linux/kernel/rcu/tree.c
<<
>>
Prefs
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, you can access it online at
  16 * http://www.gnu.org/licenses/gpl-2.0.html.
  17 *
  18 * Copyright IBM Corporation, 2008
  19 *
  20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
  21 *          Manfred Spraul <manfred@colorfullife.com>
  22 *          Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
  23 *
  24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  26 *
  27 * For detailed explanation of Read-Copy Update mechanism see -
  28 *      Documentation/RCU
  29 */
  30
  31#define pr_fmt(fmt) "rcu: " fmt
  32
  33#include <linux/types.h>
  34#include <linux/kernel.h>
  35#include <linux/init.h>
  36#include <linux/spinlock.h>
  37#include <linux/smp.h>
  38#include <linux/rcupdate_wait.h>
  39#include <linux/interrupt.h>
  40#include <linux/sched.h>
  41#include <linux/sched/debug.h>
  42#include <linux/nmi.h>
  43#include <linux/atomic.h>
  44#include <linux/bitops.h>
  45#include <linux/export.h>
  46#include <linux/completion.h>
  47#include <linux/moduleparam.h>
  48#include <linux/percpu.h>
  49#include <linux/notifier.h>
  50#include <linux/cpu.h>
  51#include <linux/mutex.h>
  52#include <linux/time.h>
  53#include <linux/kernel_stat.h>
  54#include <linux/wait.h>
  55#include <linux/kthread.h>
  56#include <uapi/linux/sched/types.h>
  57#include <linux/prefetch.h>
  58#include <linux/delay.h>
  59#include <linux/stop_machine.h>
  60#include <linux/random.h>
  61#include <linux/trace_events.h>
  62#include <linux/suspend.h>
  63#include <linux/ftrace.h>
  64#include <linux/tick.h>
  65
  66#include "tree.h"
  67#include "rcu.h"
  68
  69#ifdef MODULE_PARAM_PREFIX
  70#undef MODULE_PARAM_PREFIX
  71#endif
  72#define MODULE_PARAM_PREFIX "rcutree."
  73
  74/* Data structures. */
  75
  76/*
  77 * Steal a bit from the bottom of ->dynticks for idle entry/exit
  78 * control.  Initially this is for TLB flushing.
  79 */
  80#define RCU_DYNTICK_CTRL_MASK 0x1
  81#define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
  82#ifndef rcu_eqs_special_exit
  83#define rcu_eqs_special_exit() do { } while (0)
  84#endif
  85
  86static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
  87        .dynticks_nesting = 1,
  88        .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
  89        .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
  90};
  91struct rcu_state rcu_state = {
  92        .level = { &rcu_state.node[0] },
  93        .gp_state = RCU_GP_IDLE,
  94        .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
  95        .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
  96        .name = RCU_NAME,
  97        .abbr = RCU_ABBR,
  98        .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
  99        .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
 100        .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
 101};
 102
 103/* Dump rcu_node combining tree at boot to verify correct setup. */
 104static bool dump_tree;
 105module_param(dump_tree, bool, 0444);
 106/* Control rcu_node-tree auto-balancing at boot time. */
 107static bool rcu_fanout_exact;
 108module_param(rcu_fanout_exact, bool, 0444);
 109/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
 110static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
 111module_param(rcu_fanout_leaf, int, 0444);
 112int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
 113/* Number of rcu_nodes at specified level. */
 114int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
 115int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
 116/* panic() on RCU Stall sysctl. */
 117int sysctl_panic_on_rcu_stall __read_mostly;
 118
 119/*
 120 * The rcu_scheduler_active variable is initialized to the value
 121 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
 122 * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
 123 * RCU can assume that there is but one task, allowing RCU to (for example)
 124 * optimize synchronize_rcu() to a simple barrier().  When this variable
 125 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
 126 * to detect real grace periods.  This variable is also used to suppress
 127 * boot-time false positives from lockdep-RCU error checking.  Finally, it
 128 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
 129 * is fully initialized, including all of its kthreads having been spawned.
 130 */
 131int rcu_scheduler_active __read_mostly;
 132EXPORT_SYMBOL_GPL(rcu_scheduler_active);
 133
 134/*
 135 * The rcu_scheduler_fully_active variable transitions from zero to one
 136 * during the early_initcall() processing, which is after the scheduler
 137 * is capable of creating new tasks.  So RCU processing (for example,
 138 * creating tasks for RCU priority boosting) must be delayed until after
 139 * rcu_scheduler_fully_active transitions from zero to one.  We also
 140 * currently delay invocation of any RCU callbacks until after this point.
 141 *
 142 * It might later prove better for people registering RCU callbacks during
 143 * early boot to take responsibility for these callbacks, but one step at
 144 * a time.
 145 */
 146static int rcu_scheduler_fully_active __read_mostly;
 147
 148static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
 149                              unsigned long gps, unsigned long flags);
 150static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
 151static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
 152static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
 153static void invoke_rcu_core(void);
 154static void invoke_rcu_callbacks(struct rcu_data *rdp);
 155static void rcu_report_exp_rdp(struct rcu_data *rdp);
 156static void sync_sched_exp_online_cleanup(int cpu);
 157
 158/* rcuc/rcub kthread realtime priority */
 159static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
 160module_param(kthread_prio, int, 0644);
 161
 162/* Delay in jiffies for grace-period initialization delays, debug only. */
 163
 164static int gp_preinit_delay;
 165module_param(gp_preinit_delay, int, 0444);
 166static int gp_init_delay;
 167module_param(gp_init_delay, int, 0444);
 168static int gp_cleanup_delay;
 169module_param(gp_cleanup_delay, int, 0444);
 170
 171/* Retrieve RCU kthreads priority for rcutorture */
 172int rcu_get_gp_kthreads_prio(void)
 173{
 174        return kthread_prio;
 175}
 176EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
 177
 178/*
 179 * Number of grace periods between delays, normalized by the duration of
 180 * the delay.  The longer the delay, the more the grace periods between
 181 * each delay.  The reason for this normalization is that it means that,
 182 * for non-zero delays, the overall slowdown of grace periods is constant
 183 * regardless of the duration of the delay.  This arrangement balances
 184 * the need for long delays to increase some race probabilities with the
 185 * need for fast grace periods to increase other race probabilities.
 186 */
 187#define PER_RCU_NODE_PERIOD 3   /* Number of grace periods between delays. */
 188
 189/*
 190 * Compute the mask of online CPUs for the specified rcu_node structure.
 191 * This will not be stable unless the rcu_node structure's ->lock is
 192 * held, but the bit corresponding to the current CPU will be stable
 193 * in most contexts.
 194 */
 195unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
 196{
 197        return READ_ONCE(rnp->qsmaskinitnext);
 198}
 199
 200/*
 201 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
 202 * permit this function to be invoked without holding the root rcu_node
 203 * structure's ->lock, but of course results can be subject to change.
 204 */
 205static int rcu_gp_in_progress(void)
 206{
 207        return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
 208}
 209
 210void rcu_softirq_qs(void)
 211{
 212        rcu_qs();
 213        rcu_preempt_deferred_qs(current);
 214}
 215
 216/*
 217 * Record entry into an extended quiescent state.  This is only to be
 218 * called when not already in an extended quiescent state.
 219 */
 220static void rcu_dynticks_eqs_enter(void)
 221{
 222        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 223        int seq;
 224
 225        /*
 226         * CPUs seeing atomic_add_return() must see prior RCU read-side
 227         * critical sections, and we also must force ordering with the
 228         * next idle sojourn.
 229         */
 230        seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
 231        /* Better be in an extended quiescent state! */
 232        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 233                     (seq & RCU_DYNTICK_CTRL_CTR));
 234        /* Better not have special action (TLB flush) pending! */
 235        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 236                     (seq & RCU_DYNTICK_CTRL_MASK));
 237}
 238
 239/*
 240 * Record exit from an extended quiescent state.  This is only to be
 241 * called from an extended quiescent state.
 242 */
 243static void rcu_dynticks_eqs_exit(void)
 244{
 245        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 246        int seq;
 247
 248        /*
 249         * CPUs seeing atomic_add_return() must see prior idle sojourns,
 250         * and we also must force ordering with the next RCU read-side
 251         * critical section.
 252         */
 253        seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
 254        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 255                     !(seq & RCU_DYNTICK_CTRL_CTR));
 256        if (seq & RCU_DYNTICK_CTRL_MASK) {
 257                atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
 258                smp_mb__after_atomic(); /* _exit after clearing mask. */
 259                /* Prefer duplicate flushes to losing a flush. */
 260                rcu_eqs_special_exit();
 261        }
 262}
 263
 264/*
 265 * Reset the current CPU's ->dynticks counter to indicate that the
 266 * newly onlined CPU is no longer in an extended quiescent state.
 267 * This will either leave the counter unchanged, or increment it
 268 * to the next non-quiescent value.
 269 *
 270 * The non-atomic test/increment sequence works because the upper bits
 271 * of the ->dynticks counter are manipulated only by the corresponding CPU,
 272 * or when the corresponding CPU is offline.
 273 */
 274static void rcu_dynticks_eqs_online(void)
 275{
 276        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 277
 278        if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
 279                return;
 280        atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
 281}
 282
 283/*
 284 * Is the current CPU in an extended quiescent state?
 285 *
 286 * No ordering, as we are sampling CPU-local information.
 287 */
 288bool rcu_dynticks_curr_cpu_in_eqs(void)
 289{
 290        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 291
 292        return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
 293}
 294
 295/*
 296 * Snapshot the ->dynticks counter with full ordering so as to allow
 297 * stable comparison of this counter with past and future snapshots.
 298 */
 299int rcu_dynticks_snap(struct rcu_data *rdp)
 300{
 301        int snap = atomic_add_return(0, &rdp->dynticks);
 302
 303        return snap & ~RCU_DYNTICK_CTRL_MASK;
 304}
 305
 306/*
 307 * Return true if the snapshot returned from rcu_dynticks_snap()
 308 * indicates that RCU is in an extended quiescent state.
 309 */
 310static bool rcu_dynticks_in_eqs(int snap)
 311{
 312        return !(snap & RCU_DYNTICK_CTRL_CTR);
 313}
 314
 315/*
 316 * Return true if the CPU corresponding to the specified rcu_data
 317 * structure has spent some time in an extended quiescent state since
 318 * rcu_dynticks_snap() returned the specified snapshot.
 319 */
 320static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
 321{
 322        return snap != rcu_dynticks_snap(rdp);
 323}
 324
 325/*
 326 * Set the special (bottom) bit of the specified CPU so that it
 327 * will take special action (such as flushing its TLB) on the
 328 * next exit from an extended quiescent state.  Returns true if
 329 * the bit was successfully set, or false if the CPU was not in
 330 * an extended quiescent state.
 331 */
 332bool rcu_eqs_special_set(int cpu)
 333{
 334        int old;
 335        int new;
 336        struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
 337
 338        do {
 339                old = atomic_read(&rdp->dynticks);
 340                if (old & RCU_DYNTICK_CTRL_CTR)
 341                        return false;
 342                new = old | RCU_DYNTICK_CTRL_MASK;
 343        } while (atomic_cmpxchg(&rdp->dynticks, old, new) != old);
 344        return true;
 345}
 346
 347/*
 348 * Let the RCU core know that this CPU has gone through the scheduler,
 349 * which is a quiescent state.  This is called when the need for a
 350 * quiescent state is urgent, so we burn an atomic operation and full
 351 * memory barriers to let the RCU core know about it, regardless of what
 352 * this CPU might (or might not) do in the near future.
 353 *
 354 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
 355 *
 356 * The caller must have disabled interrupts and must not be idle.
 357 */
 358static void __maybe_unused rcu_momentary_dyntick_idle(void)
 359{
 360        int special;
 361
 362        raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
 363        special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
 364                                    &this_cpu_ptr(&rcu_data)->dynticks);
 365        /* It is illegal to call this from idle state. */
 366        WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
 367        rcu_preempt_deferred_qs(current);
 368}
 369
 370/**
 371 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
 372 *
 373 * If the current CPU is idle or running at a first-level (not nested)
 374 * interrupt from idle, return true.  The caller must have at least
 375 * disabled preemption.
 376 */
 377static int rcu_is_cpu_rrupt_from_idle(void)
 378{
 379        return __this_cpu_read(rcu_data.dynticks_nesting) <= 0 &&
 380               __this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 1;
 381}
 382
 383#define DEFAULT_RCU_BLIMIT 10     /* Maximum callbacks per rcu_do_batch. */
 384static long blimit = DEFAULT_RCU_BLIMIT;
 385#define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
 386static long qhimark = DEFAULT_RCU_QHIMARK;
 387#define DEFAULT_RCU_QLOMARK 100   /* Once only this many pending, use blimit. */
 388static long qlowmark = DEFAULT_RCU_QLOMARK;
 389
 390module_param(blimit, long, 0444);
 391module_param(qhimark, long, 0444);
 392module_param(qlowmark, long, 0444);
 393
 394static ulong jiffies_till_first_fqs = ULONG_MAX;
 395static ulong jiffies_till_next_fqs = ULONG_MAX;
 396static bool rcu_kick_kthreads;
 397
 398/*
 399 * How long the grace period must be before we start recruiting
 400 * quiescent-state help from rcu_note_context_switch().
 401 */
 402static ulong jiffies_till_sched_qs = ULONG_MAX;
 403module_param(jiffies_till_sched_qs, ulong, 0444);
 404static ulong jiffies_to_sched_qs; /* Adjusted version of above if not default */
 405module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
 406
 407/*
 408 * Make sure that we give the grace-period kthread time to detect any
 409 * idle CPUs before taking active measures to force quiescent states.
 410 * However, don't go below 100 milliseconds, adjusted upwards for really
 411 * large systems.
 412 */
 413static void adjust_jiffies_till_sched_qs(void)
 414{
 415        unsigned long j;
 416
 417        /* If jiffies_till_sched_qs was specified, respect the request. */
 418        if (jiffies_till_sched_qs != ULONG_MAX) {
 419                WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
 420                return;
 421        }
 422        j = READ_ONCE(jiffies_till_first_fqs) +
 423                      2 * READ_ONCE(jiffies_till_next_fqs);
 424        if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
 425                j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
 426        pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
 427        WRITE_ONCE(jiffies_to_sched_qs, j);
 428}
 429
 430static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
 431{
 432        ulong j;
 433        int ret = kstrtoul(val, 0, &j);
 434
 435        if (!ret) {
 436                WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
 437                adjust_jiffies_till_sched_qs();
 438        }
 439        return ret;
 440}
 441
 442static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
 443{
 444        ulong j;
 445        int ret = kstrtoul(val, 0, &j);
 446
 447        if (!ret) {
 448                WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
 449                adjust_jiffies_till_sched_qs();
 450        }
 451        return ret;
 452}
 453
 454static struct kernel_param_ops first_fqs_jiffies_ops = {
 455        .set = param_set_first_fqs_jiffies,
 456        .get = param_get_ulong,
 457};
 458
 459static struct kernel_param_ops next_fqs_jiffies_ops = {
 460        .set = param_set_next_fqs_jiffies,
 461        .get = param_get_ulong,
 462};
 463
 464module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
 465module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
 466module_param(rcu_kick_kthreads, bool, 0644);
 467
 468static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
 469static void force_quiescent_state(void);
 470static int rcu_pending(void);
 471
 472/*
 473 * Return the number of RCU GPs completed thus far for debug & stats.
 474 */
 475unsigned long rcu_get_gp_seq(void)
 476{
 477        return READ_ONCE(rcu_state.gp_seq);
 478}
 479EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
 480
 481/*
 482 * Return the number of RCU expedited batches completed thus far for
 483 * debug & stats.  Odd numbers mean that a batch is in progress, even
 484 * numbers mean idle.  The value returned will thus be roughly double
 485 * the cumulative batches since boot.
 486 */
 487unsigned long rcu_exp_batches_completed(void)
 488{
 489        return rcu_state.expedited_sequence;
 490}
 491EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
 492
 493/*
 494 * Force a quiescent state.
 495 */
 496void rcu_force_quiescent_state(void)
 497{
 498        force_quiescent_state();
 499}
 500EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
 501
 502/*
 503 * Show the state of the grace-period kthreads.
