linux/drivers/block/zram/zram_drv.c
<<
>>
Prefs
   1/*
   2 * Compressed RAM block device
   3 *
   4 * Copyright (C) 2008, 2009, 2010  Nitin Gupta
   5 *               2012, 2013 Minchan Kim
   6 *
   7 * This code is released using a dual license strategy: BSD/GPL
   8 * You can choose the licence that better fits your requirements.
   9 *
  10 * Released under the terms of 3-clause BSD License
  11 * Released under the terms of GNU General Public License Version 2.0
  12 *
  13 */
  14
  15#define KMSG_COMPONENT "zram"
  16#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  17
  18#include <linux/module.h>
  19#include <linux/kernel.h>
  20#include <linux/bio.h>
  21#include <linux/bitops.h>
  22#include <linux/blkdev.h>
  23#include <linux/buffer_head.h>
  24#include <linux/device.h>
  25#include <linux/genhd.h>
  26#include <linux/highmem.h>
  27#include <linux/slab.h>
  28#include <linux/backing-dev.h>
  29#include <linux/string.h>
  30#include <linux/vmalloc.h>
  31#include <linux/err.h>
  32#include <linux/idr.h>
  33#include <linux/sysfs.h>
  34#include <linux/debugfs.h>
  35#include <linux/cpuhotplug.h>
  36
  37#include "zram_drv.h"
  38
  39static DEFINE_IDR(zram_index_idr);
  40/* idr index must be protected */
  41static DEFINE_MUTEX(zram_index_mutex);
  42
  43static int zram_major;
  44static const char *default_compressor = "lzo";
  45
  46/* Module params (documentation at end) */
  47static unsigned int num_devices = 1;
  48/*
  49 * Pages that compress to sizes equals or greater than this are stored
  50 * uncompressed in memory.
  51 */
  52static size_t huge_class_size;
  53
  54static void zram_free_page(struct zram *zram, size_t index);
  55
  56static void zram_slot_lock(struct zram *zram, u32 index)
  57{
  58        bit_spin_lock(ZRAM_LOCK, &zram->table[index].value);
  59}
  60
  61static void zram_slot_unlock(struct zram *zram, u32 index)
  62{
  63        bit_spin_unlock(ZRAM_LOCK, &zram->table[index].value);
  64}
  65
  66static inline bool init_done(struct zram *zram)
  67{
  68        return zram->disksize;
  69}
  70
  71static inline bool zram_allocated(struct zram *zram, u32 index)
  72{
  73
  74        return (zram->table[index].value >> (ZRAM_FLAG_SHIFT + 1)) ||
  75                                        zram->table[index].handle;
  76}
  77
  78static inline struct zram *dev_to_zram(struct device *dev)
  79{
  80        return (struct zram *)dev_to_disk(dev)->private_data;
  81}
  82
  83static unsigned long zram_get_handle(struct zram *zram, u32 index)
  84{
  85        return zram->table[index].handle;
  86}
  87
  88static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
  89{
  90        zram->table[index].handle = handle;
  91}
  92
  93/* flag operations require table entry bit_spin_lock() being held */
  94static bool zram_test_flag(struct zram *zram, u32 index,
  95                        enum zram_pageflags flag)
  96{
  97        return zram->table[index].value & BIT(flag);
  98}
  99
 100static void zram_set_flag(struct zram *zram, u32 index,
 101                        enum zram_pageflags flag)
 102{
 103        zram->table[index].value |= BIT(flag);
 104}
 105
 106static void zram_clear_flag(struct zram *zram, u32 index,
 107                        enum zram_pageflags flag)
 108{
 109        zram->table[index].value &= ~BIT(flag);
 110}
 111
 112static inline void zram_set_element(struct zram *zram, u32 index,
 113                        unsigned long element)
 114{
 115        zram->table[index].element = element;
 116}
 117
 118static unsigned long zram_get_element(struct zram *zram, u32 index)
 119{
 120        return zram->table[index].element;
 121}
 122
 123static size_t zram_get_obj_size(struct zram *zram, u32 index)
 124{
 125        return zram->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
 126}
 127
 128static void zram_set_obj_size(struct zram *zram,
 129                                        u32 index, size_t size)
 130{
 131        unsigned long flags = zram->table[index].value >> ZRAM_FLAG_SHIFT;
 132
 133        zram->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
 134}
 135
 136#if PAGE_SIZE != 4096
 137static inline bool is_partial_io(struct bio_vec *bvec)
 138{
 139        return bvec->bv_len != PAGE_SIZE;
 140}
 141#else
 142static inline bool is_partial_io(struct bio_vec *bvec)
 143{
 144        return false;
 145}
 146#endif
 147
 148/*
 149 * Check if request is within bounds and aligned on zram logical blocks.
