linux/kernel/locking/mutex.c
<<
>>
Prefs
   1/*
   2 * kernel/locking/mutex.c
   3 *
   4 * Mutexes: blocking mutual exclusion locks
   5 *
   6 * Started by Ingo Molnar:
   7 *
   8 *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
   9 *
  10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
  11 * David Howells for suggestions and improvements.
  12 *
  13 *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
  14 *    from the -rt tree, where it was originally implemented for rtmutexes
  15 *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
  16 *    and Sven Dietrich.
  17 *
  18 * Also see Documentation/locking/mutex-design.txt.
  19 */
  20#include <linux/mutex.h>
  21#include <linux/ww_mutex.h>
  22#include <linux/sched/signal.h>
  23#include <linux/sched/rt.h>
  24#include <linux/sched/wake_q.h>
  25#include <linux/sched/debug.h>
  26#include <linux/export.h>
  27#include <linux/spinlock.h>
  28#include <linux/interrupt.h>
  29#include <linux/debug_locks.h>
  30#include <linux/osq_lock.h>
  31
  32#ifdef CONFIG_DEBUG_MUTEXES
  33# include "mutex-debug.h"
  34#else
  35# include "mutex.h"
  36#endif
  37
  38void
  39__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
  40{
  41        atomic_long_set(&lock->owner, 0);
  42        spin_lock_init(&lock->wait_lock);
  43        INIT_LIST_HEAD(&lock->wait_list);
  44#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  45        osq_lock_init(&lock->osq);
  46#endif
  47
  48        debug_mutex_init(lock, name, key);
  49}
  50EXPORT_SYMBOL(__mutex_init);
  51
  52/*
  53 * @owner: contains: 'struct task_struct *' to the current lock owner,
  54 * NULL means not owned. Since task_struct pointers are aligned at
  55 * at least L1_CACHE_BYTES, we have low bits to store extra state.
  56 *
  57 * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
  58 * Bit1 indicates unlock needs to hand the lock to the top-waiter
  59 * Bit2 indicates handoff has been done and we're waiting for pickup.
  60 */
  61#define MUTEX_FLAG_WAITERS      0x01
  62#define MUTEX_FLAG_HANDOFF      0x02
  63#define MUTEX_FLAG_PICKUP       0x04
  64
  65#define MUTEX_FLAGS             0x07
  66
  67static inline struct task_struct *__owner_task(unsigned long owner)
  68{
  69        return (struct task_struct *)(owner & ~MUTEX_FLAGS);
  70}
  71
  72static inline unsigned long __owner_flags(unsigned long owner)
  73{
  74        return owner & MUTEX_FLAGS;
  75}
  76
  77/*
  78 * Trylock variant that retuns the owning task on failure.
  79 */
  80static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock)
  81{
  82        unsigned long owner, curr = (unsigned long)current;
  83
  84        owner = atomic_long_read(&lock->owner);
  85        for (;;) { /* must loop, can race against a flag */
  86                unsigned long old, flags = __owner_flags(owner);
  87                unsigned long task = owner & ~MUTEX_FLAGS;
  88
  89                if (task) {
  90                        if (likely(task != curr))
  91                                break;
  92
  93                        if (likely(!(flags & MUTEX_FLAG_PICKUP)))
  94                                break;
  95
  96                        flags &= ~MUTEX_FLAG_PICKUP;
  97                } else {
  98#ifdef CONFIG_DEBUG_MUTEXES
  99                        DEBUG_LOCKS_WARN_ON(flags & MUTEX_FLAG_PICKUP);
 100#endif
 101                }
 102
 103                /*
 104                 * We set the HANDOFF bit, we must make sure it doesn't live
 105                 * past the point where we acquire it. This would be possible
 106                 * if we (accidentally) set the bit on an unlocked mutex.
 107                 */
 108                flags &= ~MUTEX_FLAG_HANDOFF;
 109
 110                old = atomic_long_cmpxchg_acquire(&lock->owner, owner, curr | flags);
 111                if (old == owner)
 112                        return NULL;
 113
 114                owner = old;
 115        }
 116
 117        return __owner_task(owner);
 118}
 119
 120/*
 121 * Actual trylock that will work on any unlocked state.
 122 */
 123static inline bool __mutex_trylock(struct mutex *lock)
 124{
 125        return !__mutex_trylock_or_owner(lock);
 126}
 127
 128#ifndef CONFIG_DEBUG_LOCK_ALLOC
 129/*
 130 * Lockdep annotations are contained to the slow paths for simplicity.
 131 * There is nothing that would stop spreading the lockdep annotations outwards
 132 * except more code.
 133 */
 134
 135/*
 136 * Optimistic trylock that only works in the uncontended case. Make sure to
 137 * follow with a __mutex_trylock() before failing.
 138 */
 139static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
 140{
 141        unsigned long curr = (unsigned long)current;
 142        unsigned long zero = 0UL;
 143
 144        if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr))
 145                return true;
 146
 147        return false;
 148}
 149
 150static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
 151{
 152        unsigned long curr = (unsigned long)current;
 153
 154        if (atomic_long_cmpxchg_release(&lock->owner, curr, 0UL) == curr)
 155                return true;
 156
 157        return false;
 158}
 159#endif
 160
 161static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
 162{
 163        atomic_long_or(flag, &lock->owner);
 164}
 165
 166static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
 167{
 168        atomic_long_andnot(flag, &lock->owner);
 169}
 170
 171static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
 172{
 173        return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
 174}
 175
 176/*
 177 * Add @waiter to a given location in the lock wait_list and set the
 178 * FLAG_WAITERS flag if it's the first waiter.
