linux/mm/memory-failure.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2008, 2009 Intel Corporation
   3 * Authors: Andi Kleen, Fengguang Wu
   4 *
   5 * This software may be redistributed and/or modified under the terms of
   6 * the GNU General Public License ("GPL") version 2 only as published by the
   7 * Free Software Foundation.
   8 *
   9 * High level machine check handler. Handles pages reported by the
  10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
  11 * failure.
  12 * 
  13 * In addition there is a "soft offline" entry point that allows stop using
  14 * not-yet-corrupted-by-suspicious pages without killing anything.
  15 *
  16 * Handles page cache pages in various states.  The tricky part
  17 * here is that we can access any page asynchronously in respect to 
  18 * other VM users, because memory failures could happen anytime and 
  19 * anywhere. This could violate some of their assumptions. This is why 
  20 * this code has to be extremely careful. Generally it tries to use 
  21 * normal locking rules, as in get the standard locks, even if that means 
  22 * the error handling takes potentially a long time.
  23 *
  24 * It can be very tempting to add handling for obscure cases here.
  25 * In general any code for handling new cases should only be added iff:
  26 * - You know how to test it.
  27 * - You have a test that can be added to mce-test
  28 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
  29 * - The case actually shows up as a frequent (top 10) page state in
  30 *   tools/vm/page-types when running a real workload.
  31 * 
  32 * There are several operations here with exponential complexity because
  33 * of unsuitable VM data structures. For example the operation to map back 
  34 * from RMAP chains to processes has to walk the complete process list and 
  35 * has non linear complexity with the number. But since memory corruptions
  36 * are rare we hope to get away with this. This avoids impacting the core 
  37 * VM.
  38 */
  39#include <linux/kernel.h>
  40#include <linux/mm.h>
  41#include <linux/page-flags.h>
  42#include <linux/kernel-page-flags.h>
  43#include <linux/sched/signal.h>
  44#include <linux/sched/task.h>
  45#include <linux/ksm.h>
  46#include <linux/rmap.h>
  47#include <linux/export.h>
  48#include <linux/pagemap.h>
  49#include <linux/swap.h>
  50#include <linux/backing-dev.h>
  51#include <linux/migrate.h>
  52#include <linux/suspend.h>
  53#include <linux/slab.h>
  54#include <linux/swapops.h>
  55#include <linux/hugetlb.h>
  56#include <linux/memory_hotplug.h>
  57#include <linux/mm_inline.h>
  58#include <linux/kfifo.h>
  59#include <linux/ratelimit.h>
  60#include <linux/page-isolation.h>
  61#include "internal.h"
  62#include "ras/ras_event.h"
  63
  64int sysctl_memory_failure_early_kill __read_mostly = 0;
  65
  66int sysctl_memory_failure_recovery __read_mostly = 1;
  67
  68atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
  69
  70#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
  71
  72u32 hwpoison_filter_enable = 0;
  73u32 hwpoison_filter_dev_major = ~0U;
  74u32 hwpoison_filter_dev_minor = ~0U;
  75u64 hwpoison_filter_flags_mask;
  76u64 hwpoison_filter_flags_value;
  77EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
  78EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
  79EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
  80EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
  81EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
  82
  83static int hwpoison_filter_dev(struct page *p)
  84{
  85        struct address_space *mapping;
  86        dev_t dev;
  87
  88        if (hwpoison_filter_dev_major == ~0U &&
  89            hwpoison_filter_dev_minor == ~0U)
  90                return 0;
  91
  92        /*
  93         * page_mapping() does not accept slab pages.
  94         */
  95        if (PageSlab(p))
  96                return -EINVAL;
  97
  98        mapping = page_mapping(p);
  99        if (mapping == NULL || mapping->host == NULL)
 100                return -EINVAL;
 101
 102        dev = mapping->host->i_sb->s_dev;
 103        if (hwpoison_filter_dev_major != ~0U &&
 104            hwpoison_filter_dev_major != MAJOR(dev))
 105                return -EINVAL;
 106        if (hwpoison_filter_dev_minor != ~0U &&
 107            hwpoison_filter_dev_minor != MINOR(dev))
 108                return -EINVAL;
 109
 110        return 0;
 111}
 112
 113static int hwpoison_filter_flags(struct page *p)
 114{
 115        if (!hwpoison_filter_flags_mask)
 116                return 0;
 117
 118        if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
 119                                    hwpoison_filter_flags_value)
 120                return 0;
 121        else
 122                return -EINVAL;
 123}
 124
 125/*
 126 * This allows stress tests to limit test scope to a collection of tasks
 127 * by putting them under some memcg. This prevents killing unrelated/important
 128 * processes such as /sbin/init. Note that the target task may share clean
 129 * pages with init (eg. libc text), which is harmless. If the target task
 130 * share _dirty_ pages with another task B, the test scheme must make sure B
 131 * is also included in the memcg. At last, due to race conditions this filter
 132 * can only guarantee that the page either belongs to the memcg tasks, or is
 133 * a freed page.
 134 */
 135#ifdef CONFIG_MEMCG
 136u64 hwpoison_filter_memcg;
 137EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
 138static int hwpoison_filter_task(struct page *p)
 139{
 140        if (!hwpoison_filter_memcg)
 141                return 0;
 142
 143        if (page_cgroup_ino(p) != hwpoison_filter_memcg)
 144                return -EINVAL;
 145
 146        return 0;
 147}
 148#else
 149static int hwpoison_filter_task(struct page *p) { return 0; }
 150#endif
 151
 152int hwpoison_filter(struct page *p)
 153{
 154        if (!hwpoison_filter_enable)
 155                return 0;
 156
 157        if (hwpoison_filter_dev(p))
 158                return -EINVAL;
 159
 160        if (hwpoison_filter_flags(p))
 161                return -EINVAL;
 162
 163        if (hwpoison_filter_task(p))
 164                return -EINVAL;
 165
 166        return 0;
 167}
 168#else
 169int hwpoison_filter(struct page *p)
 170{
 171        return 0;
 172}
 173#endif
 174
 175EXPORT_SYMBOL_GPL(hwpoison_filter);
 176
 177/*
 178 * Send all the processes who have the page mapped a signal.
 179 * ``action optional'' if they are not immediately affected by the error
 180 * ``action required'' if error happened in current execution context
 181 */
 182static int kill_proc(struct task_struct *t, unsigned long addr,
 183                        unsigned long pfn, struct page *page, int flags)
 184{
 185        short addr_lsb;
 186        int ret;
 187
 188        pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
 189                pfn, t->comm, t->pid);
 190        addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
 191
 192        if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
 193                ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr,
 194                                       addr_lsb, current);
 195        } else {
 196                /*
 197                 * Don't use force here, it's convenient if the signal
 198                 * can be temporarily blocked.
 199                 * This could cause a loop when the user sets SIGBUS
 200                 * to SIG_IGN, but hopefully no one will do that?
 201                 */
 202                ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)addr,
 203                                      addr_lsb, t);  /* synchronous? */
 204        }
 205        if (ret < 0)
 206                pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
 207                        t->comm, t->pid, ret);
 208        return ret;
 209}
 210
 211/*
 212 * When a unknown page type is encountered drain as many buffers as possible
 213 * in the hope to turn the page into a LRU or free page, which we can handle.
