linux/arch/hexagon/include/asm/pgtable.h
<<
>>
Prefs
   1/*
   2 * Page table support for the Hexagon architecture
   3 *
   4 * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 and
   8 * only version 2 as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  18 * 02110-1301, USA.
  19 */
  20
  21#ifndef _ASM_PGTABLE_H
  22#define _ASM_PGTABLE_H
  23
  24/*
  25 * Page table definitions for Qualcomm Hexagon processor.
  26 */
  27#include <asm/page.h>
  28#define __ARCH_USE_5LEVEL_HACK
  29#include <asm-generic/pgtable-nopmd.h>
  30
  31/* A handy thing to have if one has the RAM. Declared in head.S */
  32extern unsigned long empty_zero_page;
  33
  34/*
  35 * The PTE model described here is that of the Hexagon Virtual Machine,
  36 * which autonomously walks 2-level page tables.  At a lower level, we
  37 * also describe the RISCish software-loaded TLB entry structure of
  38 * the underlying Hexagon processor. A kernel built to run on the
  39 * virtual machine has no need to know about the underlying hardware.
  40 */
  41#include <asm/vm_mmu.h>
  42
  43/*
  44 * To maximize the comfort level for the PTE manipulation macros,
  45 * define the "well known" architecture-specific bits.
  46 */
  47#define _PAGE_READ      __HVM_PTE_R
  48#define _PAGE_WRITE     __HVM_PTE_W
  49#define _PAGE_EXECUTE   __HVM_PTE_X
  50#define _PAGE_USER      __HVM_PTE_U
  51
  52/*
  53 * We have a total of 4 "soft" bits available in the abstract PTE.
  54 * The two mandatory software bits are Dirty and Accessed.
  55 * To make nonlinear swap work according to the more recent
  56 * model, we want a low order "Present" bit to indicate whether
  57 * the PTE describes MMU programming or swap space.
  58 */
  59#define _PAGE_PRESENT   (1<<0)
  60#define _PAGE_DIRTY     (1<<1)
  61#define _PAGE_ACCESSED  (1<<2)
  62
  63/*
  64 * For now, let's say that Valid and Present are the same thing.
  65 * Alternatively, we could say that it's the "or" of R, W, and X
  66 * permissions.
  67 */
  68#define _PAGE_VALID     _PAGE_PRESENT
  69
  70/*
  71 * We're not defining _PAGE_GLOBAL here, since there's no concept
  72 * of global pages or ASIDs exposed to the Hexagon Virtual Machine,
  73 * and we want to use the same page table structures and macros in
  74 * the native kernel as we do in the virtual machine kernel.
  75 * So we'll put up with a bit of inefficiency for now...
  76 */
  77
  78/*
  79 * Top "FOURTH" level (pgd), which for the Hexagon VM is really
  80 * only the second from the bottom, pgd and pud both being collapsed.
  81 * Each entry represents 4MB of virtual address space, 4K of table
  82 * thus maps the full 4GB.
  83 */
  84#define PGDIR_SHIFT 22
  85#define PTRS_PER_PGD 1024
  86
  87#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
  88#define PGDIR_MASK (~(PGDIR_SIZE-1))
  89
  90#ifdef CONFIG_PAGE_SIZE_4KB
  91#define PTRS_PER_PTE 1024
  92#endif
  93
  94#ifdef CONFIG_PAGE_SIZE_16KB
  95#define PTRS_PER_PTE 256
  96#endif
  97
  98#ifdef CONFIG_PAGE_SIZE_64KB
  99#define PTRS_PER_PTE 64
 100#endif
 101
 102#ifdef CONFIG_PAGE_SIZE_256KB
 103#define PTRS_PER_PTE 16
 104#endif
 105
 106#ifdef CONFIG_PAGE_SIZE_1MB
 107#define PTRS_PER_PTE 4
 108#endif
 109
 110/*  Any bigger and the PTE disappears.  */
 111#define pgd_ERROR(e) \
 112        printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__,\
 113                pgd_val(e))
 114
 115/*
 116 * Page Protection Constants. Includes (in this variant) cache attributes.
 117 */
 118extern unsigned long _dflt_cache_att;
 119
 120#define PAGE_NONE       __pgprot(_PAGE_PRESENT | _PAGE_USER | \
 121                                _dflt_cache_att)
 122#define PAGE_READONLY   __pgprot(_PAGE_PRESENT | _PAGE_USER | \
 123                                _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
 124#define PAGE_COPY       PAGE_READONLY
 125#define PAGE_EXEC       __pgprot(_PAGE_PRESENT | _PAGE_USER | \
 126                                _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
 127#define PAGE_COPY_EXEC  PAGE_EXEC
 128#define PAGE_SHARED     __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
 129                                _PAGE_EXECUTE | _PAGE_WRITE | _dflt_cache_att)
 130#define PAGE_KERNEL     __pgprot(_PAGE_PRESENT | _PAGE_READ | \
 131                                _PAGE_WRITE | _PAGE_EXECUTE | _dflt_cache_att)
 132
 133
 134/*
 135 * Aliases for mapping mmap() protection bits to page protections.
