linux/virt/kvm/arm/vgic/vgic-its.c
<<
>>
Prefs
   1/*
   2 * GICv3 ITS emulation
   3 *
   4 * Copyright (C) 2015,2016 ARM Ltd.
   5 * Author: Andre Przywara <andre.przywara@arm.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include <linux/cpu.h>
  21#include <linux/kvm.h>
  22#include <linux/kvm_host.h>
  23#include <linux/interrupt.h>
  24#include <linux/list.h>
  25#include <linux/uaccess.h>
  26#include <linux/list_sort.h>
  27
  28#include <linux/irqchip/arm-gic-v3.h>
  29
  30#include <asm/kvm_emulate.h>
  31#include <asm/kvm_arm.h>
  32#include <asm/kvm_mmu.h>
  33
  34#include "vgic.h"
  35#include "vgic-mmio.h"
  36
  37static int vgic_its_save_tables_v0(struct vgic_its *its);
  38static int vgic_its_restore_tables_v0(struct vgic_its *its);
  39static int vgic_its_commit_v0(struct vgic_its *its);
  40static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
  41                             struct kvm_vcpu *filter_vcpu, bool needs_inv);
  42
  43/*
  44 * Creates a new (reference to a) struct vgic_irq for a given LPI.
  45 * If this LPI is already mapped on another ITS, we increase its refcount
  46 * and return a pointer to the existing structure.
  47 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
  48 * This function returns a pointer to the _unlocked_ structure.
  49 */
  50static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
  51                                     struct kvm_vcpu *vcpu)
  52{
  53        struct vgic_dist *dist = &kvm->arch.vgic;
  54        struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
  55        unsigned long flags;
  56        int ret;
  57
  58        /* In this case there is no put, since we keep the reference. */
  59        if (irq)
  60                return irq;
  61
  62        irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL);
  63        if (!irq)
  64                return ERR_PTR(-ENOMEM);
  65
  66        INIT_LIST_HEAD(&irq->lpi_list);
  67        INIT_LIST_HEAD(&irq->ap_list);
  68        raw_spin_lock_init(&irq->irq_lock);
  69
  70        irq->config = VGIC_CONFIG_EDGE;
  71        kref_init(&irq->refcount);
  72        irq->intid = intid;
  73        irq->target_vcpu = vcpu;
  74        irq->group = 1;
  75
  76        raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
  77
  78        /*
  79         * There could be a race with another vgic_add_lpi(), so we need to
  80         * check that we don't add a second list entry with the same LPI.
  81         */
  82        list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
  83                if (oldirq->intid != intid)
  84                        continue;
  85
  86                /* Someone was faster with adding this LPI, lets use that. */
  87                kfree(irq);
  88                irq = oldirq;
  89
  90                /*
  91                 * This increases the refcount, the caller is expected to
  92                 * call vgic_put_irq() on the returned pointer once it's
  93                 * finished with the IRQ.
  94                 */
  95                vgic_get_irq_kref(irq);
  96
  97                goto out_unlock;
  98        }
  99
 100        list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
 101        dist->lpi_list_count++;
 102
 103out_unlock:
 104        raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
 105
 106        /*
 107         * We "cache" the configuration table entries in our struct vgic_irq's.
 108         * However we only have those structs for mapped IRQs, so we read in
 109         * the respective config data from memory here upon mapping the LPI.
 110         */
 111        ret = update_lpi_config(kvm, irq, NULL, false);
 112        if (ret)
 113                return ERR_PTR(ret);
 114
 115        ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
 116        if (ret)
 117                return ERR_PTR(ret);
 118
 119        return irq;
 120}
 121
 122struct its_device {
 123        struct list_head dev_list;
 124
 125        /* the head for the list of ITTEs */
 126        struct list_head itt_head;
 127        u32 num_eventid_bits;
 128        gpa_t itt_addr;
 129        u32 device_id;
 130};
 131
 132#define COLLECTION_NOT_MAPPED ((u32)~0)
 133
 134struct its_collection {
 135        struct list_head coll_list;
 136
 137        u32 collection_id;
 138        u32 target_addr;
 139};
 140
 141#define its_is_collection_mapped(coll) ((coll) && \
 142                                ((coll)->target_addr != COLLECTION_NOT_MAPPED))
 143
 144struct its_ite {
 145        struct list_head ite_list;
 146
 147        struct vgic_irq *irq;
 148        struct its_collection *collection;
 149        u32 event_id;
 150};
 151
 152/**
 153 * struct vgic_its_abi - ITS abi ops and settings
 154 * @cte_esz: collection table entry size
 155 * @dte_esz: device table entry size
 156 * @ite_esz: interrupt translation table entry size
 157 * @save tables: save the ITS tables into guest RAM
 158 * @restore_tables: restore the ITS internal structs from tables
 159 *  stored in guest RAM
 160 * @commit: initialize the registers which expose the ABI settings,
 161 *  especially the entry sizes
 162 */
 163struct vgic_its_abi {
 164        int cte_esz;
 165        int dte_esz;
 166        int ite_esz;
 167        int (*save_tables)(struct vgic_its *its);
 168        int (*restore_tables)(struct vgic_its *its);
 169        int (*commit)(struct vgic_its *its);
 170};
 171
 172#define ABI_0_ESZ       8
 173#define ESZ_MAX         ABI_0_ESZ
 174
 175static const struct vgic_its_abi its_table_abi_versions[] = {
 176        [0] = {
 177         .cte_esz = ABI_0_ESZ,
 178         .dte_esz = ABI_0_ESZ,
 179         .ite_esz = ABI_0_ESZ,
 180         .save_tables = vgic_its_save_tables_v0,
 181         .restore_tables = vgic_its_restore_tables_v0,
 182         .commit = vgic_its_commit_v0,
 183        },
 184};
 185
 186#define NR_ITS_ABIS     ARRAY_SIZE(its_table_abi_versions)
 187
 188inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
 189{
 190        return &its_table_abi_versions[its->abi_rev];
 191}
 192
 193static int vgic_its_set_abi(struct vgic_its *its, u32 rev)
 194{
 195        const struct vgic_its_abi *abi;
 196
 197        its->abi_rev = rev;
 198        abi = vgic_its_get_abi(its);
 199        return abi->commit(its);
 200}
 201
 202/*
 203 * Find and returns a device in the device table for an ITS.
 204 * Must be called with the its_lock mutex held.
 205 */
 206static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
 207{
 208        struct its_device *device;
 209
 210        list_for_each_entry(device, &its->device_list, dev_list)
 211                if (device_id == device->device_id)
 212                        return device;
 213
 214        return NULL;
 215}
 216
 217/*
 218 * Find and returns an interrupt translation table entry (ITTE) for a given
 219 * Device ID/Event ID pair on an ITS.
 220 * Must be called with the its_lock mutex held.
 221 */
 222static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
 223                                  u32 event_id)
 224{
 225        struct its_device *device;
 226        struct its_ite *ite;
 227
 228        device = find_its_device(its, device_id);
 229        if (device == NULL)
 230                return NULL;
 231
 232        list_for_each_entry(ite, &device->itt_head, ite_list)
 233                if (ite->event_id == event_id)
 234                        return ite;
 235
 236        return NULL;
 237}
 238
 239/* To be used as an iterator this macro misses the enclosing parentheses */
 240#define for_each_lpi_its(dev, ite, its) \
 241        list_for_each_entry(dev, &(its)->device_list, dev_list) \
 242                list_for_each_entry(ite, &(dev)->itt_head, ite_list)
 243
 244#define GIC_LPI_OFFSET 8192
 245
 246#define VITS_TYPER_IDBITS 16
 247#define VITS_TYPER_DEVBITS 16
 248#define VITS_DTE_MAX_DEVID_OFFSET       (BIT(14) - 1)
 249#define VITS_ITE_MAX_EVENTID_OFFSET     (BIT(16) - 1)
 250
 251/*
 252 * Finds and returns a collection in the ITS collection table.
 253 * Must be called with the its_lock mutex held.
 254 */
 255static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
 256{
 257        struct its_collection *collection;
 258
 259        list_for_each_entry(collection, &its->collection_list, coll_list) {
 260                if (coll_id == collection->collection_id)
 261                        return collection;
 262        }
 263
 264        return NULL;
 265}
 266
 267#define LPI_PROP_ENABLE_BIT(p)  ((p) & LPI_PROP_ENABLED)
 268#define LPI_PROP_PRIORITY(p)    ((p) & 0xfc)
 269
 270/*
 271 * Reads the configuration data for a given LPI from guest memory and
 272 * updates the fields in struct vgic_irq.
 273 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
 274 * VCPU. Unconditionally applies if filter_vcpu is NULL.
 275 */
 276static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
 277                             struct kvm_vcpu *filter_vcpu, bool needs_inv)
 278{
 279        u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
 280        u8 prop;
 281        int ret;
 282        unsigned long flags;
 283
 284        ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
 285                                  &prop, 1);
 286
 287        if (ret)
 288                return ret;
 289
 290        raw_spin_lock_irqsave(&irq->irq_lock, flags);
 291
 292        if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
 293                irq->priority = LPI_PROP_PRIORITY(prop);
 294                irq->enabled = LPI_PROP_ENABLE_BIT(prop);
 295
 296                if (!irq->hw) {
 297                        vgic_queue_irq_unlock(kvm, irq, flags);
 298                        return 0;
 299                }
 300        }
 301
 302        raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 303
 304        if (irq->hw)
 305                return its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
 306
 307        return 0;
 308}
 309
 310/*
 311 * Create a snapshot of the current LPIs targeting @vcpu, so that we can
 312 * enumerate those LPIs without holding any lock.
 313 * Returns their number and puts the kmalloc'ed array into intid_ptr.