 214 */
 215void shake_page(struct page *p, int access)
 216{
 217        if (PageHuge(p))
 218                return;
 219
 220        if (!PageSlab(p)) {
 221                lru_add_drain_all();
 222                if (PageLRU(p))
 223                        return;
 224                drain_all_pages(page_zone(p));
 225                if (PageLRU(p) || is_free_buddy_page(p))
 226                        return;
 227        }
 228
 229        /*
 230         * Only call shrink_node_slabs here (which would also shrink
 231         * other caches) if access is not potentially fatal.
 232         */
 233        if (access)
 234                drop_slab_node(page_to_nid(p));
 235}
 236EXPORT_SYMBOL_GPL(shake_page);
 237
 238/*
 239 * Kill all processes that have a poisoned page mapped and then isolate
 240 * the page.
 241 *
 242 * General strategy:
 243 * Find all processes having the page mapped and kill them.
 244 * But we keep a page reference around so that the page is not
 245 * actually freed yet.
 246 * Then stash the page away
 247 *
 248 * There's no convenient way to get back to mapped processes
 249 * from the VMAs. So do a brute-force search over all
 250 * running processes.
 251 *
 252 * Remember that machine checks are not common (or rather
 253 * if they are common you have other problems), so this shouldn't
 254 * be a performance issue.
 255 *
 256 * Also there are some races possible while we get from the
 257 * error detection to actually handle it.
 258 */
 259
 260struct to_kill {
 261        struct list_head nd;
 262        struct task_struct *tsk;
 263        unsigned long addr;
 264        char addr_valid;
 265};
 266
 267/*
 268 * Failure handling: if we can't find or can't kill a process there's
 269 * not much we can do.  We just print a message and ignore otherwise.
 270 */
 271
 272/*
 273 * Schedule a process for later kill.
 274 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 275 * TBD would GFP_NOIO be enough?
 276 */
 277static void add_to_kill(struct task_struct *tsk, struct page *p,
 278                       struct vm_area_struct *vma,
 279                       struct list_head *to_kill,
 280                       struct to_kill **tkc)
 281{
 282        struct to_kill *tk;
 283
 284        if (*tkc) {
 285                tk = *tkc;
 286                *tkc = NULL;
 287        } else {
 288                tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
 289                if (!tk) {
 290                        pr_err("Memory failure: Out of memory while machine check handling\n");
 291                        return;
 292                }
 293        }
 294        tk->addr = page_address_in_vma(p, vma);
 295        tk->addr_valid = 1;
 296
 297        /*
 298         * In theory we don't have to kill when the page was
 299         * munmaped. But it could be also a mremap. Since that's
 300         * likely very rare kill anyways just out of paranoia, but use
 301         * a SIGKILL because the error is not contained anymore.
 302         */
 303        if (tk->addr == -EFAULT) {
 304                pr_info("Memory failure: Unable to find user space address %lx in %s\n",
 305                        page_to_pfn(p), tsk->comm);
 306                tk->addr_valid = 0;
 307        }
 308        get_task_struct(tsk);
 309        tk->tsk = tsk;
 310        list_add_tail(&tk->nd, to_kill);
 311}
 312
 313/*
 314 * Kill the processes that have been collected earlier.
 315 *
 316 * Only do anything when DOIT is set, otherwise just free the list
 317 * (this is used for clean pages which do not need killing)
 318 * Also when FAIL is set do a force kill because something went
 319 * wrong earlier.
 320 */
 321static void kill_procs(struct list_head *to_kill, int forcekill,
 322                          bool fail, struct page *page, unsigned long pfn,
 323                          int flags)
 324{
 325        struct to_kill *tk, *next;
 326
 327        list_for_each_entry_safe (tk, next, to_kill, nd) {
 328                if (forcekill) {
 329                        /*
 330                         * In case something went wrong with munmapping
 331                         * make sure the process doesn't catch the
 332                         * signal and then access the memory. Just kill it.
 333                         */
 334                        if (fail || tk->addr_valid == 0) {
 335                                pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
 336                                       pfn, tk->tsk->comm, tk->tsk->pid);
 337                                force_sig(SIGKILL, tk->tsk);
 338                        }
 339
 340                        /*
 341                         * In theory the process could have mapped
 342                         * something else on the address in-between. We could
 343                         * check for that, but we need to tell the
 344                         * process anyways.
 345                         */
 346                        else if (kill_proc(tk->tsk, tk->addr,
 347                                              pfn, page, flags) < 0)
 348                                pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
 349                                       pfn, tk->tsk->comm, tk->tsk->pid);
 350                }
 351                put_task_struct(tk->tsk);
 352                kfree(tk);
 353        }
 354}
 355
 356/*
 357 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 358 * on behalf of the thread group. Return task_struct of the (first found)
 359 * dedicated thread if found, and return NULL otherwise.
 360 *
 361 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 362 * have to call rcu_read_lock/unlock() in this function.
 363 */
 364static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
 365{
 366        struct task_struct *t;
 367
 368        for_each_thread(tsk, t)
 369                if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
 370                        return t;
 371        return NULL;
 372}
 373
 374/*
 375 * Determine whether a given process is "early kill" process which expects
 376 * to be signaled when some page under the process is hwpoisoned.
 377 * Return task_struct of the dedicated thread (main thread unless explicitly
 378 * specified) if the process is "early kill," and otherwise returns NULL.
 379 */
 380static struct task_struct *task_early_kill(struct task_struct *tsk,
 381                                           int force_early)
 382{
 383        struct task_struct *t;
 384        if (!tsk->mm)
 385                return NULL;
 386        if (force_early)
 387                return tsk;
 388        t = find_early_kill_thread(tsk);
 389        if (t)
 390                return t;
 391        if (sysctl_memory_failure_early_kill)
 392                return tsk;
 393        return NULL;
 394}
 395
 396/*
 397 * Collect processes when the error hit an anonymous page.
 398 */
 399static void collect_procs_anon(struct page *page, struct list_head *to_kill,
 400                              struct to_kill **tkc, int force_early)
 401{
 402        struct vm_area_struct *vma;
 403        struct task_struct *tsk;
 404        struct anon_vma *av;
 405        pgoff_t pgoff;
 406
 407        av = page_lock_anon_vma_read(page);
 408        if (av == NULL) /* Not actually mapped anymore */
 409                return;
 410
 411        pgoff = page_to_pgoff(page);
 412        read_lock(&tasklist_lock);
 413        for_each_process (tsk) {
 414                struct anon_vma_chain *vmac;
 415                struct task_struct *t = task_early_kill(tsk, force_early);
 416
 417                if (!t)
 418                        continue;
 419                anon_vma_interval_tree_foreach(vmac, &av->rb_root,
 420                                               pgoff, pgoff) {
 421                        vma = vmac->vma;
 422                        if (!page_mapped_in_vma(page, vma))
 423                                continue;
 424                        if (vma->vm_mm == t->mm)
 425                                add_to_kill(t, page, vma, to_kill, tkc);
 426                }
 427        }
 428        read_unlock(&tasklist_lock);
 429        page_unlock_anon_vma_read(av);
 430}
 431
 432/*
 433 * Collect processes when the error hit a file mapped page.
 434 */
 435static void collect_procs_file(struct page *page, struct list_head *to_kill,
 436                              struct to_kill **tkc, int force_early)
 437{
 438        struct vm_area_struct *vma;
 439        struct task_struct *tsk;
 440        struct address_space *mapping = page->mapping;
 441
 442        i_mmap_lock_read(mapping);
 443        read_lock(&tasklist_lock);
 444        for_each_process(tsk) {
 445                pgoff_t pgoff = page_to_pgoff(page);
 446                struct task_struct *t = task_early_kill(tsk, force_early);
 447
 448                if (!t)
 449                        continue;
 450                vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
 451                                      pgoff) {
 452                        /*
 453                         * Send early kill signal to tasks where a vma covers
 454                         * the page but the corrupted page is not necessarily
 455                         * mapped it in its pte.