 504 */
 505void show_rcu_gp_kthreads(void)
 506{
 507        int cpu;
 508        struct rcu_data *rdp;
 509        struct rcu_node *rnp;
 510
 511        pr_info("%s: wait state: %d ->state: %#lx\n", rcu_state.name,
 512                rcu_state.gp_state, rcu_state.gp_kthread->state);
 513        rcu_for_each_node_breadth_first(rnp) {
 514                if (ULONG_CMP_GE(rcu_state.gp_seq, rnp->gp_seq_needed))
 515                        continue;
 516                pr_info("\trcu_node %d:%d ->gp_seq %lu ->gp_seq_needed %lu\n",
 517                        rnp->grplo, rnp->grphi, rnp->gp_seq,
 518                        rnp->gp_seq_needed);
 519                if (!rcu_is_leaf_node(rnp))
 520                        continue;
 521                for_each_leaf_node_possible_cpu(rnp, cpu) {
 522                        rdp = per_cpu_ptr(&rcu_data, cpu);
 523                        if (rdp->gpwrap ||
 524                            ULONG_CMP_GE(rcu_state.gp_seq,
 525                                         rdp->gp_seq_needed))
 526                                continue;
 527                        pr_info("\tcpu %d ->gp_seq_needed %lu\n",
 528                                cpu, rdp->gp_seq_needed);
 529                }
 530        }
 531        /* sched_show_task(rcu_state.gp_kthread); */
 532}
 533EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
 534
 535/*
 536 * Send along grace-period-related data for rcutorture diagnostics.
 537 */
 538void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
 539                            unsigned long *gp_seq)
 540{
 541        switch (test_type) {
 542        case RCU_FLAVOR:
 543        case RCU_BH_FLAVOR:
 544        case RCU_SCHED_FLAVOR:
 545                *flags = READ_ONCE(rcu_state.gp_flags);
 546                *gp_seq = rcu_seq_current(&rcu_state.gp_seq);
 547                break;
 548        default:
 549                break;
 550        }
 551}
 552EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
 553
 554/*
 555 * Return the root node of the rcu_state structure.
 556 */
 557static struct rcu_node *rcu_get_root(void)
 558{
 559        return &rcu_state.node[0];
 560}
 561
 562/*
 563 * Enter an RCU extended quiescent state, which can be either the
 564 * idle loop or adaptive-tickless usermode execution.
 565 *
 566 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
 567 * the possibility of usermode upcalls having messed up our count
 568 * of interrupt nesting level during the prior busy period.
 569 */
 570static void rcu_eqs_enter(bool user)
 571{
 572        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 573
 574        WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
 575        WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
 576        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 577                     rdp->dynticks_nesting == 0);
 578        if (rdp->dynticks_nesting != 1) {
 579                rdp->dynticks_nesting--;
 580                return;
 581        }
 582
 583        lockdep_assert_irqs_disabled();
 584        trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, rdp->dynticks);
 585        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
 586        rdp = this_cpu_ptr(&rcu_data);
 587        do_nocb_deferred_wakeup(rdp);
 588        rcu_prepare_for_idle();
 589        rcu_preempt_deferred_qs(current);
 590        WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
 591        rcu_dynticks_eqs_enter();
 592        rcu_dynticks_task_enter();
 593}
 594
 595/**
 596 * rcu_idle_enter - inform RCU that current CPU is entering idle
 597 *
 598 * Enter idle mode, in other words, -leave- the mode in which RCU
 599 * read-side critical sections can occur.  (Though RCU read-side
 600 * critical sections can occur in irq handlers in idle, a possibility
 601 * handled by irq_enter() and irq_exit().)
 602 *
 603 * If you add or remove a call to rcu_idle_enter(), be sure to test with
 604 * CONFIG_RCU_EQS_DEBUG=y.
 605 */
 606void rcu_idle_enter(void)
 607{
 608        lockdep_assert_irqs_disabled();
 609        rcu_eqs_enter(false);
 610}
 611
 612#ifdef CONFIG_NO_HZ_FULL
 613/**
 614 * rcu_user_enter - inform RCU that we are resuming userspace.
 615 *
 616 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 617 * is permitted between this call and rcu_user_exit(). This way the
 618 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 619 * when the CPU runs in userspace.
 620 *
 621 * If you add or remove a call to rcu_user_enter(), be sure to test with
 622 * CONFIG_RCU_EQS_DEBUG=y.
 623 */
 624void rcu_user_enter(void)
 625{
 626        lockdep_assert_irqs_disabled();
 627        rcu_eqs_enter(true);
 628}
 629#endif /* CONFIG_NO_HZ_FULL */
 630
 631/*
 632 * If we are returning from the outermost NMI handler that interrupted an
 633 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
 634 * to let the RCU grace-period handling know that the CPU is back to
 635 * being RCU-idle.
 636 *
 637 * If you add or remove a call to rcu_nmi_exit_common(), be sure to test
 638 * with CONFIG_RCU_EQS_DEBUG=y.
 639 */
 640static __always_inline void rcu_nmi_exit_common(bool irq)
 641{
 642        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 643
 644        /*
 645         * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
 646         * (We are exiting an NMI handler, so RCU better be paying attention
 647         * to us!)
 648         */
 649        WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
 650        WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
 651
 652        /*
 653         * If the nesting level is not 1, the CPU wasn't RCU-idle, so
 654         * leave it in non-RCU-idle state.
 655         */
 656        if (rdp->dynticks_nmi_nesting != 1) {
 657                trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, rdp->dynticks);
 658                WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
 659                           rdp->dynticks_nmi_nesting - 2);
 660                return;
 661        }
 662
 663        /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
 664        trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, rdp->dynticks);
 665        WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
 666
 667        if (irq)
 668                rcu_prepare_for_idle();
 669
 670        rcu_dynticks_eqs_enter();
 671
 672        if (irq)
 673                rcu_dynticks_task_enter();
 674}
 675
 676/**
 677 * rcu_nmi_exit - inform RCU of exit from NMI context
 678 * @irq: Is this call from rcu_irq_exit?
 679 *
 680 * If you add or remove a call to rcu_nmi_exit(), be sure to test
 681 * with CONFIG_RCU_EQS_DEBUG=y.
 682 */
 683void rcu_nmi_exit(void)
 684{
 685        rcu_nmi_exit_common(false);
 686}
 687
 688/**
 689 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 690 *
 691 * Exit from an interrupt handler, which might possibly result in entering
 692 * idle mode, in other words, leaving the mode in which read-side critical
 693 * sections can occur.  The caller must have disabled interrupts.
 694 *
 695 * This code assumes that the idle loop never does anything that might
 696 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 697 * architecture's idle loop violates this assumption, RCU will give you what
 698 * you deserve, good and hard.  But very infrequently and irreproducibly.
 699 *
 700 * Use things like work queues to work around this limitation.
 701 *
 702 * You have been warned.
 703 *
 704 * If you add or remove a call to rcu_irq_exit(), be sure to test with
 705 * CONFIG_RCU_EQS_DEBUG=y.
 706 */
 707void rcu_irq_exit(void)
 708{
 709        lockdep_assert_irqs_disabled();
 710        rcu_nmi_exit_common(true);
 711}
 712
 713/*
 714 * Wrapper for rcu_irq_exit() where interrupts are enabled.
 715 *
 716 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
 717 * with CONFIG_RCU_EQS_DEBUG=y.
 718 */
 719void rcu_irq_exit_irqson(void)
 720{
 721        unsigned long flags;
 722
 723        local_irq_save(flags);
 724        rcu_irq_exit();
 725        local_irq_restore(flags);
 726}
 727
 728/*
 729 * Exit an RCU extended quiescent state, which can be either the
 730 * idle loop or adaptive-tickless usermode execution.
 731 *
 732 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
 733 * allow for the possibility of usermode upcalls messing up our count of
 734 * interrupt nesting level during the busy period that is just now starting.
 735 */
 736static void rcu_eqs_exit(bool user)
 737{
 738        struct rcu_data *rdp;
 739        long oldval;
 740
 741        lockdep_assert_irqs_disabled();
 742        rdp = this_cpu_ptr(&rcu_data);
 743        oldval = rdp->dynticks_nesting;
 744        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
 745        if (oldval) {
 746                rdp->dynticks_nesting++;
 747                return;
 748        }
 749        rcu_dynticks_task_exit();
 750        rcu_dynticks_eqs_exit();
 751        rcu_cleanup_after_idle();
 752        trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, rdp->dynticks);
 753        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
 754        WRITE_ONCE(rdp->dynticks_nesting, 1);
 755        WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
 756        WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
 757}
 758
 759/**
 760 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 761 *
 762 * Exit idle mode, in other words, -enter- the mode in which RCU
 763 * read-side critical sections can occur.
 764 *
 765 * If you add or remove a call to rcu_idle_exit(), be sure to test with
 766 * CONFIG_RCU_EQS_DEBUG=y.
 767 */
 768void rcu_idle_exit(void)
 769{
 770        unsigned long flags;
 771
 772        local_irq_save(flags);
 773        rcu_eqs_exit(false);
 774        local_irq_restore(flags);
 775}
 776
 777#ifdef CONFIG_NO_HZ_FULL
 778/**
 779 * rcu_user_exit - inform RCU that we are exiting userspace.
 780 *
 781 * Exit RCU idle mode while entering the kernel because it can
 782 * run a RCU read side critical section anytime.
 783 *
 784 * If you add or remove a call to rcu_user_exit(), be sure to test with
 785 * CONFIG_RCU_EQS_DEBUG=y.
 786 */
 787void rcu_user_exit(void)
 788{
 789        rcu_eqs_exit(1);
 790}
 791#endif /* CONFIG_NO_HZ_FULL */
 792
 793/**
 794 * rcu_nmi_enter_common - inform RCU of entry to NMI context
 795 * @irq: Is this call from rcu_irq_enter?
 796 *
 797 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
 798 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
 799 * that the CPU is active.  This implementation permits nested NMIs, as
 800 * long as the nesting level does not overflow an int.  (You will probably
 801 * run out of stack space first.)
 802 *
 803 * If you add or remove a call to rcu_nmi_enter_common(), be sure to test
 804 * with CONFIG_RCU_EQS_DEBUG=y.
 805 */
 806static __always_inline void rcu_nmi_enter_common(bool irq)
 807{
 808        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 809        long incby = 2;
 810
 811        /* Complain about underflow. */
 812        WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
 813
 814        /*
 815         * If idle from RCU viewpoint, atomically increment ->dynticks
 816         * to mark non-idle and increment ->dynticks_nmi_nesting by one.
 817         * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
 818         * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
 819         * to be in the outermost NMI handler that interrupted an RCU-idle
 820         * period (observation due to Andy Lutomirski).
 821         */
 822        if (rcu_dynticks_curr_cpu_in_eqs()) {
 823
 824                if (irq)
 825                        rcu_dynticks_task_exit();
 826
 827                rcu_dynticks_eqs_exit();
 828
 829                if (irq)
 830                        rcu_cleanup_after_idle();
 831
 832                incby = 1;
 833        }
 834        trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
 835                          rdp->dynticks_nmi_nesting,
 836                          rdp->dynticks_nmi_nesting + incby, rdp->dynticks);
 837        WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
 838                   rdp->dynticks_nmi_nesting + incby);
 839        barrier();
 840}
 841
 842/**
 843 * rcu_nmi_enter - inform RCU of entry to NMI context
 844 */
 845void rcu_nmi_enter(void)
 846{
 847        rcu_nmi_enter_common(false);
 848}
 849
 850/**
 851 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 852 *
 853 * Enter an interrupt handler, which might possibly result in exiting
 854 * idle mode, in other words, entering the mode in which read-side critical
 855 * sections can occur.  The caller must have disabled interrupts.
 856 *
 857 * Note that the Linux kernel is fully capable of entering an interrupt
 858 * handler that it never exits, for example when doing upcalls to user mode!
 859 * This code assumes that the idle loop never does upcalls to user mode.
 860 * If your architecture's idle loop does do upcalls to user mode (or does
 861 * anything else that results in unbalanced calls to the irq_enter() and
 862 * irq_exit() functions), RCU will give you what you deserve, good and hard.
 863 * But very infrequently and irreproducibly.
 864 *
 865 * Use things like work queues to work around this limitation.
 866 *
 867 * You have been warned.
 868 *
 869 * If you add or remove a call to rcu_irq_enter(), be sure to test with
 870 * CONFIG_RCU_EQS_DEBUG=y.
 871 */
 872void rcu_irq_enter(void)
 873{
 874        lockdep_assert_irqs_disabled();
 875        rcu_nmi_enter_common(true);
 876}
 877
 878/*
 879 * Wrapper for rcu_irq_enter() where interrupts are enabled.
 880 *
 881 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
 882 * with CONFIG_RCU_EQS_DEBUG=y.
 883 */
 884void rcu_irq_enter_irqson(void)
 885{
 886        unsigned long flags;
 887
 888        local_irq_save(flags);
 889        rcu_irq_enter();
 890        local_irq_restore(flags);
 891}
 892
 893/**
 894 * rcu_is_watching - see if RCU thinks that the current CPU is idle
 895 *
 896 * Return true if RCU is watching the running CPU, which means that this
 897 * CPU can safely enter RCU read-side critical sections.  In other words,
 898 * if the current CPU is in its idle loop and is neither in an interrupt
 899 * or NMI handler, return true.
 900 */
 901bool notrace rcu_is_watching(void)
 902{
 903        bool ret;
 904
 905        preempt_disable_notrace();
 906        ret = !rcu_dynticks_curr_cpu_in_eqs();
 907        preempt_enable_notrace();
 908        return ret;
 909}
 910EXPORT_SYMBOL_GPL(rcu_is_watching);
 911
 912/*
 913 * If a holdout task is actually running, request an urgent quiescent
 914 * state from its CPU.  This is unsynchronized, so migrations can cause
 915 * the request to go to the wrong CPU.  Which is OK, all that will happen
 916 * is that the CPU's next context switch will be a bit slower and next
 917 * time around this task will generate another request.
 918 */
 919void rcu_request_urgent_qs_task(struct task_struct *t)
 920{
 921        int cpu;
 922
 923        barrier();
 924        cpu = task_cpu(t);
 925        if (!task_curr(t))
 926                return; /* This task is not running on that CPU. */
 927        smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
 928}
 929
 930#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
 931
 932/*
 933 * Is the current CPU online as far as RCU is concerned?
 934 *
 935 * Disable preemption to avoid false positives that could otherwise
 936 * happen due to the current CPU number being sampled, this task being
 937 * preempted, its old CPU being taken offline, resuming on some other CPU,
 938 * then determining that its old CPU is now offline.
 939 *
 940 * Disable checking if in an NMI handler because we cannot safely
 941 * report errors from NMI handlers anyway.  In addition, it is OK to use
 942 * RCU on an offline processor during initial boot, hence the check for
 943 * rcu_scheduler_fully_active.
 944 */
 945bool rcu_lockdep_current_cpu_online(void)
 946{
 947        struct rcu_data *rdp;
 948        struct rcu_node *rnp;
 949        bool ret = false;
 950
 951        if (in_nmi() || !rcu_scheduler_fully_active)
 952                return true;
 953        preempt_disable();
 954        rdp = this_cpu_ptr(&rcu_data);
 955        rnp = rdp->mynode;
 956        if (rdp->grpmask & rcu_rnp_online_cpus(rnp))
 957                ret = true;
 958        preempt_enable();
 959        return ret;
 960}
 961EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
 962
 963#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
 964
 965/*
 966 * We are reporting a quiescent state on behalf of some other CPU, so
 967 * it is our responsibility to check for and handle potential overflow
 968 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
 969 * After all, the CPU might be in deep idle state, and thus executing no
 970 * code whatsoever.
 971 */
 972static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
 973{
 974        raw_lockdep_assert_held_rcu_node(rnp);
 975        if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
 976                         rnp->gp_seq))
 977                WRITE_ONCE(rdp->gpwrap, true);
 978        if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
 979                rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
 980}
 981
 982/*
 983 * Snapshot the specified CPU's dynticks counter so that we can later
 984 * credit them with an implicit quiescent state.  Return 1 if this CPU
 985 * is in dynticks idle mode, which is an extended quiescent state.
 986 */
 987static int dyntick_save_progress_counter(struct rcu_data *rdp)
 988{
 989        rdp->dynticks_snap = rcu_dynticks_snap(rdp);
 990        if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
 991                trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
 992                rcu_gpnum_ovf(rdp->mynode, rdp);
 993                return 1;
 994        }
 995        return 0;
 996}
 997
 998/*
 999 * Handler for the irq_work request posted when a grace period has
1000 * gone on for too long, but not yet long enough for an RCU CPU
1001 * stall warning.  Set state appropriately, but just complain if
1002 * there is unexpected state on entry.