 314 */
 315int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr)
 316{
 317        struct vgic_dist *dist = &kvm->arch.vgic;
 318        struct vgic_irq *irq;
 319        unsigned long flags;
 320        u32 *intids;
 321        int irq_count, i = 0;
 322
 323        /*
 324         * There is an obvious race between allocating the array and LPIs
 325         * being mapped/unmapped. If we ended up here as a result of a
 326         * command, we're safe (locks are held, preventing another
 327         * command). If coming from another path (such as enabling LPIs),
 328         * we must be careful not to overrun the array.
 329         */
 330        irq_count = READ_ONCE(dist->lpi_list_count);
 331        intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL);
 332        if (!intids)
 333                return -ENOMEM;
 334
 335        raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
 336        list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
 337                if (i == irq_count)
 338                        break;
 339                /* We don't need to "get" the IRQ, as we hold the list lock. */
 340                if (vcpu && irq->target_vcpu != vcpu)
 341                        continue;
 342                intids[i++] = irq->intid;
 343        }
 344        raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
 345
 346        *intid_ptr = intids;
 347        return i;
 348}
 349
 350static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
 351{
 352        int ret = 0;
 353        unsigned long flags;
 354
 355        raw_spin_lock_irqsave(&irq->irq_lock, flags);
 356        irq->target_vcpu = vcpu;
 357        raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 358
 359        if (irq->hw) {
 360                struct its_vlpi_map map;
 361
 362                ret = its_get_vlpi(irq->host_irq, &map);
 363                if (ret)
 364                        return ret;
 365
 366                map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
 367
 368                ret = its_map_vlpi(irq->host_irq, &map);
 369        }
 370
 371        return ret;
 372}
 373
 374/*
 375 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
 376 * is targeting) to the VGIC's view, which deals with target VCPUs.
 377 * Needs to be called whenever either the collection for a LPIs has
 378 * changed or the collection itself got retargeted.
 379 */
 380static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
 381{
 382        struct kvm_vcpu *vcpu;
 383
 384        if (!its_is_collection_mapped(ite->collection))
 385                return;
 386
 387        vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
 388        update_affinity(ite->irq, vcpu);
 389}
 390
 391/*
 392 * Updates the target VCPU for every LPI targeting this collection.
 393 * Must be called with the its_lock mutex held.
 394 */
 395static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
 396                                       struct its_collection *coll)
 397{
 398        struct its_device *device;
 399        struct its_ite *ite;
 400
 401        for_each_lpi_its(device, ite, its) {
 402                if (!ite->collection || coll != ite->collection)
 403                        continue;
 404
 405                update_affinity_ite(kvm, ite);
 406        }
 407}
 408
 409static u32 max_lpis_propbaser(u64 propbaser)
 410{
 411        int nr_idbits = (propbaser & 0x1f) + 1;
 412
 413        return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
 414}
 415
 416/*
 417 * Sync the pending table pending bit of LPIs targeting @vcpu
 418 * with our own data structures. This relies on the LPI being
 419 * mapped before.
 420 */
 421static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
 422{
 423        gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
 424        struct vgic_irq *irq;
 425        int last_byte_offset = -1;
 426        int ret = 0;
 427        u32 *intids;
 428        int nr_irqs, i;
 429        unsigned long flags;
 430        u8 pendmask;
 431
 432        nr_irqs = vgic_copy_lpi_list(vcpu->kvm, vcpu, &intids);
 433        if (nr_irqs < 0)
 434                return nr_irqs;
 435
 436        for (i = 0; i < nr_irqs; i++) {
 437                int byte_offset, bit_nr;
 438
 439                byte_offset = intids[i] / BITS_PER_BYTE;
 440                bit_nr = intids[i] % BITS_PER_BYTE;
 441
 442                /*
 443                 * For contiguously allocated LPIs chances are we just read
 444                 * this very same byte in the last iteration. Reuse that.
 445                 */
 446                if (byte_offset != last_byte_offset) {
 447                        ret = kvm_read_guest_lock(vcpu->kvm,
 448                                                  pendbase + byte_offset,
 449                                                  &pendmask, 1);
 450                        if (ret) {
 451                                kfree(intids);
 452                                return ret;
 453                        }
 454                        last_byte_offset = byte_offset;
 455                }
 456
 457                irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
 458                raw_spin_lock_irqsave(&irq->irq_lock, flags);
 459                irq->pending_latch = pendmask & (1U << bit_nr);
 460                vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
 461                vgic_put_irq(vcpu->kvm, irq);
 462        }
 463
 464        kfree(intids);
 465
 466        return ret;
 467}
 468
 469static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
 470                                              struct vgic_its *its,
 471                                              gpa_t addr, unsigned int len)
 472{
 473        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
 474        u64 reg = GITS_TYPER_PLPIS;
 475
 476        /*
 477         * We use linear CPU numbers for redistributor addressing,
 478         * so GITS_TYPER.PTA is 0.
 479         * Also we force all PROPBASER registers to be the same, so
 480         * CommonLPIAff is 0 as well.
 481         * To avoid memory waste in the guest, we keep the number of IDBits and
 482         * DevBits low - as least for the time being.
 483         */
 484        reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
 485        reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
 486        reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
 487
 488        return extract_bytes(reg, addr & 7, len);
 489}
 490
 491static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
 492                                             struct vgic_its *its,
 493                                             gpa_t addr, unsigned int len)
 494{
 495        u32 val;
 496
 497        val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
 498        val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
 499        return val;
 500}
 501
 502static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
 503                                            struct vgic_its *its,
 504                                            gpa_t addr, unsigned int len,
 505                                            unsigned long val)
 506{
 507        u32 rev = GITS_IIDR_REV(val);
 508
 509        if (rev >= NR_ITS_ABIS)
 510                return -EINVAL;
 511        return vgic_its_set_abi(its, rev);
 512}
 513
 514static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
 515                                               struct vgic_its *its,
 516                                               gpa_t addr, unsigned int len)
 517{
 518        switch (addr & 0xffff) {
 519        case GITS_PIDR0:
 520                return 0x92;    /* part number, bits[7:0] */
 521        case GITS_PIDR1:
 522                return 0xb4;    /* part number, bits[11:8] */
 523        case GITS_PIDR2:
 524                return GIC_PIDR2_ARCH_GICv3 | 0x0b;
 525        case GITS_PIDR4:
 526                return 0x40;    /* This is a 64K software visible page */
 527        /* The following are the ID registers for (any) GIC. */
 528        case GITS_CIDR0:
 529                return 0x0d;
 530        case GITS_CIDR1:
 531                return 0xf0;
 532        case GITS_CIDR2:
 533                return 0x05;
 534        case GITS_CIDR3:
 535                return 0xb1;
 536        }
 537
 538        return 0;
 539}
 540
 541int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
 542                         u32 devid, u32 eventid, struct vgic_irq **irq)
 543{
 544        struct kvm_vcpu *vcpu;
 545        struct its_ite *ite;
 546
 547        if (!its->enabled)
 548                return -EBUSY;
 549
 550        ite = find_ite(its, devid, eventid);
 551        if (!ite || !its_is_collection_mapped(ite->collection))
 552                return E_ITS_INT_UNMAPPED_INTERRUPT;
 553
 554        vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
 555        if (!vcpu)
 556                return E_ITS_INT_UNMAPPED_INTERRUPT;
 557
 558        if (!vcpu->arch.vgic_cpu.lpis_enabled)
 559                return -EBUSY;
 560
 561        *irq = ite->irq;
 562        return 0;
 563}
 564
 565struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
 566{
 567        u64 address;
 568        struct kvm_io_device *kvm_io_dev;
 569        struct vgic_io_device *iodev;
 570
 571        if (!vgic_has_its(kvm))
 572                return ERR_PTR(-ENODEV);
 573
 574        if (!(msi->flags & KVM_MSI_VALID_DEVID))
 575                return ERR_PTR(-EINVAL);
 576
 577        address = (u64)msi->address_hi << 32 | msi->address_lo;
 578
 579        kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
 580        if (!kvm_io_dev)
 581                return ERR_PTR(-EINVAL);
 582
 583        if (kvm_io_dev->ops != &kvm_io_gic_ops)
 584                return ERR_PTR(-EINVAL);
 585
 586        iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
 587        if (iodev->iodev_type != IODEV_ITS)
 588                return ERR_PTR(-EINVAL);
 589
 590        return iodev->its;
 591}
 592
 593/*
 594 * Find the target VCPU and the LPI number for a given devid/eventid pair
 595 * and make this IRQ pending, possibly injecting it.
 596 * Must be called with the its_lock mutex held.
 597 * Returns 0 on success, a positive error value for any ITS mapping
 598 * related errors and negative error values for generic errors.
 599 */
 600static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
 601                                u32 devid, u32 eventid)
 602{
 603        struct vgic_irq *irq = NULL;
 604        unsigned long flags;
 605        int err;
 606
 607        err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
 608        if (err)
 609                return err;
 610
 611        if (irq->hw)
 612                return irq_set_irqchip_state(irq->host_irq,
 613                                             IRQCHIP_STATE_PENDING, true);
 614
 615        raw_spin_lock_irqsave(&irq->irq_lock, flags);
 616        irq->pending_latch = true;
 617        vgic_queue_irq_unlock(kvm, irq, flags);
 618
 619        return 0;
 620}
 621
 622/*
 623 * Queries the KVM IO bus framework to get the ITS pointer from the given
 624 * doorbell address.
 625 * We then call vgic_its_trigger_msi() with the decoded data.
 626 * According to the KVM_SIGNAL_MSI API description returns 1 on success.
 627 */
 628int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
 629{
 630        struct vgic_its *its;
 631        int ret;
 632
 633        its = vgic_msi_to_its(kvm, msi);
 634        if (IS_ERR(its))
 635                return PTR_ERR(its);
 636
 637        mutex_lock(&its->its_lock);
 638        ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
 639        mutex_unlock(&its->its_lock);
 640
 641        if (ret < 0)
 642                return ret;
 643
 644        /*
 645         * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
 646         * if the guest has blocked the MSI. So we map any LPI mapping
 647         * related error to that.