 456                         * Assume applications who requested early kill want
 457                         * to be informed of all such data corruptions.
 458                         */
 459                        if (vma->vm_mm == t->mm)
 460                                add_to_kill(t, page, vma, to_kill, tkc);
 461                }
 462        }
 463        read_unlock(&tasklist_lock);
 464        i_mmap_unlock_read(mapping);
 465}
 466
 467/*
 468 * Collect the processes who have the corrupted page mapped to kill.
 469 * This is done in two steps for locking reasons.
 470 * First preallocate one tokill structure outside the spin locks,
 471 * so that we can kill at least one process reasonably reliable.
 472 */
 473static void collect_procs(struct page *page, struct list_head *tokill,
 474                                int force_early)
 475{
 476        struct to_kill *tk;
 477
 478        if (!page->mapping)
 479                return;
 480
 481        tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
 482        if (!tk)
 483                return;
 484        if (PageAnon(page))
 485                collect_procs_anon(page, tokill, &tk, force_early);
 486        else
 487                collect_procs_file(page, tokill, &tk, force_early);
 488        kfree(tk);
 489}
 490
 491static const char *action_name[] = {
 492        [MF_IGNORED] = "Ignored",
 493        [MF_FAILED] = "Failed",
 494        [MF_DELAYED] = "Delayed",
 495        [MF_RECOVERED] = "Recovered",
 496};
 497
 498static const char * const action_page_types[] = {
 499        [MF_MSG_KERNEL]                 = "reserved kernel page",
 500        [MF_MSG_KERNEL_HIGH_ORDER]      = "high-order kernel page",
 501        [MF_MSG_SLAB]                   = "kernel slab page",
 502        [MF_MSG_DIFFERENT_COMPOUND]     = "different compound page after locking",
 503        [MF_MSG_POISONED_HUGE]          = "huge page already hardware poisoned",
 504        [MF_MSG_HUGE]                   = "huge page",
 505        [MF_MSG_FREE_HUGE]              = "free huge page",
 506        [MF_MSG_NON_PMD_HUGE]           = "non-pmd-sized huge page",
 507        [MF_MSG_UNMAP_FAILED]           = "unmapping failed page",
 508        [MF_MSG_DIRTY_SWAPCACHE]        = "dirty swapcache page",
 509        [MF_MSG_CLEAN_SWAPCACHE]        = "clean swapcache page",
 510        [MF_MSG_DIRTY_MLOCKED_LRU]      = "dirty mlocked LRU page",
 511        [MF_MSG_CLEAN_MLOCKED_LRU]      = "clean mlocked LRU page",
 512        [MF_MSG_DIRTY_UNEVICTABLE_LRU]  = "dirty unevictable LRU page",
 513        [MF_MSG_CLEAN_UNEVICTABLE_LRU]  = "clean unevictable LRU page",
 514        [MF_MSG_DIRTY_LRU]              = "dirty LRU page",
 515        [MF_MSG_CLEAN_LRU]              = "clean LRU page",
 516        [MF_MSG_TRUNCATED_LRU]          = "already truncated LRU page",
 517        [MF_MSG_BUDDY]                  = "free buddy page",
 518        [MF_MSG_BUDDY_2ND]              = "free buddy page (2nd try)",
 519        [MF_MSG_UNKNOWN]                = "unknown page",
 520};
 521
 522/*
 523 * XXX: It is possible that a page is isolated from LRU cache,
 524 * and then kept in swap cache or failed to remove from page cache.
 525 * The page count will stop it from being freed by unpoison.
 526 * Stress tests should be aware of this memory leak problem.
 527 */
 528static int delete_from_lru_cache(struct page *p)
 529{
 530        if (!isolate_lru_page(p)) {
 531                /*
 532                 * Clear sensible page flags, so that the buddy system won't
 533                 * complain when the page is unpoison-and-freed.
 534                 */
 535                ClearPageActive(p);
 536                ClearPageUnevictable(p);
 537
 538                /*
 539                 * Poisoned page might never drop its ref count to 0 so we have
 540                 * to uncharge it manually from its memcg.
 541                 */
 542                mem_cgroup_uncharge(p);
 543
 544                /*
 545                 * drop the page count elevated by isolate_lru_page()
 546                 */
 547                put_page(p);
 548                return 0;
 549        }
 550        return -EIO;
 551}
 552
 553static int truncate_error_page(struct page *p, unsigned long pfn,
 554                                struct address_space *mapping)
 555{
 556        int ret = MF_FAILED;
 557
 558        if (mapping->a_ops->error_remove_page) {
 559                int err = mapping->a_ops->error_remove_page(mapping, p);
 560
 561                if (err != 0) {
 562                        pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
 563                                pfn, err);
 564                } else if (page_has_private(p) &&
 565                           !try_to_release_page(p, GFP_NOIO)) {
 566                        pr_info("Memory failure: %#lx: failed to release buffers\n",
 567                                pfn);
 568                } else {
 569                        ret = MF_RECOVERED;
 570                }
 571        } else {
 572                /*
 573                 * If the file system doesn't support it just invalidate
 574                 * This fails on dirty or anything with private pages
 575                 */
 576                if (invalidate_inode_page(p))
 577                        ret = MF_RECOVERED;
 578                else
 579                        pr_info("Memory failure: %#lx: Failed to invalidate\n",
 580                                pfn);
 581        }
 582
 583        return ret;
 584}
 585
 586/*
 587 * Error hit kernel page.
 588 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 589 * could be more sophisticated.
 590 */
 591static int me_kernel(struct page *p, unsigned long pfn)
 592{
 593        return MF_IGNORED;
 594}
 595
 596/*
 597 * Page in unknown state. Do nothing.
 598 */
 599static int me_unknown(struct page *p, unsigned long pfn)
 600{
 601        pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
 602        return MF_FAILED;
 603}
 604
 605/*
 606 * Clean (or cleaned) page cache page.
 607 */
 608static int me_pagecache_clean(struct page *p, unsigned long pfn)
 609{
 610        struct address_space *mapping;
 611
 612        delete_from_lru_cache(p);
 613
 614        /*
 615         * For anonymous pages we're done the only reference left
 616         * should be the one m_f() holds.
 617         */
 618        if (PageAnon(p))
 619                return MF_RECOVERED;
 620
 621        /*
 622         * Now truncate the page in the page cache. This is really
 623         * more like a "temporary hole punch"
 624         * Don't do this for block devices when someone else
 625         * has a reference, because it could be file system metadata
 626         * and that's not safe to truncate.
 627         */
 628        mapping = page_mapping(p);
 629        if (!mapping) {
 630                /*
 631                 * Page has been teared down in the meanwhile
 632                 */
 633                return MF_FAILED;
 634        }
 635
 636        /*
 637         * Truncation is a bit tricky. Enable it per file system for now.
 638         *
 639         * Open: to take i_mutex or not for this? Right now we don't.
 640         */
 641        return truncate_error_page(p, pfn, mapping);
 642}
 643
 644/*
 645 * Dirty pagecache page
 646 * Issues: when the error hit a hole page the error is not properly
 647 * propagated.