1003 */
1004static void rcu_iw_handler(struct irq_work *iwp)
1005{
1006        struct rcu_data *rdp;
1007        struct rcu_node *rnp;
1008
1009        rdp = container_of(iwp, struct rcu_data, rcu_iw);
1010        rnp = rdp->mynode;
1011        raw_spin_lock_rcu_node(rnp);
1012        if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) {
1013                rdp->rcu_iw_gp_seq = rnp->gp_seq;
1014                rdp->rcu_iw_pending = false;
1015        }
1016        raw_spin_unlock_rcu_node(rnp);
1017}
1018
1019/*
1020 * Return true if the specified CPU has passed through a quiescent
1021 * state by virtue of being in or having passed through an dynticks
1022 * idle state since the last call to dyntick_save_progress_counter()
1023 * for this same CPU, or by virtue of having been offline.
1024 */
1025static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1026{
1027        unsigned long jtsq;
1028        bool *rnhqp;
1029        bool *ruqp;
1030        struct rcu_node *rnp = rdp->mynode;
1031
1032        /*
1033         * If the CPU passed through or entered a dynticks idle phase with
1034         * no active irq/NMI handlers, then we can safely pretend that the CPU
1035         * already acknowledged the request to pass through a quiescent
1036         * state.  Either way, that CPU cannot possibly be in an RCU
1037         * read-side critical section that started before the beginning
1038         * of the current RCU grace period.
1039         */
1040        if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1041                trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1042                rcu_gpnum_ovf(rnp, rdp);
1043                return 1;
1044        }
1045
1046        /* If waiting too long on an offline CPU, complain. */
1047        if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
1048            time_after(jiffies, rcu_state.gp_start + HZ)) {
1049                bool onl;
1050                struct rcu_node *rnp1;
1051
1052                WARN_ON(1);  /* Offline CPUs are supposed to report QS! */
1053                pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1054                        __func__, rnp->grplo, rnp->grphi, rnp->level,
1055                        (long)rnp->gp_seq, (long)rnp->completedqs);
1056                for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1057                        pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1058                                __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1059                onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1060                pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1061                        __func__, rdp->cpu, ".o"[onl],
1062                        (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1063                        (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1064                return 1; /* Break things loose after complaining. */
1065        }
1066
1067        /*
1068         * A CPU running for an extended time within the kernel can
1069         * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1070         * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1071         * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
1072         * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1073         * variable are safe because the assignments are repeated if this
1074         * CPU failed to pass through a quiescent state.  This code
1075         * also checks .jiffies_resched in case jiffies_to_sched_qs
1076         * is set way high.
1077         */
1078        jtsq = READ_ONCE(jiffies_to_sched_qs);
1079        ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1080        rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
1081        if (!READ_ONCE(*rnhqp) &&
1082            (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1083             time_after(jiffies, rcu_state.jiffies_resched))) {
1084                WRITE_ONCE(*rnhqp, true);
1085                /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1086                smp_store_release(ruqp, true);
1087        } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1088                WRITE_ONCE(*ruqp, true);
1089        }
1090
1091        /*
1092         * NO_HZ_FULL CPUs can run in-kernel without rcu_check_callbacks!
1093         * The above code handles this, but only for straight cond_resched().
1094         * And some in-kernel loops check need_resched() before calling
1095         * cond_resched(), which defeats the above code for CPUs that are
1096         * running in-kernel with scheduling-clock interrupts disabled.
1097         * So hit them over the head with the resched_cpu() hammer!
1098         */
1099        if (tick_nohz_full_cpu(rdp->cpu) &&
1100                   time_after(jiffies,
1101                              READ_ONCE(rdp->last_fqs_resched) + jtsq * 3)) {
1102                resched_cpu(rdp->cpu);
1103                WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1104        }
1105
1106        /*
1107         * If more than halfway to RCU CPU stall-warning time, invoke
1108         * resched_cpu() more frequently to try to loosen things up a bit.
1109         * Also check to see if the CPU is getting hammered with interrupts,
1110         * but only once per grace period, just to keep the IPIs down to
1111         * a dull roar.
1112         */
1113        if (time_after(jiffies, rcu_state.jiffies_resched)) {
1114                if (time_after(jiffies,
1115                               READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1116                        resched_cpu(rdp->cpu);
1117                        WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1118                }
1119                if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1120                    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1121                    (rnp->ffmask & rdp->grpmask)) {
1122                        init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1123                        rdp->rcu_iw_pending = true;
1124                        rdp->rcu_iw_gp_seq = rnp->gp_seq;
1125                        irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1126                }
1127        }
1128
1129        return 0;
1130}
1131
1132static void record_gp_stall_check_time(void)
1133{
1134        unsigned long j = jiffies;
1135        unsigned long j1;
1136
1137        rcu_state.gp_start = j;
1138        j1 = rcu_jiffies_till_stall_check();
1139        /* Record ->gp_start before ->jiffies_stall. */
1140        smp_store_release(&rcu_state.jiffies_stall, j + j1); /* ^^^ */
1141        rcu_state.jiffies_resched = j + j1 / 2;
1142        rcu_state.n_force_qs_gpstart = READ_ONCE(rcu_state.n_force_qs);
1143}
1144
1145/*
1146 * Convert a ->gp_state value to a character string.
1147 */
1148static const char *gp_state_getname(short gs)
1149{
1150        if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1151                return "???";
1152        return gp_state_names[gs];
1153}
1154
1155/*
1156 * Complain about starvation of grace-period kthread.
1157 */
1158static void rcu_check_gp_kthread_starvation(void)
1159{
1160        struct task_struct *gpk = rcu_state.gp_kthread;
1161        unsigned long j;
1162
1163        j = jiffies - READ_ONCE(rcu_state.gp_activity);
1164        if (j > 2 * HZ) {
1165                pr_err("%s kthread starved for %ld jiffies! g%ld f%#x %s(%d) ->state=%#lx ->cpu=%d\n",
1166                       rcu_state.name, j,
1167                       (long)rcu_seq_current(&rcu_state.gp_seq),
1168                       rcu_state.gp_flags,
1169                       gp_state_getname(rcu_state.gp_state), rcu_state.gp_state,
1170                       gpk ? gpk->state : ~0, gpk ? task_cpu(gpk) : -1);
1171                if (gpk) {
1172                        pr_err("RCU grace-period kthread stack dump:\n");
1173                        sched_show_task(gpk);
1174                        wake_up_process(gpk);
1175                }
1176        }
1177}
1178
1179/*
1180 * Dump stacks of all tasks running on stalled CPUs.  First try using
1181 * NMIs, but fall back to manual remote stack tracing on architectures
1182 * that don't support NMI-based stack dumps.  The NMI-triggered stack
1183 * traces are more accurate because they are printed by the target CPU.
1184 */
1185static void rcu_dump_cpu_stacks(void)
1186{
1187        int cpu;
1188        unsigned long flags;
1189        struct rcu_node *rnp;
1190
1191        rcu_for_each_leaf_node(rnp) {
1192                raw_spin_lock_irqsave_rcu_node(rnp, flags);
1193                for_each_leaf_node_possible_cpu(rnp, cpu)
1194                        if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1195                                if (!trigger_single_cpu_backtrace(cpu))
1196                                        dump_cpu_task(cpu);
1197                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1198        }
1199}
1200
1201/*
1202 * If too much time has passed in the current grace period, and if
1203 * so configured, go kick the relevant kthreads.
1204 */
1205static void rcu_stall_kick_kthreads(void)
1206{
1207        unsigned long j;
1208
1209        if (!rcu_kick_kthreads)
1210                return;
1211        j = READ_ONCE(rcu_state.jiffies_kick_kthreads);
1212        if (time_after(jiffies, j) && rcu_state.gp_kthread &&
1213            (rcu_gp_in_progress() || READ_ONCE(rcu_state.gp_flags))) {
1214                WARN_ONCE(1, "Kicking %s grace-period kthread\n",
1215                          rcu_state.name);
1216                rcu_ftrace_dump(DUMP_ALL);
1217                wake_up_process(rcu_state.gp_kthread);
1218                WRITE_ONCE(rcu_state.jiffies_kick_kthreads, j + HZ);
1219        }
1220}
1221
1222static void panic_on_rcu_stall(void)
1223{
1224        if (sysctl_panic_on_rcu_stall)
1225                panic("RCU Stall\n");
1226}
1227
1228static void print_other_cpu_stall(unsigned long gp_seq)
1229{
1230        int cpu;
1231        unsigned long flags;
1232        unsigned long gpa;
1233        unsigned long j;
1234        int ndetected = 0;
1235        struct rcu_node *rnp = rcu_get_root();
1236        long totqlen = 0;
1237
1238        /* Kick and suppress, if so configured. */
1239        rcu_stall_kick_kthreads();
1240        if (rcu_cpu_stall_suppress)
1241                return;
1242
1243        /*
1244         * OK, time to rat on our buddy...
1245         * See Documentation/RCU/stallwarn.txt for info on how to debug
1246         * RCU CPU stall warnings.
1247         */
1248        pr_err("INFO: %s detected stalls on CPUs/tasks:", rcu_state.name);
1249        print_cpu_stall_info_begin();
1250        rcu_for_each_leaf_node(rnp) {
1251                raw_spin_lock_irqsave_rcu_node(rnp, flags);
1252                ndetected += rcu_print_task_stall(rnp);
1253                if (rnp->qsmask != 0) {
1254                        for_each_leaf_node_possible_cpu(rnp, cpu)
1255                                if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1256                                        print_cpu_stall_info(cpu);
1257                                        ndetected++;
1258                                }
1259                }
1260                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1261        }
1262
1263        print_cpu_stall_info_end();
1264        for_each_possible_cpu(cpu)
1265                totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(&rcu_data,
1266                                                            cpu)->cblist);
1267        pr_cont("(detected by %d, t=%ld jiffies, g=%ld, q=%lu)\n",
1268               smp_processor_id(), (long)(jiffies - rcu_state.gp_start),
1269               (long)rcu_seq_current(&rcu_state.gp_seq), totqlen);
1270        if (ndetected) {
1271                rcu_dump_cpu_stacks();
1272
1273                /* Complain about tasks blocking the grace period. */
1274                rcu_print_detail_task_stall();
1275        } else {
1276                if (rcu_seq_current(&rcu_state.gp_seq) != gp_seq) {
1277                        pr_err("INFO: Stall ended before state dump start\n");
1278                } else {
1279                        j = jiffies;
1280                        gpa = READ_ONCE(rcu_state.gp_activity);
1281                        pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1282                               rcu_state.name, j - gpa, j, gpa,
1283                               READ_ONCE(jiffies_till_next_fqs),
1284                               rcu_get_root()->qsmask);
1285                        /* In this case, the current CPU might be at fault. */
1286                        sched_show_task(current);
1287                }
1288        }
1289        /* Rewrite if needed in case of slow consoles. */
1290        if (ULONG_CMP_GE(jiffies, READ_ONCE(rcu_state.jiffies_stall)))
1291                WRITE_ONCE(rcu_state.jiffies_stall,
1292                           jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1293
1294        rcu_check_gp_kthread_starvation();
1295
1296        panic_on_rcu_stall();
1297
1298        force_quiescent_state();  /* Kick them all. */
1299}
1300
1301static void print_cpu_stall(void)
1302{
1303        int cpu;
1304        unsigned long flags;
1305        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1306        struct rcu_node *rnp = rcu_get_root();
1307        long totqlen = 0;
1308
1309        /* Kick and suppress, if so configured. */
1310        rcu_stall_kick_kthreads();
1311        if (rcu_cpu_stall_suppress)
1312                return;
1313
1314        /*
1315         * OK, time to rat on ourselves...
1316         * See Documentation/RCU/stallwarn.txt for info on how to debug
1317         * RCU CPU stall warnings.
1318         */
1319        pr_err("INFO: %s self-detected stall on CPU", rcu_state.name);
1320        print_cpu_stall_info_begin();
1321        raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags);
1322        print_cpu_stall_info(smp_processor_id());
1323        raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags);
1324        print_cpu_stall_info_end();
1325        for_each_possible_cpu(cpu)
1326                totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(&rcu_data,
1327                                                            cpu)->cblist);
1328        pr_cont(" (t=%lu jiffies g=%ld q=%lu)\n",
1329                jiffies - rcu_state.gp_start,
1330                (long)rcu_seq_current(&rcu_state.gp_seq), totqlen);
1331
1332        rcu_check_gp_kthread_starvation();
1333
1334        rcu_dump_cpu_stacks();
1335
1336        raw_spin_lock_irqsave_rcu_node(rnp, flags);
1337        /* Rewrite if needed in case of slow consoles. */
1338        if (ULONG_CMP_GE(jiffies, READ_ONCE(rcu_state.jiffies_stall)))
1339                WRITE_ONCE(rcu_state.jiffies_stall,
1340                           jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1341        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1342
1343        panic_on_rcu_stall();
1344
1345        /*
1346         * Attempt to revive the RCU machinery by forcing a context switch.
1347         *
1348         * A context switch would normally allow the RCU state machine to make
1349         * progress and it could be we're stuck in kernel space without context
1350         * switches for an entirely unreasonable amount of time.
1351         */
1352        set_tsk_need_resched(current);
1353        set_preempt_need_resched();
1354}
1355
1356static void check_cpu_stall(struct rcu_data *rdp)
1357{
1358        unsigned long gs1;
1359        unsigned long gs2;
1360        unsigned long gps;
1361        unsigned long j;
1362        unsigned long jn;
1363        unsigned long js;
1364        struct rcu_node *rnp;
1365
1366        if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1367            !rcu_gp_in_progress())
1368                return;
1369        rcu_stall_kick_kthreads();
1370        j = jiffies;
1371
1372        /*
1373         * Lots of memory barriers to reject false positives.
1374         *
1375         * The idea is to pick up rcu_state.gp_seq, then
1376         * rcu_state.jiffies_stall, then rcu_state.gp_start, and finally
1377         * another copy of rcu_state.gp_seq.  These values are updated in
1378         * the opposite order with memory barriers (or equivalent) during
1379         * grace-period initialization and cleanup.  Now, a false positive
1380         * can occur if we get an new value of rcu_state.gp_start and a old
1381         * value of rcu_state.jiffies_stall.  But given the memory barriers,
1382         * the only way that this can happen is if one grace period ends
1383         * and another starts between these two fetches.  This is detected
1384         * by comparing the second fetch of rcu_state.gp_seq with the
1385         * previous fetch from rcu_state.gp_seq.
1386         *
1387         * Given this check, comparisons of jiffies, rcu_state.jiffies_stall,
1388         * and rcu_state.gp_start suffice to forestall false positives.
1389         */
1390        gs1 = READ_ONCE(rcu_state.gp_seq);
1391        smp_rmb(); /* Pick up ->gp_seq first... */
1392        js = READ_ONCE(rcu_state.jiffies_stall);
1393        smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1394        gps = READ_ONCE(rcu_state.gp_start);
1395        smp_rmb(); /* ...and finally ->gp_start before ->gp_seq again. */
1396        gs2 = READ_ONCE(rcu_state.gp_seq);
1397        if (gs1 != gs2 ||
1398            ULONG_CMP_LT(j, js) ||
1399            ULONG_CMP_GE(gps, js))
1400                return; /* No stall or GP completed since entering function. */
1401        rnp = rdp->mynode;
1402        jn = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1403        if (rcu_gp_in_progress() &&
1404            (READ_ONCE(rnp->qsmask) & rdp->grpmask) &&
1405            cmpxchg(&rcu_state.jiffies_stall, js, jn) == js) {
1406
1407                /* We haven't checked in, so go dump stack. */
1408                print_cpu_stall();
1409
1410        } else if (rcu_gp_in_progress() &&
1411                   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY) &&
1412                   cmpxchg(&rcu_state.jiffies_stall, js, jn) == js) {
1413
1414                /* They had a few time units to dump stack, so complain. */
1415                print_other_cpu_stall(gs2);
1416        }
1417}
1418
1419/**
1420 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1421 *
1422 * Set the stall-warning timeout way off into the future, thus preventing
1423 * any RCU CPU stall-warning messages from appearing in the current set of
1424 * RCU grace periods.
1425 *
1426 * The caller must disable hard irqs.
1427 */
1428void rcu_cpu_stall_reset(void)
1429{
1430        WRITE_ONCE(rcu_state.jiffies_stall, jiffies + ULONG_MAX / 2);
1431}
1432
1433/* Trace-event wrapper function for trace_rcu_future_grace_period.  */
1434static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1435                              unsigned long gp_seq_req, const char *s)
1436{
1437        trace_rcu_future_grace_period(rcu_state.name, rnp->gp_seq, gp_seq_req,
1438                                      rnp->level, rnp->grplo, rnp->grphi, s);
1439}
1440
1441/*
1442 * rcu_start_this_gp - Request the start of a particular grace period
1443 * @rnp_start: The leaf node of the CPU from which to start.