 648         */
 649        if (ret)
 650                return 0;
 651        else
 652                return 1;
 653}
 654
 655/* Requires the its_lock to be held. */
 656static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
 657{
 658        list_del(&ite->ite_list);
 659
 660        /* This put matches the get in vgic_add_lpi. */
 661        if (ite->irq) {
 662                if (ite->irq->hw)
 663                        WARN_ON(its_unmap_vlpi(ite->irq->host_irq));
 664
 665                vgic_put_irq(kvm, ite->irq);
 666        }
 667
 668        kfree(ite);
 669}
 670
 671static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
 672{
 673        return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
 674}
 675
 676#define its_cmd_get_command(cmd)        its_cmd_mask_field(cmd, 0,  0,  8)
 677#define its_cmd_get_deviceid(cmd)       its_cmd_mask_field(cmd, 0, 32, 32)
 678#define its_cmd_get_size(cmd)           (its_cmd_mask_field(cmd, 1,  0,  5) + 1)
 679#define its_cmd_get_id(cmd)             its_cmd_mask_field(cmd, 1,  0, 32)
 680#define its_cmd_get_physical_id(cmd)    its_cmd_mask_field(cmd, 1, 32, 32)
 681#define its_cmd_get_collection(cmd)     its_cmd_mask_field(cmd, 2,  0, 16)
 682#define its_cmd_get_ittaddr(cmd)        (its_cmd_mask_field(cmd, 2,  8, 44) << 8)
 683#define its_cmd_get_target_addr(cmd)    its_cmd_mask_field(cmd, 2, 16, 32)
 684#define its_cmd_get_validbit(cmd)       its_cmd_mask_field(cmd, 2, 63,  1)
 685
 686/*
 687 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
 688 * Must be called with the its_lock mutex held.
 689 */
 690static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
 691                                       u64 *its_cmd)
 692{
 693        u32 device_id = its_cmd_get_deviceid(its_cmd);
 694        u32 event_id = its_cmd_get_id(its_cmd);
 695        struct its_ite *ite;
 696
 697
 698        ite = find_ite(its, device_id, event_id);
 699        if (ite && ite->collection) {
 700                /*
 701                 * Though the spec talks about removing the pending state, we
 702                 * don't bother here since we clear the ITTE anyway and the
 703                 * pending state is a property of the ITTE struct.
 704                 */
 705                its_free_ite(kvm, ite);
 706                return 0;
 707        }
 708
 709        return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
 710}
 711
 712/*
 713 * The MOVI command moves an ITTE to a different collection.
 714 * Must be called with the its_lock mutex held.
 715 */
 716static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
 717                                    u64 *its_cmd)
 718{
 719        u32 device_id = its_cmd_get_deviceid(its_cmd);
 720        u32 event_id = its_cmd_get_id(its_cmd);
 721        u32 coll_id = its_cmd_get_collection(its_cmd);
 722        struct kvm_vcpu *vcpu;
 723        struct its_ite *ite;
 724        struct its_collection *collection;
 725
 726        ite = find_ite(its, device_id, event_id);
 727        if (!ite)
 728                return E_ITS_MOVI_UNMAPPED_INTERRUPT;
 729
 730        if (!its_is_collection_mapped(ite->collection))
 731                return E_ITS_MOVI_UNMAPPED_COLLECTION;
 732
 733        collection = find_collection(its, coll_id);
 734        if (!its_is_collection_mapped(collection))
 735                return E_ITS_MOVI_UNMAPPED_COLLECTION;
 736
 737        ite->collection = collection;
 738        vcpu = kvm_get_vcpu(kvm, collection->target_addr);
 739
 740        return update_affinity(ite->irq, vcpu);
 741}
 742
 743/*
 744 * Check whether an ID can be stored into the corresponding guest table.
 745 * For a direct table this is pretty easy, but gets a bit nasty for
 746 * indirect tables. We check whether the resulting guest physical address
 747 * is actually valid (covered by a memslot and guest accessible).
 748 * For this we have to read the respective first level entry.
 749 */
 750static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
 751                              gpa_t *eaddr)
 752{
 753        int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
 754        u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
 755        phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser);
 756        int esz = GITS_BASER_ENTRY_SIZE(baser);
 757        int index, idx;
 758        gfn_t gfn;
 759        bool ret;
 760
 761        switch (type) {
 762        case GITS_BASER_TYPE_DEVICE:
 763                if (id >= BIT_ULL(VITS_TYPER_DEVBITS))
 764                        return false;
 765                break;
 766        case GITS_BASER_TYPE_COLLECTION:
 767                /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
 768                if (id >= BIT_ULL(16))
 769                        return false;
 770                break;
 771        default:
 772                return false;
 773        }
 774
 775        if (!(baser & GITS_BASER_INDIRECT)) {
 776                phys_addr_t addr;
 777
 778                if (id >= (l1_tbl_size / esz))
 779                        return false;
 780
 781                addr = base + id * esz;
 782                gfn = addr >> PAGE_SHIFT;
 783
 784                if (eaddr)
 785                        *eaddr = addr;
 786
 787                goto out;
 788        }
 789
 790        /* calculate and check the index into the 1st level */
 791        index = id / (SZ_64K / esz);
 792        if (index >= (l1_tbl_size / sizeof(u64)))
 793                return false;
 794
 795        /* Each 1st level entry is represented by a 64-bit value. */
 796        if (kvm_read_guest_lock(its->dev->kvm,
 797                           base + index * sizeof(indirect_ptr),
 798                           &indirect_ptr, sizeof(indirect_ptr)))
 799                return false;
 800
 801        indirect_ptr = le64_to_cpu(indirect_ptr);
 802
 803        /* check the valid bit of the first level entry */
 804        if (!(indirect_ptr & BIT_ULL(63)))
 805                return false;
 806
 807        /* Mask the guest physical address and calculate the frame number. */
 808        indirect_ptr &= GENMASK_ULL(51, 16);
 809
 810        /* Find the address of the actual entry */
 811        index = id % (SZ_64K / esz);
 812        indirect_ptr += index * esz;
 813        gfn = indirect_ptr >> PAGE_SHIFT;
 814
 815        if (eaddr)
 816                *eaddr = indirect_ptr;
 817
 818out:
 819        idx = srcu_read_lock(&its->dev->kvm->srcu);
 820        ret = kvm_is_visible_gfn(its->dev->kvm, gfn);
 821        srcu_read_unlock(&its->dev->kvm->srcu, idx);
 822        return ret;
 823}
 824
 825static int vgic_its_alloc_collection(struct vgic_its *its,
 826                                     struct its_collection **colp,
 827                                     u32 coll_id)
 828{
 829        struct its_collection *collection;
 830
 831        if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
 832                return E_ITS_MAPC_COLLECTION_OOR;
 833
 834        collection = kzalloc(sizeof(*collection), GFP_KERNEL);
 835        if (!collection)
 836                return -ENOMEM;
 837
 838        collection->collection_id = coll_id;
 839        collection->target_addr = COLLECTION_NOT_MAPPED;
 840
 841        list_add_tail(&collection->coll_list, &its->collection_list);
 842        *colp = collection;
 843
 844        return 0;
 845}
 846
 847static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
 848{
 849        struct its_collection *collection;
 850        struct its_device *device;
 851        struct its_ite *ite;
 852
 853        /*
 854         * Clearing the mapping for that collection ID removes the
 855         * entry from the list. If there wasn't any before, we can
 856         * go home early.
 857         */
 858        collection = find_collection(its, coll_id);
 859        if (!collection)
 860                return;
 861
 862        for_each_lpi_its(device, ite, its)
 863                if (ite->collection &&
 864                    ite->collection->collection_id == coll_id)
 865                        ite->collection = NULL;
 866
 867        list_del(&collection->coll_list);
 868        kfree(collection);
 869}
 870
 871/* Must be called with its_lock mutex held */
 872static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
 873                                          struct its_collection *collection,
 874                                          u32 event_id)
 875{
 876        struct its_ite *ite;
 877
 878        ite = kzalloc(sizeof(*ite), GFP_KERNEL);
 879        if (!ite)
 880                return ERR_PTR(-ENOMEM);
 881
 882        ite->event_id   = event_id;
 883        ite->collection = collection;
 884
 885        list_add_tail(&ite->ite_list, &device->itt_head);
 886        return ite;
 887}
 888
 889/*
 890 * The MAPTI and MAPI commands map LPIs to ITTEs.
 891 * Must be called with its_lock mutex held.
 892 */
 893static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
 894                                    u64 *its_cmd)
 895{
 896        u32 device_id = its_cmd_get_deviceid(its_cmd);
 897        u32 event_id = its_cmd_get_id(its_cmd);
 898        u32 coll_id = its_cmd_get_collection(its_cmd);
 899        struct its_ite *ite;
 900        struct kvm_vcpu *vcpu = NULL;
 901        struct its_device *device;
 902        struct its_collection *collection, *new_coll = NULL;
 903        struct vgic_irq *irq;
 904        int lpi_nr;
 905
 906        device = find_its_device(its, device_id);
 907        if (!device)
 908                return E_ITS_MAPTI_UNMAPPED_DEVICE;
 909
 910        if (event_id >= BIT_ULL(device->num_eventid_bits))
 911                return E_ITS_MAPTI_ID_OOR;
 912
 913        if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
 914                lpi_nr = its_cmd_get_physical_id(its_cmd);
 915        else
 916                lpi_nr = event_id;
 917        if (lpi_nr < GIC_LPI_OFFSET ||
 918            lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
 919                return E_ITS_MAPTI_PHYSICALID_OOR;
 920
 921        /* If there is an existing mapping, behavior is UNPREDICTABLE. */
 922        if (find_ite(its, device_id, event_id))
 923                return 0;
 924
 925        collection = find_collection(its, coll_id);
 926        if (!collection) {
 927                int ret = vgic_its_alloc_collection(its, &collection, coll_id);
 928                if (ret)
 929                        return ret;
 930                new_coll = collection;
 931        }
 932
 933        ite = vgic_its_alloc_ite(device, collection, event_id);
 934        if (IS_ERR(ite)) {
 935                if (new_coll)
 936                        vgic_its_free_collection(its, coll_id);
 937                return PTR_ERR(ite);
 938        }
 939
 940        if (its_is_collection_mapped(collection))
 941                vcpu = kvm_get_vcpu(kvm, collection->target_addr);
 942
 943        irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
 944        if (IS_ERR(irq)) {
 945                if (new_coll)
 946                        vgic_its_free_collection(its, coll_id);
 947                its_free_ite(kvm, ite);
 948                return PTR_ERR(irq);
 949        }
 950        ite->irq = irq;
 951
 952        return 0;
 953}
 954
 955/* Requires the its_lock to be held. */
 956static void vgic_its_free_device(struct kvm *kvm, struct its_device *device)
 957{
 958        struct its_ite *ite, *temp;
 959
 960        /*
 961         * The spec says that unmapping a device with still valid
 962         * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
 963         * since we cannot leave the memory unreferenced.