 648 */
 649static int me_pagecache_dirty(struct page *p, unsigned long pfn)
 650{
 651        struct address_space *mapping = page_mapping(p);
 652
 653        SetPageError(p);
 654        /* TBD: print more information about the file. */
 655        if (mapping) {
 656                /*
 657                 * IO error will be reported by write(), fsync(), etc.
 658                 * who check the mapping.
 659                 * This way the application knows that something went
 660                 * wrong with its dirty file data.
 661                 *
 662                 * There's one open issue:
 663                 *
 664                 * The EIO will be only reported on the next IO
 665                 * operation and then cleared through the IO map.
 666                 * Normally Linux has two mechanisms to pass IO error
 667                 * first through the AS_EIO flag in the address space
 668                 * and then through the PageError flag in the page.
 669                 * Since we drop pages on memory failure handling the
 670                 * only mechanism open to use is through AS_AIO.
 671                 *
 672                 * This has the disadvantage that it gets cleared on
 673                 * the first operation that returns an error, while
 674                 * the PageError bit is more sticky and only cleared
 675                 * when the page is reread or dropped.  If an
 676                 * application assumes it will always get error on
 677                 * fsync, but does other operations on the fd before
 678                 * and the page is dropped between then the error
 679                 * will not be properly reported.
 680                 *
 681                 * This can already happen even without hwpoisoned
 682                 * pages: first on metadata IO errors (which only
 683                 * report through AS_EIO) or when the page is dropped
 684                 * at the wrong time.
 685                 *
 686                 * So right now we assume that the application DTRT on
 687                 * the first EIO, but we're not worse than other parts
 688                 * of the kernel.
 689                 */
 690                mapping_set_error(mapping, -EIO);
 691        }
 692
 693        return me_pagecache_clean(p, pfn);
 694}
 695
 696/*
 697 * Clean and dirty swap cache.
 698 *
 699 * Dirty swap cache page is tricky to handle. The page could live both in page
 700 * cache and swap cache(ie. page is freshly swapped in). So it could be
 701 * referenced concurrently by 2 types of PTEs:
 702 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 703 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 704 * and then
 705 *      - clear dirty bit to prevent IO
 706 *      - remove from LRU
 707 *      - but keep in the swap cache, so that when we return to it on
 708 *        a later page fault, we know the application is accessing
 709 *        corrupted data and shall be killed (we installed simple
 710 *        interception code in do_swap_page to catch it).
 711 *
 712 * Clean swap cache pages can be directly isolated. A later page fault will
 713 * bring in the known good data from disk.
 714 */
 715static int me_swapcache_dirty(struct page *p, unsigned long pfn)
 716{
 717        ClearPageDirty(p);
 718        /* Trigger EIO in shmem: */
 719        ClearPageUptodate(p);
 720
 721        if (!delete_from_lru_cache(p))
 722                return MF_DELAYED;
 723        else
 724                return MF_FAILED;
 725}
 726
 727static int me_swapcache_clean(struct page *p, unsigned long pfn)
 728{
 729        delete_from_swap_cache(p);
 730
 731        if (!delete_from_lru_cache(p))
 732                return MF_RECOVERED;
 733        else
 734                return MF_FAILED;
 735}
 736
 737/*
 738 * Huge pages. Needs work.
 739 * Issues:
 740 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 741 *   To narrow down kill region to one page, we need to break up pmd.
 742 */
 743static int me_huge_page(struct page *p, unsigned long pfn)
 744{
 745        int res = 0;
 746        struct page *hpage = compound_head(p);
 747        struct address_space *mapping;
 748
 749        if (!PageHuge(hpage))
 750                return MF_DELAYED;
 751
 752        mapping = page_mapping(hpage);
 753        if (mapping) {
 754                res = truncate_error_page(hpage, pfn, mapping);
 755        } else {
 756                unlock_page(hpage);
 757                /*
 758                 * migration entry prevents later access on error anonymous
 759                 * hugepage, so we can free and dissolve it into buddy to
 760                 * save healthy subpages.
 761                 */
 762                if (PageAnon(hpage))
 763                        put_page(hpage);
 764                dissolve_free_huge_page(p);
 765                res = MF_RECOVERED;
 766                lock_page(hpage);
 767        }
 768
 769        return res;
 770}
 771
 772/*
 773 * Various page states we can handle.
 774 *
 775 * A page state is defined by its current page->flags bits.
 776 * The table matches them in order and calls the right handler.
 777 *
 778 * This is quite tricky because we can access page at any time
 779 * in its live cycle, so all accesses have to be extremely careful.
 780 *
 781 * This is not complete. More states could be added.
 782 * For any missing state don't attempt recovery.
 783 */
 784
 785#define dirty           (1UL << PG_dirty)
 786#define sc              ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
 787#define unevict         (1UL << PG_unevictable)
 788#define mlock           (1UL << PG_mlocked)
 789#define writeback       (1UL << PG_writeback)
 790#define lru             (1UL << PG_lru)
 791#define head            (1UL << PG_head)
 792#define slab            (1UL << PG_slab)
 793#define reserved        (1UL << PG_reserved)
 794
 795static struct page_state {
 796        unsigned long mask;
 797        unsigned long res;
 798        enum mf_action_page_type type;
 799        int (*action)(struct page *p, unsigned long pfn);
 800} error_states[] = {
 801        { reserved,     reserved,       MF_MSG_KERNEL,  me_kernel },
 802        /*
 803         * free pages are specially detected outside this table:
 804         * PG_buddy pages only make a small fraction of all free pages.
 805         */
 806
 807        /*
 808         * Could in theory check if slab page is free or if we can drop
 809         * currently unused objects without touching them. But just
 810         * treat it as standard kernel for now.
 811         */
 812        { slab,         slab,           MF_MSG_SLAB,    me_kernel },
 813
 814        { head,         head,           MF_MSG_HUGE,            me_huge_page },
 815
 816        { sc|dirty,     sc|dirty,       MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
 817        { sc|dirty,     sc,             MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
 818
 819        { mlock|dirty,  mlock|dirty,    MF_MSG_DIRTY_MLOCKED_LRU,       me_pagecache_dirty },
 820        { mlock|dirty,  mlock,          MF_MSG_CLEAN_MLOCKED_LRU,       me_pagecache_clean },
 821
 822        { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU,   me_pagecache_dirty },
 823        { unevict|dirty, unevict,       MF_MSG_CLEAN_UNEVICTABLE_LRU,   me_pagecache_clean },
 824
 825        { lru|dirty,    lru|dirty,      MF_MSG_DIRTY_LRU,       me_pagecache_dirty },
 826        { lru|dirty,    lru,            MF_MSG_CLEAN_LRU,       me_pagecache_clean },
 827
 828        /*
 829         * Catchall entry: must be at end.
 830         */
 831        { 0,            0,              MF_MSG_UNKNOWN, me_unknown },
 832};
 833
 834#undef dirty
 835#undef sc
 836#undef unevict
 837#undef mlock
 838#undef writeback
 839#undef lru
 840#undef head
 841#undef slab
 842#undef reserved
 843
 844/*
 845 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
 846 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
 847 */
 848static void action_result(unsigned long pfn, enum mf_action_page_type type,
 849                          enum mf_result result)
 850{
 851        trace_memory_failure_event(pfn, type, result);
 852
 853        pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
 854                pfn, action_page_types[type], action_name[result]);
 855}
 856
 857static int page_action(struct page_state *ps, struct page *p,
 858                        unsigned long pfn)
 859{
 860        int result;
 861        int count;
 862
 863        result = ps->action(p, pfn);
 864
 865        count = page_count(p) - 1;
 866        if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
 867                count--;
 868        if (count > 0) {
 869                pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
 870                       pfn, action_page_types[ps->type], count);
 871                result = MF_FAILED;
 872        }
 873        action_result(pfn, ps->type, result);
 874
 875        /* Could do more checks here if page looks ok */
 876        /*
 877         * Could adjust zone counters here to correct for the missing page.