 150 */
 151static inline bool valid_io_request(struct zram *zram,
 152                sector_t start, unsigned int size)
 153{
 154        u64 end, bound;
 155
 156        /* unaligned request */
 157        if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
 158                return false;
 159        if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
 160                return false;
 161
 162        end = start + (size >> SECTOR_SHIFT);
 163        bound = zram->disksize >> SECTOR_SHIFT;
 164        /* out of range range */
 165        if (unlikely(start >= bound || end > bound || start > end))
 166                return false;
 167
 168        /* I/O request is valid */
 169        return true;
 170}
 171
 172static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
 173{
 174        *index  += (*offset + bvec->bv_len) / PAGE_SIZE;
 175        *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
 176}
 177
 178static inline void update_used_max(struct zram *zram,
 179                                        const unsigned long pages)
 180{
 181        unsigned long old_max, cur_max;
 182
 183        old_max = atomic_long_read(&zram->stats.max_used_pages);
 184
 185        do {
 186                cur_max = old_max;
 187                if (pages > cur_max)
 188                        old_max = atomic_long_cmpxchg(
 189                                &zram->stats.max_used_pages, cur_max, pages);
 190        } while (old_max != cur_max);
 191}
 192
 193static inline void zram_fill_page(void *ptr, unsigned long len,
 194                                        unsigned long value)
 195{
 196        WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
 197        memset_l(ptr, value, len / sizeof(unsigned long));
 198}
 199
 200static bool page_same_filled(void *ptr, unsigned long *element)
 201{
 202        unsigned int pos;
 203        unsigned long *page;
 204        unsigned long val;
 205
 206        page = (unsigned long *)ptr;
 207        val = page[0];
 208
 209        for (pos = 1; pos < PAGE_SIZE / sizeof(*page); pos++) {
 210                if (val != page[pos])
 211                        return false;
 212        }
 213
 214        *element = val;
 215
 216        return true;
 217}
 218
 219static ssize_t initstate_show(struct device *dev,
 220                struct device_attribute *attr, char *buf)
 221{
 222        u32 val;
 223        struct zram *zram = dev_to_zram(dev);
 224
 225        down_read(&zram->init_lock);
 226        val = init_done(zram);
 227        up_read(&zram->init_lock);
 228
 229        return scnprintf(buf, PAGE_SIZE, "%u\n", val);
 230}
 231
 232static ssize_t disksize_show(struct device *dev,
 233                struct device_attribute *attr, char *buf)
 234{
 235        struct zram *zram = dev_to_zram(dev);
 236
 237        return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
 238}
 239
 240static ssize_t mem_limit_store(struct device *dev,
 241                struct device_attribute *attr, const char *buf, size_t len)
 242{
 243        u64 limit;
 244        char *tmp;
 245        struct zram *zram = dev_to_zram(dev);
 246
 247        limit = memparse(buf, &tmp);
 248        if (buf == tmp) /* no chars parsed, invalid input */
 249                return -EINVAL;
 250
 251        down_write(&zram->init_lock);
 252        zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
 253        up_write(&zram->init_lock);
 254
 255        return len;
 256}
 257
 258static ssize_t mem_used_max_store(struct device *dev,
 259                struct device_attribute *attr, const char *buf, size_t len)
 260{
 261        int err;
 262        unsigned long val;
 263        struct zram *zram = dev_to_zram(dev);
 264
 265        err = kstrtoul(buf, 10, &val);
 266        if (err || val != 0)
 267                return -EINVAL;
 268
 269        down_read(&zram->init_lock);
 270        if (init_done(zram)) {
 271                atomic_long_set(&zram->stats.max_used_pages,
 272                                zs_get_total_pages(zram->mem_pool));
 273        }
 274        up_read(&zram->init_lock);
 275
 276        return len;
 277}
 278
 279#ifdef CONFIG_ZRAM_WRITEBACK
 280static bool zram_wb_enabled(struct zram *zram)
 281{
 282        return zram->backing_dev;
 283}
 284
 285static void reset_bdev(struct zram *zram)
 286{
 287        struct block_device *bdev;
 288
 289        if (!zram_wb_enabled(zram))
 290                return;
 291
 292        bdev = zram->bdev;
 293        if (zram->old_block_size)
 294                set_blocksize(bdev, zram->old_block_size);