 964         */
 965        list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
 966                its_free_ite(kvm, ite);
 967
 968        list_del(&device->dev_list);
 969        kfree(device);
 970}
 971
 972/* its lock must be held */
 973static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
 974{
 975        struct its_device *cur, *temp;
 976
 977        list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
 978                vgic_its_free_device(kvm, cur);
 979}
 980
 981/* its lock must be held */
 982static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
 983{
 984        struct its_collection *cur, *temp;
 985
 986        list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
 987                vgic_its_free_collection(its, cur->collection_id);
 988}
 989
 990/* Must be called with its_lock mutex held */
 991static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
 992                                                u32 device_id, gpa_t itt_addr,
 993                                                u8 num_eventid_bits)
 994{
 995        struct its_device *device;
 996
 997        device = kzalloc(sizeof(*device), GFP_KERNEL);
 998        if (!device)
 999                return ERR_PTR(-ENOMEM);
1000
1001        device->device_id = device_id;
1002        device->itt_addr = itt_addr;
1003        device->num_eventid_bits = num_eventid_bits;
1004        INIT_LIST_HEAD(&device->itt_head);
1005
1006        list_add_tail(&device->dev_list, &its->device_list);
1007        return device;
1008}
1009
1010/*
1011 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
1012 * Must be called with the its_lock mutex held.
1013 */
1014static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
1015                                    u64 *its_cmd)
1016{
1017        u32 device_id = its_cmd_get_deviceid(its_cmd);
1018        bool valid = its_cmd_get_validbit(its_cmd);
1019        u8 num_eventid_bits = its_cmd_get_size(its_cmd);
1020        gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
1021        struct its_device *device;
1022
1023        if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
1024                return E_ITS_MAPD_DEVICE_OOR;
1025
1026        if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
1027                return E_ITS_MAPD_ITTSIZE_OOR;
1028
1029        device = find_its_device(its, device_id);
1030
1031        /*
1032         * The spec says that calling MAPD on an already mapped device
1033         * invalidates all cached data for this device. We implement this
1034         * by removing the mapping and re-establishing it.
1035         */
1036        if (device)
1037                vgic_its_free_device(kvm, device);
1038
1039        /*
1040         * The spec does not say whether unmapping a not-mapped device
1041         * is an error, so we are done in any case.
1042         */
1043        if (!valid)
1044                return 0;
1045
1046        device = vgic_its_alloc_device(its, device_id, itt_addr,
1047                                       num_eventid_bits);
1048
1049        return PTR_ERR_OR_ZERO(device);
1050}
1051
1052/*
1053 * The MAPC command maps collection IDs to redistributors.
1054 * Must be called with the its_lock mutex held.
1055 */
1056static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
1057                                    u64 *its_cmd)
1058{
1059        u16 coll_id;
1060        u32 target_addr;
1061        struct its_collection *collection;
1062        bool valid;
1063
1064        valid = its_cmd_get_validbit(its_cmd);
1065        coll_id = its_cmd_get_collection(its_cmd);
1066        target_addr = its_cmd_get_target_addr(its_cmd);
1067
1068        if (target_addr >= atomic_read(&kvm->online_vcpus))
1069                return E_ITS_MAPC_PROCNUM_OOR;
1070
1071        if (!valid) {
1072                vgic_its_free_collection(its, coll_id);
1073        } else {
1074                collection = find_collection(its, coll_id);
1075
1076                if (!collection) {
1077                        int ret;
1078
1079                        ret = vgic_its_alloc_collection(its, &collection,
1080                                                        coll_id);
1081                        if (ret)
1082                                return ret;
1083                        collection->target_addr = target_addr;
1084                } else {
1085                        collection->target_addr = target_addr;
1086                        update_affinity_collection(kvm, its, collection);
1087                }
1088        }
1089
1090        return 0;
1091}
1092
1093/*
1094 * The CLEAR command removes the pending state for a particular LPI.
1095 * Must be called with the its_lock mutex held.
1096 */
1097static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1098                                     u64 *its_cmd)
1099{
1100        u32 device_id = its_cmd_get_deviceid(its_cmd);
1101        u32 event_id = its_cmd_get_id(its_cmd);
1102        struct its_ite *ite;
1103
1104
1105        ite = find_ite(its, device_id, event_id);
1106        if (!ite)
1107                return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1108
1109        ite->irq->pending_latch = false;
1110
1111        if (ite->irq->hw)
1112                return irq_set_irqchip_state(ite->irq->host_irq,
1113                                             IRQCHIP_STATE_PENDING, false);
1114
1115        return 0;
1116}
1117
1118/*
1119 * The INV command syncs the configuration bits from the memory table.
1120 * Must be called with the its_lock mutex held.
1121 */
1122static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1123                                   u64 *its_cmd)
1124{
1125        u32 device_id = its_cmd_get_deviceid(its_cmd);
1126        u32 event_id = its_cmd_get_id(its_cmd);
1127        struct its_ite *ite;
1128
1129
1130        ite = find_ite(its, device_id, event_id);
1131        if (!ite)
1132                return E_ITS_INV_UNMAPPED_INTERRUPT;
1133
1134        return update_lpi_config(kvm, ite->irq, NULL, true);
1135}
1136
1137/*
1138 * The INVALL command requests flushing of all IRQ data in this collection.
1139 * Find the VCPU mapped to that collection, then iterate over the VM's list
1140 * of mapped LPIs and update the configuration for each IRQ which targets
1141 * the specified vcpu. The configuration will be read from the in-memory
1142 * configuration table.
1143 * Must be called with the its_lock mutex held.
1144 */
1145static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1146                                      u64 *its_cmd)
1147{
1148        u32 coll_id = its_cmd_get_collection(its_cmd);
1149        struct its_collection *collection;
1150        struct kvm_vcpu *vcpu;
1151        struct vgic_irq *irq;
1152        u32 *intids;
1153        int irq_count, i;
1154
1155        collection = find_collection(its, coll_id);
1156        if (!its_is_collection_mapped(collection))
1157                return E_ITS_INVALL_UNMAPPED_COLLECTION;
1158
1159        vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1160
1161        irq_count = vgic_copy_lpi_list(kvm, vcpu, &intids);
1162        if (irq_count < 0)
1163                return irq_count;
1164
1165        for (i = 0; i < irq_count; i++) {
1166                irq = vgic_get_irq(kvm, NULL, intids[i]);
1167                if (!irq)
1168                        continue;
1169                update_lpi_config(kvm, irq, vcpu, false);
1170                vgic_put_irq(kvm, irq);
1171        }
1172
1173        kfree(intids);
1174
1175        if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
1176                its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);
1177
1178        return 0;
1179}
1180
1181/*
1182 * The MOVALL command moves the pending state of all IRQs targeting one
1183 * redistributor to another. We don't hold the pending state in the VCPUs,
1184 * but in the IRQs instead, so there is really not much to do for us here.
1185 * However the spec says that no IRQ must target the old redistributor
1186 * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1187 * This command affects all LPIs in the system that target that redistributor.
1188 */
1189static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1190                                      u64 *its_cmd)
1191{
1192        u32 target1_addr = its_cmd_get_target_addr(its_cmd);
1193        u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
1194        struct kvm_vcpu *vcpu1, *vcpu2;
1195        struct vgic_irq *irq;
1196        u32 *intids;
1197        int irq_count, i;
1198
1199        if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
1200            target2_addr >= atomic_read(&kvm->online_vcpus))
1201                return E_ITS_MOVALL_PROCNUM_OOR;
1202
1203        if (target1_addr == target2_addr)
1204                return 0;
1205
1206        vcpu1 = kvm_get_vcpu(kvm, target1_addr);
1207        vcpu2 = kvm_get_vcpu(kvm, target2_addr);
1208
1209        irq_count = vgic_copy_lpi_list(kvm, vcpu1, &intids);
1210        if (irq_count < 0)
1211                return irq_count;
1212
1213        for (i = 0; i < irq_count; i++) {
1214                irq = vgic_get_irq(kvm, NULL, intids[i]);
1215
1216                update_affinity(irq, vcpu2);
1217
1218                vgic_put_irq(kvm, irq);
1219        }
1220
1221        kfree(intids);
1222        return 0;
1223}
1224
1225/*
1226 * The INT command injects the LPI associated with that DevID/EvID pair.
1227 * Must be called with the its_lock mutex held.
1228 */
1229static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1230                                   u64 *its_cmd)
1231{
1232        u32 msi_data = its_cmd_get_id(its_cmd);
1233        u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1234
1235        return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1236}
1237
1238/*
1239 * This function is called with the its_cmd lock held, but the ITS data
1240 * structure lock dropped.