 878         */
 879
 880        return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
 881}
 882
 883/**
 884 * get_hwpoison_page() - Get refcount for memory error handling:
 885 * @page:       raw error page (hit by memory error)
 886 *
 887 * Return: return 0 if failed to grab the refcount, otherwise true (some
 888 * non-zero value.)
 889 */
 890int get_hwpoison_page(struct page *page)
 891{
 892        struct page *head = compound_head(page);
 893
 894        if (!PageHuge(head) && PageTransHuge(head)) {
 895                /*
 896                 * Non anonymous thp exists only in allocation/free time. We
 897                 * can't handle such a case correctly, so let's give it up.
 898                 * This should be better than triggering BUG_ON when kernel
 899                 * tries to touch the "partially handled" page.
 900                 */
 901                if (!PageAnon(head)) {
 902                        pr_err("Memory failure: %#lx: non anonymous thp\n",
 903                                page_to_pfn(page));
 904                        return 0;
 905                }
 906        }
 907
 908        if (get_page_unless_zero(head)) {
 909                if (head == compound_head(page))
 910                        return 1;
 911
 912                pr_info("Memory failure: %#lx cannot catch tail\n",
 913                        page_to_pfn(page));
 914                put_page(head);
 915        }
 916
 917        return 0;
 918}
 919EXPORT_SYMBOL_GPL(get_hwpoison_page);
 920
 921/*
 922 * Do all that is necessary to remove user space mappings. Unmap
 923 * the pages and send SIGBUS to the processes if the data was dirty.
 924 */
 925static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
 926                                  int flags, struct page **hpagep)
 927{
 928        enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
 929        struct address_space *mapping;
 930        LIST_HEAD(tokill);
 931        bool unmap_success;
 932        int kill = 1, forcekill;
 933        struct page *hpage = *hpagep;
 934        bool mlocked = PageMlocked(hpage);
 935
 936        /*
 937         * Here we are interested only in user-mapped pages, so skip any
 938         * other types of pages.
 939         */
 940        if (PageReserved(p) || PageSlab(p))
 941                return true;
 942        if (!(PageLRU(hpage) || PageHuge(p)))
 943                return true;
 944
 945        /*
 946         * This check implies we don't kill processes if their pages
 947         * are in the swap cache early. Those are always late kills.
 948         */
 949        if (!page_mapped(hpage))
 950                return true;
 951
 952        if (PageKsm(p)) {
 953                pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
 954                return false;
 955        }
 956
 957        if (PageSwapCache(p)) {
 958                pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
 959                        pfn);
 960                ttu |= TTU_IGNORE_HWPOISON;
 961        }
 962
 963        /*
 964         * Propagate the dirty bit from PTEs to struct page first, because we
 965         * need this to decide if we should kill or just drop the page.
 966         * XXX: the dirty test could be racy: set_page_dirty() may not always
 967         * be called inside page lock (it's recommended but not enforced).
 968         */
 969        mapping = page_mapping(hpage);
 970        if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
 971            mapping_cap_writeback_dirty(mapping)) {
 972                if (page_mkclean(hpage)) {
 973                        SetPageDirty(hpage);
 974                } else {
 975                        kill = 0;
 976                        ttu |= TTU_IGNORE_HWPOISON;
 977                        pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
 978                                pfn);
 979                }
 980        }
 981
 982        /*
 983         * First collect all the processes that have the page
 984         * mapped in dirty form.  This has to be done before try_to_unmap,
 985         * because ttu takes the rmap data structures down.
 986         *
 987         * Error handling: We ignore errors here because
 988         * there's nothing that can be done.
 989         */
 990        if (kill)
 991                collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
 992
 993        unmap_success = try_to_unmap(hpage, ttu);
 994        if (!unmap_success)
 995                pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
 996                       pfn, page_mapcount(hpage));
 997
 998        /*
 999         * try_to_unmap() might put mlocked page in lru cache, so call
1000         * shake_page() again to ensure that it's flushed.
1001         */
1002        if (mlocked)
1003                shake_page(hpage, 0);
1004
1005        /*
1006         * Now that the dirty bit has been propagated to the
1007         * struct page and all unmaps done we can decide if
1008         * killing is needed or not.  Only kill when the page
1009         * was dirty or the process is not restartable,
1010         * otherwise the tokill list is merely
1011         * freed.  When there was a problem unmapping earlier
1012         * use a more force-full uncatchable kill to prevent
1013         * any accesses to the poisoned memory.
1014         */
1015        forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1016        kill_procs(&tokill, forcekill, !unmap_success, p, pfn, flags);
1017
1018        return unmap_success;
1019}
1020
1021static int identify_page_state(unsigned long pfn, struct page *p,
1022                                unsigned long page_flags)
1023{
1024        struct page_state *ps;
1025
1026        /*
1027         * The first check uses the current page flags which may not have any
1028         * relevant information. The second check with the saved page flags is
1029         * carried out only if the first check can't determine the page status.
1030         */
1031        for (ps = error_states;; ps++)
1032                if ((p->flags & ps->mask) == ps->res)
1033                        break;
1034
1035        page_flags |= (p->flags & (1UL << PG_dirty));
1036
1037        if (!ps->mask)
1038                for (ps = error_states;; ps++)
1039                        if ((page_flags & ps->mask) == ps->res)
1040                                break;
1041        return page_action(ps, p, pfn);
1042}
1043
1044static int memory_failure_hugetlb(unsigned long pfn, int flags)
1045{
1046        struct page *p = pfn_to_page(pfn);
1047        struct page *head = compound_head(p);
1048        int res;
1049        unsigned long page_flags;
1050
1051        if (TestSetPageHWPoison(head)) {
1052                pr_err("Memory failure: %#lx: already hardware poisoned\n",
1053                       pfn);
1054                return 0;
1055        }
1056
1057        num_poisoned_pages_inc();
1058
1059        if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1060                /*
1061                 * Check "filter hit" and "race with other subpage."
1062                 */
1063                lock_page(head);
1064                if (PageHWPoison(head)) {
1065                        if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1066                            || (p != head && TestSetPageHWPoison(head))) {
1067                                num_poisoned_pages_dec();
1068                                unlock_page(head);
1069                                return 0;
1070                        }
1071                }
1072                unlock_page(head);
1073                dissolve_free_huge_page(p);
1074                action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1075                return 0;
1076        }
1077
1078        lock_page(head);
1079        page_flags = head->flags;
1080
1081        if (!PageHWPoison(head)) {
1082                pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1083                num_poisoned_pages_dec();
1084                unlock_page(head);
1085                put_hwpoison_page(head);
1086                return 0;
1087        }
1088
1089        /*
1090         * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1091         * simply disable it. In order to make it work properly, we need
1092         * make sure that:
1093         *  - conversion of a pud that maps an error hugetlb into hwpoison
1094         *    entry properly works, and
1095         *  - other mm code walking over page table is aware of pud-aligned
1096         *    hwpoison entries.
