801                        return (char*)page;
4802        }
4803        set_delayed_call(callback, page_put_link, page);
4804        BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4805        kaddr = page_address(page);
4806        nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4807        return kaddr;
4808}
4809
4810EXPORT_SYMBOL(page_get_link);
4811
4812void page_put_link(void *arg)
4813{
4814        put_page(arg);
4815}
4816EXPORT_SYMBOL(page_put_link);
4817
4818int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4819{
4820        DEFINE_DELAYED_CALL(done);
4821        int res = readlink_copy(buffer, buflen,
4822                                page_get_link(dentry, d_inode(dentry),
4823                                              &done));
4824        do_delayed_call(&done);
4825        return res;
4826}
4827EXPORT_SYMBOL(page_readlink);
4828
4829/*
4830 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4831 */
4832int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4833{
4834        struct address_space *mapping = inode->i_mapping;
4835        struct page *page;
4836        void *fsdata;
4837        int err;
4838        unsigned int flags = 0;
4839        if (nofs)
4840                flags |= AOP_FLAG_NOFS;
4841
4842retry:
4843        err = pagecache_write_begin(NULL, mapping, 0, len-1,
4844                                flags, &page, &fsdata);
4845        if (err)
4846                goto fail;
4847
4848        memcpy(page_address(page), symname, len-1);
4849
4850        err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4851                                                        page, fsdata);
4852        if (err < 0)
4853                goto fail;
4854        if (err < len-1)
4855                goto retry;
4856
4857        mark_inode_dirty(inode);
4858        return 0;
4859fail:
4860        return err;
4861}
4862EXPORT_SYMBOL(__page_symlink);
4863
4864int page_symlink(struct inode *inode, const char *symname, int len)
4865{
4866        return __page_symlink(inode, symname, len,
4867                        !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4868}
4869EXPORT_SYMBOL(page_symlink);
4870
4871const struct inode_operations page_symlink_inode_operations = {
4872        .get_link       = page_get_link,
4873};
4874EXPORT_SYMBOL(page_symlink_inode_operations);
4875