1444 * @rdp: The rcu_data corresponding to the CPU from which to start.
1445 * @gp_seq_req: The gp_seq of the grace period to start.
1446 *
1447 * Start the specified grace period, as needed to handle newly arrived
1448 * callbacks.  The required future grace periods are recorded in each
1449 * rcu_node structure's ->gp_seq_needed field.  Returns true if there
1450 * is reason to awaken the grace-period kthread.
1451 *
1452 * The caller must hold the specified rcu_node structure's ->lock, which
1453 * is why the caller is responsible for waking the grace-period kthread.
1454 *
1455 * Returns true if the GP thread needs to be awakened else false.
1456 */
1457static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1458                              unsigned long gp_seq_req)
1459{
1460        bool ret = false;
1461        struct rcu_node *rnp;
1462
1463        /*
1464         * Use funnel locking to either acquire the root rcu_node
1465         * structure's lock or bail out if the need for this grace period
1466         * has already been recorded -- or if that grace period has in
1467         * fact already started.  If there is already a grace period in
1468         * progress in a non-leaf node, no recording is needed because the
1469         * end of the grace period will scan the leaf rcu_node structures.
1470         * Note that rnp_start->lock must not be released.
1471         */
1472        raw_lockdep_assert_held_rcu_node(rnp_start);
1473        trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1474        for (rnp = rnp_start; 1; rnp = rnp->parent) {
1475                if (rnp != rnp_start)
1476                        raw_spin_lock_rcu_node(rnp);
1477                if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1478                    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1479                    (rnp != rnp_start &&
1480                     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1481                        trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1482                                          TPS("Prestarted"));
1483                        goto unlock_out;
1484                }
1485                rnp->gp_seq_needed = gp_seq_req;
1486                if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1487                        /*
1488                         * We just marked the leaf or internal node, and a
1489                         * grace period is in progress, which means that
1490                         * rcu_gp_cleanup() will see the marking.  Bail to
1491                         * reduce contention.
1492                         */
1493                        trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1494                                          TPS("Startedleaf"));
1495                        goto unlock_out;
1496                }
1497                if (rnp != rnp_start && rnp->parent != NULL)
1498                        raw_spin_unlock_rcu_node(rnp);
1499                if (!rnp->parent)
1500                        break;  /* At root, and perhaps also leaf. */
1501        }
1502
1503        /* If GP already in progress, just leave, otherwise start one. */
1504        if (rcu_gp_in_progress()) {
1505                trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1506                goto unlock_out;
1507        }
1508        trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1509        WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1510        rcu_state.gp_req_activity = jiffies;
1511        if (!rcu_state.gp_kthread) {
1512                trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1513                goto unlock_out;
1514        }
1515        trace_rcu_grace_period(rcu_state.name, READ_ONCE(rcu_state.gp_seq), TPS("newreq"));
1516        ret = true;  /* Caller must wake GP kthread. */
1517unlock_out:
1518        /* Push furthest requested GP to leaf node and rcu_data structure. */
1519        if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1520                rnp_start->gp_seq_needed = rnp->gp_seq_needed;
1521                rdp->gp_seq_needed = rnp->gp_seq_needed;
1522        }
1523        if (rnp != rnp_start)
1524                raw_spin_unlock_rcu_node(rnp);
1525        return ret;
1526}
1527
1528/*
1529 * Clean up any old requests for the just-ended grace period.  Also return
1530 * whether any additional grace periods have been requested.
1531 */
1532static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1533{
1534        bool needmore;
1535        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1536
1537        needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1538        if (!needmore)
1539                rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1540        trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1541                          needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1542        return needmore;
1543}
1544
1545/*
1546 * Awaken the grace-period kthread.  Don't do a self-awaken, and don't
1547 * bother awakening when there is nothing for the grace-period kthread
1548 * to do (as in several CPUs raced to awaken, and we lost), and finally
1549 * don't try to awaken a kthread that has not yet been created.
1550 */
1551static void rcu_gp_kthread_wake(void)
1552{
1553        if (current == rcu_state.gp_kthread ||
1554            !READ_ONCE(rcu_state.gp_flags) ||
1555            !rcu_state.gp_kthread)
1556                return;
1557        swake_up(&rcu_state.gp_wq);
1558}
1559
1560/*
1561 * If there is room, assign a ->gp_seq number to any callbacks on this
1562 * CPU that have not already been assigned.  Also accelerate any callbacks
1563 * that were previously assigned a ->gp_seq number that has since proven
1564 * to be too conservative, which can happen if callbacks get assigned a
1565 * ->gp_seq number while RCU is idle, but with reference to a non-root
1566 * rcu_node structure.  This function is idempotent, so it does not hurt
1567 * to call it repeatedly.  Returns an flag saying that we should awaken
1568 * the RCU grace-period kthread.
1569 *
1570 * The caller must hold rnp->lock with interrupts disabled.
1571 */
1572static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1573{
1574        unsigned long gp_seq_req;
1575        bool ret = false;
1576
1577        raw_lockdep_assert_held_rcu_node(rnp);
1578
1579        /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1580        if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1581                return false;
1582
1583        /*
1584         * Callbacks are often registered with incomplete grace-period
1585         * information.  Something about the fact that getting exact
1586         * information requires acquiring a global lock...  RCU therefore
1587         * makes a conservative estimate of the grace period number at which
1588         * a given callback will become ready to invoke.        The following
1589         * code checks this estimate and improves it when possible, thus
1590         * accelerating callback invocation to an earlier grace-period
1591         * number.
1592         */
1593        gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1594        if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1595                ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1596
1597        /* Trace depending on how much we were able to accelerate. */
1598        if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1599                trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB"));
1600        else
1601                trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB"));
1602        return ret;
1603}
1604
1605/*
1606 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1607 * rcu_node structure's ->lock be held.  It consults the cached value
1608 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1609 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1610 * while holding the leaf rcu_node structure's ->lock.
1611 */
1612static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1613                                        struct rcu_data *rdp)
1614{
1615        unsigned long c;
1616        bool needwake;
1617
1618        lockdep_assert_irqs_disabled();
1619        c = rcu_seq_snap(&rcu_state.gp_seq);
1620        if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1621                /* Old request still live, so mark recent callbacks. */
1622                (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1623                return;
1624        }
1625        raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1626        needwake = rcu_accelerate_cbs(rnp, rdp);
1627        raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1628        if (needwake)
1629                rcu_gp_kthread_wake();
1630}
1631
1632/*
1633 * Move any callbacks whose grace period has completed to the
1634 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1635 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1636 * sublist.  This function is idempotent, so it does not hurt to
1637 * invoke it repeatedly.  As long as it is not invoked -too- often...
1638 * Returns true if the RCU grace-period kthread needs to be awakened.
1639 *
1640 * The caller must hold rnp->lock with interrupts disabled.
1641 */
1642static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1643{
1644        raw_lockdep_assert_held_rcu_node(rnp);
1645
1646        /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1647        if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1648                return false;
1649
1650        /*
1651         * Find all callbacks whose ->gp_seq numbers indicate that they
1652         * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1653         */
1654        rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1655
1656        /* Classify any remaining callbacks. */
1657        return rcu_accelerate_cbs(rnp, rdp);
1658}
1659
1660/*
1661 * Update CPU-local rcu_data state to record the beginnings and ends of
1662 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1663 * structure corresponding to the current CPU, and must have irqs disabled.
1664 * Returns true if the grace-period kthread needs to be awakened.
1665 */
1666static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1667{
1668        bool ret;
1669        bool need_gp;
1670
1671        raw_lockdep_assert_held_rcu_node(rnp);
1672
1673        if (rdp->gp_seq == rnp->gp_seq)
1674                return false; /* Nothing to do. */
1675
1676        /* Handle the ends of any preceding grace periods first. */
1677        if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1678            unlikely(READ_ONCE(rdp->gpwrap))) {
1679                ret = rcu_advance_cbs(rnp, rdp); /* Advance callbacks. */
1680                trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1681        } else {
1682                ret = rcu_accelerate_cbs(rnp, rdp); /* Recent callbacks. */
1683        }
1684
1685        /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1686        if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1687            unlikely(READ_ONCE(rdp->gpwrap))) {
1688                /*
1689                 * If the current grace period is waiting for this CPU,
1690                 * set up to detect a quiescent state, otherwise don't
1691                 * go looking for one.
1692                 */
1693                trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1694                need_gp = !!(rnp->qsmask & rdp->grpmask);
1695                rdp->cpu_no_qs.b.norm = need_gp;
1696                rdp->core_needs_qs = need_gp;
1697                zero_cpu_stall_ticks(rdp);
1698        }
1699        rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1700        if (ULONG_CMP_GE(rnp->gp_seq_needed, rdp->gp_seq_needed) || rdp->gpwrap)
1701                rdp->gp_seq_needed = rnp->gp_seq_needed;
1702        WRITE_ONCE(rdp->gpwrap, false);
1703        rcu_gpnum_ovf(rnp, rdp);
1704        return ret;
1705}
1706
1707static void note_gp_changes(struct rcu_data *rdp)
1708{
1709        unsigned long flags;
1710        bool needwake;
1711        struct rcu_node *rnp;
1712
1713        local_irq_save(flags);
1714        rnp = rdp->mynode;
1715        if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1716             !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1717            !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1718                local_irq_restore(flags);
1719                return;
1720        }
1721        needwake = __note_gp_changes(rnp, rdp);
1722        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1723        if (needwake)
1724                rcu_gp_kthread_wake();
1725}
1726
1727static void rcu_gp_slow(int delay)
1728{
1729        if (delay > 0 &&
1730            !(rcu_seq_ctr(rcu_state.gp_seq) %
1731              (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1732                schedule_timeout_uninterruptible(delay);
1733}
1734
1735/*
1736 * Initialize a new grace period.  Return false if no grace period required.
1737 */
1738static bool rcu_gp_init(void)
1739{
1740        unsigned long flags;
1741        unsigned long oldmask;
1742        unsigned long mask;
1743        struct rcu_data *rdp;
1744        struct rcu_node *rnp = rcu_get_root();
1745
1746        WRITE_ONCE(rcu_state.gp_activity, jiffies);
1747        raw_spin_lock_irq_rcu_node(rnp);
1748        if (!READ_ONCE(rcu_state.gp_flags)) {
1749                /* Spurious wakeup, tell caller to go back to sleep.  */
1750                raw_spin_unlock_irq_rcu_node(rnp);
1751                return false;
1752        }
1753        WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1754
1755        if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1756                /*
1757                 * Grace period already in progress, don't start another.
1758                 * Not supposed to be able to happen.
1759                 */
1760                raw_spin_unlock_irq_rcu_node(rnp);
1761                return false;
1762        }
1763
1764        /* Advance to a new grace period and initialize state. */
1765        record_gp_stall_check_time();
1766        /* Record GP times before starting GP, hence rcu_seq_start(). */
1767        rcu_seq_start(&rcu_state.gp_seq);
1768        trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1769        raw_spin_unlock_irq_rcu_node(rnp);
1770
1771        /*
1772         * Apply per-leaf buffered online and offline operations to the
1773         * rcu_node tree.  Note that this new grace period need not wait
1774         * for subsequent online CPUs, and that quiescent-state forcing
1775         * will handle subsequent offline CPUs.
1776         */
1777        rcu_state.gp_state = RCU_GP_ONOFF;
1778        rcu_for_each_leaf_node(rnp) {
1779                raw_spin_lock(&rcu_state.ofl_lock);
1780                raw_spin_lock_irq_rcu_node(rnp);
1781                if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1782                    !rnp->wait_blkd_tasks) {
1783                        /* Nothing to do on this leaf rcu_node structure. */
1784                        raw_spin_unlock_irq_rcu_node(rnp);
1785                        raw_spin_unlock(&rcu_state.ofl_lock);
1786                        continue;
1787                }
1788
1789                /* Record old state, apply changes to ->qsmaskinit field. */
1790                oldmask = rnp->qsmaskinit;
1791                rnp->qsmaskinit = rnp->qsmaskinitnext;
1792
1793                /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1794                if (!oldmask != !rnp->qsmaskinit) {
1795                        if (!oldmask) { /* First online CPU for rcu_node. */
1796                                if (!rnp->wait_blkd_tasks) /* Ever offline? */
1797                                        rcu_init_new_rnp(rnp);
1798                        } else if (rcu_preempt_has_tasks(rnp)) {
1799                                rnp->wait_blkd_tasks = true; /* blocked tasks */
1800                        } else { /* Last offline CPU and can propagate. */
1801                                rcu_cleanup_dead_rnp(rnp);
1802                        }
1803                }
1804
1805                /*
1806                 * If all waited-on tasks from prior grace period are
1807                 * done, and if all this rcu_node structure's CPUs are
1808                 * still offline, propagate up the rcu_node tree and
1809                 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1810                 * rcu_node structure's CPUs has since come back online,
1811                 * simply clear ->wait_blkd_tasks.
1812                 */
1813                if (rnp->wait_blkd_tasks &&
1814                    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1815                        rnp->wait_blkd_tasks = false;
1816                        if (!rnp->qsmaskinit)
1817                                rcu_cleanup_dead_rnp(rnp);
1818                }
1819
1820                raw_spin_unlock_irq_rcu_node(rnp);
1821                raw_spin_unlock(&rcu_state.ofl_lock);
1822        }
1823        rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1824
1825        /*
1826         * Set the quiescent-state-needed bits in all the rcu_node
1827         * structures for all currently online CPUs in breadth-first
1828         * order, starting from the root rcu_node structure, relying on the
1829         * layout of the tree within the rcu_state.node[] array.  Note that
1830         * other CPUs will access only the leaves of the hierarchy, thus
1831         * seeing that no grace period is in progress, at least until the
1832         * corresponding leaf node has been initialized.
1833         *
1834         * The grace period cannot complete until the initialization
1835         * process finishes, because this kthread handles both.
1836         */
1837        rcu_state.gp_state = RCU_GP_INIT;
1838        rcu_for_each_node_breadth_first(rnp) {
1839                rcu_gp_slow(gp_init_delay);
1840                raw_spin_lock_irqsave_rcu_node(rnp, flags);
1841                rdp = this_cpu_ptr(&rcu_data);
1842                rcu_preempt_check_blocked_tasks(rnp);
1843                rnp->qsmask = rnp->qsmaskinit;
1844                WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1845                if (rnp == rdp->mynode)
1846                        (void)__note_gp_changes(rnp, rdp);
1847                rcu_preempt_boost_start_gp(rnp);
1848                trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1849                                            rnp->level, rnp->grplo,
1850                                            rnp->grphi, rnp->qsmask);
1851                /* Quiescent states for tasks on any now-offline CPUs. */
1852                mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1853                rnp->rcu_gp_init_mask = mask;
1854                if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1855                        rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1856                else
1857                        raw_spin_unlock_irq_rcu_node(rnp);
1858                cond_resched_tasks_rcu_qs();
1859                WRITE_ONCE(rcu_state.gp_activity, jiffies);
1860        }
1861
1862        return true;
1863}
1864
1865/*
1866 * Helper function for swait_event_idle() wakeup at force-quiescent-state
1867 * time.
1868 */
1869static bool rcu_gp_fqs_check_wake(int *gfp)
1870{
1871        struct rcu_node *rnp = rcu_get_root();
1872
1873        /* Someone like call_rcu() requested a force-quiescent-state scan. */
1874        *gfp = READ_ONCE(rcu_state.gp_flags);
1875        if (*gfp & RCU_GP_FLAG_FQS)
1876                return true;
1877
1878        /* The current grace period has completed. */
1879        if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1880                return true;
1881
1882        return false;
1883}
1884
1885/*
1886 * Do one round of quiescent-state forcing.
1887 */
1888static void rcu_gp_fqs(bool first_time)
1889{
1890        struct rcu_node *rnp = rcu_get_root();
1891
1892        WRITE_ONCE(rcu_state.gp_activity, jiffies);
1893        rcu_state.n_force_qs++;
1894        if (first_time) {
1895                /* Collect dyntick-idle snapshots. */
1896                force_qs_rnp(dyntick_save_progress_counter);
1897        } else {
1898                /* Handle dyntick-idle and offline CPUs. */
1899                force_qs_rnp(rcu_implicit_dynticks_qs);
1900        }
1901        /* Clear flag to prevent immediate re-entry. */
1902        if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1903                raw_spin_lock_irq_rcu_node(rnp);
1904                WRITE_ONCE(rcu_state.gp_flags,
1905                           READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1906                raw_spin_unlock_irq_rcu_node(rnp);
1907        }
1908}
1909
1910/*
1911 * Loop doing repeated quiescent-state forcing until the grace period ends.