1097         */
1098        if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1099                action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1100                res = -EBUSY;
1101                goto out;
1102        }
1103
1104        if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1105                action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1106                res = -EBUSY;
1107                goto out;
1108        }
1109
1110        res = identify_page_state(pfn, p, page_flags);
1111out:
1112        unlock_page(head);
1113        return res;
1114}
1115
1116/**
1117 * memory_failure - Handle memory failure of a page.
1118 * @pfn: Page Number of the corrupted page
1119 * @flags: fine tune action taken
1120 *
1121 * This function is called by the low level machine check code
1122 * of an architecture when it detects hardware memory corruption
1123 * of a page. It tries its best to recover, which includes
1124 * dropping pages, killing processes etc.
1125 *
1126 * The function is primarily of use for corruptions that
1127 * happen outside the current execution context (e.g. when
1128 * detected by a background scrubber)
1129 *
1130 * Must run in process context (e.g. a work queue) with interrupts
1131 * enabled and no spinlocks hold.
1132 */
1133int memory_failure(unsigned long pfn, int flags)
1134{
1135        struct page *p;
1136        struct page *hpage;
1137        struct page *orig_head;
1138        int res;
1139        unsigned long page_flags;
1140
1141        if (!sysctl_memory_failure_recovery)
1142                panic("Memory failure on page %lx", pfn);
1143
1144        if (!pfn_valid(pfn)) {
1145                pr_err("Memory failure: %#lx: memory outside kernel control\n",
1146                        pfn);
1147                return -ENXIO;
1148        }
1149
1150        p = pfn_to_page(pfn);
1151        if (PageHuge(p))
1152                return memory_failure_hugetlb(pfn, flags);
1153        if (TestSetPageHWPoison(p)) {
1154                pr_err("Memory failure: %#lx: already hardware poisoned\n",
1155                        pfn);
1156                return 0;
1157        }
1158
1159        orig_head = hpage = compound_head(p);
1160        num_poisoned_pages_inc();
1161
1162        /*
1163         * We need/can do nothing about count=0 pages.
1164         * 1) it's a free page, and therefore in safe hand:
1165         *    prep_new_page() will be the gate keeper.
1166         * 2) it's part of a non-compound high order page.
1167         *    Implies some kernel user: cannot stop them from
1168         *    R/W the page; let's pray that the page has been
1169         *    used and will be freed some time later.
1170         * In fact it's dangerous to directly bump up page count from 0,
1171         * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1172         */
1173        if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1174                if (is_free_buddy_page(p)) {
1175                        action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1176                        return 0;
1177                } else {
1178                        action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1179                        return -EBUSY;
1180                }
1181        }
1182
1183        if (PageTransHuge(hpage)) {
1184                lock_page(p);
1185                if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1186                        unlock_page(p);
1187                        if (!PageAnon(p))
1188                                pr_err("Memory failure: %#lx: non anonymous thp\n",
1189                                        pfn);
1190                        else
1191                                pr_err("Memory failure: %#lx: thp split failed\n",
1192                                        pfn);
1193                        if (TestClearPageHWPoison(p))
1194                                num_poisoned_pages_dec();
1195                        put_hwpoison_page(p);
1196                        return -EBUSY;
1197                }
1198                unlock_page(p);
1199                VM_BUG_ON_PAGE(!page_count(p), p);
1200                hpage = compound_head(p);
1201        }
1202
1203        /*
1204         * We ignore non-LRU pages for good reasons.
1205         * - PG_locked is only well defined for LRU pages and a few others
1206         * - to avoid races with __SetPageLocked()
1207         * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1208         * The check (unnecessarily) ignores LRU pages being isolated and
1209         * walked by the page reclaim code, however that's not a big loss.
1210         */
1211        shake_page(p, 0);
1212        /* shake_page could have turned it free. */
1213        if (!PageLRU(p) && is_free_buddy_page(p)) {
1214                if (flags & MF_COUNT_INCREASED)
1215                        action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1216                else
1217                        action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1218                return 0;
1219        }
1220
1221        lock_page(p);
1222
1223        /*
1224         * The page could have changed compound pages during the locking.
1225         * If this happens just bail out.
1226         */
1227        if (PageCompound(p) && compound_head(p) != orig_head) {
1228                action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1229                res = -EBUSY;
1230                goto out;
1231        }
1232
1233        /*
1234         * We use page flags to determine what action should be taken, but
1235         * the flags can be modified by the error containment action.  One
1236         * example is an mlocked page, where PG_mlocked is cleared by
1237         * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1238         * correctly, we save a copy of the page flags at this time.
1239         */
1240        if (PageHuge(p))
1241                page_flags = hpage->flags;
1242        else
1243                page_flags = p->flags;
1244
1245        /*
1246         * unpoison always clear PG_hwpoison inside page lock
1247         */
1248        if (!PageHWPoison(p)) {
1249                pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1250                num_poisoned_pages_dec();
1251                unlock_page(p);
1252                put_hwpoison_page(p);
1253                return 0;
1254        }
1255        if (hwpoison_filter(p)) {
1256                if (TestClearPageHWPoison(p))
1257                        num_poisoned_pages_dec();
1258                unlock_page(p);
1259                put_hwpoison_page(p);
1260                return 0;
1261        }
1262
1263        if (!PageTransTail(p) && !PageLRU(p))
1264                goto identify_page_state;
1265
1266        /*
1267         * It's very difficult to mess with pages currently under IO
1268         * and in many cases impossible, so we just avoid it here.
1269         */
1270        wait_on_page_writeback(p);
1271
1272        /*
1273         * Now take care of user space mappings.
1274         * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1275         *
1276         * When the raw error page is thp tail page, hpage points to the raw
1277         * page after thp split.
1278         */
1279        if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
1280                action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1281                res = -EBUSY;
1282                goto out;
1283        }
1284
1285        /*
1286         * Torn down by someone else?
1287         */
1288        if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1289                action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1290                res = -EBUSY;
1291                goto out;
1292        }
1293
1294identify_page_state:
1295        res = identify_page_state(pfn, p, page_flags);
1296out:
1297        unlock_page(p);
1298        return res;
1299}
1300EXPORT_SYMBOL_GPL(memory_failure);
1301
1302#define MEMORY_FAILURE_FIFO_ORDER       4
1303#define MEMORY_FAILURE_FIFO_SIZE        (1 << MEMORY_FAILURE_FIFO_ORDER)
1304
1305struct memory_failure_entry {
1306        unsigned long pfn;
1307        int flags;
1308};
1309
1310struct memory_failure_cpu {
1311        DECLARE_KFIFO(fifo, struct memory_failure_entry,
1312                      MEMORY_FAILURE_FIFO_SIZE);
1313        spinlock_t lock;
1314        struct work_struct work;
1315};
1316
1317static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1318
1319/**
1320 * memory_failure_queue - Schedule handling memory failure of a page.
1321 * @pfn: Page Number of the corrupted page
1322 * @flags: Flags for memory failure handling
1323 *
1324 * This function is called by the low level hardware error handler
1325 * when it detects hardware memory corruption of a page. It schedules
1326 * the recovering of error page, including dropping pages, killing
1327 * processes etc.
1328 *
1329 * The function is primarily of use for corruptions that
1330 * happen outside the current execution context (e.g. when
1331 * detected by a background scrubber)
1332 *
1333 * Can run in IRQ context.
