linux/kernel/time/tick-common.c
<<
>>
Prefs
   1/*
   2 * linux/kernel/time/tick-common.c
   3 *
   4 * This file contains the base functions to manage periodic tick
   5 * related events.
   6 *
   7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
  10 *
  11 * This code is licenced under the GPL version 2. For details see
  12 * kernel-base/COPYING.
  13 */
  14#include <linux/cpu.h>
  15#include <linux/err.h>
  16#include <linux/hrtimer.h>
  17#include <linux/interrupt.h>
  18#include <linux/percpu.h>
  19#include <linux/profile.h>
  20#include <linux/sched.h>
  21#include <linux/module.h>
  22#include <trace/events/power.h>
  23
  24#include <asm/irq_regs.h>
  25
  26#include "tick-internal.h"
  27
  28/*
  29 * Tick devices
  30 */
  31DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
  32/*
  33 * Tick next event: keeps track of the tick time
  34 */
  35ktime_t tick_next_period;
  36ktime_t tick_period;
  37
  38/*
  39 * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR
  40 * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This
  41 * variable has two functions:
  42 *
  43 * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the
  44 *    timekeeping lock all at once. Only the CPU which is assigned to do the
  45 *    update is handling it.
  46 *
  47 * 2) Hand off the duty in the NOHZ idle case by setting the value to
  48 *    TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks
  49 *    at it will take over and keep the time keeping alive.  The handover
  50 *    procedure also covers cpu hotplug.
  51 */
  52int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
  53#ifdef CONFIG_NO_HZ_FULL
  54/*
  55 * tick_do_timer_boot_cpu indicates the boot CPU temporarily owns
  56 * tick_do_timer_cpu and it should be taken over by an eligible secondary
  57 * when one comes online.
  58 */
  59static int tick_do_timer_boot_cpu __read_mostly = -1;
  60#endif
  61
  62/*
  63 * Debugging: see timer_list.c
  64 */
  65struct tick_device *tick_get_device(int cpu)
  66{
  67        return &per_cpu(tick_cpu_device, cpu);
  68}
  69
  70/**
  71 * tick_is_oneshot_available - check for a oneshot capable event device
  72 */
  73int tick_is_oneshot_available(void)
  74{
  75        struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
  76
  77        if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
  78                return 0;
  79        if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
  80                return 1;
  81        return tick_broadcast_oneshot_available();
  82}
  83
  84/*
  85 * Periodic tick
  86 */
  87static void tick_periodic(int cpu)
  88{
  89        if (tick_do_timer_cpu == cpu) {
  90                write_seqlock(&jiffies_lock);
  91
  92                /* Keep track of the next tick event */
  93                tick_next_period = ktime_add(tick_next_period, tick_period);
  94
  95                do_timer(1);
  96                write_sequnlock(&jiffies_lock);
  97                update_wall_time();
  98        }
  99
 100        update_process_times(user_mode(get_irq_regs()));
 101        profile_tick(CPU_PROFILING);
 102}
 103
 104/*
 105 * Event handler for periodic ticks
 106 */
 107void tick_handle_periodic(struct clock_event_device *dev)
 108{
 109        int cpu = smp_processor_id();
 110        ktime_t next = dev->next_event;
 111
 112        tick_periodic(cpu);
 113
 114#if defined(CONFIG_HIGH_RES_TIMERS) || defined(CONFIG_NO_HZ_COMMON)
 115        /*
 116         * The cpu might have transitioned to HIGHRES or NOHZ mode via
 117         * update_process_times() -> run_local_timers() ->
 118         * hrtimer_run_queues().
 119         */
 120        if (dev->event_handler != tick_handle_periodic)
 121                return;
 122#endif
 123
 124        if (!clockevent_state_oneshot(dev))
 125                return;
 126        for (;;) {
 127                /*
 128                 * Setup the next period for devices, which do not have
 129                 * periodic mode:
 130                 */
 131                next = ktime_add(next, tick_period);
 132
 133                if (!clockevents_program_event(dev, next, false))
 134                        return;
 135                /*
 136                 * Have to be careful here. If we're in oneshot mode,
 137                 * before we call tick_periodic() in a loop, we need
 138                 * to be sure we're using a real hardware clocksource.
 139                 * Otherwise we could get trapped in an infinite
 140                 * loop, as the tick_periodic() increments jiffies,
 141                 * which then will increment time, possibly causing
 142                 * the loop to trigger again and again.