1912 */
1913static void rcu_gp_fqs_loop(void)
1914{
1915        bool first_gp_fqs;
1916        int gf;
1917        unsigned long j;
1918        int ret;
1919        struct rcu_node *rnp = rcu_get_root();
1920
1921        first_gp_fqs = true;
1922        j = READ_ONCE(jiffies_till_first_fqs);
1923        ret = 0;
1924        for (;;) {
1925                if (!ret) {
1926                        rcu_state.jiffies_force_qs = jiffies + j;
1927                        WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1928                                   jiffies + 3 * j);
1929                }
1930                trace_rcu_grace_period(rcu_state.name,
1931                                       READ_ONCE(rcu_state.gp_seq),
1932                                       TPS("fqswait"));
1933                rcu_state.gp_state = RCU_GP_WAIT_FQS;
1934                ret = swait_event_idle_timeout(
1935                                rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1936                rcu_state.gp_state = RCU_GP_DOING_FQS;
1937                /* Locking provides needed memory barriers. */
1938                /* If grace period done, leave loop. */
1939                if (!READ_ONCE(rnp->qsmask) &&
1940                    !rcu_preempt_blocked_readers_cgp(rnp))
1941                        break;
1942                /* If time for quiescent-state forcing, do it. */
1943                if (ULONG_CMP_GE(jiffies, rcu_state.jiffies_force_qs) ||
1944                    (gf & RCU_GP_FLAG_FQS)) {
1945                        trace_rcu_grace_period(rcu_state.name,
1946                                               READ_ONCE(rcu_state.gp_seq),
1947                                               TPS("fqsstart"));
1948                        rcu_gp_fqs(first_gp_fqs);
1949                        first_gp_fqs = false;
1950                        trace_rcu_grace_period(rcu_state.name,
1951                                               READ_ONCE(rcu_state.gp_seq),
1952                                               TPS("fqsend"));
1953                        cond_resched_tasks_rcu_qs();
1954                        WRITE_ONCE(rcu_state.gp_activity, jiffies);
1955                        ret = 0; /* Force full wait till next FQS. */
1956                        j = READ_ONCE(jiffies_till_next_fqs);
1957                } else {
1958                        /* Deal with stray signal. */
1959                        cond_resched_tasks_rcu_qs();
1960                        WRITE_ONCE(rcu_state.gp_activity, jiffies);
1961                        WARN_ON(signal_pending(current));
1962                        trace_rcu_grace_period(rcu_state.name,
1963                                               READ_ONCE(rcu_state.gp_seq),
1964                                               TPS("fqswaitsig"));
1965                        ret = 1; /* Keep old FQS timing. */
1966                        j = jiffies;
1967                        if (time_after(jiffies, rcu_state.jiffies_force_qs))
1968                                j = 1;
1969                        else
1970                                j = rcu_state.jiffies_force_qs - j;
1971                }
1972        }
1973}
1974
1975/*
1976 * Clean up after the old grace period.
1977 */
1978static void rcu_gp_cleanup(void)
1979{
1980        unsigned long gp_duration;
1981        bool needgp = false;
1982        unsigned long new_gp_seq;
1983        struct rcu_data *rdp;
1984        struct rcu_node *rnp = rcu_get_root();
1985        struct swait_queue_head *sq;
1986
1987        WRITE_ONCE(rcu_state.gp_activity, jiffies);
1988        raw_spin_lock_irq_rcu_node(rnp);
1989        gp_duration = jiffies - rcu_state.gp_start;
1990        if (gp_duration > rcu_state.gp_max)
1991                rcu_state.gp_max = gp_duration;
1992
1993        /*
1994         * We know the grace period is complete, but to everyone else
1995         * it appears to still be ongoing.  But it is also the case
1996         * that to everyone else it looks like there is nothing that
1997         * they can do to advance the grace period.  It is therefore
1998         * safe for us to drop the lock in order to mark the grace
1999         * period as completed in all of the rcu_node structures.
2000         */
2001        raw_spin_unlock_irq_rcu_node(rnp);
2002
2003        /*
2004         * Propagate new ->gp_seq value to rcu_node structures so that
2005         * other CPUs don't have to wait until the start of the next grace
2006         * period to process their callbacks.  This also avoids some nasty
2007         * RCU grace-period initialization races by forcing the end of
2008         * the current grace period to be completely recorded in all of
2009         * the rcu_node structures before the beginning of the next grace
2010         * period is recorded in any of the rcu_node structures.
2011         */
2012        new_gp_seq = rcu_state.gp_seq;
2013        rcu_seq_end(&new_gp_seq);
2014        rcu_for_each_node_breadth_first(rnp) {
2015                raw_spin_lock_irq_rcu_node(rnp);
2016                if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
2017                        dump_blkd_tasks(rnp, 10);
2018                WARN_ON_ONCE(rnp->qsmask);
2019                WRITE_ONCE(rnp->gp_seq, new_gp_seq);
2020                rdp = this_cpu_ptr(&rcu_data);
2021                if (rnp == rdp->mynode)
2022                        needgp = __note_gp_changes(rnp, rdp) || needgp;
2023                /* smp_mb() provided by prior unlock-lock pair. */
2024                needgp = rcu_future_gp_cleanup(rnp) || needgp;
2025                sq = rcu_nocb_gp_get(rnp);
2026                raw_spin_unlock_irq_rcu_node(rnp);
2027                rcu_nocb_gp_cleanup(sq);
2028                cond_resched_tasks_rcu_qs();
2029                WRITE_ONCE(rcu_state.gp_activity, jiffies);
2030                rcu_gp_slow(gp_cleanup_delay);
2031        }
2032        rnp = rcu_get_root();
2033        raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
2034
2035        /* Declare grace period done. */
2036        rcu_seq_end(&rcu_state.gp_seq);
2037        trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
2038        rcu_state.gp_state = RCU_GP_IDLE;
2039        /* Check for GP requests since above loop. */
2040        rdp = this_cpu_ptr(&rcu_data);
2041        if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
2042                trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
2043                                  TPS("CleanupMore"));
2044                needgp = true;
2045        }
2046        /* Advance CBs to reduce false positives below. */
2047        if (!rcu_accelerate_cbs(rnp, rdp) && needgp) {
2048                WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
2049                rcu_state.gp_req_activity = jiffies;
2050                trace_rcu_grace_period(rcu_state.name,
2051                                       READ_ONCE(rcu_state.gp_seq),
2052                                       TPS("newreq"));
2053        } else {
2054                WRITE_ONCE(rcu_state.gp_flags,
2055                           rcu_state.gp_flags & RCU_GP_FLAG_INIT);
2056        }
2057        raw_spin_unlock_irq_rcu_node(rnp);
2058}
2059
2060/*
2061 * Body of kthread that handles grace periods.
2062 */
2063static int __noreturn rcu_gp_kthread(void *unused)
2064{
2065        rcu_bind_gp_kthread();
2066        for (;;) {
2067
2068                /* Handle grace-period start. */
2069                for (;;) {
2070                        trace_rcu_grace_period(rcu_state.name,
2071                                               READ_ONCE(rcu_state.gp_seq),
2072                                               TPS("reqwait"));
2073                        rcu_state.gp_state = RCU_GP_WAIT_GPS;
2074                        swait_event_idle(rcu_state.gp_wq,
2075                                         READ_ONCE(rcu_state.gp_flags) &
2076                                         RCU_GP_FLAG_INIT);
2077                        rcu_state.gp_state = RCU_GP_DONE_GPS;
2078                        /* Locking provides needed memory barrier. */
2079                        if (rcu_gp_init())
2080                                break;
2081                        cond_resched_tasks_rcu_qs();
2082                        WRITE_ONCE(rcu_state.gp_activity, jiffies);
2083                        WARN_ON(signal_pending(current));
2084                        trace_rcu_grace_period(rcu_state.name,
2085                                               READ_ONCE(rcu_state.gp_seq),
2086                                               TPS("reqwaitsig"));
2087                }
2088
2089                /* Handle quiescent-state forcing. */
2090                rcu_gp_fqs_loop();
2091
2092                /* Handle grace-period end. */
2093                rcu_state.gp_state = RCU_GP_CLEANUP;
2094                rcu_gp_cleanup();
2095                rcu_state.gp_state = RCU_GP_CLEANED;
2096        }
2097}
2098
2099/*
2100 * Report a full set of quiescent states to the rcu_state data structure.
2101 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2102 * another grace period is required.  Whether we wake the grace-period
2103 * kthread or it awakens itself for the next round of quiescent-state
2104 * forcing, that kthread will clean up after the just-completed grace
2105 * period.  Note that the caller must hold rnp->lock, which is released
2106 * before return.
2107 */
2108static void rcu_report_qs_rsp(unsigned long flags)
2109        __releases(rcu_get_root()->lock)
2110{
2111        raw_lockdep_assert_held_rcu_node(rcu_get_root());
2112        WARN_ON_ONCE(!rcu_gp_in_progress());
2113        WRITE_ONCE(rcu_state.gp_flags,
2114                   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2115        raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
2116        rcu_gp_kthread_wake();
2117}
2118
2119/*
2120 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2121 * Allows quiescent states for a group of CPUs to be reported at one go
2122 * to the specified rcu_node structure, though all the CPUs in the group
2123 * must be represented by the same rcu_node structure (which need not be a
2124 * leaf rcu_node structure, though it often will be).  The gps parameter
2125 * is the grace-period snapshot, which means that the quiescent states
2126 * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
2127 * must be held upon entry, and it is released before return.
2128 *
2129 * As a special case, if mask is zero, the bit-already-cleared check is
2130 * disabled.  This allows propagating quiescent state due to resumed tasks
2131 * during grace-period initialization.
2132 */
2133static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
2134                              unsigned long gps, unsigned long flags)
2135        __releases(rnp->lock)
2136{
2137        unsigned long oldmask = 0;
2138        struct rcu_node *rnp_c;
2139
2140        raw_lockdep_assert_held_rcu_node(rnp);
2141
2142        /* Walk up the rcu_node hierarchy. */
2143        for (;;) {
2144                if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
2145
2146                        /*
2147                         * Our bit has already been cleared, or the
2148                         * relevant grace period is already over, so done.
2149                         */
2150                        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2151                        return;
2152                }
2153                WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2154                WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2155                             rcu_preempt_blocked_readers_cgp(rnp));
2156                rnp->qsmask &= ~mask;
2157                trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
2158                                                 mask, rnp->qsmask, rnp->level,
2159                                                 rnp->grplo, rnp->grphi,
2160                                                 !!rnp->gp_tasks);
2161                if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2162
2163                        /* Other bits still set at this level, so done. */
2164                        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2165                        return;
2166                }
2167                rnp->completedqs = rnp->gp_seq;
2168                mask = rnp->grpmask;
2169                if (rnp->parent == NULL) {
2170
2171                        /* No more levels.  Exit loop holding root lock. */
2172
2173                        break;
2174                }
2175                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2176                rnp_c = rnp;
2177                rnp = rnp->parent;
2178                raw_spin_lock_irqsave_rcu_node(rnp, flags);
2179                oldmask = rnp_c->qsmask;
2180        }
2181
2182        /*
2183         * Get here if we are the last CPU to pass through a quiescent
2184         * state for this grace period.  Invoke rcu_report_qs_rsp()
2185         * to clean up and start the next grace period if one is needed.
2186         */
2187        rcu_report_qs_rsp(flags); /* releases rnp->lock. */
2188}
2189
2190/*
2191 * Record a quiescent state for all tasks that were previously queued
2192 * on the specified rcu_node structure and that were blocking the current
2193 * RCU grace period.  The caller must hold the corresponding rnp->lock with
2194 * irqs disabled, and this lock is released upon return, but irqs remain
2195 * disabled.
2196 */
2197static void __maybe_unused
2198rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
2199        __releases(rnp->lock)
2200{
2201        unsigned long gps;
2202        unsigned long mask;
2203        struct rcu_node *rnp_p;
2204
2205        raw_lockdep_assert_held_rcu_node(rnp);
2206        if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)) ||
2207            WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2208            rnp->qsmask != 0) {
2209                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2210                return;  /* Still need more quiescent states! */
2211        }
2212
2213        rnp->completedqs = rnp->gp_seq;
2214        rnp_p = rnp->parent;
2215        if (rnp_p == NULL) {
2216                /*
2217                 * Only one rcu_node structure in the tree, so don't
2218                 * try to report up to its nonexistent parent!
2219                 */
2220                rcu_report_qs_rsp(flags);
2221                return;
2222        }
2223
2224        /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2225        gps = rnp->gp_seq;
2226        mask = rnp->grpmask;
2227        raw_spin_unlock_rcu_node(rnp);  /* irqs remain disabled. */
2228        raw_spin_lock_rcu_node(rnp_p);  /* irqs already disabled. */
2229        rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2230}
2231
2232/*
2233 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2234 * structure.  This must be called from the specified CPU.
2235 */
2236static void
2237rcu_report_qs_rdp(int cpu, struct rcu_data *rdp)
2238{
2239        unsigned long flags;
2240        unsigned long mask;
2241        bool needwake;
2242        struct rcu_node *rnp;
2243
2244        rnp = rdp->mynode;
2245        raw_spin_lock_irqsave_rcu_node(rnp, flags);
2246        if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2247            rdp->gpwrap) {
2248
2249                /*
2250                 * The grace period in which this quiescent state was
2251                 * recorded has ended, so don't report it upwards.
2252                 * We will instead need a new quiescent state that lies
2253                 * within the current grace period.
2254                 */
2255                rdp->cpu_no_qs.b.norm = true;   /* need qs for new gp. */
2256                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2257                return;
2258        }
2259        mask = rdp->grpmask;
2260        if ((rnp->qsmask & mask) == 0) {
2261                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2262        } else {
2263                rdp->core_needs_qs = false;
2264
2265                /*
2266                 * This GP can't end until cpu checks in, so all of our
2267                 * callbacks can be processed during the next GP.
2268                 */
2269                needwake = rcu_accelerate_cbs(rnp, rdp);
2270
2271                rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2272                /* ^^^ Released rnp->lock */
2273                if (needwake)
2274                        rcu_gp_kthread_wake();
2275        }
2276}
2277
2278/*
2279 * Check to see if there is a new grace period of which this CPU
2280 * is not yet aware, and if so, set up local rcu_data state for it.
2281 * Otherwise, see if this CPU has just passed through its first
2282 * quiescent state for this grace period, and record that fact if so.
2283 */
2284static void
2285rcu_check_quiescent_state(struct rcu_data *rdp)
2286{
2287        /* Check for grace-period ends and beginnings. */
2288        note_gp_changes(rdp);
2289
2290        /*
2291         * Does this CPU still need to do its part for current grace period?
2292         * If no, return and let the other CPUs do their part as well.
2293         */
2294        if (!rdp->core_needs_qs)
2295                return;
2296
2297        /*
2298         * Was there a quiescent state since the beginning of the grace
2299         * period? If no, then exit and wait for the next call.
2300         */
2301        if (rdp->cpu_no_qs.b.norm)
2302                return;
2303
2304        /*
2305         * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2306         * judge of that).
2307         */
2308        rcu_report_qs_rdp(rdp->cpu, rdp);
2309}
2310
2311/*
2312 * Near the end of the offline process.  Trace the fact that this CPU
2313 * is going offline.
2314 */
2315int rcutree_dying_cpu(unsigned int cpu)
2316{
2317        RCU_TRACE(bool blkd;)
2318        RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(&rcu_data);)
2319        RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
2320
2321        if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2322                return 0;
2323
2324        RCU_TRACE(blkd = !!(rnp->qsmask & rdp->grpmask);)
2325        trace_rcu_grace_period(rcu_state.name, rnp->gp_seq,
2326                               blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
2327        return 0;
2328}
2329
2330/*
2331 * All CPUs for the specified rcu_node structure have gone offline,
2332 * and all tasks that were preempted within an RCU read-side critical
2333 * section while running on one of those CPUs have since exited their RCU
2334 * read-side critical section.  Some other CPU is reporting this fact with
2335 * the specified rcu_node structure's ->lock held and interrupts disabled.
2336 * This function therefore goes up the tree of rcu_node structures,
2337 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2338 * the leaf rcu_node structure's ->qsmaskinit field has already been
2339 * updated.
2340 *
2341 * This function does check that the specified rcu_node structure has
2342 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2343 * prematurely.  That said, invoking it after the fact will cost you
2344 * a needless lock acquisition.  So once it has done its work, don't
2345 * invoke it again.
