linux/kernel/sched/stats.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2
   3#ifdef CONFIG_SCHEDSTATS
   4
   5/*
   6 * Expects runqueue lock to be held for atomicity of update
   7 */
   8static inline void
   9rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
  10{
  11        if (rq) {
  12                rq->rq_sched_info.run_delay += delta;
  13                rq->rq_sched_info.pcount++;
  14        }
  15}
  16
  17/*
  18 * Expects runqueue lock to be held for atomicity of update
  19 */
  20static inline void
  21rq_sched_info_depart(struct rq *rq, unsigned long long delta)
  22{
  23        if (rq)
  24                rq->rq_cpu_time += delta;
  25}
  26
  27static inline void
  28rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
  29{
  30        if (rq)
  31                rq->rq_sched_info.run_delay += delta;
  32}
  33#define   schedstat_enabled()           static_branch_unlikely(&sched_schedstats)
  34#define __schedstat_inc(var)            do { var++; } while (0)
  35#define   schedstat_inc(var)            do { if (schedstat_enabled()) { var++; } } while (0)
  36#define __schedstat_add(var, amt)       do { var += (amt); } while (0)
  37#define   schedstat_add(var, amt)       do { if (schedstat_enabled()) { var += (amt); } } while (0)
  38#define __schedstat_set(var, val)       do { var = (val); } while (0)
  39#define   schedstat_set(var, val)       do { if (schedstat_enabled()) { var = (val); } } while (0)
  40#define   schedstat_val(var)            (var)
  41#define   schedstat_val_or_zero(var)    ((schedstat_enabled()) ? (var) : 0)
  42
  43#else /* !CONFIG_SCHEDSTATS: */
  44static inline void rq_sched_info_arrive  (struct rq *rq, unsigned long long delta) { }
  45static inline void rq_sched_info_dequeued(struct rq *rq, unsigned long long delta) { }
  46static inline void rq_sched_info_depart  (struct rq *rq, unsigned long long delta) { }
  47# define   schedstat_enabled()          0
  48# define __schedstat_inc(var)           do { } while (0)
  49# define   schedstat_inc(var)           do { } while (0)
  50# define __schedstat_add(var, amt)      do { } while (0)
  51# define   schedstat_add(var, amt)      do { } while (0)
  52# define __schedstat_set(var, val)      do { } while (0)
  53# define   schedstat_set(var, val)      do { } while (0)
  54# define   schedstat_val(var)           0
  55# define   schedstat_val_or_zero(var)   0
  56#endif /* CONFIG_SCHEDSTATS */
  57
  58#ifdef CONFIG_PSI
  59/*
  60 * PSI tracks state that persists across sleeps, such as iowaits and
  61 * memory stalls. As a result, it has to distinguish between sleeps,
  62 * where a task's runnable state changes, and requeues, where a task
  63 * and its state are being moved between CPUs and runqueues.
  64 */
  65static inline void psi_enqueue(struct task_struct *p, bool wakeup)
  66{
  67        int clear = 0, set = TSK_RUNNING;
  68
  69        if (static_branch_likely(&psi_disabled))
  70                return;
  71
  72        if (!wakeup || p->sched_psi_wake_requeue) {
  73                if (p->flags & PF_MEMSTALL)
  74                        set |= TSK_MEMSTALL;
  75                if (p->sched_psi_wake_requeue)
  76                        p->sched_psi_wake_requeue = 0;
  77        } else {
  78                if (p->in_iowait)
  79                        clear |= TSK_IOWAIT;
  80        }
  81
  82        psi_task_change(p, clear, set);
  83}
  84
  85static inline void psi_dequeue(struct task_struct *p, bool sleep)
  86{
  87        int clear = TSK_RUNNING, set = 0;
  88
  89        if (static_branch_likely(&psi_disabled))
  90                return;
  91
  92        if (!sleep) {
  93                if (p->flags & PF_MEMSTALL)
  94                        clear |= TSK_MEMSTALL;
  95        } else {
  96                if (p->in_iowait)
  97                        set |= TSK_IOWAIT;
  98        }
  99
 100        psi_task_change(p, clear, set);
 101}
 102
 103static inline void psi_ttwu_dequeue(struct task_struct *p)
 104{
 105        if (static_branch_likely(&psi_disabled))
 106                return;
 107        /*
 108         * Is the task being migrated during a wakeup? Make sure to
 109         * deregister its sleep-persistent psi states from the old
 110         * queue, and let psi_enqueue() know it has to requeue.