 136 * These get used for static initialization, so using the _dflt_cache_att
 137 * variable for the default cache attribute isn't workable. If the
 138 * default gets changed at boot time, the boot option code has to
 139 * update data structures like the protaction_map[] array.
 140 */
 141#define CACHEDEF        (CACHE_DEFAULT << 6)
 142
 143/* Private (copy-on-write) page protections. */
 144#define __P000 __pgprot(_PAGE_PRESENT | _PAGE_USER | CACHEDEF)
 145#define __P001 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | CACHEDEF)
 146#define __P010 __P000   /* Write-only copy-on-write */
 147#define __P011 __P001   /* Read/Write copy-on-write */
 148#define __P100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
 149                        _PAGE_EXECUTE | CACHEDEF)
 150#define __P101 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_EXECUTE | \
 151                        _PAGE_READ | CACHEDEF)
 152#define __P110 __P100   /* Write/execute copy-on-write */
 153#define __P111 __P101   /* Read/Write/Execute, copy-on-write */
 154
 155/* Shared page protections. */
 156#define __S000 __P000
 157#define __S001 __P001
 158#define __S010 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
 159                        _PAGE_WRITE | CACHEDEF)
 160#define __S011 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
 161                        _PAGE_WRITE | CACHEDEF)
 162#define __S100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
 163                        _PAGE_EXECUTE | CACHEDEF)
 164#define __S101 __P101
 165#define __S110 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
 166                        _PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF)
 167#define __S111 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
 168                        _PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF)
 169
 170extern pgd_t swapper_pg_dir[PTRS_PER_PGD];  /* located in head.S */
 171
 172/* Seems to be zero even in architectures where the zero page is firewalled? */
 173#define FIRST_USER_ADDRESS 0UL
 174#define pte_special(pte)        0
 175#define pte_mkspecial(pte)      (pte)
 176
 177/*  HUGETLB not working currently  */
 178#ifdef CONFIG_HUGETLB_PAGE
 179#define pte_mkhuge(pte) __pte((pte_val(pte) & ~0x3) | HVM_HUGEPAGE_SIZE)
 180#endif
 181
 182/*
 183 * For now, assume that higher-level code will do TLB/MMU invalidations
 184 * and don't insert that overhead into this low-level function.
 185 */
 186extern void sync_icache_dcache(pte_t pte);
 187
 188#define pte_present_exec_user(pte) \
 189        ((pte_val(pte) & (_PAGE_EXECUTE | _PAGE_USER)) == \
 190        (_PAGE_EXECUTE | _PAGE_USER))
 191
 192static inline void set_pte(pte_t *ptep, pte_t pteval)
 193{
 194        /*  should really be using pte_exec, if it weren't declared later. */
 195        if (pte_present_exec_user(pteval))
 196                sync_icache_dcache(pteval);
 197
 198        *ptep = pteval;
 199}
 200
 201/*
 202 * For the Hexagon Virtual Machine MMU (or its emulation), a null/invalid
 203 * L1 PTE (PMD/PGD) has 7 in the least significant bits. For the L2 PTE
 204 * (Linux PTE), the key is to have bits 11..9 all zero.  We'd use 0x7
 205 * as a universal null entry, but some of those least significant bits
 206 * are interpreted by software.
 207 */
 208#define _NULL_PMD       0x7
 209#define _NULL_PTE       0x0
 210
 211static inline void pmd_clear(pmd_t *pmd_entry_ptr)
 212{
 213         pmd_val(*pmd_entry_ptr) = _NULL_PMD;
 214}
 215
 216/*
 217 * Conveniently, a null PTE value is invalid.