1334 */
1335void memory_failure_queue(unsigned long pfn, int flags)
1336{
1337        struct memory_failure_cpu *mf_cpu;
1338        unsigned long proc_flags;
1339        struct memory_failure_entry entry = {
1340                .pfn =          pfn,
1341                .flags =        flags,
1342        };
1343
1344        mf_cpu = &get_cpu_var(memory_failure_cpu);
1345        spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1346        if (kfifo_put(&mf_cpu->fifo, entry))
1347                schedule_work_on(smp_processor_id(), &mf_cpu->work);
1348        else
1349                pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1350                       pfn);
1351        spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1352        put_cpu_var(memory_failure_cpu);
1353}
1354EXPORT_SYMBOL_GPL(memory_failure_queue);
1355
1356static void memory_failure_work_func(struct work_struct *work)
1357{
1358        struct memory_failure_cpu *mf_cpu;
1359        struct memory_failure_entry entry = { 0, };
1360        unsigned long proc_flags;
1361        int gotten;
1362
1363        mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1364        for (;;) {
1365                spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1366                gotten = kfifo_get(&mf_cpu->fifo, &entry);
1367                spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1368                if (!gotten)
1369                        break;
1370                if (entry.flags & MF_SOFT_OFFLINE)
1371                        soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1372                else
1373                        memory_failure(entry.pfn, entry.flags);
1374        }
1375}
1376
1377static int __init memory_failure_init(void)
1378{
1379        struct memory_failure_cpu *mf_cpu;
1380        int cpu;
1381
1382        for_each_possible_cpu(cpu) {
1383                mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1384                spin_lock_init(&mf_cpu->lock);
1385                INIT_KFIFO(mf_cpu->fifo);
1386                INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1387        }
1388
1389        return 0;
1390}
1391core_initcall(memory_failure_init);
1392
1393#define unpoison_pr_info(fmt, pfn, rs)                  \
1394({                                                      \
1395        if (__ratelimit(rs))                            \
1396                pr_info(fmt, pfn);                      \
1397})
1398
1399/**
1400 * unpoison_memory - Unpoison a previously poisoned page
1401 * @pfn: Page number of the to be unpoisoned page
1402 *
1403 * Software-unpoison a page that has been poisoned by
1404 * memory_failure() earlier.
1405 *
1406 * This is only done on the software-level, so it only works
1407 * for linux injected failures, not real hardware failures
1408 *
1409 * Returns 0 for success, otherwise -errno.
1410 */
1411int unpoison_memory(unsigned long pfn)
1412{
1413        struct page *page;
1414        struct page *p;
1415        int freeit = 0;
1416        static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1417                                        DEFAULT_RATELIMIT_BURST);
1418
1419        if (!pfn_valid(pfn))
1420                return -ENXIO;
1421
1422        p = pfn_to_page(pfn);
1423        page = compound_head(p);
1424
1425        if (!PageHWPoison(p)) {
1426                unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1427                                 pfn, &unpoison_rs);
1428                return 0;
1429        }
1430
1431        if (page_count(page) > 1) {
1432                unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1433                                 pfn, &unpoison_rs);
1434                return 0;
1435        }
1436
1437        if (page_mapped(page)) {
1438                unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1439                                 pfn, &unpoison_rs);
1440                return 0;
1441        }
1442
1443        if (page_mapping(page)) {
1444                unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1445                                 pfn, &unpoison_rs);
1446                return 0;
1447        }
1448
1449        /*
1450         * unpoison_memory() can encounter thp only when the thp is being
1451         * worked by memory_failure() and the page lock is not held yet.
1452         * In such case, we yield to memory_failure() and make unpoison fail.
1453         */
1454        if (!PageHuge(page) && PageTransHuge(page)) {
1455                unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1456                                 pfn, &unpoison_rs);
1457                return 0;
1458        }
1459
1460        if (!get_hwpoison_page(p)) {
1461                if (TestClearPageHWPoison(p))
1462                        num_poisoned_pages_dec();
1463                unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1464                                 pfn, &unpoison_rs);
1465                return 0;
1466        }
1467
1468        lock_page(page);
1469        /*
1470         * This test is racy because PG_hwpoison is set outside of page lock.
1471         * That's acceptable because that won't trigger kernel panic. Instead,
1472         * the PG_hwpoison page will be caught and isolated on the entrance to
1473         * the free buddy page pool.
1474         */
1475        if (TestClearPageHWPoison(page)) {
1476                unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1477                                 pfn, &unpoison_rs);
1478                num_poisoned_pages_dec();
1479                freeit = 1;
1480        }
1481        unlock_page(page);
1482
1483        put_hwpoison_page(page);
1484        if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1485                put_hwpoison_page(page);
1486
1487        return 0;
1488}
1489EXPORT_SYMBOL(unpoison_memory);
1490
1491static struct page *new_page(struct page *p, unsigned long private)
1492{
1493        int nid = page_to_nid(p);
1494
1495        return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
1496}
1497
1498/*
1499 * Safely get reference count of an arbitrary page.
1500 * Returns 0 for a free page, -EIO for a zero refcount page
1501 * that is not free, and 1 for any other page type.
1502 * For 1 the page is returned with increased page count, otherwise not.
1503 */
1504static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1505{
1506        int ret;
1507
1508        if (flags & MF_COUNT_INCREASED)
1509                return 1;
1510
1511        /*
1512         * When the target page is a free hugepage, just remove it
1513         * from free hugepage list.
1514         */
1515        if (!get_hwpoison_page(p)) {
1516                if (PageHuge(p)) {
1517                        pr_info("%s: %#lx free huge page\n", __func__, pfn);
1518                        ret = 0;
1519                } else if (is_free_buddy_page(p)) {
1520                        pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1521                        ret = 0;
1522                } else {
1523                        pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1524                                __func__, pfn, p->flags);
1525                        ret = -EIO;
1526                }
1527        } else {
1528                /* Not a free page */
1529                ret = 1;
1530        }
1531        return ret;
1532}
1533
1534static int get_any_page(struct page *page, unsigned long pfn, int flags)
1535{
1536        int ret = __get_any_page(page, pfn, flags);
1537
1538        if (ret == 1 && !PageHuge(page) &&
1539            !PageLRU(page) && !__PageMovable(page)) {
1540                /*
1541                 * Try to free it.
1542                 */
1543                put_hwpoison_page(page);
1544                shake_page(page, 1);
1545
1546                /*
1547                 * Did it turn free?
1548                 */
1549                ret = __get_any_page(page, pfn, 0);
1550                if (ret == 1 && !PageLRU(page)) {
1551                        /* Drop page reference which is from __get_any_page() */
1552                        put_hwpoison_page(page);
1553                        pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1554                                pfn, page->flags, &page->flags);
1555                        return -EIO;
1556                }
1557        }
1558        return ret;
1559}
1560
1561static int soft_offline_huge_page(struct page *page, int flags)
1562{
1563        int ret;
1564        unsigned long pfn = page_to_pfn(page);
1565        struct page *hpage = compound_head(page);
1566        LIST_HEAD(pagelist);
1567
1568        /*
1569         * This double-check of PageHWPoison is to avoid the race with
1570         * memory_failure(). See also comment in __soft_offline_page().