 179 */
 180static void __sched
 181__mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter,
 182                   struct list_head *list)
 183{
 184        debug_mutex_add_waiter(lock, waiter, current);
 185
 186        list_add_tail(&waiter->list, list);
 187        if (__mutex_waiter_is_first(lock, waiter))
 188                __mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
 189}
 190
 191/*
 192 * Give up ownership to a specific task, when @task = NULL, this is equivalent
 193 * to a regular unlock. Sets PICKUP on a handoff, clears HANDOF, preserves
 194 * WAITERS. Provides RELEASE semantics like a regular unlock, the
 195 * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff.
 196 */
 197static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
 198{
 199        unsigned long owner = atomic_long_read(&lock->owner);
 200
 201        for (;;) {
 202                unsigned long old, new;
 203
 204#ifdef CONFIG_DEBUG_MUTEXES
 205                DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
 206                DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
 207#endif
 208
 209                new = (owner & MUTEX_FLAG_WAITERS);
 210                new |= (unsigned long)task;
 211                if (task)
 212                        new |= MUTEX_FLAG_PICKUP;
 213
 214                old = atomic_long_cmpxchg_release(&lock->owner, owner, new);
 215                if (old == owner)
 216                        break;
 217
 218                owner = old;
 219        }
 220}
 221
 222#ifndef CONFIG_DEBUG_LOCK_ALLOC
 223/*
 224 * We split the mutex lock/unlock logic into separate fastpath and
 225 * slowpath functions, to reduce the register pressure on the fastpath.
 226 * We also put the fastpath first in the kernel image, to make sure the
 227 * branch is predicted by the CPU as default-untaken.
 228 */
 229static void __sched __mutex_lock_slowpath(struct mutex *lock);
 230
 231/**
 232 * mutex_lock - acquire the mutex
 233 * @lock: the mutex to be acquired
 234 *
 235 * Lock the mutex exclusively for this task. If the mutex is not
 236 * available right now, it will sleep until it can get it.
 237 *
 238 * The mutex must later on be released by the same task that
 239 * acquired it. Recursive locking is not allowed. The task
 240 * may not exit without first unlocking the mutex. Also, kernel
 241 * memory where the mutex resides must not be freed with
 242 * the mutex still locked. The mutex must first be initialized
 243 * (or statically defined) before it can be locked. memset()-ing
 244 * the mutex to 0 is not allowed.
 245 *
 246 * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging
 247 * checks that will enforce the restrictions and will also do
 248 * deadlock debugging)
 249 *
 250 * This function is similar to (but not equivalent to) down().
 251 */
 252void __sched mutex_lock(struct mutex *lock)
 253{
 254        might_sleep();
 255
 256        if (!__mutex_trylock_fast(lock))
 257                __mutex_lock_slowpath(lock);
 258}
 259EXPORT_SYMBOL(mutex_lock);
 260#endif
 261
 262/*
 263 * Wait-Die:
 264 *   The newer transactions are killed when:
 265 *     It (the new transaction) makes a request for a lock being held
 266 *     by an older transaction.
 267 *
 268 * Wound-Wait:
 269 *   The newer transactions are wounded when:
 270 *     An older transaction makes a request for a lock being held by
 271 *     the newer transaction.
 272 */
 273
 274/*
 275 * Associate the ww_mutex @ww with the context @ww_ctx under which we acquired
 276 * it.
 277 */
 278static __always_inline void
 279ww_mutex_lock_acquired(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx)
 280{
 281#ifdef CONFIG_DEBUG_MUTEXES
 282        /*
 283         * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
 284         * but released with a normal mutex_unlock in this call.
 285         *
 286         * This should never happen, always use ww_mutex_unlock.
 287         */
 288        DEBUG_LOCKS_WARN_ON(ww->ctx);
 289
 290        /*
 291         * Not quite done after calling ww_acquire_done() ?
 292         */
 293        DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
 294
 295        if (ww_ctx->contending_lock) {
 296                /*
 297                 * After -EDEADLK you tried to
 298                 * acquire a different ww_mutex? Bad!
 299                 */
 300                DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
 301
 302                /*
 303                 * You called ww_mutex_lock after receiving -EDEADLK,
 304                 * but 'forgot' to unlock everything else first?
 305                 */
 306                DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
 307                ww_ctx->contending_lock = NULL;
 308        }
 309
 310        /*
 311         * Naughty, using a different class will lead to undefined behavior!
 312         */
 313        DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
 314#endif
 315        ww_ctx->acquired++;
 316        ww->ctx = ww_ctx;
 317}
 318
 319/*
 320 * Determine if context @a is 'after' context @b. IOW, @a is a younger
 321 * transaction than @b and depending on algorithm either needs to wait for
 322 * @b or die.
 323 */
 324static inline bool __sched
 325__ww_ctx_stamp_after(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b)
 326{
 327
 328        return (signed long)(a->stamp - b->stamp) > 0;
 329}
 330
 331/*
 332 * Wait-Die; wake a younger waiter context (when locks held) such that it can
 333 * die.
 334 *
 335 * Among waiters with context, only the first one can have other locks acquired
 336 * already (ctx->acquired > 0), because __ww_mutex_add_waiter() and
 337 * __ww_mutex_check_kill() wake any but the earliest context.
 338 */
 339static bool __sched
 340__ww_mutex_die(struct mutex *lock, struct mutex_waiter *waiter,
 341               struct ww_acquire_ctx *ww_ctx)
 342{
 343        if (!ww_ctx->is_wait_die)
 344                return false;
 345
 346        if (waiter->ww_ctx->acquired > 0 &&
 347                        __ww_ctx_stamp_after(waiter->ww_ctx, ww_ctx)) {
 348                debug_mutex_wake_waiter(lock, waiter);
 349                wake_up_process(waiter->task);
 350        }
 351
 352        return true;
 353}
 354
 355/*
 356 * Wound-Wait; wound a younger @hold_ctx if it holds the lock.