 218 */
 219static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
 220                                pte_t *ptep)
 221{
 222        pte_val(*ptep) = _NULL_PTE;
 223}
 224
 225#ifdef NEED_PMD_INDEX_DESPITE_BEING_2_LEVEL
 226/**
 227 * pmd_index - returns the index of the entry in the PMD page
 228 * which would control the given virtual address
 229 */
 230#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
 231
 232#endif
 233
 234/**
 235 * pgd_index - returns the index of the entry in the PGD page
 236 * which would control the given virtual address
 237 *
 238 * This returns the *index* for the address in the pgd_t
 239 */
 240#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
 241
 242/*
 243 * pgd_offset - find an offset in a page-table-directory
 244 */
 245#define pgd_offset(mm, addr) ((mm)->pgd + pgd_index(addr))
 246
 247/*
 248 * pgd_offset_k - get kernel (init_mm) pgd entry pointer for addr
 249 */
 250#define pgd_offset_k(address) pgd_offset(&init_mm, address)
 251
 252/**
 253 * pmd_none - check if pmd_entry is mapped
 254 * @pmd_entry:  pmd entry
 255 *
 256 * MIPS checks it against that "invalid pte table" thing.
 257 */
 258static inline int pmd_none(pmd_t pmd)
 259{
 260        return pmd_val(pmd) == _NULL_PMD;
 261}
 262
 263/**
 264 * pmd_present - is there a page table behind this?
 265 * Essentially the inverse of pmd_none.  We maybe
 266 * save an inline instruction by defining it this
 267 * way, instead of simply "!pmd_none".
 268 */
 269static inline int pmd_present(pmd_t pmd)
 270{
 271        return pmd_val(pmd) != (unsigned long)_NULL_PMD;
 272}
 273
 274/**
 275 * pmd_bad - check if a PMD entry is "bad". That might mean swapped out.
 276 * As we have no known cause of badness, it's null, as it is for many
 277 * architectures.
 278 */
 279static inline int pmd_bad(pmd_t pmd)
 280{
 281        return 0;
 282}
 283
 284/*
 285 * pmd_page - converts a PMD entry to a page pointer
 286 */
 287#define pmd_page(pmd)  (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
 288#define pmd_pgtable(pmd) pmd_page(pmd)
 289
 290/**
 291 * pte_none - check if pte is mapped
 292 * @pte: pte_t entry
 293 */
 294static inline int pte_none(pte_t pte)
 295{
 296        return pte_val(pte) == _NULL_PTE;
 297};
 298
 299/*
 300 * pte_present - check if page is present
 301 */
 302static inline int pte_present(pte_t pte)
 303{
 304        return pte_val(pte) & _PAGE_PRESENT;
 305}
 306
 307/* mk_pte - make a PTE out of a page pointer and protection bits */
 308#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
 309
 310/* pte_page - returns a page (frame pointer/descriptor?) based on a PTE */
 311#define pte_page(x) pfn_to_page(pte_pfn(x))
 312
 313/* pte_mkold - mark PTE as not recently accessed */
 314static inline pte_t pte_mkold(pte_t pte)
 315{
 316        pte_val(pte) &= ~_PAGE_ACCESSED;
 317        return pte;
 318}
 319
 320/* pte_mkyoung - mark PTE as recently accessed */
 321static inline pte_t pte_mkyoung(pte_t pte)
 322{
 323        pte_val(pte) |= _PAGE_ACCESSED;
 324        return pte;
 325}
 326
 327/* pte_mkclean - mark page as in sync with backing store */
 328static inline pte_t pte_mkclean(pte_t pte)
 329{
 330        pte_val(pte) &= ~_PAGE_DIRTY;
 331        return pte;
 332}
 333
 334/* pte_mkdirty - mark page as modified */
 335static inline pte_t pte_mkdirty(pte_t pte)
 336{
 337        pte_val(pte) |= _PAGE_DIRTY;
 338        return pte;
 339}
 340
 341/* pte_young - "is PTE marked as accessed"? */
 342static inline int pte_young(pte_t pte)
 343{
 344        return pte_val(pte) & _PAGE_ACCESSED;
 345}
 346
 347/* pte_dirty - "is PTE dirty?" */
 348static inline int pte_dirty(pte_t pte)
 349{
 350        return pte_val(pte) & _PAGE_DIRTY;
 351}
 352
 353/* pte_modify - set protection bits on PTE */
 354static inline pte_t pte_modify(pte_t pte, pgprot_t prot)
 355{
 356        pte_val(pte) &= PAGE_MASK;
 357        pte_val(pte) |= pgprot_val(prot);
 358        return pte;
 359}
 360
 361/* pte_wrprotect - mark page as not writable */
 362static inline pte_t pte_wrprotect(pte_t pte)
 363{
 364        pte_val(pte) &= ~_PAGE_WRITE;
 365        return pte;
 366}
 367
 368/* pte_mkwrite - mark page as writable */
 369static inline pte_t pte_mkwrite(pte_t pte)
 370{
 371        pte_val(pte) |= _PAGE_WRITE;
 372        return pte;