 143                 */
 144                if (timekeeping_valid_for_hres())
 145                        tick_periodic(cpu);
 146        }
 147}
 148
 149/*
 150 * Setup the device for a periodic tick
 151 */
 152void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
 153{
 154        tick_set_periodic_handler(dev, broadcast);
 155
 156        /* Broadcast setup ? */
 157        if (!tick_device_is_functional(dev))
 158                return;
 159
 160        if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
 161            !tick_broadcast_oneshot_active()) {
 162                clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
 163        } else {
 164                unsigned long seq;
 165                ktime_t next;
 166
 167                do {
 168                        seq = read_seqbegin(&jiffies_lock);
 169                        next = tick_next_period;
 170                } while (read_seqretry(&jiffies_lock, seq));
 171
 172                clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
 173
 174                for (;;) {
 175                        if (!clockevents_program_event(dev, next, false))
 176                                return;
 177                        next = ktime_add(next, tick_period);
 178                }
 179        }
 180}
 181
 182#ifdef CONFIG_NO_HZ_FULL
 183static void giveup_do_timer(void *info)
 184{
 185        int cpu = *(unsigned int *)info;
 186
 187        WARN_ON(tick_do_timer_cpu != smp_processor_id());
 188
 189        tick_do_timer_cpu = cpu;
 190}
 191
 192static void tick_take_do_timer_from_boot(void)
 193{
 194        int cpu = smp_processor_id();
 195        int from = tick_do_timer_boot_cpu;
 196
 197        if (from >= 0 && from != cpu)
 198                smp_call_function_single(from, giveup_do_timer, &cpu, 1);
 199}
 200#endif
 201
 202/*
 203 * Setup the tick device
 204 */
 205static void tick_setup_device(struct tick_device *td,
 206                              struct clock_event_device *newdev, int cpu,
 207                              const struct cpumask *cpumask)
 208{
 209        void (*handler)(struct clock_event_device *) = NULL;
 210        ktime_t next_event = 0;
 211
 212        /*
 213         * First device setup ?
 214         */
 215        if (!td->evtdev) {
 216                /*
 217                 * If no cpu took the do_timer update, assign it to
 218                 * this cpu:
 219                 */
 220                if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) {
 221                        tick_do_timer_cpu = cpu;
 222
 223                        tick_next_period = ktime_get();
 224                        tick_period = NSEC_PER_SEC / HZ;
 225#ifdef CONFIG_NO_HZ_FULL
 226                        /*
 227                         * The boot CPU may be nohz_full, in which case set
 228                         * tick_do_timer_boot_cpu so the first housekeeping
 229                         * secondary that comes up will take do_timer from
 230                         * us.
 231                         */
 232                        if (tick_nohz_full_cpu(cpu))
 233                                tick_do_timer_boot_cpu = cpu;
 234
 235                } else if (tick_do_timer_boot_cpu != -1 &&
 236                                                !tick_nohz_full_cpu(cpu)) {
 237                        tick_take_do_timer_from_boot();
 238                        tick_do_timer_boot_cpu = -1;
 239                        WARN_ON(tick_do_timer_cpu != cpu);
 240#endif
 241                }
 242
 243                /*
 244                 * Startup in periodic mode first.
 245                 */
 246                td->mode = TICKDEV_MODE_PERIODIC;
 247        } else {
 248                handler = td->evtdev->event_handler;
 249                next_event = td->evtdev->next_event;
 250                td->evtdev->event_handler = clockevents_handle_noop;
 251        }
 252
 253        td->evtdev = newdev;
 254
 255        /*
 256         * When the device is not per cpu, pin the interrupt to the
 257         * current cpu:
 258         */
 259        if (!cpumask_equal(newdev->cpumask, cpumask))
 260                irq_set_affinity(newdev->irq, cpumask);
 261
 262        /*
 263         * When global broadcasting is active, check if the current
 264         * device is registered as a placeholder for broadcast mode.
 265         * This allows us to handle this x86 misfeature in a generic
 266         * way. This function also returns !=0 when we keep the
 267         * current active broadcast state for this CPU.