 357 *
 358 * Wound the lock holder if there are waiters with older transactions than
 359 * the lock holders. Even if multiple waiters may wound the lock holder,
 360 * it's sufficient that only one does.
 361 */
 362static bool __ww_mutex_wound(struct mutex *lock,
 363                             struct ww_acquire_ctx *ww_ctx,
 364                             struct ww_acquire_ctx *hold_ctx)
 365{
 366        struct task_struct *owner = __mutex_owner(lock);
 367
 368        lockdep_assert_held(&lock->wait_lock);
 369
 370        /*
 371         * Possible through __ww_mutex_add_waiter() when we race with
 372         * ww_mutex_set_context_fastpath(). In that case we'll get here again
 373         * through __ww_mutex_check_waiters().
 374         */
 375        if (!hold_ctx)
 376                return false;
 377
 378        /*
 379         * Can have !owner because of __mutex_unlock_slowpath(), but if owner,
 380         * it cannot go away because we'll have FLAG_WAITERS set and hold
 381         * wait_lock.
 382         */
 383        if (!owner)
 384                return false;
 385
 386        if (ww_ctx->acquired > 0 && __ww_ctx_stamp_after(hold_ctx, ww_ctx)) {
 387                hold_ctx->wounded = 1;
 388
 389                /*
 390                 * wake_up_process() paired with set_current_state()
 391                 * inserts sufficient barriers to make sure @owner either sees
 392                 * it's wounded in __ww_mutex_check_kill() or has a
 393                 * wakeup pending to re-read the wounded state.
 394                 */
 395                if (owner != current)
 396                        wake_up_process(owner);
 397
 398                return true;
 399        }
 400
 401        return false;
 402}
 403
 404/*
 405 * We just acquired @lock under @ww_ctx, if there are later contexts waiting
 406 * behind us on the wait-list, check if they need to die, or wound us.
 407 *
 408 * See __ww_mutex_add_waiter() for the list-order construction; basically the
 409 * list is ordered by stamp, smallest (oldest) first.
 410 *
 411 * This relies on never mixing wait-die/wound-wait on the same wait-list;
 412 * which is currently ensured by that being a ww_class property.
 413 *
 414 * The current task must not be on the wait list.
 415 */
 416static void __sched
 417__ww_mutex_check_waiters(struct mutex *lock, struct ww_acquire_ctx *ww_ctx)
 418{
 419        struct mutex_waiter *cur;
 420
 421        lockdep_assert_held(&lock->wait_lock);
 422
 423        list_for_each_entry(cur, &lock->wait_list, list) {
 424                if (!cur->ww_ctx)
 425                        continue;
 426
 427                if (__ww_mutex_die(lock, cur, ww_ctx) ||
 428                    __ww_mutex_wound(lock, cur->ww_ctx, ww_ctx))
 429                        break;
 430        }
 431}
 432
 433/*
 434 * After acquiring lock with fastpath, where we do not hold wait_lock, set ctx
 435 * and wake up any waiters so they can recheck.
 436 */
 437static __always_inline void
 438ww_mutex_set_context_fastpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
 439{
 440        ww_mutex_lock_acquired(lock, ctx);
 441
 442        /*
 443         * The lock->ctx update should be visible on all cores before
 444         * the WAITERS check is done, otherwise contended waiters might be
 445         * missed. The contended waiters will either see ww_ctx == NULL
 446         * and keep spinning, or it will acquire wait_lock, add itself
 447         * to waiter list and sleep.
 448         */
 449        smp_mb(); /* See comments above and below. */
 450
 451        /*
 452         * [W] ww->ctx = ctx        [W] MUTEX_FLAG_WAITERS
 453         *     MB                       MB
 454         * [R] MUTEX_FLAG_WAITERS   [R] ww->ctx
 455         *
 456         * The memory barrier above pairs with the memory barrier in
 457         * __ww_mutex_add_waiter() and makes sure we either observe ww->ctx
 458         * and/or !empty list.
 459         */
 460        if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS)))
 461                return;
 462
 463        /*
 464         * Uh oh, we raced in fastpath, check if any of the waiters need to
 465         * die or wound us.
 466         */
 467        spin_lock(&lock->base.wait_lock);
 468        __ww_mutex_check_waiters(&lock->base, ctx);
 469        spin_unlock(&lock->base.wait_lock);
 470}
 471
 472#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
 473
 474static inline
 475bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
 476                            struct mutex_waiter *waiter)
 477{
 478        struct ww_mutex *ww;
 479
 480        ww = container_of(lock, struct ww_mutex, base);
 481
 482        /*
 483         * If ww->ctx is set the contents are undefined, only
 484         * by acquiring wait_lock there is a guarantee that
 485         * they are not invalid when reading.
 486         *
 487         * As such, when deadlock detection needs to be
 488         * performed the optimistic spinning cannot be done.
 489         *
 490         * Check this in every inner iteration because we may
 491         * be racing against another thread's ww_mutex_lock.
 492         */
 493        if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx))
 494                return false;
 495
 496        /*
 497         * If we aren't on the wait list yet, cancel the spin
 498         * if there are waiters. We want  to avoid stealing the
 499         * lock from a waiter with an earlier stamp, since the
 500         * other thread may already own a lock that we also
 501         * need.
 502         */
 503        if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS))
 504                return false;
 505
 506        /*
 507         * Similarly, stop spinning if we are no longer the
 508         * first waiter.
 509         */
 510        if (waiter && !__mutex_waiter_is_first(lock, waiter))
 511                return false;
 512
 513        return true;
 514}
 515
 516/*
 517 * Look out! "owner" is an entirely speculative pointer access and not
 518 * reliable.
 519 *
 520 * "noinline" so that this function shows up on perf profiles.