 373}
 374
 375/* pte_mkexec - mark PTE as executable */
 376static inline pte_t pte_mkexec(pte_t pte)
 377{
 378        pte_val(pte) |= _PAGE_EXECUTE;
 379        return pte;
 380}
 381
 382/* pte_read - "is PTE marked as readable?" */
 383static inline int pte_read(pte_t pte)
 384{
 385        return pte_val(pte) & _PAGE_READ;
 386}
 387
 388/* pte_write - "is PTE marked as writable?" */
 389static inline int pte_write(pte_t pte)
 390{
 391        return pte_val(pte) & _PAGE_WRITE;
 392}
 393
 394
 395/* pte_exec - "is PTE marked as executable?" */
 396static inline int pte_exec(pte_t pte)
 397{
 398        return pte_val(pte) & _PAGE_EXECUTE;
 399}
 400
 401/* __pte_to_swp_entry - extract swap entry from PTE */
 402#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
 403
 404/* __swp_entry_to_pte - extract PTE from swap entry */
 405#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
 406
 407/* pfn_pte - convert page number and protection value to page table entry */
 408#define pfn_pte(pfn, pgprot) __pte((pfn << PAGE_SHIFT) | pgprot_val(pgprot))
 409
 410/* pte_pfn - convert pte to page frame number */
 411#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
 412#define set_pmd(pmdptr, pmdval) (*(pmdptr) = (pmdval))
 413
 414/*
 415 * set_pte_at - update page table and do whatever magic may be
 416 * necessary to make the underlying hardware/firmware take note.
 417 *
 418 * VM may require a virtual instruction to alert the MMU.
 419 */
 420#define set_pte_at(mm, addr, ptep, pte) set_pte(ptep, pte)
 421
 422/*
 423 * May need to invoke the virtual machine as well...
 424 */
 425#define pte_unmap(pte)          do { } while (0)
 426#define pte_unmap_nested(pte)   do { } while (0)
 427
 428/*
 429 * pte_offset_map - returns the linear address of the page table entry
 430 * corresponding to an address
 431 */
 432#define pte_offset_map(dir, address)                                    \
 433        ((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address))
 434
 435#define pte_offset_map_nested(pmd, addr) pte_offset_map(pmd, addr)
 436
 437/* pte_offset_kernel - kernel version of pte_offset */
 438#define pte_offset_kernel(dir, address) \
 439        ((pte_t *) (unsigned long) __va(pmd_val(*dir) & PAGE_MASK) \
 440                                +  __pte_offset(address))
 441
 442/* ZERO_PAGE - returns the globally shared zero page */
 443#define ZERO_PAGE(vaddr) (virt_to_page(&empty_zero_page))
 444
 445#define __pte_offset(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
 446
 447/*  I think this is in case we have page table caches; needed by init/main.c  */
 448#define pgtable_cache_init()    do { } while (0)
 449
 450/*
 451 * Swap/file PTE definitions.  If _PAGE_PRESENT is zero, the rest of the PTE is
 452 * interpreted as swap information.  The remaining free bits are interpreted as
 453 * swap type/offset tuple.  Rather than have the TLB fill handler test
 454 * _PAGE_PRESENT, we're going to reserve the permissions bits and set them to
 455 * all zeros for swap entries, which speeds up the miss handler at the cost of
 456 * 3 bits of offset.  That trade-off can be revisited if necessary, but Hexagon
 457 * processor architecture and target applications suggest a lot of TLB misses
 458 * and not much swap space.
 459 *
 460 * Format of swap PTE:
 461 *      bit     0:      Present (zero)
 462 *      bits    1-5:    swap type (arch independent layer uses 5 bits max)
 463 *      bits    6-9:    bits 3:0 of offset
 464 *      bits    10-12:  effectively _PAGE_PROTNONE (all zero)
 465 *      bits    13-31:  bits 22:4 of swap offset
 466 *
 467 * The split offset makes some of the following macros a little gnarly,
 468 * but there's plenty of precedent for this sort of thing.
 469 */
 470
 471/* Used for swap PTEs */
 472#define __swp_type(swp_pte)             (((swp_pte).val >> 1) & 0x1f)
 473
 474#define __swp_offset(swp_pte) \
 475        ((((swp_pte).val >> 6) & 0xf) | (((swp_pte).val >> 9) & 0x7ffff0))
 476
 477#define __swp_entry(type, offset) \
 478        ((swp_entry_t)  { \
 479                ((type << 1) | \
 480                 ((offset & 0x7ffff0) << 9) | ((offset & 0xf) << 6)) })
 481
 482/*  Oh boy.  There are a lot of possible arch overrides found in this file.  */
 483#include <asm-generic/pgtable.h>
 484
 485#endif
 486