 268         */
 269        if (tick_device_uses_broadcast(newdev, cpu))
 270                return;
 271
 272        if (td->mode == TICKDEV_MODE_PERIODIC)
 273                tick_setup_periodic(newdev, 0);
 274        else
 275                tick_setup_oneshot(newdev, handler, next_event);
 276}
 277
 278void tick_install_replacement(struct clock_event_device *newdev)
 279{
 280        struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
 281        int cpu = smp_processor_id();
 282
 283        clockevents_exchange_device(td->evtdev, newdev);
 284        tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
 285        if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
 286                tick_oneshot_notify();
 287}
 288
 289static bool tick_check_percpu(struct clock_event_device *curdev,
 290                              struct clock_event_device *newdev, int cpu)
 291{
 292        if (!cpumask_test_cpu(cpu, newdev->cpumask))
 293                return false;
 294        if (cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
 295                return true;
 296        /* Check if irq affinity can be set */
 297        if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq))
 298                return false;
 299        /* Prefer an existing cpu local device */
 300        if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
 301                return false;
 302        return true;
 303}
 304
 305static bool tick_check_preferred(struct clock_event_device *curdev,
 306                                 struct clock_event_device *newdev)
 307{
 308        /* Prefer oneshot capable device */
 309        if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) {
 310                if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT))
 311                        return false;
 312                if (tick_oneshot_mode_active())
 313                        return false;
 314        }
 315
 316        /*
 317         * Use the higher rated one, but prefer a CPU local device with a lower
 318         * rating than a non-CPU local device
 319         */
 320        return !curdev ||
 321                newdev->rating > curdev->rating ||
 322               !cpumask_equal(curdev->cpumask, newdev->cpumask);
 323}
 324
 325/*
 326 * Check whether the new device is a better fit than curdev. curdev
 327 * can be NULL !
 328 */
 329bool tick_check_replacement(struct clock_event_device *curdev,
 330                            struct clock_event_device *newdev)
 331{
 332        if (!tick_check_percpu(curdev, newdev, smp_processor_id()))
 333                return false;
 334
 335        return tick_check_preferred(curdev, newdev);
 336}
 337
 338/*
 339 * Check, if the new registered device should be used. Called with
 340 * clockevents_lock held and interrupts disabled.
 341 */
 342void tick_check_new_device(struct clock_event_device *newdev)
 343{
 344        struct clock_event_device *curdev;
 345        struct tick_device *td;
 346        int cpu;
 347
 348        cpu = smp_processor_id();
 349        td = &per_cpu(tick_cpu_device, cpu);
 350        curdev = td->evtdev;
 351
 352        /* cpu local device ? */
 353        if (!tick_check_percpu(curdev, newdev, cpu))
 354                goto out_bc;
 355
 356        /* Preference decision */
 357        if (!tick_check_preferred(curdev, newdev))
 358                goto out_bc;
 359
 360        if (!try_module_get(newdev->owner))
 361                return;
 362
 363        /*
 364         * Replace the eventually existing device by the new
 365         * device. If the current device is the broadcast device, do
 366         * not give it back to the clockevents layer !
 367         */
 368        if (tick_is_broadcast_device(curdev)) {
 369                clockevents_shutdown(curdev);
 370                curdev = NULL;
 371        }
 372        clockevents_exchange_device(curdev, newdev);
 373        tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
 374        if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
 375                tick_oneshot_notify();
 376        return;
 377
 378out_bc:
 379        /*
 380         * Can the new device be used as a broadcast device ?
 381         */
 382        tick_install_broadcast_device(newdev);
 383}
 384
 385/**
 386 * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
 387 * @state:      The target state (enter/exit)
 388 *
 389 * The system enters/leaves a state, where affected devices might stop
 390 * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
 391 *
 392 * Called with interrupts disabled, so clockevents_lock is not
 393 * required here because the local clock event device cannot go away
 394 * under us.
 395 */
 396int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
 397{
 398        struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
 399
 400        if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP))
 401                return 0;
 402
 403        return __tick_broadcast_oneshot_control(state);
 404}
 405EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
 406
 407#ifdef CONFIG_HOTPLUG_CPU
 408/*
 409 * Transfer the do_timer job away from a dying cpu.
 410 *
 411 * Called with interrupts disabled. Not locking required. If
 412 * tick_do_timer_cpu is owned by this cpu, nothing can change it.
 413 */
 414void tick_handover_do_timer(void)
 415{
 416        if (tick_do_timer_cpu == smp_processor_id()) {
 417                int cpu = cpumask_first(cpu_online_mask);
 418
 419                tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu :
 420                        TICK_DO_TIMER_NONE;
 421        }
 422}
 423
 424/*
 425 * Shutdown an event device on a given cpu:
 426 *
 427 * This is called on a life CPU, when a CPU is dead. So we cannot
 428 * access the hardware device itself.
 429 * We just set the mode and remove it from the lists.
 430 */
 431void tick_shutdown(unsigned int cpu)
 432{
 433        struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
 434        struct clock_event_device *dev = td->evtdev;
 435
 436        td->mode = TICKDEV_MODE_PERIODIC;
 437        if (dev) {
 438                /*
 439                 * Prevent that the clock events layer tries to call
 440                 * the set mode function!