 521 */
 522static noinline
 523bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner,
 524                         struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter)
 525{
 526        bool ret = true;
 527
 528        rcu_read_lock();
 529        while (__mutex_owner(lock) == owner) {
 530                /*
 531                 * Ensure we emit the owner->on_cpu, dereference _after_
 532                 * checking lock->owner still matches owner. If that fails,
 533                 * owner might point to freed memory. If it still matches,
 534                 * the rcu_read_lock() ensures the memory stays valid.
 535                 */
 536                barrier();
 537
 538                /*
 539                 * Use vcpu_is_preempted to detect lock holder preemption issue.
 540                 */
 541                if (!owner->on_cpu || need_resched() ||
 542                                vcpu_is_preempted(task_cpu(owner))) {
 543                        ret = false;
 544                        break;
 545                }
 546
 547                if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) {
 548                        ret = false;
 549                        break;
 550                }
 551
 552                cpu_relax();
 553        }
 554        rcu_read_unlock();
 555
 556        return ret;
 557}
 558
 559/*
 560 * Initial check for entering the mutex spinning loop
 561 */
 562static inline int mutex_can_spin_on_owner(struct mutex *lock)
 563{
 564        struct task_struct *owner;
 565        int retval = 1;
 566
 567        if (need_resched())
 568                return 0;
 569
 570        rcu_read_lock();
 571        owner = __mutex_owner(lock);
 572
 573        /*
 574         * As lock holder preemption issue, we both skip spinning if task is not
 575         * on cpu or its cpu is preempted
 576         */
 577        if (owner)
 578                retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
 579        rcu_read_unlock();
 580
 581        /*
 582         * If lock->owner is not set, the mutex has been released. Return true
 583         * such that we'll trylock in the spin path, which is a faster option
 584         * than the blocking slow path.
 585         */
 586        return retval;
 587}
 588
 589/*
 590 * Optimistic spinning.
 591 *
 592 * We try to spin for acquisition when we find that the lock owner
 593 * is currently running on a (different) CPU and while we don't
 594 * need to reschedule. The rationale is that if the lock owner is
 595 * running, it is likely to release the lock soon.
 596 *
 597 * The mutex spinners are queued up using MCS lock so that only one
 598 * spinner can compete for the mutex. However, if mutex spinning isn't
 599 * going to happen, there is no point in going through the lock/unlock
 600 * overhead.
 601 *
 602 * Returns true when the lock was taken, otherwise false, indicating
 603 * that we need to jump to the slowpath and sleep.
 604 *
 605 * The waiter flag is set to true if the spinner is a waiter in the wait
 606 * queue. The waiter-spinner will spin on the lock directly and concurrently
 607 * with the spinner at the head of the OSQ, if present, until the owner is
 608 * changed to itself.
 609 */
 610static __always_inline bool
 611mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
 612                      const bool use_ww_ctx, struct mutex_waiter *waiter)
 613{
 614        if (!waiter) {
 615                /*
 616                 * The purpose of the mutex_can_spin_on_owner() function is
 617                 * to eliminate the overhead of osq_lock() and osq_unlock()
 618                 * in case spinning isn't possible. As a waiter-spinner
 619                 * is not going to take OSQ lock anyway, there is no need
 620                 * to call mutex_can_spin_on_owner().
 621                 */
 622                if (!mutex_can_spin_on_owner(lock))
 623                        goto fail;
 624
 625                /*
 626                 * In order to avoid a stampede of mutex spinners trying to
 627                 * acquire the mutex all at once, the spinners need to take a
 628                 * MCS (queued) lock first before spinning on the owner field.
 629                 */
 630                if (!osq_lock(&lock->osq))
 631                        goto fail;
 632        }
 633
 634        for (;;) {
 635                struct task_struct *owner;
 636
 637                /* Try to acquire the mutex... */
 638                owner = __mutex_trylock_or_owner(lock);
 639                if (!owner)
 640                        break;
 641
 642                /*
 643                 * There's an owner, wait for it to either
 644                 * release the lock or go to sleep.
 645                 */
 646                if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter))
 647                        goto fail_unlock;
 648
 649                /*
 650                 * The cpu_relax() call is a compiler barrier which forces
 651                 * everything in this loop to be re-loaded. We don't need
 652                 * memory barriers as we'll eventually observe the right
 653                 * values at the cost of a few extra spins.
 654                 */
 655                cpu_relax();
 656        }
 657
 658        if (!waiter)
 659                osq_unlock(&lock->osq);
 660
 661        return true;
 662
 663
 664fail_unlock:
 665        if (!waiter)
 666                osq_unlock(&lock->osq);
 667
 668fail:
 669        /*
 670         * If we fell out of the spin path because of need_resched(),
 671         * reschedule now, before we try-lock the mutex. This avoids getting
 672         * scheduled out right after we obtained the mutex.
 673         */
 674        if (need_resched()) {
 675                /*
 676                 * We _should_ have TASK_RUNNING here, but just in case
 677                 * we do not, make it so, otherwise we might get stuck.
 678                 */
 679                __set_current_state(TASK_RUNNING);
 680                schedule_preempt_disabled();
 681        }
 682
 683        return false;
 684}
 685#else
 686static __always_inline bool
 687mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
 688                      const bool use_ww_ctx, struct mutex_waiter *waiter)
 689{
 690        return false;
 691}
 692#endif
 693
 694static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
 695
 696/**
 697 * mutex_unlock - release the mutex
 698 * @lock: the mutex to be released
 699 *
 700 * Unlock a mutex that has been locked by this task previously.
 701 *
 702 * This function must not be used in interrupt context. Unlocking
 703 * of a not locked mutex is not allowed.
 704 *
 705 * This function is similar to (but not equivalent to) up().