2346 */
2347static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2348{
2349        long mask;
2350        struct rcu_node *rnp = rnp_leaf;
2351
2352        raw_lockdep_assert_held_rcu_node(rnp_leaf);
2353        if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2354            WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2355            WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2356                return;
2357        for (;;) {
2358                mask = rnp->grpmask;
2359                rnp = rnp->parent;
2360                if (!rnp)
2361                        break;
2362                raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2363                rnp->qsmaskinit &= ~mask;
2364                /* Between grace periods, so better already be zero! */
2365                WARN_ON_ONCE(rnp->qsmask);
2366                if (rnp->qsmaskinit) {
2367                        raw_spin_unlock_rcu_node(rnp);
2368                        /* irqs remain disabled. */
2369                        return;
2370                }
2371                raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2372        }
2373}
2374
2375/*
2376 * The CPU has been completely removed, and some other CPU is reporting
2377 * this fact from process context.  Do the remainder of the cleanup.
2378 * There can only be one CPU hotplug operation at a time, so no need for
2379 * explicit locking.
2380 */
2381int rcutree_dead_cpu(unsigned int cpu)
2382{
2383        struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2384        struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2385
2386        if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2387                return 0;
2388
2389        /* Adjust any no-longer-needed kthreads. */
2390        rcu_boost_kthread_setaffinity(rnp, -1);
2391        /* Do any needed no-CB deferred wakeups from this CPU. */
2392        do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2393        return 0;
2394}
2395
2396/*
2397 * Invoke any RCU callbacks that have made it to the end of their grace
2398 * period.  Thottle as specified by rdp->blimit.
2399 */
2400static void rcu_do_batch(struct rcu_data *rdp)
2401{
2402        unsigned long flags;
2403        struct rcu_head *rhp;
2404        struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2405        long bl, count;
2406
2407        /* If no callbacks are ready, just return. */
2408        if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2409                trace_rcu_batch_start(rcu_state.name,
2410                                      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2411                                      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2412                trace_rcu_batch_end(rcu_state.name, 0,
2413                                    !rcu_segcblist_empty(&rdp->cblist),
2414                                    need_resched(), is_idle_task(current),
2415                                    rcu_is_callbacks_kthread());
2416                return;
2417        }
2418
2419        /*
2420         * Extract the list of ready callbacks, disabling to prevent
2421         * races with call_rcu() from interrupt handlers.  Leave the
2422         * callback counts, as rcu_barrier() needs to be conservative.
2423         */
2424        local_irq_save(flags);
2425        WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2426        bl = rdp->blimit;
2427        trace_rcu_batch_start(rcu_state.name,
2428                              rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2429                              rcu_segcblist_n_cbs(&rdp->cblist), bl);
2430        rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2431        local_irq_restore(flags);
2432
2433        /* Invoke callbacks. */
2434        rhp = rcu_cblist_dequeue(&rcl);
2435        for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2436                debug_rcu_head_unqueue(rhp);
2437                if (__rcu_reclaim(rcu_state.name, rhp))
2438                        rcu_cblist_dequeued_lazy(&rcl);
2439                /*
2440                 * Stop only if limit reached and CPU has something to do.
2441                 * Note: The rcl structure counts down from zero.
2442                 */
2443                if (-rcl.len >= bl &&
2444                    (need_resched() ||
2445                     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2446                        break;
2447        }
2448
2449        local_irq_save(flags);
2450        count = -rcl.len;
2451        trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2452                            is_idle_task(current), rcu_is_callbacks_kthread());
2453
2454        /* Update counts and requeue any remaining callbacks. */
2455        rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2456        smp_mb(); /* List handling before counting for rcu_barrier(). */
2457        rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2458
2459        /* Reinstate batch limit if we have worked down the excess. */
2460        count = rcu_segcblist_n_cbs(&rdp->cblist);
2461        if (rdp->blimit == LONG_MAX && count <= qlowmark)
2462                rdp->blimit = blimit;
2463
2464        /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2465        if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2466                rdp->qlen_last_fqs_check = 0;
2467                rdp->n_force_qs_snap = rcu_state.n_force_qs;
2468        } else if (count < rdp->qlen_last_fqs_check - qhimark)
2469                rdp->qlen_last_fqs_check = count;
2470
2471        /*
2472         * The following usually indicates a double call_rcu().  To track
2473         * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2474         */
2475        WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
2476
2477        local_irq_restore(flags);
2478
2479        /* Re-invoke RCU core processing if there are callbacks remaining. */
2480        if (rcu_segcblist_ready_cbs(&rdp->cblist))
2481                invoke_rcu_core();
2482}
2483
2484/*
2485 * Check to see if this CPU is in a non-context-switch quiescent state
2486 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2487 * Also schedule RCU core processing.
2488 *
2489 * This function must be called from hardirq context.  It is normally
2490 * invoked from the scheduling-clock interrupt.
2491 */
2492void rcu_check_callbacks(int user)
2493{
2494        trace_rcu_utilization(TPS("Start scheduler-tick"));
2495        raw_cpu_inc(rcu_data.ticks_this_gp);
2496        /* The load-acquire pairs with the store-release setting to true. */
2497        if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2498                /* Idle and userspace execution already are quiescent states. */
2499                if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2500                        set_tsk_need_resched(current);
2501                        set_preempt_need_resched();
2502                }
2503                __this_cpu_write(rcu_data.rcu_urgent_qs, false);
2504        }
2505        rcu_flavor_check_callbacks(user);
2506        if (rcu_pending())
2507                invoke_rcu_core();
2508
2509        trace_rcu_utilization(TPS("End scheduler-tick"));
2510}
2511
2512/*
2513 * Scan the leaf rcu_node structures, processing dyntick state for any that
2514 * have not yet encountered a quiescent state, using the function specified.
2515 * Also initiate boosting for any threads blocked on the root rcu_node.
2516 *
2517 * The caller must have suppressed start of new grace periods.
2518 */
2519static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2520{
2521        int cpu;
2522        unsigned long flags;
2523        unsigned long mask;
2524        struct rcu_node *rnp;
2525
2526        rcu_for_each_leaf_node(rnp) {
2527                cond_resched_tasks_rcu_qs();
2528                mask = 0;
2529                raw_spin_lock_irqsave_rcu_node(rnp, flags);
2530                if (rnp->qsmask == 0) {
2531                        if (!IS_ENABLED(CONFIG_PREEMPT) ||
2532                            rcu_preempt_blocked_readers_cgp(rnp)) {
2533                                /*
2534                                 * No point in scanning bits because they
2535                                 * are all zero.  But we might need to
2536                                 * priority-boost blocked readers.
2537                                 */
2538                                rcu_initiate_boost(rnp, flags);
2539                                /* rcu_initiate_boost() releases rnp->lock */
2540                                continue;
2541                        }
2542                        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2543                        continue;
2544                }
2545                for_each_leaf_node_possible_cpu(rnp, cpu) {
2546                        unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2547                        if ((rnp->qsmask & bit) != 0) {
2548                                if (f(per_cpu_ptr(&rcu_data, cpu)))
2549                                        mask |= bit;
2550                        }
2551                }
2552                if (mask != 0) {
2553                        /* Idle/offline CPUs, report (releases rnp->lock). */
2554                        rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2555                } else {
2556                        /* Nothing to do here, so just drop the lock. */
2557                        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2558                }
2559        }
2560}
2561
2562/*
2563 * Force quiescent states on reluctant CPUs, and also detect which
2564 * CPUs are in dyntick-idle mode.
2565 */
2566static void force_quiescent_state(void)
2567{
2568        unsigned long flags;
2569        bool ret;
2570        struct rcu_node *rnp;
2571        struct rcu_node *rnp_old = NULL;
2572
2573        /* Funnel through hierarchy to reduce memory contention. */
2574        rnp = __this_cpu_read(rcu_data.mynode);
2575        for (; rnp != NULL; rnp = rnp->parent) {
2576                ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2577                      !raw_spin_trylock(&rnp->fqslock);
2578                if (rnp_old != NULL)
2579                        raw_spin_unlock(&rnp_old->fqslock);
2580                if (ret)
2581                        return;
2582                rnp_old = rnp;
2583        }
2584        /* rnp_old == rcu_get_root(), rnp == NULL. */
2585
2586        /* Reached the root of the rcu_node tree, acquire lock. */
2587        raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2588        raw_spin_unlock(&rnp_old->fqslock);
2589        if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2590                raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2591                return;  /* Someone beat us to it. */
2592        }
2593        WRITE_ONCE(rcu_state.gp_flags,
2594                   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2595        raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2596        rcu_gp_kthread_wake();
2597}
2598
2599/*
2600 * This function checks for grace-period requests that fail to motivate
2601 * RCU to come out of its idle mode.
2602 */
2603static void
2604rcu_check_gp_start_stall(struct rcu_node *rnp, struct rcu_data *rdp)
2605{
2606        const unsigned long gpssdelay = rcu_jiffies_till_stall_check() * HZ;
2607        unsigned long flags;
2608        unsigned long j;
2609        struct rcu_node *rnp_root = rcu_get_root();
2610        static atomic_t warned = ATOMIC_INIT(0);
2611
2612        if (!IS_ENABLED(CONFIG_PROVE_RCU) || rcu_gp_in_progress() ||
2613            ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed))
2614                return;
2615        j = jiffies; /* Expensive access, and in common case don't get here. */
2616        if (time_before(j, READ_ONCE(rcu_state.gp_req_activity) + gpssdelay) ||
2617            time_before(j, READ_ONCE(rcu_state.gp_activity) + gpssdelay) ||
2618            atomic_read(&warned))
2619                return;
2620
2621        raw_spin_lock_irqsave_rcu_node(rnp, flags);
2622        j = jiffies;
2623        if (rcu_gp_in_progress() ||
2624            ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) ||
2625            time_before(j, READ_ONCE(rcu_state.gp_req_activity) + gpssdelay) ||
2626            time_before(j, READ_ONCE(rcu_state.gp_activity) + gpssdelay) ||
2627            atomic_read(&warned)) {
2628                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2629                return;
2630        }
2631        /* Hold onto the leaf lock to make others see warned==1. */
2632
2633        if (rnp_root != rnp)
2634                raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
2635        j = jiffies;
2636        if (rcu_gp_in_progress() ||
2637            ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) ||
2638            time_before(j, rcu_state.gp_req_activity + gpssdelay) ||
2639            time_before(j, rcu_state.gp_activity + gpssdelay) ||
2640            atomic_xchg(&warned, 1)) {
2641                raw_spin_unlock_rcu_node(rnp_root); /* irqs remain disabled. */
2642                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2643                return;
2644        }
2645        pr_alert("%s: g%ld->%ld gar:%lu ga:%lu f%#x gs:%d %s->state:%#lx\n",
2646                 __func__, (long)READ_ONCE(rcu_state.gp_seq),
2647                 (long)READ_ONCE(rnp_root->gp_seq_needed),
2648                 j - rcu_state.gp_req_activity, j - rcu_state.gp_activity,
2649                 rcu_state.gp_flags, rcu_state.gp_state, rcu_state.name,
2650                 rcu_state.gp_kthread ? rcu_state.gp_kthread->state : 0x1ffffL);
2651        WARN_ON(1);
2652        if (rnp_root != rnp)
2653                raw_spin_unlock_rcu_node(rnp_root);
2654        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2655}
2656
2657/*
2658 * This does the RCU core processing work for the specified rcu_data
2659 * structures.  This may be called only from the CPU to whom the rdp
2660 * belongs.
2661 */
2662static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
2663{
2664        unsigned long flags;
2665        struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2666        struct rcu_node *rnp = rdp->mynode;
2667
2668        if (cpu_is_offline(smp_processor_id()))
2669                return;
2670        trace_rcu_utilization(TPS("Start RCU core"));
2671        WARN_ON_ONCE(!rdp->beenonline);
2672
2673        /* Report any deferred quiescent states if preemption enabled. */
2674        if (!(preempt_count() & PREEMPT_MASK)) {
2675                rcu_preempt_deferred_qs(current);
2676        } else if (rcu_preempt_need_deferred_qs(current)) {
2677                set_tsk_need_resched(current);
2678                set_preempt_need_resched();
2679        }
2680
2681        /* Update RCU state based on any recent quiescent states. */
2682        rcu_check_quiescent_state(rdp);
2683
2684        /* No grace period and unregistered callbacks? */
2685        if (!rcu_gp_in_progress() &&
2686            rcu_segcblist_is_enabled(&rdp->cblist)) {
2687                local_irq_save(flags);
2688                if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2689                        rcu_accelerate_cbs_unlocked(rnp, rdp);
2690                local_irq_restore(flags);
2691        }
2692
2693        rcu_check_gp_start_stall(rnp, rdp);
2694
2695        /* If there are callbacks ready, invoke them. */
2696        if (rcu_segcblist_ready_cbs(&rdp->cblist))
2697                invoke_rcu_callbacks(rdp);
2698
2699        /* Do any needed deferred wakeups of rcuo kthreads. */
2700        do_nocb_deferred_wakeup(rdp);
2701        trace_rcu_utilization(TPS("End RCU core"));
2702}
2703
2704/*
2705 * Schedule RCU callback invocation.  If the running implementation of RCU
2706 * does not support RCU priority boosting, just do a direct call, otherwise
2707 * wake up the per-CPU kernel kthread.  Note that because we are running
2708 * on the current CPU with softirqs disabled, the rcu_cpu_kthread_task
2709 * cannot disappear out from under us.
2710 */
2711static void invoke_rcu_callbacks(struct rcu_data *rdp)
2712{
2713        if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2714                return;
2715        if (likely(!rcu_state.boost)) {
2716                rcu_do_batch(rdp);
2717                return;
2718        }
2719        invoke_rcu_callbacks_kthread();
2720}
2721
2722static void invoke_rcu_core(void)
2723{
2724        if (cpu_online(smp_processor_id()))
2725                raise_softirq(RCU_SOFTIRQ);
2726}
2727
2728/*
2729 * Handle any core-RCU processing required by a call_rcu() invocation.
2730 */
2731static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2732                            unsigned long flags)
2733{
2734        /*
2735         * If called from an extended quiescent state, invoke the RCU
2736         * core in order to force a re-evaluation of RCU's idleness.
2737         */
2738        if (!rcu_is_watching())
2739                invoke_rcu_core();
2740
2741        /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2742        if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2743                return;
2744
2745        /*
2746         * Force the grace period if too many callbacks or too long waiting.
2747         * Enforce hysteresis, and don't invoke force_quiescent_state()
2748         * if some other CPU has recently done so.  Also, don't bother
2749         * invoking force_quiescent_state() if the newly enqueued callback
2750         * is the only one waiting for a grace period to complete.
2751         */
2752        if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2753                     rdp->qlen_last_fqs_check + qhimark)) {
2754
2755                /* Are we ignoring a completed grace period? */
2756                note_gp_changes(rdp);
2757
2758                /* Start a new grace period if one not already started. */
2759                if (!rcu_gp_in_progress()) {
2760                        rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2761                } else {
2762                        /* Give the grace period a kick. */
2763                        rdp->blimit = LONG_MAX;
2764                        if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
2765                            rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2766                                force_quiescent_state();
2767                        rdp->n_force_qs_snap = rcu_state.n_force_qs;
2768                        rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2769                }
2770        }
2771}
2772
2773/*
2774 * RCU callback function to leak a callback.
2775 */
2776static void rcu_leak_callback(struct rcu_head *rhp)
2777{
2778}
2779
2780/*
2781 * Helper function for call_rcu() and friends.  The cpu argument will
2782 * normally be -1, indicating "currently running CPU".  It may specify
2783 * a CPU only if that CPU is a no-CBs CPU.  Currently, only rcu_barrier()
2784 * is expected to specify a CPU.
2785 */
2786static void
2787__call_rcu(struct rcu_head *head, rcu_callback_t func, int cpu, bool lazy)
2788{
2789        unsigned long flags;
2790        struct rcu_data *rdp;
2791
2792        /* Misaligned rcu_head! */
2793        WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2794
2795        if (debug_rcu_head_queue(head)) {
2796                /*
2797                 * Probable double call_rcu(), so leak the callback.
2798                 * Use rcu:rcu_callback trace event to find the previous
2799                 * time callback was passed to __call_rcu().
2800                 */
2801                WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
2802                          head, head->func);
2803                WRITE_ONCE(head->func, rcu_leak_callback);
2804                return;
2805        }
2806        head->func = func;
2807        head->next = NULL;
2808        local_irq_save(flags);
2809        rdp = this_cpu_ptr(&rcu_data);
2810
2811        /* Add the callback to our list. */
2812        if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
2813                int offline;
2814
2815                if (cpu != -1)
2816                        rdp = per_cpu_ptr(&rcu_data, cpu);
2817                if (likely(rdp->mynode)) {
2818                        /* Post-boot, so this should be for a no-CBs CPU. */
2819                        offline = !__call_rcu_nocb(rdp, head, lazy, flags);
2820                        WARN_ON_ONCE(offline);
2821                        /* Offline CPU, _call_rcu() illegal, leak callback.  */
2822                        local_irq_restore(flags);
2823                        return;
2824                }
2825                /*
2826                 * Very early boot, before rcu_init().  Initialize if needed
2827                 * and then drop through to queue the callback.