1241 */
1242static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1243                                   u64 *its_cmd)
1244{
1245        int ret = -ENODEV;
1246
1247        mutex_lock(&its->its_lock);
1248        switch (its_cmd_get_command(its_cmd)) {
1249        case GITS_CMD_MAPD:
1250                ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1251                break;
1252        case GITS_CMD_MAPC:
1253                ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1254                break;
1255        case GITS_CMD_MAPI:
1256                ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1257                break;
1258        case GITS_CMD_MAPTI:
1259                ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1260                break;
1261        case GITS_CMD_MOVI:
1262                ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1263                break;
1264        case GITS_CMD_DISCARD:
1265                ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1266                break;
1267        case GITS_CMD_CLEAR:
1268                ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1269                break;
1270        case GITS_CMD_MOVALL:
1271                ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1272                break;
1273        case GITS_CMD_INT:
1274                ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1275                break;
1276        case GITS_CMD_INV:
1277                ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1278                break;
1279        case GITS_CMD_INVALL:
1280                ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1281                break;
1282        case GITS_CMD_SYNC:
1283                /* we ignore this command: we are in sync all of the time */
1284                ret = 0;
1285                break;
1286        }
1287        mutex_unlock(&its->its_lock);
1288
1289        return ret;
1290}
1291
1292static u64 vgic_sanitise_its_baser(u64 reg)
1293{
1294        reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1295                                  GITS_BASER_SHAREABILITY_SHIFT,
1296                                  vgic_sanitise_shareability);
1297        reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1298                                  GITS_BASER_INNER_CACHEABILITY_SHIFT,
1299                                  vgic_sanitise_inner_cacheability);
1300        reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1301                                  GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1302                                  vgic_sanitise_outer_cacheability);
1303
1304        /* We support only one (ITS) page size: 64K */
1305        reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1306
1307        return reg;
1308}
1309
1310static u64 vgic_sanitise_its_cbaser(u64 reg)
1311{
1312        reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1313                                  GITS_CBASER_SHAREABILITY_SHIFT,
1314                                  vgic_sanitise_shareability);
1315        reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1316                                  GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1317                                  vgic_sanitise_inner_cacheability);
1318        reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1319                                  GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1320                                  vgic_sanitise_outer_cacheability);
1321
1322        /* Sanitise the physical address to be 64k aligned. */
1323        reg &= ~GENMASK_ULL(15, 12);
1324
1325        return reg;
1326}
1327
1328static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1329                                               struct vgic_its *its,
1330                                               gpa_t addr, unsigned int len)
1331{
1332        return extract_bytes(its->cbaser, addr & 7, len);
1333}
1334
1335static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1336                                       gpa_t addr, unsigned int len,
1337                                       unsigned long val)
1338{
1339        /* When GITS_CTLR.Enable is 1, this register is RO. */
1340        if (its->enabled)
1341                return;
1342
1343        mutex_lock(&its->cmd_lock);
1344        its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1345        its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1346        its->creadr = 0;
1347        /*
1348         * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1349         * it to CREADR to make sure we start with an empty command buffer.
1350         */
1351        its->cwriter = its->creadr;
1352        mutex_unlock(&its->cmd_lock);
1353}
1354
1355#define ITS_CMD_BUFFER_SIZE(baser)      ((((baser) & 0xff) + 1) << 12)
1356#define ITS_CMD_SIZE                    32
1357#define ITS_CMD_OFFSET(reg)             ((reg) & GENMASK(19, 5))
1358
1359/* Must be called with the cmd_lock held. */
1360static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1361{
1362        gpa_t cbaser;
1363        u64 cmd_buf[4];
1364
1365        /* Commands are only processed when the ITS is enabled. */
1366        if (!its->enabled)
1367                return;
1368
1369        cbaser = GITS_CBASER_ADDRESS(its->cbaser);
1370
1371        while (its->cwriter != its->creadr) {
1372                int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr,
1373                                              cmd_buf, ITS_CMD_SIZE);
1374                /*
1375                 * If kvm_read_guest() fails, this could be due to the guest
1376                 * programming a bogus value in CBASER or something else going
1377                 * wrong from which we cannot easily recover.
1378                 * According to section 6.3.2 in the GICv3 spec we can just
1379                 * ignore that command then.
1380                 */
1381                if (!ret)
1382                        vgic_its_handle_command(kvm, its, cmd_buf);
1383
1384                its->creadr += ITS_CMD_SIZE;
1385                if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1386                        its->creadr = 0;
1387        }
1388}
1389
1390/*
1391 * By writing to CWRITER the guest announces new commands to be processed.
1392 * To avoid any races in the first place, we take the its_cmd lock, which
1393 * protects our ring buffer variables, so that there is only one user
1394 * per ITS handling commands at a given time.
1395 */
1396static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1397                                        gpa_t addr, unsigned int len,
1398                                        unsigned long val)
1399{
1400        u64 reg;
1401
1402        if (!its)
1403                return;
1404
1405        mutex_lock(&its->cmd_lock);
1406
1407        reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1408        reg = ITS_CMD_OFFSET(reg);
1409        if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1410                mutex_unlock(&its->cmd_lock);
1411                return;
1412        }
1413        its->cwriter = reg;
1414
1415        vgic_its_process_commands(kvm, its);
1416
1417        mutex_unlock(&its->cmd_lock);
1418}
1419
1420static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1421                                                struct vgic_its *its,
1422                                                gpa_t addr, unsigned int len)
1423{
1424        return extract_bytes(its->cwriter, addr & 0x7, len);
1425}
1426
1427static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1428                                               struct vgic_its *its,
1429                                               gpa_t addr, unsigned int len)
1430{
1431        return extract_bytes(its->creadr, addr & 0x7, len);
1432}
1433
1434static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1435                                              struct vgic_its *its,
1436                                              gpa_t addr, unsigned int len,
1437                                              unsigned long val)
1438{
1439        u32 cmd_offset;
1440        int ret = 0;
1441
1442        mutex_lock(&its->cmd_lock);
1443
1444        if (its->enabled) {
1445                ret = -EBUSY;
1446                goto out;
1447        }
1448
1449        cmd_offset = ITS_CMD_OFFSET(val);
1450        if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1451                ret = -EINVAL;
1452                goto out;
1453        }
1454
1455        its->creadr = cmd_offset;
1456out:
1457        mutex_unlock(&its->cmd_lock);
1458        return ret;
1459}
1460
1461#define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
1462static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1463                                              struct vgic_its *its,
1464                                              gpa_t addr, unsigned int len)
1465{
1466        u64 reg;
1467
1468        switch (BASER_INDEX(addr)) {
1469        case 0:
1470                reg = its->baser_device_table;
1471                break;
1472        case 1:
1473                reg = its->baser_coll_table;
1474                break;
1475        default:
1476                reg = 0;
1477                break;
1478        }
1479
1480        return extract_bytes(reg, addr & 7, len);
1481}
1482
1483#define GITS_BASER_RO_MASK      (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
1484static void vgic_mmio_write_its_baser(struct kvm *kvm,
1485                                      struct vgic_its *its,
1486                                      gpa_t addr, unsigned int len,
1487                                      unsigned long val)
1488{
1489        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1490        u64 entry_size, table_type;
1491        u64 reg, *regptr, clearbits = 0;
1492
1493        /* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1494        if (its->enabled)
1495                return;
1496
1497        switch (BASER_INDEX(addr)) {
1498        case 0:
1499                regptr = &its->baser_device_table;
1500                entry_size = abi->dte_esz;
1501                table_type = GITS_BASER_TYPE_DEVICE;
1502                break;
1503        case 1:
1504                regptr = &its->baser_coll_table;
1505                entry_size = abi->cte_esz;
1506                table_type = GITS_BASER_TYPE_COLLECTION;
1507                clearbits = GITS_BASER_INDIRECT;
1508                break;
1509        default:
1510                return;
1511        }
1512
1513        reg = update_64bit_reg(*regptr, addr & 7, len, val);
1514        reg &= ~GITS_BASER_RO_MASK;
1515        reg &= ~clearbits;
1516
1517        reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1518        reg |= table_type << GITS_BASER_TYPE_SHIFT;
1519        reg = vgic_sanitise_its_baser(reg);
1520
1521        *regptr = reg;
1522
1523        if (!(reg & GITS_BASER_VALID)) {
1524                /* Take the its_lock to prevent a race with a save/restore */
1525                mutex_lock(&its->its_lock);
1526                switch (table_type) {
1527                case GITS_BASER_TYPE_DEVICE:
1528                        vgic_its_free_device_list(kvm, its);
1529                        break;
1530                case GITS_BASER_TYPE_COLLECTION:
1531                        vgic_its_free_collection_list(kvm, its);
1532                        break;
1533                }
1534                mutex_unlock(&its->its_lock);
1535        }
1536}
1537
1538static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1539                                             struct vgic_its *its,
1540                                             gpa_t addr, unsigned int len)
1541{
1542        u32 reg = 0;
1543
1544        mutex_lock(&its->cmd_lock);
1545        if (its->creadr == its->cwriter)
1546                reg |= GITS_CTLR_QUIESCENT;
1547        if (its->enabled)
1548                reg |= GITS_CTLR_ENABLE;
1549        mutex_unlock(&its->cmd_lock);
1550
1551        return reg;
1552}
1553
1554static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1555                                     gpa_t addr, unsigned int len,
1556                                     unsigned long val)
1557{
1558        mutex_lock(&its->cmd_lock);
1559
1560        /*
1561         * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
1562         * device/collection BASER are invalid
1563         */
1564        if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
1565                (!(its->baser_device_table & GITS_BASER_VALID) ||
1566                 !(its->baser_coll_table & GITS_BASER_VALID) ||
1567                 !(its->cbaser & GITS_CBASER_VALID)))
1568                goto out;
1569
1570        its->enabled = !!(val & GITS_CTLR_ENABLE);
1571
1572        /*
1573         * Try to process any pending commands. This function bails out early
1574         * if the ITS is disabled or no commands have been queued.