 441                 */
 442                clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
 443                clockevents_exchange_device(dev, NULL);
 444                dev->event_handler = clockevents_handle_noop;
 445                td->evtdev = NULL;
 446        }
 447}
 448#endif
 449
 450/**
 451 * tick_suspend_local - Suspend the local tick device
 452 *
 453 * Called from the local cpu for freeze with interrupts disabled.
 454 *
 455 * No locks required. Nothing can change the per cpu device.
 456 */
 457void tick_suspend_local(void)
 458{
 459        struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
 460
 461        clockevents_shutdown(td->evtdev);
 462}
 463
 464/**
 465 * tick_resume_local - Resume the local tick device
 466 *
 467 * Called from the local CPU for unfreeze or XEN resume magic.
 468 *
 469 * No locks required. Nothing can change the per cpu device.
 470 */
 471void tick_resume_local(void)
 472{
 473        struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
 474        bool broadcast = tick_resume_check_broadcast();
 475
 476        clockevents_tick_resume(td->evtdev);
 477        if (!broadcast) {
 478                if (td->mode == TICKDEV_MODE_PERIODIC)
 479                        tick_setup_periodic(td->evtdev, 0);
 480                else
 481                        tick_resume_oneshot();
 482        }
 483}
 484
 485/**
 486 * tick_suspend - Suspend the tick and the broadcast device
 487 *
 488 * Called from syscore_suspend() via timekeeping_suspend with only one
 489 * CPU online and interrupts disabled or from tick_unfreeze() under
 490 * tick_freeze_lock.
 491 *
 492 * No locks required. Nothing can change the per cpu device.
 493 */
 494void tick_suspend(void)
 495{
 496        tick_suspend_local();
 497        tick_suspend_broadcast();
 498}
 499
 500/**
 501 * tick_resume - Resume the tick and the broadcast device
 502 *
 503 * Called from syscore_resume() via timekeeping_resume with only one
 504 * CPU online and interrupts disabled.
 505 *
 506 * No locks required. Nothing can change the per cpu device.
 507 */
 508void tick_resume(void)
 509{
 510        tick_resume_broadcast();
 511        tick_resume_local();
 512}
 513
 514#ifdef CONFIG_SUSPEND
 515static DEFINE_RAW_SPINLOCK(tick_freeze_lock);
 516static unsigned int tick_freeze_depth;
 517
 518/**
 519 * tick_freeze - Suspend the local tick and (possibly) timekeeping.
 520 *
 521 * Check if this is the last online CPU executing the function and if so,
 522 * suspend timekeeping.  Otherwise suspend the local tick.
 523 *
 524 * Call with interrupts disabled.  Must be balanced with %tick_unfreeze().
 525 * Interrupts must not be enabled before the subsequent %tick_unfreeze().
 526 */
 527void tick_freeze(void)
 528{
 529        raw_spin_lock(&tick_freeze_lock);
 530
 531        tick_freeze_depth++;
 532        if (tick_freeze_depth == num_online_cpus()) {
 533                trace_suspend_resume(TPS("timekeeping_freeze"),
 534                                     smp_processor_id(), true);
 535                system_state = SYSTEM_SUSPEND;
 536                timekeeping_suspend();
 537        } else {
 538                tick_suspend_local();
 539        }
 540
 541        raw_spin_unlock(&tick_freeze_lock);
 542}
 543
 544/**
 545 * tick_unfreeze - Resume the local tick and (possibly) timekeeping.
 546 *
 547 * Check if this is the first CPU executing the function and if so, resume
 548 * timekeeping.  Otherwise resume the local tick.
 549 *
 550 * Call with interrupts disabled.  Must be balanced with %tick_freeze().
 551 * Interrupts must not be enabled after the preceding %tick_freeze().
 552 */
 553void tick_unfreeze(void)
 554{
 555        raw_spin_lock(&tick_freeze_lock);
 556
 557        if (tick_freeze_depth == num_online_cpus()) {
 558                timekeeping_resume();
 559                system_state = SYSTEM_RUNNING;
 560                trace_suspend_resume(TPS("timekeeping_freeze"),
 561                                     smp_processor_id(), false);
 562        } else {
 563                tick_resume_local();
 564        }
 565
 566        tick_freeze_depth--;
 567
 568        raw_spin_unlock(&tick_freeze_lock);
 569}
 570#endif /* CONFIG_SUSPEND */
 571
 572/**
 573 * tick_init - initialize the tick control
 574 */
 575void __init tick_init(void)
 576{
 577        tick_broadcast_init();
 578        tick_nohz_init();
 579}
 580