 706 */
 707void __sched mutex_unlock(struct mutex *lock)
 708{
 709#ifndef CONFIG_DEBUG_LOCK_ALLOC
 710        if (__mutex_unlock_fast(lock))
 711                return;
 712#endif
 713        __mutex_unlock_slowpath(lock, _RET_IP_);
 714}
 715EXPORT_SYMBOL(mutex_unlock);
 716
 717/**
 718 * ww_mutex_unlock - release the w/w mutex
 719 * @lock: the mutex to be released
 720 *
 721 * Unlock a mutex that has been locked by this task previously with any of the
 722 * ww_mutex_lock* functions (with or without an acquire context). It is
 723 * forbidden to release the locks after releasing the acquire context.
 724 *
 725 * This function must not be used in interrupt context. Unlocking
 726 * of a unlocked mutex is not allowed.
 727 */
 728void __sched ww_mutex_unlock(struct ww_mutex *lock)
 729{
 730        /*
 731         * The unlocking fastpath is the 0->1 transition from 'locked'
 732         * into 'unlocked' state:
 733         */
 734        if (lock->ctx) {
 735#ifdef CONFIG_DEBUG_MUTEXES
 736                DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
 737#endif
 738                if (lock->ctx->acquired > 0)
 739                        lock->ctx->acquired--;
 740                lock->ctx = NULL;
 741        }
 742
 743        mutex_unlock(&lock->base);
 744}
 745EXPORT_SYMBOL(ww_mutex_unlock);
 746
 747
 748static __always_inline int __sched
 749__ww_mutex_kill(struct mutex *lock, struct ww_acquire_ctx *ww_ctx)
 750{
 751        if (ww_ctx->acquired > 0) {
 752#ifdef CONFIG_DEBUG_MUTEXES
 753                struct ww_mutex *ww;
 754
 755                ww = container_of(lock, struct ww_mutex, base);
 756                DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock);
 757                ww_ctx->contending_lock = ww;
 758#endif
 759                return -EDEADLK;
 760        }
 761
 762        return 0;
 763}
 764
 765
 766/*
 767 * Check the wound condition for the current lock acquire.
 768 *
 769 * Wound-Wait: If we're wounded, kill ourself.
 770 *
 771 * Wait-Die: If we're trying to acquire a lock already held by an older
 772 *           context, kill ourselves.
 773 *
 774 * Since __ww_mutex_add_waiter() orders the wait-list on stamp, we only have to
 775 * look at waiters before us in the wait-list.
 776 */
 777static inline int __sched
 778__ww_mutex_check_kill(struct mutex *lock, struct mutex_waiter *waiter,
 779                      struct ww_acquire_ctx *ctx)
 780{
 781        struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
 782        struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
 783        struct mutex_waiter *cur;
 784
 785        if (ctx->acquired == 0)
 786                return 0;
 787
 788        if (!ctx->is_wait_die) {
 789                if (ctx->wounded)
 790                        return __ww_mutex_kill(lock, ctx);
 791
 792                return 0;
 793        }
 794
 795        if (hold_ctx && __ww_ctx_stamp_after(ctx, hold_ctx))
 796                return __ww_mutex_kill(lock, ctx);
 797
 798        /*
 799         * If there is a waiter in front of us that has a context, then its
 800         * stamp is earlier than ours and we must kill ourself.
 801         */
 802        cur = waiter;
 803        list_for_each_entry_continue_reverse(cur, &lock->wait_list, list) {
 804                if (!cur->ww_ctx)
 805                        continue;
 806
 807                return __ww_mutex_kill(lock, ctx);
 808        }
 809
 810        return 0;
 811}
 812
 813/*
 814 * Add @waiter to the wait-list, keep the wait-list ordered by stamp, smallest
 815 * first. Such that older contexts are preferred to acquire the lock over
 816 * younger contexts.
 817 *
 818 * Waiters without context are interspersed in FIFO order.
 819 *
 820 * Furthermore, for Wait-Die kill ourself immediately when possible (there are
 821 * older contexts already waiting) to avoid unnecessary waiting and for
 822 * Wound-Wait ensure we wound the owning context when it is younger.
 823 */
 824static inline int __sched
 825__ww_mutex_add_waiter(struct mutex_waiter *waiter,
 826                      struct mutex *lock,
 827                      struct ww_acquire_ctx *ww_ctx)
 828{
 829        struct mutex_waiter *cur;
 830        struct list_head *pos;
 831        bool is_wait_die;
 832
 833        if (!ww_ctx) {
 834                __mutex_add_waiter(lock, waiter, &lock->wait_list);
 835                return 0;
 836        }
 837
 838        is_wait_die = ww_ctx->is_wait_die;
 839
 840        /*
 841         * Add the waiter before the first waiter with a higher stamp.
 842         * Waiters without a context are skipped to avoid starving
 843         * them. Wait-Die waiters may die here. Wound-Wait waiters
 844         * never die here, but they are sorted in stamp order and
 845         * may wound the lock holder.
 846         */
 847        pos = &lock->wait_list;
 848        list_for_each_entry_reverse(cur, &lock->wait_list, list) {
 849                if (!cur->ww_ctx)
 850                        continue;
 851
 852                if (__ww_ctx_stamp_after(ww_ctx, cur->ww_ctx)) {
 853                        /*
 854                         * Wait-Die: if we find an older context waiting, there
 855                         * is no point in queueing behind it, as we'd have to
 856                         * die the moment it would acquire the lock.
 857                         */
 858                        if (is_wait_die) {
 859                                int ret = __ww_mutex_kill(lock, ww_ctx);
 860
 861                                if (ret)
 862                                        return ret;
 863                        }
 864
 865                        break;
 866                }
 867
 868                pos = &cur->list;
 869
 870                /* Wait-Die: ensure younger waiters die. */
 871                __ww_mutex_die(lock, cur, ww_ctx);
 872        }
 873
 874        __mutex_add_waiter(lock, waiter, pos);
 875
 876        /*
 877         * Wound-Wait: if we're blocking on a mutex owned by a younger context,
 878         * wound that such that we might proceed.