1575         */
1576        vgic_its_process_commands(kvm, its);
1577
1578out:
1579        mutex_unlock(&its->cmd_lock);
1580}
1581
1582#define REGISTER_ITS_DESC(off, rd, wr, length, acc)             \
1583{                                                               \
1584        .reg_offset = off,                                      \
1585        .len = length,                                          \
1586        .access_flags = acc,                                    \
1587        .its_read = rd,                                         \
1588        .its_write = wr,                                        \
1589}
1590
1591#define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1592{                                                               \
1593        .reg_offset = off,                                      \
1594        .len = length,                                          \
1595        .access_flags = acc,                                    \
1596        .its_read = rd,                                         \
1597        .its_write = wr,                                        \
1598        .uaccess_its_write = uwr,                               \
1599}
1600
1601static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1602                              gpa_t addr, unsigned int len, unsigned long val)
1603{
1604        /* Ignore */
1605}
1606
1607static struct vgic_register_region its_registers[] = {
1608        REGISTER_ITS_DESC(GITS_CTLR,
1609                vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1610                VGIC_ACCESS_32bit),
1611        REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1612                vgic_mmio_read_its_iidr, its_mmio_write_wi,
1613                vgic_mmio_uaccess_write_its_iidr, 4,
1614                VGIC_ACCESS_32bit),
1615        REGISTER_ITS_DESC(GITS_TYPER,
1616                vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1617                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1618        REGISTER_ITS_DESC(GITS_CBASER,
1619                vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1620                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1621        REGISTER_ITS_DESC(GITS_CWRITER,
1622                vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1623                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1624        REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1625                vgic_mmio_read_its_creadr, its_mmio_write_wi,
1626                vgic_mmio_uaccess_write_its_creadr, 8,
1627                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1628        REGISTER_ITS_DESC(GITS_BASER,
1629                vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1630                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1631        REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1632                vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1633                VGIC_ACCESS_32bit),
1634};
1635
1636/* This is called on setting the LPI enable bit in the redistributor. */
1637void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1638{
1639        if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1640                its_sync_lpi_pending_table(vcpu);
1641}
1642
1643static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1644                                   u64 addr)
1645{
1646        struct vgic_io_device *iodev = &its->iodev;
1647        int ret;
1648
1649        mutex_lock(&kvm->slots_lock);
1650        if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1651                ret = -EBUSY;
1652                goto out;
1653        }
1654
1655        its->vgic_its_base = addr;
1656        iodev->regions = its_registers;
1657        iodev->nr_regions = ARRAY_SIZE(its_registers);
1658        kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1659
1660        iodev->base_addr = its->vgic_its_base;
1661        iodev->iodev_type = IODEV_ITS;
1662        iodev->its = its;
1663        ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1664                                      KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1665out:
1666        mutex_unlock(&kvm->slots_lock);
1667
1668        return ret;
1669}
1670
1671#define INITIAL_BASER_VALUE                                               \
1672        (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb)                | \
1673         GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner)         | \
1674         GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable)             | \
1675         GITS_BASER_PAGE_SIZE_64K)
1676
1677#define INITIAL_PROPBASER_VALUE                                           \
1678        (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb)            | \
1679         GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner)     | \
1680         GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1681
1682static int vgic_its_create(struct kvm_device *dev, u32 type)
1683{
1684        struct vgic_its *its;
1685
1686        if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1687                return -ENODEV;
1688
1689        its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL);
1690        if (!its)
1691                return -ENOMEM;
1692
1693        if (vgic_initialized(dev->kvm)) {
1694                int ret = vgic_v4_init(dev->kvm);
1695                if (ret < 0) {
1696                        kfree(its);
1697                        return ret;
1698                }
1699        }
1700
1701        mutex_init(&its->its_lock);
1702        mutex_init(&its->cmd_lock);
1703
1704        its->vgic_its_base = VGIC_ADDR_UNDEF;
1705
1706        INIT_LIST_HEAD(&its->device_list);
1707        INIT_LIST_HEAD(&its->collection_list);
1708
1709        dev->kvm->arch.vgic.msis_require_devid = true;
1710        dev->kvm->arch.vgic.has_its = true;
1711        its->enabled = false;
1712        its->dev = dev;
1713
1714        its->baser_device_table = INITIAL_BASER_VALUE                   |
1715                ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1716        its->baser_coll_table = INITIAL_BASER_VALUE |
1717                ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1718        dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1719
1720        dev->private = its;
1721
1722        return vgic_its_set_abi(its, NR_ITS_ABIS - 1);
1723}
1724
1725static void vgic_its_destroy(struct kvm_device *kvm_dev)
1726{
1727        struct kvm *kvm = kvm_dev->kvm;
1728        struct vgic_its *its = kvm_dev->private;
1729
1730        mutex_lock(&its->its_lock);
1731
1732        vgic_its_free_device_list(kvm, its);
1733        vgic_its_free_collection_list(kvm, its);
1734
1735        mutex_unlock(&its->its_lock);
1736        kfree(its);
1737}
1738
1739static int vgic_its_has_attr_regs(struct kvm_device *dev,
1740                                  struct kvm_device_attr *attr)
1741{
1742        const struct vgic_register_region *region;
1743        gpa_t offset = attr->attr;
1744        int align;
1745
1746        align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
1747
1748        if (offset & align)
1749                return -EINVAL;
1750
1751        region = vgic_find_mmio_region(its_registers,
1752                                       ARRAY_SIZE(its_registers),
1753                                       offset);
1754        if (!region)
1755                return -ENXIO;
1756
1757        return 0;
1758}
1759
1760static int vgic_its_attr_regs_access(struct kvm_device *dev,
1761                                     struct kvm_device_attr *attr,
1762                                     u64 *reg, bool is_write)
1763{
1764        const struct vgic_register_region *region;
1765        struct vgic_its *its;
1766        gpa_t addr, offset;
1767        unsigned int len;
1768        int align, ret = 0;
1769
1770        its = dev->private;
1771        offset = attr->attr;
1772
1773        /*
1774         * Although the spec supports upper/lower 32-bit accesses to
1775         * 64-bit ITS registers, the userspace ABI requires 64-bit
1776         * accesses to all 64-bit wide registers. We therefore only
1777         * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
1778         * registers
1779         */
1780        if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
1781                align = 0x3;
1782        else
1783                align = 0x7;
1784
1785        if (offset & align)
1786                return -EINVAL;
1787
1788        mutex_lock(&dev->kvm->lock);
1789
1790        if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1791                ret = -ENXIO;
1792                goto out;
1793        }
1794
1795        region = vgic_find_mmio_region(its_registers,
1796                                       ARRAY_SIZE(its_registers),
1797                                       offset);
1798        if (!region) {
1799                ret = -ENXIO;
1800                goto out;
1801        }
1802
1803        if (!lock_all_vcpus(dev->kvm)) {
1804                ret = -EBUSY;
1805                goto out;
1806        }
1807
1808        addr = its->vgic_its_base + offset;
1809
1810        len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
1811
1812        if (is_write) {
1813                if (region->uaccess_its_write)
1814                        ret = region->uaccess_its_write(dev->kvm, its, addr,
1815                                                        len, *reg);
1816                else
1817                        region->its_write(dev->kvm, its, addr, len, *reg);
1818        } else {
1819                *reg = region->its_read(dev->kvm, its, addr, len);
1820        }
1821        unlock_all_vcpus(dev->kvm);
1822out:
1823        mutex_unlock(&dev->kvm->lock);
1824        return ret;
1825}
1826
1827static u32 compute_next_devid_offset(struct list_head *h,
1828                                     struct its_device *dev)
1829{
1830        struct its_device *next;
1831        u32 next_offset;
1832
1833        if (list_is_last(&dev->dev_list, h))
1834                return 0;
1835        next = list_next_entry(dev, dev_list);
1836        next_offset = next->device_id - dev->device_id;
1837
1838        return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
1839}
1840
1841static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
1842{
1843        struct its_ite *next;
1844        u32 next_offset;
1845
1846        if (list_is_last(&ite->ite_list, h))
1847                return 0;
1848        next = list_next_entry(ite, ite_list);
1849        next_offset = next->event_id - ite->event_id;
1850
1851        return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
1852}
1853
1854/**
1855 * entry_fn_t - Callback called on a table entry restore path
1856 * @its: its handle
1857 * @id: id of the entry
1858 * @entry: pointer to the entry
1859 * @opaque: pointer to an opaque data
1860 *
1861 * Return: < 0 on error, 0 if last element was identified, id offset to next
1862 * element otherwise
1863 */
1864typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
1865                          void *opaque);
1866
1867/**
1868 * scan_its_table - Scan a contiguous table in guest RAM and applies a function
1869 * to each entry
1870 *
1871 * @its: its handle
1872 * @base: base gpa of the table
1873 * @size: size of the table in bytes
1874 * @esz: entry size in bytes
1875 * @start_id: the ID of the first entry in the table
1876 * (non zero for 2d level tables)
1877 * @fn: function to apply on each entry
1878 *
1879 * Return: < 0 on error, 0 if last element was identified, 1 otherwise
1880 * (the last element may not be found on second level tables)
1881 */
1882static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz,
1883                          int start_id, entry_fn_t fn, void *opaque)
1884{
1885        struct kvm *kvm = its->dev->kvm;
1886        unsigned long len = size;
1887        int id = start_id;
1888        gpa_t gpa = base;
1889        char entry[ESZ_MAX];
1890        int ret;
1891
1892        memset(entry, 0, esz);
1893
1894        while (len > 0) {
1895                int next_offset;
1896                size_t byte_offset;
1897
1898                ret = kvm_read_guest_lock(kvm, gpa, entry, esz);
1899                if (ret)
1900                        return ret;
1901
1902                next_offset = fn(its, id, entry, opaque);
1903                if (next_offset <= 0)
1904                        return next_offset;
1905
1906                byte_offset = next_offset * esz;
1907                id += next_offset;
1908                gpa += byte_offset;
1909                len -= byte_offset;
1910        }
1911        return 1;
1912}
1913
1914/**
1915 * vgic_its_save_ite - Save an interrupt translation entry at @gpa
1916 */
1917static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
1918                              struct its_ite *ite, gpa_t gpa, int ite_esz)
1919{
1920        struct kvm *kvm = its->dev->kvm;
1921        u32 next_offset;
1922        u64 val;
1923
1924        next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
1925        val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
1926               ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
1927                ite->collection->collection_id;
1928        val = cpu_to_le64(val);
1929        return kvm_write_guest_lock(kvm, gpa, &val, ite_esz);
1930}
1931
1932/**
1933 * vgic_its_restore_ite - restore an interrupt translation entry
1934 * @event_id: id used for indexing
1935 * @ptr: pointer to the ITE entry