2828                 */
2829                BUG_ON(cpu != -1);
2830                WARN_ON_ONCE(!rcu_is_watching());
2831                if (rcu_segcblist_empty(&rdp->cblist))
2832                        rcu_segcblist_init(&rdp->cblist);
2833        }
2834        rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
2835        if (!lazy)
2836                rcu_idle_count_callbacks_posted();
2837
2838        if (__is_kfree_rcu_offset((unsigned long)func))
2839                trace_rcu_kfree_callback(rcu_state.name, head,
2840                                         (unsigned long)func,
2841                                         rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2842                                         rcu_segcblist_n_cbs(&rdp->cblist));
2843        else
2844                trace_rcu_callback(rcu_state.name, head,
2845                                   rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2846                                   rcu_segcblist_n_cbs(&rdp->cblist));
2847
2848        /* Go handle any RCU core processing required. */
2849        __call_rcu_core(rdp, head, flags);
2850        local_irq_restore(flags);
2851}
2852
2853/**
2854 * call_rcu() - Queue an RCU callback for invocation after a grace period.
2855 * @head: structure to be used for queueing the RCU updates.
2856 * @func: actual callback function to be invoked after the grace period
2857 *
2858 * The callback function will be invoked some time after a full grace
2859 * period elapses, in other words after all pre-existing RCU read-side
2860 * critical sections have completed.  However, the callback function
2861 * might well execute concurrently with RCU read-side critical sections
2862 * that started after call_rcu() was invoked.  RCU read-side critical
2863 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
2864 * may be nested.  In addition, regions of code across which interrupts,
2865 * preemption, or softirqs have been disabled also serve as RCU read-side
2866 * critical sections.  This includes hardware interrupt handlers, softirq
2867 * handlers, and NMI handlers.
2868 *
2869 * Note that all CPUs must agree that the grace period extended beyond
2870 * all pre-existing RCU read-side critical section.  On systems with more
2871 * than one CPU, this means that when "func()" is invoked, each CPU is
2872 * guaranteed to have executed a full memory barrier since the end of its
2873 * last RCU read-side critical section whose beginning preceded the call
2874 * to call_rcu().  It also means that each CPU executing an RCU read-side
2875 * critical section that continues beyond the start of "func()" must have
2876 * executed a memory barrier after the call_rcu() but before the beginning
2877 * of that RCU read-side critical section.  Note that these guarantees
2878 * include CPUs that are offline, idle, or executing in user mode, as
2879 * well as CPUs that are executing in the kernel.
2880 *
2881 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2882 * resulting RCU callback function "func()", then both CPU A and CPU B are
2883 * guaranteed to execute a full memory barrier during the time interval
2884 * between the call to call_rcu() and the invocation of "func()" -- even
2885 * if CPU A and CPU B are the same CPU (but again only if the system has
2886 * more than one CPU).
2887 */
2888void call_rcu(struct rcu_head *head, rcu_callback_t func)
2889{
2890        __call_rcu(head, func, -1, 0);
2891}
2892EXPORT_SYMBOL_GPL(call_rcu);
2893
2894/*
2895 * Queue an RCU callback for lazy invocation after a grace period.
2896 * This will likely be later named something like "call_rcu_lazy()",
2897 * but this change will require some way of tagging the lazy RCU
2898 * callbacks in the list of pending callbacks. Until then, this
2899 * function may only be called from __kfree_rcu().
2900 */
2901void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
2902{
2903        __call_rcu(head, func, -1, 1);
2904}
2905EXPORT_SYMBOL_GPL(kfree_call_rcu);
2906
2907/**
2908 * get_state_synchronize_rcu - Snapshot current RCU state
2909 *
2910 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2911 * to determine whether or not a full grace period has elapsed in the
2912 * meantime.
2913 */
2914unsigned long get_state_synchronize_rcu(void)
2915{
2916        /*
2917         * Any prior manipulation of RCU-protected data must happen
2918         * before the load from ->gp_seq.
2919         */
2920        smp_mb();  /* ^^^ */
2921        return rcu_seq_snap(&rcu_state.gp_seq);
2922}
2923EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2924
2925/**
2926 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2927 *
2928 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2929 *
2930 * If a full RCU grace period has elapsed since the earlier call to
2931 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
2932 * synchronize_rcu() to wait for a full grace period.
2933 *
2934 * Yes, this function does not take counter wrap into account.  But
2935 * counter wrap is harmless.  If the counter wraps, we have waited for
2936 * more than 2 billion grace periods (and way more on a 64-bit system!),
2937 * so waiting for one additional grace period should be just fine.
2938 */
2939void cond_synchronize_rcu(unsigned long oldstate)
2940{
2941        if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
2942                synchronize_rcu();
2943        else
2944                smp_mb(); /* Ensure GP ends before subsequent accesses. */
2945}
2946EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
2947
2948/*
2949 * Check to see if there is any immediate RCU-related work to be done by
2950 * the current CPU, returning 1 if so and zero otherwise.  The checks are
2951 * in order of increasing expense: checks that can be carried out against
2952 * CPU-local state are performed first.  However, we must check for CPU
2953 * stalls first, else we might not get a chance.
2954 */
2955static int rcu_pending(void)
2956{
2957        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2958        struct rcu_node *rnp = rdp->mynode;
2959
2960        /* Check for CPU stalls, if enabled. */
2961        check_cpu_stall(rdp);
2962
2963        /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
2964        if (rcu_nohz_full_cpu())
2965                return 0;
2966
2967        /* Is the RCU core waiting for a quiescent state from this CPU? */
2968        if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm)
2969                return 1;
2970
2971        /* Does this CPU have callbacks ready to invoke? */
2972        if (rcu_segcblist_ready_cbs(&rdp->cblist))
2973                return 1;
2974
2975        /* Has RCU gone idle with this CPU needing another grace period? */
2976        if (!rcu_gp_in_progress() &&
2977            rcu_segcblist_is_enabled(&rdp->cblist) &&
2978            !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2979                return 1;
2980
2981        /* Have RCU grace period completed or started?  */
2982        if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
2983            unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
2984                return 1;
2985
2986        /* Does this CPU need a deferred NOCB wakeup? */
2987        if (rcu_nocb_need_deferred_wakeup(rdp))
2988                return 1;
2989
2990        /* nothing to do */
2991        return 0;
2992}
2993
2994/*
2995 * Return true if the specified CPU has any callback.  If all_lazy is
2996 * non-NULL, store an indication of whether all callbacks are lazy.
2997 * (If there are no callbacks, all of them are deemed to be lazy.)
2998 */
2999static bool rcu_cpu_has_callbacks(bool *all_lazy)
3000{
3001        bool al = true;
3002        bool hc = false;
3003        struct rcu_data *rdp;
3004
3005        rdp = this_cpu_ptr(&rcu_data);
3006        if (!rcu_segcblist_empty(&rdp->cblist)) {
3007                hc = true;
3008                if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist))
3009                        al = false;
3010        }
3011        if (all_lazy)
3012                *all_lazy = al;
3013        return hc;
3014}
3015
3016/*
3017 * Helper function for rcu_barrier() tracing.  If tracing is disabled,
3018 * the compiler is expected to optimize this away.
3019 */
3020static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3021{
3022        trace_rcu_barrier(rcu_state.name, s, cpu,
3023                          atomic_read(&rcu_state.barrier_cpu_count), done);
3024}
3025
3026/*
3027 * RCU callback function for rcu_barrier().  If we are last, wake
3028 * up the task executing rcu_barrier().
3029 */
3030static void rcu_barrier_callback(struct rcu_head *rhp)
3031{
3032        if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3033                rcu_barrier_trace(TPS("LastCB"), -1,
3034                                   rcu_state.barrier_sequence);
3035                complete(&rcu_state.barrier_completion);
3036        } else {
3037                rcu_barrier_trace(TPS("CB"), -1, rcu_state.barrier_sequence);
3038        }
3039}
3040
3041/*
3042 * Called with preemption disabled, and from cross-cpu IRQ context.
3043 */
3044static void rcu_barrier_func(void *unused)
3045{
3046        struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
3047
3048        rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3049        rdp->barrier_head.func = rcu_barrier_callback;
3050        debug_rcu_head_queue(&rdp->barrier_head);
3051        if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
3052                atomic_inc(&rcu_state.barrier_cpu_count);
3053        } else {
3054                debug_rcu_head_unqueue(&rdp->barrier_head);
3055                rcu_barrier_trace(TPS("IRQNQ"), -1,
3056                                   rcu_state.barrier_sequence);
3057        }
3058}
3059
3060/**
3061 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3062 *
3063 * Note that this primitive does not necessarily wait for an RCU grace period
3064 * to complete.  For example, if there are no RCU callbacks queued anywhere
3065 * in the system, then rcu_barrier() is within its rights to return
3066 * immediately, without waiting for anything, much less an RCU grace period.
3067 */
3068void rcu_barrier(void)
3069{
3070        int cpu;
3071        struct rcu_data *rdp;
3072        unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
3073
3074        rcu_barrier_trace(TPS("Begin"), -1, s);
3075
3076        /* Take mutex to serialize concurrent rcu_barrier() requests. */
3077        mutex_lock(&rcu_state.barrier_mutex);
3078
3079        /* Did someone else do our work for us? */
3080        if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
3081                rcu_barrier_trace(TPS("EarlyExit"), -1,
3082                                   rcu_state.barrier_sequence);
3083                smp_mb(); /* caller's subsequent code after above check. */
3084                mutex_unlock(&rcu_state.barrier_mutex);
3085                return;
3086        }
3087
3088        /* Mark the start of the barrier operation. */
3089        rcu_seq_start(&rcu_state.barrier_sequence);
3090        rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
3091
3092        /*
3093         * Initialize the count to one rather than to zero in order to
3094         * avoid a too-soon return to zero in case of a short grace period
3095         * (or preemption of this task).  Exclude CPU-hotplug operations
3096         * to ensure that no offline CPU has callbacks queued.
3097         */
3098        init_completion(&rcu_state.barrier_completion);
3099        atomic_set(&rcu_state.barrier_cpu_count, 1);
3100        get_online_cpus();
3101
3102        /*
3103         * Force each CPU with callbacks to register a new callback.
3104         * When that callback is invoked, we will know that all of the
3105         * corresponding CPU's preceding callbacks have been invoked.
3106         */
3107        for_each_possible_cpu(cpu) {
3108                if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3109                        continue;
3110                rdp = per_cpu_ptr(&rcu_data, cpu);
3111                if (rcu_is_nocb_cpu(cpu)) {
3112                        if (!rcu_nocb_cpu_needs_barrier(cpu)) {
3113                                rcu_barrier_trace(TPS("OfflineNoCB"), cpu,
3114                                                   rcu_state.barrier_sequence);
3115                        } else {
3116                                rcu_barrier_trace(TPS("OnlineNoCB"), cpu,
3117                                                   rcu_state.barrier_sequence);
3118                                smp_mb__before_atomic();
3119                                atomic_inc(&rcu_state.barrier_cpu_count);
3120                                __call_rcu(&rdp->barrier_head,
3121                                           rcu_barrier_callback, cpu, 0);
3122                        }
3123                } else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
3124                        rcu_barrier_trace(TPS("OnlineQ"), cpu,
3125                                           rcu_state.barrier_sequence);
3126                        smp_call_function_single(cpu, rcu_barrier_func, NULL, 1);
3127                } else {
3128                        rcu_barrier_trace(TPS("OnlineNQ"), cpu,
3129                                           rcu_state.barrier_sequence);
3130                }
3131        }
3132        put_online_cpus();
3133
3134        /*
3135         * Now that we have an rcu_barrier_callback() callback on each
3136         * CPU, and thus each counted, remove the initial count.
3137         */
3138        if (atomic_dec_and_test(&rcu_state.barrier_cpu_count))
3139                complete(&rcu_state.barrier_completion);
3140
3141        /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3142        wait_for_completion(&rcu_state.barrier_completion);
3143
3144        /* Mark the end of the barrier operation. */
3145        rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
3146        rcu_seq_end(&rcu_state.barrier_sequence);
3147
3148        /* Other rcu_barrier() invocations can now safely proceed. */
3149        mutex_unlock(&rcu_state.barrier_mutex);
3150}
3151EXPORT_SYMBOL_GPL(rcu_barrier);
3152
3153/*
3154 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3155 * first CPU in a given leaf rcu_node structure coming online.  The caller
3156 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3157 * disabled.
3158 */
3159static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3160{
3161        long mask;
3162        long oldmask;
3163        struct rcu_node *rnp = rnp_leaf;
3164
3165        raw_lockdep_assert_held_rcu_node(rnp_leaf);
3166        WARN_ON_ONCE(rnp->wait_blkd_tasks);
3167        for (;;) {
3168                mask = rnp->grpmask;
3169                rnp = rnp->parent;
3170                if (rnp == NULL)
3171                        return;
3172                raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3173                oldmask = rnp->qsmaskinit;
3174                rnp->qsmaskinit |= mask;
3175                raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3176                if (oldmask)
3177                        return;
3178        }
3179}
3180
3181/*
3182 * Do boot-time initialization of a CPU's per-CPU RCU data.
3183 */
3184static void __init
3185rcu_boot_init_percpu_data(int cpu)
3186{
3187        struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3188
3189        /* Set up local state, ensuring consistent view of global state. */
3190        rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3191        WARN_ON_ONCE(rdp->dynticks_nesting != 1);
3192        WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
3193        rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
3194        rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
3195        rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
3196        rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
3197        rdp->cpu = cpu;
3198        rcu_boot_init_nocb_percpu_data(rdp);
3199}
3200
3201/*
3202 * Invoked early in the CPU-online process, when pretty much all services
3203 * are available.  The incoming CPU is not present.
3204 *
3205 * Initializes a CPU's per-CPU RCU data.  Note that only one online or
3206 * offline event can be happening at a given time.  Note also that we can
3207 * accept some slop in the rsp->gp_seq access due to the fact that this
3208 * CPU cannot possibly have any RCU callbacks in flight yet.
3209 */
3210int rcutree_prepare_cpu(unsigned int cpu)
3211{
3212        unsigned long flags;
3213        struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3214        struct rcu_node *rnp = rcu_get_root();
3215
3216        /* Set up local state, ensuring consistent view of global state. */
3217        raw_spin_lock_irqsave_rcu_node(rnp, flags);
3218        rdp->qlen_last_fqs_check = 0;
3219        rdp->n_force_qs_snap = rcu_state.n_force_qs;
3220        rdp->blimit = blimit;
3221        if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3222            !init_nocb_callback_list(rdp))
3223                rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
3224        rdp->dynticks_nesting = 1;      /* CPU not up, no tearing. */
3225        rcu_dynticks_eqs_online();
3226        raw_spin_unlock_rcu_node(rnp);          /* irqs remain disabled. */
3227
3228        /*
3229         * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3230         * propagation up the rcu_node tree will happen at the beginning
3231         * of the next grace period.
3232         */
3233        rnp = rdp->mynode;
3234        raw_spin_lock_rcu_node(rnp);            /* irqs already disabled. */
3235        rdp->beenonline = true;  /* We have now been online. */
3236        rdp->gp_seq = rnp->gp_seq;
3237        rdp->gp_seq_needed = rnp->gp_seq;
3238        rdp->cpu_no_qs.b.norm = true;
3239        rdp->core_needs_qs = false;
3240        rdp->rcu_iw_pending = false;
3241        rdp->rcu_iw_gp_seq = rnp->gp_seq - 1;
3242        trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
3243        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3244        rcu_prepare_kthreads(cpu);
3245        rcu_spawn_all_nocb_kthreads(cpu);
3246
3247        return 0;
3248}
3249
3250/*
3251 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3252 */
3253static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3254{
3255        struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3256
3257        rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3258}
3259
3260/*
3261 * Near the end of the CPU-online process.  Pretty much all services
3262 * enabled, and the CPU is now very much alive.