 879         */
 880        if (!is_wait_die) {
 881                struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
 882
 883                /*
 884                 * See ww_mutex_set_context_fastpath(). Orders setting
 885                 * MUTEX_FLAG_WAITERS vs the ww->ctx load,
 886                 * such that either we or the fastpath will wound @ww->ctx.
 887                 */
 888                smp_mb();
 889                __ww_mutex_wound(lock, ww_ctx, ww->ctx);
 890        }
 891
 892        return 0;
 893}
 894
 895/*
 896 * Lock a mutex (possibly interruptible), slowpath:
 897 */
 898static __always_inline int __sched
 899__mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
 900                    struct lockdep_map *nest_lock, unsigned long ip,
 901                    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
 902{
 903        struct mutex_waiter waiter;
 904        bool first = false;
 905        struct ww_mutex *ww;
 906        int ret;
 907
 908        might_sleep();
 909
 910        ww = container_of(lock, struct ww_mutex, base);
 911        if (use_ww_ctx && ww_ctx) {
 912                if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
 913                        return -EALREADY;
 914
 915                /*
 916                 * Reset the wounded flag after a kill. No other process can
 917                 * race and wound us here since they can't have a valid owner
 918                 * pointer if we don't have any locks held.
 919                 */
 920                if (ww_ctx->acquired == 0)
 921                        ww_ctx->wounded = 0;
 922        }
 923
 924        preempt_disable();
 925        mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
 926
 927        if (__mutex_trylock(lock) ||
 928            mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, NULL)) {
 929                /* got the lock, yay! */
 930                lock_acquired(&lock->dep_map, ip);
 931                if (use_ww_ctx && ww_ctx)
 932                        ww_mutex_set_context_fastpath(ww, ww_ctx);
 933                preempt_enable();
 934                return 0;
 935        }
 936
 937        spin_lock(&lock->wait_lock);
 938        /*
 939         * After waiting to acquire the wait_lock, try again.
 940         */
 941        if (__mutex_trylock(lock)) {
 942                if (use_ww_ctx && ww_ctx)
 943                        __ww_mutex_check_waiters(lock, ww_ctx);
 944
 945                goto skip_wait;
 946        }
 947
 948        debug_mutex_lock_common(lock, &waiter);
 949
 950        lock_contended(&lock->dep_map, ip);
 951
 952        if (!use_ww_ctx) {
 953                /* add waiting tasks to the end of the waitqueue (FIFO): */
 954                __mutex_add_waiter(lock, &waiter, &lock->wait_list);
 955
 956
 957#ifdef CONFIG_DEBUG_MUTEXES
 958                waiter.ww_ctx = MUTEX_POISON_WW_CTX;
 959#endif
 960        } else {
 961                /*
 962                 * Add in stamp order, waking up waiters that must kill
 963                 * themselves.
 964                 */
 965                ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx);
 966                if (ret)
 967                        goto err_early_kill;
 968
 969                waiter.ww_ctx = ww_ctx;
 970        }
 971
 972        waiter.task = current;
 973
 974        set_current_state(state);
 975        for (;;) {
 976                /*
 977                 * Once we hold wait_lock, we're serialized against
 978                 * mutex_unlock() handing the lock off to us, do a trylock
 979                 * before testing the error conditions to make sure we pick up
 980                 * the handoff.
 981                 */
 982                if (__mutex_trylock(lock))
 983                        goto acquired;
 984
 985                /*
 986                 * Check for signals and kill conditions while holding
 987                 * wait_lock. This ensures the lock cancellation is ordered
 988                 * against mutex_unlock() and wake-ups do not go missing.
 989                 */
 990                if (unlikely(signal_pending_state(state, current))) {
 991                        ret = -EINTR;
 992                        goto err;
 993                }
 994
 995                if (use_ww_ctx && ww_ctx) {
 996                        ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx);
 997                        if (ret)
 998                                goto err;
 999                }
1000
1001                spin_unlock(&lock->wait_lock);
1002                schedule_preempt_disabled();
1003
1004                /*
1005                 * ww_mutex needs to always recheck its position since its waiter
1006                 * list is not FIFO ordered.
1007                 */
1008                if ((use_ww_ctx && ww_ctx) || !first) {
1009                        first = __mutex_waiter_is_first(lock, &waiter);
1010                        if (first)
1011                                __mutex_set_flag(lock, MUTEX_FLAG_HANDOFF);
1012                }
1013
1014                set_current_state(state);
1015                /*
1016                 * Here we order against unlock; we must either see it change
1017                 * state back to RUNNING and fall through the next schedule(),
1018                 * or we must see its unlock and acquire.
1019                 */
1020                if (__mutex_trylock(lock) ||
1021                    (first && mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, &waiter)))
1022                        break;
1023
1024                spin_lock(&lock->wait_lock);
1025        }
1026        spin_lock(&lock->wait_lock);
1027acquired:
1028        __set_current_state(TASK_RUNNING);
1029
1030        if (use_ww_ctx && ww_ctx) {
1031                /*
1032                 * Wound-Wait; we stole the lock (!first_waiter), check the
1033                 * waiters as anyone might want to wound us.