1571         */
1572        lock_page(hpage);
1573        if (PageHWPoison(hpage)) {
1574                unlock_page(hpage);
1575                put_hwpoison_page(hpage);
1576                pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1577                return -EBUSY;
1578        }
1579        unlock_page(hpage);
1580
1581        ret = isolate_huge_page(hpage, &pagelist);
1582        /*
1583         * get_any_page() and isolate_huge_page() takes a refcount each,
1584         * so need to drop one here.
1585         */
1586        put_hwpoison_page(hpage);
1587        if (!ret) {
1588                pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1589                return -EBUSY;
1590        }
1591
1592        ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1593                                MIGRATE_SYNC, MR_MEMORY_FAILURE);
1594        if (ret) {
1595                pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1596                        pfn, ret, page->flags, &page->flags);
1597                if (!list_empty(&pagelist))
1598                        putback_movable_pages(&pagelist);
1599                if (ret > 0)
1600                        ret = -EIO;
1601        } else {
1602                /*
1603                 * We set PG_hwpoison only when the migration source hugepage
1604                 * was successfully dissolved, because otherwise hwpoisoned
1605                 * hugepage remains on free hugepage list, then userspace will
1606                 * find it as SIGBUS by allocation failure. That's not expected
1607                 * in soft-offlining.
1608                 */
1609                ret = dissolve_free_huge_page(page);
1610                if (!ret) {
1611                        if (set_hwpoison_free_buddy_page(page))
1612                                num_poisoned_pages_inc();
1613                        else
1614                                ret = -EBUSY;
1615                }
1616        }
1617        return ret;
1618}
1619
1620static int __soft_offline_page(struct page *page, int flags)
1621{
1622        int ret;
1623        unsigned long pfn = page_to_pfn(page);
1624
1625        /*
1626         * Check PageHWPoison again inside page lock because PageHWPoison
1627         * is set by memory_failure() outside page lock. Note that
1628         * memory_failure() also double-checks PageHWPoison inside page lock,
1629         * so there's no race between soft_offline_page() and memory_failure().
1630         */
1631        lock_page(page);
1632        wait_on_page_writeback(page);
1633        if (PageHWPoison(page)) {
1634                unlock_page(page);
1635                put_hwpoison_page(page);
1636                pr_info("soft offline: %#lx page already poisoned\n", pfn);
1637                return -EBUSY;
1638        }
1639        /*
1640         * Try to invalidate first. This should work for
1641         * non dirty unmapped page cache pages.
1642         */
1643        ret = invalidate_inode_page(page);
1644        unlock_page(page);
1645        /*
1646         * RED-PEN would be better to keep it isolated here, but we
1647         * would need to fix isolation locking first.
1648         */
1649        if (ret == 1) {
1650                put_hwpoison_page(page);
1651                pr_info("soft_offline: %#lx: invalidated\n", pfn);
1652                SetPageHWPoison(page);
1653                num_poisoned_pages_inc();
1654                return 0;
1655        }
1656
1657        /*
1658         * Simple invalidation didn't work.
1659         * Try to migrate to a new page instead. migrate.c
1660         * handles a large number of cases for us.
1661         */
1662        if (PageLRU(page))
1663                ret = isolate_lru_page(page);
1664        else
1665                ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1666        /*
1667         * Drop page reference which is came from get_any_page()
1668         * successful isolate_lru_page() already took another one.
1669         */
1670        put_hwpoison_page(page);
1671        if (!ret) {
1672                LIST_HEAD(pagelist);
1673                /*
1674                 * After isolated lru page, the PageLRU will be cleared,
1675                 * so use !__PageMovable instead for LRU page's mapping
1676                 * cannot have PAGE_MAPPING_MOVABLE.
1677                 */
1678                if (!__PageMovable(page))
1679                        inc_node_page_state(page, NR_ISOLATED_ANON +
1680                                                page_is_file_cache(page));
1681                list_add(&page->lru, &pagelist);
1682                ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1683                                        MIGRATE_SYNC, MR_MEMORY_FAILURE);
1684                if (ret) {
1685                        if (!list_empty(&pagelist))
1686                                putback_movable_pages(&pagelist);
1687
1688                        pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1689                                pfn, ret, page->flags, &page->flags);
1690                        if (ret > 0)
1691                                ret = -EIO;
1692                }
1693        } else {
1694                pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1695                        pfn, ret, page_count(page), page->flags, &page->flags);
1696        }
1697        return ret;
1698}
1699
1700static int soft_offline_in_use_page(struct page *page, int flags)
1701{
1702        int ret;
1703        int mt;
1704        struct page *hpage = compound_head(page);
1705
1706        if (!PageHuge(page) && PageTransHuge(hpage)) {
1707                lock_page(hpage);
1708                if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1709                        unlock_page(hpage);
1710                        if (!PageAnon(hpage))
1711                                pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1712                        else
1713                                pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1714                        put_hwpoison_page(hpage);
1715                        return -EBUSY;
1716                }
1717                unlock_page(hpage);
1718                get_hwpoison_page(page);
1719                put_hwpoison_page(hpage);
1720        }
1721
1722        /*
1723         * Setting MIGRATE_ISOLATE here ensures that the page will be linked
1724         * to free list immediately (not via pcplist) when released after
1725         * successful page migration. Otherwise we can't guarantee that the
1726         * page is really free after put_page() returns, so
1727         * set_hwpoison_free_buddy_page() highly likely fails.
1728         */
1729        mt = get_pageblock_migratetype(page);
1730        set_pageblock_migratetype(page, MIGRATE_ISOLATE);
1731        if (PageHuge(page))
1732                ret = soft_offline_huge_page(page, flags);
1733        else
1734                ret = __soft_offline_page(page, flags);
1735        set_pageblock_migratetype(page, mt);
1736        return ret;
1737}
1738
1739static int soft_offline_free_page(struct page *page)
1740{
1741        int rc = dissolve_free_huge_page(page);
1742
1743        if (!rc) {
1744                if (set_hwpoison_free_buddy_page(page))
1745                        num_poisoned_pages_inc();
1746                else
1747                        rc = -EBUSY;
1748        }
1749        return rc;
1750}
1751
1752/**
1753 * soft_offline_page - Soft offline a page.
1754 * @page: page to offline
1755 * @flags: flags. Same as memory_failure().
1756 *
1757 * Returns 0 on success, otherwise negated errno.
1758 *
1759 * Soft offline a page, by migration or invalidation,
1760 * without killing anything. This is for the case when
1761 * a page is not corrupted yet (so it's still valid to access),
1762 * but has had a number of corrected errors and is better taken
1763 * out.
1764 *
1765 * The actual policy on when to do that is maintained by
1766 * user space.
1767 *
1768 * This should never impact any application or cause data loss,
1769 * however it might take some time.
1770 *
1771 * This is not a 100% solution for all memory, but tries to be
1772 * ``good enough'' for the majority of memory.
1773 */
1774int soft_offline_page(struct page *page, int flags)
1775{
1776        int ret;
1777        unsigned long pfn = page_to_pfn(page);
1778
1779        if (PageHWPoison(page)) {
1780                pr_info("soft offline: %#lx page already poisoned\n", pfn);
1781                if (flags & MF_COUNT_INCREASED)
1782                        put_hwpoison_page(page);
1783                return -EBUSY;
1784        }
1785
1786        get_online_mems();
1787        ret = get_any_page(page, pfn, flags);
1788        put_online_mems();
1789
1790        if (ret > 0)
1791                ret = soft_offline_in_use_page(page, flags);
1792        else if (ret == 0)
1793                ret = soft_offline_free_page(page);
1794
1795        return ret;
1796}
1797