 111         */
 112        if (unlikely(p->in_iowait || (p->flags & PF_MEMSTALL))) {
 113                struct rq_flags rf;
 114                struct rq *rq;
 115                int clear = 0;
 116
 117                if (p->in_iowait)
 118                        clear |= TSK_IOWAIT;
 119                if (p->flags & PF_MEMSTALL)
 120                        clear |= TSK_MEMSTALL;
 121
 122                rq = __task_rq_lock(p, &rf);
 123                psi_task_change(p, clear, 0);
 124                p->sched_psi_wake_requeue = 1;
 125                __task_rq_unlock(rq, &rf);
 126        }
 127}
 128
 129static inline void psi_task_tick(struct rq *rq)
 130{
 131        if (static_branch_likely(&psi_disabled))
 132                return;
 133
 134        if (unlikely(rq->curr->flags & PF_MEMSTALL))
 135                psi_memstall_tick(rq->curr, cpu_of(rq));
 136}
 137#else /* CONFIG_PSI */
 138static inline void psi_enqueue(struct task_struct *p, bool wakeup) {}
 139static inline void psi_dequeue(struct task_struct *p, bool sleep) {}
 140static inline void psi_ttwu_dequeue(struct task_struct *p) {}
 141static inline void psi_task_tick(struct rq *rq) {}
 142#endif /* CONFIG_PSI */
 143
 144#ifdef CONFIG_SCHED_INFO
 145static inline void sched_info_reset_dequeued(struct task_struct *t)
 146{
 147        t->sched_info.last_queued = 0;
 148}
 149
 150/*
 151 * We are interested in knowing how long it was from the *first* time a
 152 * task was queued to the time that it finally hit a CPU, we call this routine
 153 * from dequeue_task() to account for possible rq->clock skew across CPUs. The
 154 * delta taken on each CPU would annul the skew.
 155 */
 156static inline void sched_info_dequeued(struct rq *rq, struct task_struct *t)
 157{
 158        unsigned long long now = rq_clock(rq), delta = 0;
 159
 160        if (unlikely(sched_info_on()))
 161                if (t->sched_info.last_queued)
 162                        delta = now - t->sched_info.last_queued;
 163        sched_info_reset_dequeued(t);
 164        t->sched_info.run_delay += delta;
 165
 166        rq_sched_info_dequeued(rq, delta);
 167}
 168
 169/*
 170 * Called when a task finally hits the CPU.  We can now calculate how
 171 * long it was waiting to run.  We also note when it began so that we
 172 * can keep stats on how long its timeslice is.
 173 */
 174static void sched_info_arrive(struct rq *rq, struct task_struct *t)
 175{
 176        unsigned long long now = rq_clock(rq), delta = 0;
 177
 178        if (t->sched_info.last_queued)
 179                delta = now - t->sched_info.last_queued;
 180        sched_info_reset_dequeued(t);
 181        t->sched_info.run_delay += delta;
 182        t->sched_info.last_arrival = now;
 183        t->sched_info.pcount++;
 184
 185        rq_sched_info_arrive(rq, delta);
 186}
 187
 188/*
 189 * This function is only called from enqueue_task(), but also only updates
 190 * the timestamp if it is already not set.  It's assumed that
 191 * sched_info_dequeued() will clear that stamp when appropriate.
 192 */
 193static inline void sched_info_queued(struct rq *rq, struct task_struct *t)
 194{
 195        if (unlikely(sched_info_on())) {
 196                if (!t->sched_info.last_queued)
 197                        t->sched_info.last_queued = rq_clock(rq);
 198        }
 199}
 200
 201/*
 202 * Called when a process ceases being the active-running process involuntarily
 203 * due, typically, to expiring its time slice (this may also be called when
 204 * switching to the idle task).  Now we can calculate how long we ran.
 205 * Also, if the process is still in the TASK_RUNNING state, call
 206 * sched_info_queued() to mark that it has now again started waiting on
 207 * the runqueue.
 208 */
 209static inline void sched_info_depart(struct rq *rq, struct task_struct *t)
 210{
 211        unsigned long long delta = rq_clock(rq) - t->sched_info.last_arrival;
 212
 213        rq_sched_info_depart(rq, delta);
 214
 215        if (t->state == TASK_RUNNING)
 216                sched_info_queued(rq, t);
 217}
 218
 219/*
 220 * Called when tasks are switched involuntarily due, typically, to expiring
 221 * their time slice.  (This may also be called when switching to or from
 222 * the idle task.)  We are only called when prev != next.
 223 */
 224static inline void
 225__sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next)
 226{
 227        /*
 228         * prev now departs the CPU.  It's not interesting to record
 229         * stats about how efficient we were at scheduling the idle
 230         * process, however.
 231         */
 232        if (prev != rq->idle)
 233                sched_info_depart(rq, prev);
 234
 235        if (next != rq->idle)
 236                sched_info_arrive(rq, next);
 237}
 238
 239static inline void
 240sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next)
 241{
 242        if (unlikely(sched_info_on()))
 243                __sched_info_switch(rq, prev, next);
 244}
 245
 246#else /* !CONFIG_SCHED_INFO: */
 247# define sched_info_queued(rq, t)       do { } while (0)
 248# define sched_info_reset_dequeued(t)   do { } while (0)
 249# define sched_info_dequeued(rq, t)     do { } while (0)
 250# define sched_info_depart(rq, t)       do { } while (0)
 251# define sched_info_arrive(rq, next)    do { } while (0)
 252# define sched_info_switch(rq, t, next) do { } while (0)
 253#endif /* CONFIG_SCHED_INFO */
 254