1034                 */
1035                if (!ww_ctx->is_wait_die &&
1036                    !__mutex_waiter_is_first(lock, &waiter))
1037                        __ww_mutex_check_waiters(lock, ww_ctx);
1038        }
1039
1040        mutex_remove_waiter(lock, &waiter, current);
1041        if (likely(list_empty(&lock->wait_list)))
1042                __mutex_clear_flag(lock, MUTEX_FLAGS);
1043
1044        debug_mutex_free_waiter(&waiter);
1045
1046skip_wait:
1047        /* got the lock - cleanup and rejoice! */
1048        lock_acquired(&lock->dep_map, ip);
1049
1050        if (use_ww_ctx && ww_ctx)
1051                ww_mutex_lock_acquired(ww, ww_ctx);
1052
1053        spin_unlock(&lock->wait_lock);
1054        preempt_enable();
1055        return 0;
1056
1057err:
1058        __set_current_state(TASK_RUNNING);
1059        mutex_remove_waiter(lock, &waiter, current);
1060err_early_kill:
1061        spin_unlock(&lock->wait_lock);
1062        debug_mutex_free_waiter(&waiter);
1063        mutex_release(&lock->dep_map, 1, ip);
1064        preempt_enable();
1065        return ret;
1066}
1067
1068static int __sched
1069__mutex_lock(struct mutex *lock, long state, unsigned int subclass,
1070             struct lockdep_map *nest_lock, unsigned long ip)
1071{
1072        return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false);
1073}
1074
1075static int __sched
1076__ww_mutex_lock(struct mutex *lock, long state, unsigned int subclass,
1077                struct lockdep_map *nest_lock, unsigned long ip,
1078                struct ww_acquire_ctx *ww_ctx)
1079{
1080        return __mutex_lock_common(lock, state, subclass, nest_lock, ip, ww_ctx, true);
1081}
1082
1083#ifdef CONFIG_DEBUG_LOCK_ALLOC
1084void __sched
1085mutex_lock_nested(struct mutex *lock, unsigned int subclass)
1086{
1087        __mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
1088}
1089
1090EXPORT_SYMBOL_GPL(mutex_lock_nested);
1091
1092void __sched
1093_mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
1094{
1095        __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_);
1096}
1097EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
1098
1099int __sched
1100mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
1101{
1102        return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
1103}
1104EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
1105
1106int __sched
1107mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
1108{
1109        return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
1110}
1111EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
1112
1113void __sched
1114mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
1115{
1116        int token;
1117
1118        might_sleep();
1119
1120        token = io_schedule_prepare();
1121        __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
1122                            subclass, NULL, _RET_IP_, NULL, 0);
1123        io_schedule_finish(token);
1124}
1125EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
1126
1127static inline int
1128ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1129{
1130#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
1131        unsigned tmp;
1132
1133        if (ctx->deadlock_inject_countdown-- == 0) {
1134                tmp = ctx->deadlock_inject_interval;
1135                if (tmp > UINT_MAX/4)
1136                        tmp = UINT_MAX;
1137                else
1138                        tmp = tmp*2 + tmp + tmp/2;
1139
1140                ctx->deadlock_inject_interval = tmp;
1141                ctx->deadlock_inject_countdown = tmp;
1142                ctx->contending_lock = lock;
1143
1144                ww_mutex_unlock(lock);
1145
1146                return -EDEADLK;
1147        }
1148#endif
1149
1150        return 0;
1151}
1152
1153int __sched
1154ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1155{
1156        int ret;
1157
1158        might_sleep();
1159        ret =  __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE,
1160                               0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
1161                               ctx);
1162        if (!ret && ctx && ctx->acquired > 1)
1163                return ww_mutex_deadlock_injection(lock, ctx);
1164
1165        return ret;
1166}
1167EXPORT_SYMBOL_GPL(ww_mutex_lock);
1168
1169int __sched
1170ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1171{
1172        int ret;
1173
1174        might_sleep();
1175        ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE,
1176                              0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
1177                              ctx);
1178
1179        if (!ret && ctx && ctx->acquired > 1)
1180                return ww_mutex_deadlock_injection(lock, ctx);
1181
1182        return ret;
1183}
1184EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible);
1185
1186#endif
1187
1188/*
1189 * Release the lock, slowpath:
1190 */
1191static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
1192{
1193        struct task_struct *next = NULL;
1194        DEFINE_WAKE_Q(wake_q);
1195        unsigned long owner;
1196
1197        mutex_release(&lock->dep_map, 1, ip);
1198
1199        /*
1200         * Release the lock before (potentially) taking the spinlock such that
1201         * other contenders can get on with things ASAP.
1202         *
1203         * Except when HANDOFF, in that case we must not clear the owner field,
1204         * but instead set it to the top waiter.
1205         */
1206        owner = atomic_long_read(&lock->owner);
1207        for (;;) {
1208                unsigned long old;
1209
1210#ifdef CONFIG_DEBUG_MUTEXES
1211                DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
1212                DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
1213#endif
1214
1215                if (owner & MUTEX_FLAG_HANDOFF)
1216                        break;
1217
1218                old = atomic_long_cmpxchg_release(&lock->owner, owner,
1219                                                  __owner_flags(owner));
1220                if (old == owner) {
1221                        if (owner & MUTEX_FLAG_WAITERS)
1222                                break;
1223
1224                        return;
1225                }
1226
1227                owner = old;
1228        }
1229
1230        spin_lock(&lock->wait_lock);
1231        debug_mutex_unlock(lock);
1232        if (!list_empty(&lock->wait_list)) {
1233                /* get the first entry from the wait-list: */
1234                struct mutex_waiter *waiter =
1235                        list_first_entry(&lock->wait_list,
1236                                         struct mutex_waiter, list);
1237
1238                next = waiter->task;
1239
1240                debug_mutex_wake_waiter(lock, waiter);
1241                wake_q_add(&wake_q, next);
1242        }
1243
1244        if (owner & MUTEX_FLAG_HANDOFF)
1245                __mutex_handoff(lock, next);
1246
1247        spin_unlock(&lock->wait_lock);
1248
1249        wake_up_q(&wake_q);
1250}
1251
1252#ifndef CONFIG_DEBUG_LOCK_ALLOC
1253/*
1254 * Here come the less common (and hence less performance-critical) APIs:
1255 * mutex_lock_interruptible() and mutex_trylock().