1936 * @opaque: pointer to the its_device
1937 */
1938static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
1939                                void *ptr, void *opaque)
1940{
1941        struct its_device *dev = (struct its_device *)opaque;
1942        struct its_collection *collection;
1943        struct kvm *kvm = its->dev->kvm;
1944        struct kvm_vcpu *vcpu = NULL;
1945        u64 val;
1946        u64 *p = (u64 *)ptr;
1947        struct vgic_irq *irq;
1948        u32 coll_id, lpi_id;
1949        struct its_ite *ite;
1950        u32 offset;
1951
1952        val = *p;
1953
1954        val = le64_to_cpu(val);
1955
1956        coll_id = val & KVM_ITS_ITE_ICID_MASK;
1957        lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
1958
1959        if (!lpi_id)
1960                return 1; /* invalid entry, no choice but to scan next entry */
1961
1962        if (lpi_id < VGIC_MIN_LPI)
1963                return -EINVAL;
1964
1965        offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
1966        if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
1967                return -EINVAL;
1968
1969        collection = find_collection(its, coll_id);
1970        if (!collection)
1971                return -EINVAL;
1972
1973        ite = vgic_its_alloc_ite(dev, collection, event_id);
1974        if (IS_ERR(ite))
1975                return PTR_ERR(ite);
1976
1977        if (its_is_collection_mapped(collection))
1978                vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1979
1980        irq = vgic_add_lpi(kvm, lpi_id, vcpu);
1981        if (IS_ERR(irq))
1982                return PTR_ERR(irq);
1983        ite->irq = irq;
1984
1985        return offset;
1986}
1987
1988static int vgic_its_ite_cmp(void *priv, struct list_head *a,
1989                            struct list_head *b)
1990{
1991        struct its_ite *itea = container_of(a, struct its_ite, ite_list);
1992        struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
1993
1994        if (itea->event_id < iteb->event_id)
1995                return -1;
1996        else
1997                return 1;
1998}
1999
2000static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
2001{
2002        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2003        gpa_t base = device->itt_addr;
2004        struct its_ite *ite;
2005        int ret;
2006        int ite_esz = abi->ite_esz;
2007
2008        list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
2009
2010        list_for_each_entry(ite, &device->itt_head, ite_list) {
2011                gpa_t gpa = base + ite->event_id * ite_esz;
2012
2013                /*
2014                 * If an LPI carries the HW bit, this means that this
2015                 * interrupt is controlled by GICv4, and we do not
2016                 * have direct access to that state. Let's simply fail
2017                 * the save operation...
2018                 */
2019                if (ite->irq->hw)
2020                        return -EACCES;
2021
2022                ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
2023                if (ret)
2024                        return ret;
2025        }
2026        return 0;
2027}
2028
2029/**
2030 * vgic_its_restore_itt - restore the ITT of a device
2031 *
2032 * @its: its handle
2033 * @dev: device handle
2034 *
2035 * Return 0 on success, < 0 on error
2036 */
2037static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
2038{
2039        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2040        gpa_t base = dev->itt_addr;
2041        int ret;
2042        int ite_esz = abi->ite_esz;
2043        size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
2044
2045        ret = scan_its_table(its, base, max_size, ite_esz, 0,
2046                             vgic_its_restore_ite, dev);
2047
2048        /* scan_its_table returns +1 if all ITEs are invalid */
2049        if (ret > 0)
2050                ret = 0;
2051
2052        return ret;
2053}
2054
2055/**
2056 * vgic_its_save_dte - Save a device table entry at a given GPA
2057 *
2058 * @its: ITS handle
2059 * @dev: ITS device
2060 * @ptr: GPA
2061 */
2062static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
2063                             gpa_t ptr, int dte_esz)
2064{
2065        struct kvm *kvm = its->dev->kvm;
2066        u64 val, itt_addr_field;
2067        u32 next_offset;
2068
2069        itt_addr_field = dev->itt_addr >> 8;
2070        next_offset = compute_next_devid_offset(&its->device_list, dev);
2071        val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
2072               ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
2073               (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
2074                (dev->num_eventid_bits - 1));
2075        val = cpu_to_le64(val);
2076        return kvm_write_guest_lock(kvm, ptr, &val, dte_esz);
2077}
2078
2079/**
2080 * vgic_its_restore_dte - restore a device table entry
2081 *
2082 * @its: its handle
2083 * @id: device id the DTE corresponds to
2084 * @ptr: kernel VA where the 8 byte DTE is located
2085 * @opaque: unused
2086 *
2087 * Return: < 0 on error, 0 if the dte is the last one, id offset to the
2088 * next dte otherwise
2089 */
2090static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
2091                                void *ptr, void *opaque)
2092{
2093        struct its_device *dev;
2094        gpa_t itt_addr;
2095        u8 num_eventid_bits;
2096        u64 entry = *(u64 *)ptr;
2097        bool valid;
2098        u32 offset;
2099        int ret;
2100
2101        entry = le64_to_cpu(entry);
2102
2103        valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2104        num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2105        itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2106                        >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2107
2108        if (!valid)
2109                return 1;
2110
2111        /* dte entry is valid */
2112        offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2113
2114        dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2115        if (IS_ERR(dev))
2116                return PTR_ERR(dev);
2117
2118        ret = vgic_its_restore_itt(its, dev);
2119        if (ret) {
2120                vgic_its_free_device(its->dev->kvm, dev);
2121                return ret;
2122        }
2123
2124        return offset;
2125}
2126
2127static int vgic_its_device_cmp(void *priv, struct list_head *a,
2128                               struct list_head *b)
2129{
2130        struct its_device *deva = container_of(a, struct its_device, dev_list);
2131        struct its_device *devb = container_of(b, struct its_device, dev_list);
2132
2133        if (deva->device_id < devb->device_id)
2134                return -1;
2135        else
2136                return 1;
2137}
2138
2139/**
2140 * vgic_its_save_device_tables - Save the device table and all ITT
2141 * into guest RAM
2142 *
2143 * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2144 * returns the GPA of the device entry
2145 */
2146static int vgic_its_save_device_tables(struct vgic_its *its)
2147{
2148        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2149        u64 baser = its->baser_device_table;
2150        struct its_device *dev;
2151        int dte_esz = abi->dte_esz;
2152
2153        if (!(baser & GITS_BASER_VALID))
2154                return 0;
2155
2156        list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2157
2158        list_for_each_entry(dev, &its->device_list, dev_list) {
2159                int ret;
2160                gpa_t eaddr;
2161
2162                if (!vgic_its_check_id(its, baser,
2163                                       dev->device_id, &eaddr))
2164                        return -EINVAL;
2165
2166                ret = vgic_its_save_itt(its, dev);
2167                if (ret)
2168                        return ret;
2169
2170                ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
2171                if (ret)
2172                        return ret;
2173        }
2174        return 0;
2175}
2176
2177/**
2178 * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2179 *
2180 * @its: its handle
2181 * @id: index of the entry in the L1 table
2182 * @addr: kernel VA
2183 * @opaque: unused
2184 *
2185 * L1 table entries are scanned by steps of 1 entry
2186 * Return < 0 if error, 0 if last dte was found when scanning the L2
2187 * table, +1 otherwise (meaning next L1 entry must be scanned)
2188 */
2189static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2190                         void *opaque)
2191{
2192        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2193        int l2_start_id = id * (SZ_64K / abi->dte_esz);
2194        u64 entry = *(u64 *)addr;
2195        int dte_esz = abi->dte_esz;
2196        gpa_t gpa;
2197        int ret;
2198
2199        entry = le64_to_cpu(entry);
2200
2201        if (!(entry & KVM_ITS_L1E_VALID_MASK))
2202                return 1;
2203
2204        gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2205
2206        ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2207                             l2_start_id, vgic_its_restore_dte, NULL);
2208
2209        return ret;
2210}
2211
2212/**
2213 * vgic_its_restore_device_tables - Restore the device table and all ITT
2214 * from guest RAM to internal data structs
2215 */
2216static int vgic_its_restore_device_tables(struct vgic_its *its)
2217{
2218        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2219        u64 baser = its->baser_device_table;
2220        int l1_esz, ret;
2221        int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2222        gpa_t l1_gpa;
2223
2224        if (!(baser & GITS_BASER_VALID))
2225                return 0;
2226
2227        l1_gpa = GITS_BASER_ADDR_48_to_52(baser);
2228
2229        if (baser & GITS_BASER_INDIRECT) {
2230                l1_esz = GITS_LVL1_ENTRY_SIZE;
2231                ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2232                                     handle_l1_dte, NULL);
2233        } else {
2234                l1_esz = abi->dte_esz;
2235                ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2236                                     vgic_its_restore_dte, NULL);
2237        }
2238
2239        /* scan_its_table returns +1 if all entries are invalid */
2240        if (ret > 0)
2241                ret = 0;
2242
2243        return ret;
2244}
2245
2246static int vgic_its_save_cte(struct vgic_its *its,
2247                             struct its_collection *collection,
2248                             gpa_t gpa, int esz)
2249{
2250        u64 val;
2251
2252        val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2253               ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2254               collection->collection_id);
2255        val = cpu_to_le64(val);
2256        return kvm_write_guest_lock(its->dev->kvm, gpa, &val, esz);
2257}
2258
2259static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
2260{
2261        struct its_collection *collection;
2262        struct kvm *kvm = its->dev->kvm;
2263        u32 target_addr, coll_id;
2264        u64 val;
2265        int ret;
2266
2267        BUG_ON(esz > sizeof(val));
2268        ret = kvm_read_guest_lock(kvm, gpa, &val, esz);
2269        if (ret)
2270                return ret;
2271        val = le64_to_cpu(val);
2272        if (!(val & KVM_ITS_CTE_VALID_MASK))
2273                return 0;
2274
2275        target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2276        coll_id = val & KVM_ITS_CTE_ICID_MASK;
2277
2278        if (target_addr >= atomic_read(&kvm->online_vcpus))
2279                return -EINVAL;
2280
2281        collection = find_collection(its, coll_id);
2282        if (collection)
2283                return -EEXIST;
2284        ret = vgic_its_alloc_collection(its, &collection, coll_id);
2285        if (ret)
2286                return ret;
2287        collection->target_addr = target_addr;
2288        return 1;
2289}
2290
2291/**
2292 * vgic_its_save_collection_table - Save the collection table into
2293 * guest RAM
2294 */
2295static int vgic_its_save_collection_table(struct vgic_its *its)
2296{
2297        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2298        u64 baser = its->baser_coll_table;
2299        gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser);
2300        struct its_collection *collection;
2301        u64 val;
2302        size_t max_size, filled = 0;
2303        int ret, cte_esz = abi->cte_esz;
2304
2305        if (!(baser & GITS_BASER_VALID))
2306                return 0;
2307
2308        max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2309
2310        list_for_each_entry(collection, &its->collection_list, coll_list) {
2311                ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
2312                if (ret)
2313                        return ret;
2314                gpa += cte_esz;
2315                filled += cte_esz;
2316        }
2317
2318        if (filled == max_size)
2319                return 0;
2320
2321        /*
2322         * table is not fully filled, add a last dummy element
2323         * with valid bit unset
2324         */
2325        val = 0;
2326        BUG_ON(cte_esz > sizeof(val));
2327        ret = kvm_write_guest_lock(its->dev->kvm, gpa, &val, cte_esz);
2328        return ret;
2329}
2330
2331/**
2332 * vgic_its_restore_collection_table - reads the collection table
2333 * in guest memory and restores the ITS internal state. Requires the
2334 * BASER registers to be restored before.