3263 */
3264int rcutree_online_cpu(unsigned int cpu)
3265{
3266        unsigned long flags;
3267        struct rcu_data *rdp;
3268        struct rcu_node *rnp;
3269
3270        rdp = per_cpu_ptr(&rcu_data, cpu);
3271        rnp = rdp->mynode;
3272        raw_spin_lock_irqsave_rcu_node(rnp, flags);
3273        rnp->ffmask |= rdp->grpmask;
3274        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3275        if (IS_ENABLED(CONFIG_TREE_SRCU))
3276                srcu_online_cpu(cpu);
3277        if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3278                return 0; /* Too early in boot for scheduler work. */
3279        sync_sched_exp_online_cleanup(cpu);
3280        rcutree_affinity_setting(cpu, -1);
3281        return 0;
3282}
3283
3284/*
3285 * Near the beginning of the process.  The CPU is still very much alive
3286 * with pretty much all services enabled.
3287 */
3288int rcutree_offline_cpu(unsigned int cpu)
3289{
3290        unsigned long flags;
3291        struct rcu_data *rdp;
3292        struct rcu_node *rnp;
3293
3294        rdp = per_cpu_ptr(&rcu_data, cpu);
3295        rnp = rdp->mynode;
3296        raw_spin_lock_irqsave_rcu_node(rnp, flags);
3297        rnp->ffmask &= ~rdp->grpmask;
3298        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3299
3300        rcutree_affinity_setting(cpu, cpu);
3301        if (IS_ENABLED(CONFIG_TREE_SRCU))
3302                srcu_offline_cpu(cpu);
3303        return 0;
3304}
3305
3306static DEFINE_PER_CPU(int, rcu_cpu_started);
3307
3308/*
3309 * Mark the specified CPU as being online so that subsequent grace periods
3310 * (both expedited and normal) will wait on it.  Note that this means that
3311 * incoming CPUs are not allowed to use RCU read-side critical sections
3312 * until this function is called.  Failing to observe this restriction
3313 * will result in lockdep splats.
3314 *
3315 * Note that this function is special in that it is invoked directly
3316 * from the incoming CPU rather than from the cpuhp_step mechanism.
3317 * This is because this function must be invoked at a precise location.
3318 */
3319void rcu_cpu_starting(unsigned int cpu)
3320{
3321        unsigned long flags;
3322        unsigned long mask;
3323        int nbits;
3324        unsigned long oldmask;
3325        struct rcu_data *rdp;
3326        struct rcu_node *rnp;
3327
3328        if (per_cpu(rcu_cpu_started, cpu))
3329                return;
3330
3331        per_cpu(rcu_cpu_started, cpu) = 1;
3332
3333        rdp = per_cpu_ptr(&rcu_data, cpu);
3334        rnp = rdp->mynode;
3335        mask = rdp->grpmask;
3336        raw_spin_lock_irqsave_rcu_node(rnp, flags);
3337        rnp->qsmaskinitnext |= mask;
3338        oldmask = rnp->expmaskinitnext;
3339        rnp->expmaskinitnext |= mask;
3340        oldmask ^= rnp->expmaskinitnext;
3341        nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3342        /* Allow lockless access for expedited grace periods. */
3343        smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */
3344        rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
3345        rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3346        rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3347        if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
3348                /* Report QS -after- changing ->qsmaskinitnext! */
3349                rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3350        } else {
3351                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3352        }
3353        smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3354}
3355
3356#ifdef CONFIG_HOTPLUG_CPU
3357/*
3358 * The outgoing function has no further need of RCU, so remove it from
3359 * the rcu_node tree's ->qsmaskinitnext bit masks.
3360 *
3361 * Note that this function is special in that it is invoked directly
3362 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3363 * This is because this function must be invoked at a precise location.
3364 */
3365void rcu_report_dead(unsigned int cpu)
3366{
3367        unsigned long flags;
3368        unsigned long mask;
3369        struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3370        struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
3371
3372        /* QS for any half-done expedited grace period. */
3373        preempt_disable();
3374        rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
3375        preempt_enable();
3376        rcu_preempt_deferred_qs(current);
3377
3378        /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3379        mask = rdp->grpmask;
3380        raw_spin_lock(&rcu_state.ofl_lock);
3381        raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3382        rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3383        rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3384        if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
3385                /* Report quiescent state -before- changing ->qsmaskinitnext! */
3386                rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3387                raw_spin_lock_irqsave_rcu_node(rnp, flags);
3388        }
3389        rnp->qsmaskinitnext &= ~mask;
3390        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3391        raw_spin_unlock(&rcu_state.ofl_lock);
3392
3393        per_cpu(rcu_cpu_started, cpu) = 0;
3394}
3395
3396/*
3397 * The outgoing CPU has just passed through the dying-idle state, and we
3398 * are being invoked from the CPU that was IPIed to continue the offline
3399 * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
3400 */
3401void rcutree_migrate_callbacks(int cpu)
3402{
3403        unsigned long flags;
3404        struct rcu_data *my_rdp;
3405        struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3406        struct rcu_node *rnp_root = rcu_get_root();
3407        bool needwake;
3408
3409        if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
3410                return;  /* No callbacks to migrate. */
3411
3412        local_irq_save(flags);
3413        my_rdp = this_cpu_ptr(&rcu_data);
3414        if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
3415                local_irq_restore(flags);
3416                return;
3417        }
3418        raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
3419        /* Leverage recent GPs and set GP for new callbacks. */
3420        needwake = rcu_advance_cbs(rnp_root, rdp) ||
3421                   rcu_advance_cbs(rnp_root, my_rdp);
3422        rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
3423        WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3424                     !rcu_segcblist_n_cbs(&my_rdp->cblist));
3425        raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
3426        if (needwake)
3427                rcu_gp_kthread_wake();
3428        WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3429                  !rcu_segcblist_empty(&rdp->cblist),
3430                  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3431                  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3432                  rcu_segcblist_first_cb(&rdp->cblist));
3433}
3434#endif
3435
3436/*
3437 * On non-huge systems, use expedited RCU grace periods to make suspend
3438 * and hibernation run faster.
3439 */
3440static int rcu_pm_notify(struct notifier_block *self,
3441                         unsigned long action, void *hcpu)
3442{
3443        switch (action) {
3444        case PM_HIBERNATION_PREPARE:
3445        case PM_SUSPEND_PREPARE:
3446                if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3447                        rcu_expedite_gp();
3448                break;
3449        case PM_POST_HIBERNATION:
3450        case PM_POST_SUSPEND:
3451                if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3452                        rcu_unexpedite_gp();
3453                break;
3454        default:
3455                break;
3456        }
3457        return NOTIFY_OK;
3458}
3459
3460/*
3461 * Spawn the kthreads that handle RCU's grace periods.
3462 */
3463static int __init rcu_spawn_gp_kthread(void)
3464{
3465        unsigned long flags;
3466        int kthread_prio_in = kthread_prio;
3467        struct rcu_node *rnp;
3468        struct sched_param sp;
3469        struct task_struct *t;
3470
3471        /* Force priority into range. */
3472        if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
3473            && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
3474                kthread_prio = 2;
3475        else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3476                kthread_prio = 1;
3477        else if (kthread_prio < 0)
3478                kthread_prio = 0;
3479        else if (kthread_prio > 99)
3480                kthread_prio = 99;
3481
3482        if (kthread_prio != kthread_prio_in)
3483                pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3484                         kthread_prio, kthread_prio_in);
3485
3486        rcu_scheduler_fully_active = 1;
3487        t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
3488        BUG_ON(IS_ERR(t));
3489        rnp = rcu_get_root();
3490        raw_spin_lock_irqsave_rcu_node(rnp, flags);
3491        rcu_state.gp_kthread = t;
3492        if (kthread_prio) {
3493                sp.sched_priority = kthread_prio;
3494                sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3495        }
3496        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3497        wake_up_process(t);
3498        rcu_spawn_nocb_kthreads();
3499        rcu_spawn_boost_kthreads();
3500        return 0;
3501}
3502early_initcall(rcu_spawn_gp_kthread);
3503
3504/*
3505 * This function is invoked towards the end of the scheduler's
3506 * initialization process.  Before this is called, the idle task might
3507 * contain synchronous grace-period primitives (during which time, this idle
3508 * task is booting the system, and such primitives are no-ops).  After this
3509 * function is called, any synchronous grace-period primitives are run as
3510 * expedited, with the requesting task driving the grace period forward.
3511 * A later core_initcall() rcu_set_runtime_mode() will switch to full
3512 * runtime RCU functionality.
3513 */
3514void rcu_scheduler_starting(void)
3515{
3516        WARN_ON(num_online_cpus() != 1);
3517        WARN_ON(nr_context_switches() > 0);
3518        rcu_test_sync_prims();
3519        rcu_scheduler_active = RCU_SCHEDULER_INIT;
3520        rcu_test_sync_prims();
3521}
3522
3523/*
3524 * Helper function for rcu_init() that initializes the rcu_state structure.
3525 */
3526static void __init rcu_init_one(void)
3527{
3528        static const char * const buf[] = RCU_NODE_NAME_INIT;
3529        static const char * const fqs[] = RCU_FQS_NAME_INIT;
3530        static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3531        static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
3532
3533        int levelspread[RCU_NUM_LVLS];          /* kids/node in each level. */
3534        int cpustride = 1;
3535        int i;
3536        int j;
3537        struct rcu_node *rnp;
3538
3539        BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
3540
3541        /* Silence gcc 4.8 false positive about array index out of range. */
3542        if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
3543                panic("rcu_init_one: rcu_num_lvls out of range");
3544
3545        /* Initialize the level-tracking arrays. */
3546
3547        for (i = 1; i < rcu_num_lvls; i++)
3548                rcu_state.level[i] =
3549                        rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
3550        rcu_init_levelspread(levelspread, num_rcu_lvl);
3551
3552        /* Initialize the elements themselves, starting from the leaves. */
3553
3554        for (i = rcu_num_lvls - 1; i >= 0; i--) {
3555                cpustride *= levelspread[i];
3556                rnp = rcu_state.level[i];
3557                for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
3558                        raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
3559                        lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
3560                                                   &rcu_node_class[i], buf[i]);
3561                        raw_spin_lock_init(&rnp->fqslock);
3562                        lockdep_set_class_and_name(&rnp->fqslock,
3563                                                   &rcu_fqs_class[i], fqs[i]);
3564                        rnp->gp_seq = rcu_state.gp_seq;
3565                        rnp->gp_seq_needed = rcu_state.gp_seq;
3566                        rnp->completedqs = rcu_state.gp_seq;
3567                        rnp->qsmask = 0;
3568                        rnp->qsmaskinit = 0;
3569                        rnp->grplo = j * cpustride;
3570                        rnp->grphi = (j + 1) * cpustride - 1;
3571                        if (rnp->grphi >= nr_cpu_ids)
3572                                rnp->grphi = nr_cpu_ids - 1;
3573                        if (i == 0) {
3574                                rnp->grpnum = 0;
3575                                rnp->grpmask = 0;
3576                                rnp->parent = NULL;
3577                        } else {
3578                                rnp->grpnum = j % levelspread[i - 1];
3579                                rnp->grpmask = BIT(rnp->grpnum);
3580                                rnp->parent = rcu_state.level[i - 1] +
3581                                              j / levelspread[i - 1];
3582                        }
3583                        rnp->level = i;
3584                        INIT_LIST_HEAD(&rnp->blkd_tasks);
3585                        rcu_init_one_nocb(rnp);
3586                        init_waitqueue_head(&rnp->exp_wq[0]);
3587                        init_waitqueue_head(&rnp->exp_wq[1]);
3588                        init_waitqueue_head(&rnp->exp_wq[2]);
3589                        init_waitqueue_head(&rnp->exp_wq[3]);
3590                        spin_lock_init(&rnp->exp_lock);
3591                }
3592        }
3593
3594        init_swait_queue_head(&rcu_state.gp_wq);
3595        init_swait_queue_head(&rcu_state.expedited_wq);
3596        rnp = rcu_first_leaf_node();
3597        for_each_possible_cpu(i) {
3598                while (i > rnp->grphi)
3599                        rnp++;
3600                per_cpu_ptr(&rcu_data, i)->mynode = rnp;
3601                rcu_boot_init_percpu_data(i);
3602        }
3603}
3604
3605/*
3606 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
3607 * replace the definitions in tree.h because those are needed to size
3608 * the ->node array in the rcu_state structure.
3609 */
3610static void __init rcu_init_geometry(void)
3611{
3612        ulong d;
3613        int i;
3614        int rcu_capacity[RCU_NUM_LVLS];
3615
3616        /*
3617         * Initialize any unspecified boot parameters.
3618         * The default values of jiffies_till_first_fqs and
3619         * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3620         * value, which is a function of HZ, then adding one for each
3621         * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3622         */
3623        d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3624        if (jiffies_till_first_fqs == ULONG_MAX)
3625                jiffies_till_first_fqs = d;
3626        if (jiffies_till_next_fqs == ULONG_MAX)
3627                jiffies_till_next_fqs = d;
3628        if (jiffies_till_sched_qs == ULONG_MAX)
3629                adjust_jiffies_till_sched_qs();
3630
3631        /* If the compile-time values are accurate, just leave. */
3632        if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
3633            nr_cpu_ids == NR_CPUS)
3634                return;
3635        pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
3636                rcu_fanout_leaf, nr_cpu_ids);
3637
3638        /*
3639         * The boot-time rcu_fanout_leaf parameter must be at least two
3640         * and cannot exceed the number of bits in the rcu_node masks.
3641         * Complain and fall back to the compile-time values if this
3642         * limit is exceeded.
3643         */
3644        if (rcu_fanout_leaf < 2 ||
3645            rcu_fanout_leaf > sizeof(unsigned long) * 8) {
3646                rcu_fanout_leaf = RCU_FANOUT_LEAF;
3647                WARN_ON(1);
3648                return;
3649        }
3650
3651        /*
3652         * Compute number of nodes that can be handled an rcu_node tree
3653         * with the given number of levels.
3654         */
3655        rcu_capacity[0] = rcu_fanout_leaf;
3656        for (i = 1; i < RCU_NUM_LVLS; i++)
3657                rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
3658
3659        /*
3660         * The tree must be able to accommodate the configured number of CPUs.
3661         * If this limit is exceeded, fall back to the compile-time values.
3662         */
3663        if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
3664                rcu_fanout_leaf = RCU_FANOUT_LEAF;
3665                WARN_ON(1);
3666                return;
3667        }
3668
3669        /* Calculate the number of levels in the tree. */
3670        for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
3671        }
3672        rcu_num_lvls = i + 1;
3673
3674        /* Calculate the number of rcu_nodes at each level of the tree. */
3675        for (i = 0; i < rcu_num_lvls; i++) {
3676                int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
3677                num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
3678        }
3679
3680        /* Calculate the total number of rcu_node structures. */
3681        rcu_num_nodes = 0;
3682        for (i = 0; i < rcu_num_lvls; i++)
3683                rcu_num_nodes += num_rcu_lvl[i];
3684}
3685
3686/*
3687 * Dump out the structure of the rcu_node combining tree associated
3688 * with the rcu_state structure.
3689 */
3690static void __init rcu_dump_rcu_node_tree(void)
3691{
3692        int level = 0;
3693        struct rcu_node *rnp;
3694
3695        pr_info("rcu_node tree layout dump\n");
3696        pr_info(" ");
3697        rcu_for_each_node_breadth_first(rnp) {
3698                if (rnp->level != level) {
3699                        pr_cont("\n");
3700                        pr_info(" ");
3701                        level = rnp->level;
3702                }
3703                pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
3704        }
3705        pr_cont("\n");
3706}
3707
3708struct workqueue_struct *rcu_gp_wq;
3709struct workqueue_struct *rcu_par_gp_wq;
3710
3711void __init rcu_init(void)
3712{
3713        int cpu;
3714
3715        rcu_early_boot_tests();
3716
3717        rcu_bootup_announce();
3718        rcu_init_geometry();
3719        rcu_init_one();
3720        if (dump_tree)
3721                rcu_dump_rcu_node_tree();
3722        open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3723
3724        /*
3725         * We don't need protection against CPU-hotplug here because
3726         * this is called early in boot, before either interrupts
3727         * or the scheduler are operational.
3728         */
3729        pm_notifier(rcu_pm_notify, 0);
3730        for_each_online_cpu(cpu) {
3731                rcutree_prepare_cpu(cpu);
3732                rcu_cpu_starting(cpu);
3733                rcutree_online_cpu(cpu);
3734        }
3735
3736        /* Create workqueue for expedited GPs and for Tree SRCU. */
3737        rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
3738        WARN_ON(!rcu_gp_wq);
3739        rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
3740        WARN_ON(!rcu_par_gp_wq);
3741        srcu_init();
3742}
3743
3744#include "tree_exp.h"
3745#include "tree_plugin.h"
3746