1256 */
1257static noinline int __sched
1258__mutex_lock_killable_slowpath(struct mutex *lock);
1259
1260static noinline int __sched
1261__mutex_lock_interruptible_slowpath(struct mutex *lock);
1262
1263/**
1264 * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals.
1265 * @lock: The mutex to be acquired.
1266 *
1267 * Lock the mutex like mutex_lock().  If a signal is delivered while the
1268 * process is sleeping, this function will return without acquiring the
1269 * mutex.
1270 *
1271 * Context: Process context.
1272 * Return: 0 if the lock was successfully acquired or %-EINTR if a
1273 * signal arrived.
1274 */
1275int __sched mutex_lock_interruptible(struct mutex *lock)
1276{
1277        might_sleep();
1278
1279        if (__mutex_trylock_fast(lock))
1280                return 0;
1281
1282        return __mutex_lock_interruptible_slowpath(lock);
1283}
1284
1285EXPORT_SYMBOL(mutex_lock_interruptible);
1286
1287/**
1288 * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals.
1289 * @lock: The mutex to be acquired.
1290 *
1291 * Lock the mutex like mutex_lock().  If a signal which will be fatal to
1292 * the current process is delivered while the process is sleeping, this
1293 * function will return without acquiring the mutex.
1294 *
1295 * Context: Process context.
1296 * Return: 0 if the lock was successfully acquired or %-EINTR if a
1297 * fatal signal arrived.
1298 */
1299int __sched mutex_lock_killable(struct mutex *lock)
1300{
1301        might_sleep();
1302
1303        if (__mutex_trylock_fast(lock))
1304                return 0;
1305
1306        return __mutex_lock_killable_slowpath(lock);
1307}
1308EXPORT_SYMBOL(mutex_lock_killable);
1309
1310/**
1311 * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O
1312 * @lock: The mutex to be acquired.
1313 *
1314 * Lock the mutex like mutex_lock().  While the task is waiting for this
1315 * mutex, it will be accounted as being in the IO wait state by the
1316 * scheduler.
1317 *
1318 * Context: Process context.
1319 */
1320void __sched mutex_lock_io(struct mutex *lock)
1321{
1322        int token;
1323
1324        token = io_schedule_prepare();
1325        mutex_lock(lock);
1326        io_schedule_finish(token);
1327}
1328EXPORT_SYMBOL_GPL(mutex_lock_io);
1329
1330static noinline void __sched
1331__mutex_lock_slowpath(struct mutex *lock)
1332{
1333        __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
1334}
1335
1336static noinline int __sched
1337__mutex_lock_killable_slowpath(struct mutex *lock)
1338{
1339        return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
1340}
1341
1342static noinline int __sched
1343__mutex_lock_interruptible_slowpath(struct mutex *lock)
1344{
1345        return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
1346}
1347
1348static noinline int __sched
1349__ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1350{
1351        return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0, NULL,
1352                               _RET_IP_, ctx);
1353}
1354
1355static noinline int __sched
1356__ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
1357                                            struct ww_acquire_ctx *ctx)
1358{
1359        return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0, NULL,
1360                               _RET_IP_, ctx);
1361}
1362
1363#endif
1364
1365/**
1366 * mutex_trylock - try to acquire the mutex, without waiting
1367 * @lock: the mutex to be acquired
1368 *
1369 * Try to acquire the mutex atomically. Returns 1 if the mutex
1370 * has been acquired successfully, and 0 on contention.
1371 *
1372 * NOTE: this function follows the spin_trylock() convention, so
1373 * it is negated from the down_trylock() return values! Be careful
1374 * about this when converting semaphore users to mutexes.
1375 *
1376 * This function must not be used in interrupt context. The
1377 * mutex must be released by the same task that acquired it.
1378 */
1379int __sched mutex_trylock(struct mutex *lock)
1380{
1381        bool locked = __mutex_trylock(lock);
1382
1383        if (locked)
1384                mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1385
1386        return locked;
1387}
1388EXPORT_SYMBOL(mutex_trylock);
1389
1390#ifndef CONFIG_DEBUG_LOCK_ALLOC
1391int __sched
1392ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1393{
1394        might_sleep();
1395
1396        if (__mutex_trylock_fast(&lock->base)) {
1397                if (ctx)
1398                        ww_mutex_set_context_fastpath(lock, ctx);
1399                return 0;
1400        }
1401
1402        return __ww_mutex_lock_slowpath(lock, ctx);
1403}
1404EXPORT_SYMBOL(ww_mutex_lock);
1405
1406int __sched
1407ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1408{
1409        might_sleep();
1410
1411        if (__mutex_trylock_fast(&lock->base)) {
1412                if (ctx)
1413                        ww_mutex_set_context_fastpath(lock, ctx);
1414                return 0;
1415        }
1416
1417        return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
1418}
1419EXPORT_SYMBOL(ww_mutex_lock_interruptible);
1420
1421#endif
1422
1423/**
1424 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1425 * @cnt: the atomic which we are to dec
1426 * @lock: the mutex to return holding if we dec to 0
1427 *
1428 * return true and hold lock if we dec to 0, return false otherwise
1429 */
1430int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
1431{
1432        /* dec if we can't possibly hit 0 */
1433        if (atomic_add_unless(cnt, -1, 1))
1434                return 0;
1435        /* we might hit 0, so take the lock */
1436        mutex_lock(lock);
1437        if (!atomic_dec_and_test(cnt)) {
1438                /* when we actually did the dec, we didn't hit 0 */
1439                mutex_unlock(lock);
1440                return 0;
1441        }
1442        /* we hit 0, and we hold the lock */
1443        return 1;
1444}
1445EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
1446