2335 */
2336static int vgic_its_restore_collection_table(struct vgic_its *its)
2337{
2338        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2339        u64 baser = its->baser_coll_table;
2340        int cte_esz = abi->cte_esz;
2341        size_t max_size, read = 0;
2342        gpa_t gpa;
2343        int ret;
2344
2345        if (!(baser & GITS_BASER_VALID))
2346                return 0;
2347
2348        gpa = GITS_BASER_ADDR_48_to_52(baser);
2349
2350        max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2351
2352        while (read < max_size) {
2353                ret = vgic_its_restore_cte(its, gpa, cte_esz);
2354                if (ret <= 0)
2355                        break;
2356                gpa += cte_esz;
2357                read += cte_esz;
2358        }
2359
2360        if (ret > 0)
2361                return 0;
2362
2363        return ret;
2364}
2365
2366/**
2367 * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2368 * according to v0 ABI
2369 */
2370static int vgic_its_save_tables_v0(struct vgic_its *its)
2371{
2372        int ret;
2373
2374        ret = vgic_its_save_device_tables(its);
2375        if (ret)
2376                return ret;
2377
2378        return vgic_its_save_collection_table(its);
2379}
2380
2381/**
2382 * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2383 * to internal data structs according to V0 ABI
2384 *
2385 */
2386static int vgic_its_restore_tables_v0(struct vgic_its *its)
2387{
2388        int ret;
2389
2390        ret = vgic_its_restore_collection_table(its);
2391        if (ret)
2392                return ret;
2393
2394        return vgic_its_restore_device_tables(its);
2395}
2396
2397static int vgic_its_commit_v0(struct vgic_its *its)
2398{
2399        const struct vgic_its_abi *abi;
2400
2401        abi = vgic_its_get_abi(its);
2402        its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2403        its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2404
2405        its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2406                                        << GITS_BASER_ENTRY_SIZE_SHIFT);
2407
2408        its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2409                                        << GITS_BASER_ENTRY_SIZE_SHIFT);
2410        return 0;
2411}
2412
2413static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
2414{
2415        /* We need to keep the ABI specific field values */
2416        its->baser_coll_table &= ~GITS_BASER_VALID;
2417        its->baser_device_table &= ~GITS_BASER_VALID;
2418        its->cbaser = 0;
2419        its->creadr = 0;
2420        its->cwriter = 0;
2421        its->enabled = 0;
2422        vgic_its_free_device_list(kvm, its);
2423        vgic_its_free_collection_list(kvm, its);
2424}
2425
2426static int vgic_its_has_attr(struct kvm_device *dev,
2427                             struct kvm_device_attr *attr)
2428{
2429        switch (attr->group) {
2430        case KVM_DEV_ARM_VGIC_GRP_ADDR:
2431                switch (attr->attr) {
2432                case KVM_VGIC_ITS_ADDR_TYPE:
2433                        return 0;
2434                }
2435                break;
2436        case KVM_DEV_ARM_VGIC_GRP_CTRL:
2437                switch (attr->attr) {
2438                case KVM_DEV_ARM_VGIC_CTRL_INIT:
2439                        return 0;
2440                case KVM_DEV_ARM_ITS_CTRL_RESET:
2441                        return 0;
2442                case KVM_DEV_ARM_ITS_SAVE_TABLES:
2443                        return 0;
2444                case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2445                        return 0;
2446                }
2447                break;
2448        case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2449                return vgic_its_has_attr_regs(dev, attr);
2450        }
2451        return -ENXIO;
2452}
2453
2454static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
2455{
2456        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2457        int ret = 0;
2458
2459        if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
2460                return 0;
2461
2462        mutex_lock(&kvm->lock);
2463        mutex_lock(&its->its_lock);
2464
2465        if (!lock_all_vcpus(kvm)) {
2466                mutex_unlock(&its->its_lock);
2467                mutex_unlock(&kvm->lock);
2468                return -EBUSY;
2469        }
2470
2471        switch (attr) {
2472        case KVM_DEV_ARM_ITS_CTRL_RESET:
2473                vgic_its_reset(kvm, its);
2474                break;
2475        case KVM_DEV_ARM_ITS_SAVE_TABLES:
2476                ret = abi->save_tables(its);
2477                break;
2478        case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2479                ret = abi->restore_tables(its);
2480                break;
2481        }
2482
2483        unlock_all_vcpus(kvm);
2484        mutex_unlock(&its->its_lock);
2485        mutex_unlock(&kvm->lock);
2486        return ret;
2487}
2488
2489static int vgic_its_set_attr(struct kvm_device *dev,
2490                             struct kvm_device_attr *attr)
2491{
2492        struct vgic_its *its = dev->private;
2493        int ret;
2494
2495        switch (attr->group) {
2496        case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2497                u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2498                unsigned long type = (unsigned long)attr->attr;
2499                u64 addr;
2500
2501                if (type != KVM_VGIC_ITS_ADDR_TYPE)
2502                        return -ENODEV;
2503
2504                if (copy_from_user(&addr, uaddr, sizeof(addr)))
2505                        return -EFAULT;
2506
2507                ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base,
2508                                        addr, SZ_64K);
2509                if (ret)
2510                        return ret;
2511
2512                return vgic_register_its_iodev(dev->kvm, its, addr);
2513        }
2514        case KVM_DEV_ARM_VGIC_GRP_CTRL:
2515                return vgic_its_ctrl(dev->kvm, its, attr->attr);
2516        case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2517                u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2518                u64 reg;
2519
2520                if (get_user(reg, uaddr))
2521                        return -EFAULT;
2522
2523                return vgic_its_attr_regs_access(dev, attr, &reg, true);
2524        }
2525        }
2526        return -ENXIO;
2527}
2528
2529static int vgic_its_get_attr(struct kvm_device *dev,
2530                             struct kvm_device_attr *attr)
2531{
2532        switch (attr->group) {
2533        case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2534                struct vgic_its *its = dev->private;
2535                u64 addr = its->vgic_its_base;
2536                u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2537                unsigned long type = (unsigned long)attr->attr;
2538
2539                if (type != KVM_VGIC_ITS_ADDR_TYPE)
2540                        return -ENODEV;
2541
2542                if (copy_to_user(uaddr, &addr, sizeof(addr)))
2543                        return -EFAULT;
2544                break;
2545        }
2546        case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2547                u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2548                u64 reg;
2549                int ret;
2550
2551                ret = vgic_its_attr_regs_access(dev, attr, &reg, false);
2552                if (ret)
2553                        return ret;
2554                return put_user(reg, uaddr);
2555        }
2556        default:
2557                return -ENXIO;
2558        }
2559
2560        return 0;
2561}
2562
2563static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2564        .name = "kvm-arm-vgic-its",
2565        .create = vgic_its_create,
2566        .destroy = vgic_its_destroy,
2567        .set_attr = vgic_its_set_attr,
2568        .get_attr = vgic_its_get_attr,
2569        .has_attr = vgic_its_has_attr,
2570};
2571
2572int kvm_vgic_register_its_device(void)
2573{
2574        return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2575                                       KVM_DEV_TYPE_ARM_VGIC_ITS);
2576}
2577