 295        blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
 296        /* hope filp_close flush all of IO */
 297        filp_close(zram->backing_dev, NULL);
 298        zram->backing_dev = NULL;
 299        zram->old_block_size = 0;
 300        zram->bdev = NULL;
 301        zram->disk->queue->backing_dev_info->capabilities |=
 302                                BDI_CAP_SYNCHRONOUS_IO;
 303        kvfree(zram->bitmap);
 304        zram->bitmap = NULL;
 305}
 306
 307static ssize_t backing_dev_show(struct device *dev,
 308                struct device_attribute *attr, char *buf)
 309{
 310        struct zram *zram = dev_to_zram(dev);
 311        struct file *file = zram->backing_dev;
 312        char *p;
 313        ssize_t ret;
 314
 315        down_read(&zram->init_lock);
 316        if (!zram_wb_enabled(zram)) {
 317                memcpy(buf, "none\n", 5);
 318                up_read(&zram->init_lock);
 319                return 5;
 320        }
 321
 322        p = file_path(file, buf, PAGE_SIZE - 1);
 323        if (IS_ERR(p)) {
 324                ret = PTR_ERR(p);
 325                goto out;
 326        }
 327
 328        ret = strlen(p);
 329        memmove(buf, p, ret);
 330        buf[ret++] = '\n';
 331out:
 332        up_read(&zram->init_lock);
 333        return ret;
 334}
 335
 336static ssize_t backing_dev_store(struct device *dev,
 337                struct device_attribute *attr, const char *buf, size_t len)
 338{
 339        char *file_name;
 340        struct file *backing_dev = NULL;
 341        struct inode *inode;
 342        struct address_space *mapping;
 343        unsigned int bitmap_sz, old_block_size = 0;
 344        unsigned long nr_pages, *bitmap = NULL;
 345        struct block_device *bdev = NULL;
 346        int err;
 347        struct zram *zram = dev_to_zram(dev);
 348
 349        file_name = kmalloc(PATH_MAX, GFP_KERNEL);
 350        if (!file_name)
 351                return -ENOMEM;
 352
 353        down_write(&zram->init_lock);
 354        if (init_done(zram)) {
 355                pr_info("Can't setup backing device for initialized device\n");
 356                err = -EBUSY;
 357                goto out;
 358        }
 359
 360        strlcpy(file_name, buf, len);
 361
 362        backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0);
 363        if (IS_ERR(backing_dev)) {
 364                err = PTR_ERR(backing_dev);
 365                backing_dev = NULL;
 366                goto out;
 367        }
 368
 369        mapping = backing_dev->f_mapping;
 370        inode = mapping->host;
 371
 372        /* Support only block device in this moment */
 373        if (!S_ISBLK(inode->i_mode)) {
 374                err = -ENOTBLK;
 375                goto out;
 376        }
 377
 378        bdev = bdgrab(I_BDEV(inode));
 379        err = blkdev_get(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL, zram);
 380        if (err < 0)
 381                goto out;
 382
 383        nr_pages = i_size_read(inode) >> PAGE_SHIFT;
 384        bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
 385        bitmap = kvzalloc(bitmap_sz, GFP_KERNEL);
 386        if (!bitmap) {
 387                err = -ENOMEM;
 388                goto out;
 389        }
 390
 391        old_block_size = block_size(bdev);
 392        err = set_blocksize(bdev, PAGE_SIZE);
 393        if (err)
 394                goto out;
 395
 396        reset_bdev(zram);
 397        spin_lock_init(&zram->bitmap_lock);
 398
 399        zram->old_block_size = old_block_size;
 400        zram->bdev = bdev;
 401        zram->backing_dev = backing_dev;
 402        zram->bitmap = bitmap;
 403        zram->nr_pages = nr_pages;
 404        /*
 405         * With writeback feature, zram does asynchronous IO so it's no longer
 406         * synchronous device so let's remove synchronous io flag. Othewise,
 407         * upper layer(e.g., swap) could wait IO completion rather than
 408         * (submit and return), which will cause system sluggish.
 409         * Furthermore, when the IO function returns(e.g., swap_readpage),
 410         * upper layer expects IO was done so it could deallocate the page
 411         * freely but in fact, IO is going on so finally could cause
 412         * use-after-free when the IO is really done.
 413         */
 414        zram->disk->queue->backing_dev_info->capabilities &=
 415                        ~BDI_CAP_SYNCHRONOUS_IO;
 416        up_write(&zram->init_lock);
 417
 418        pr_info("setup backing device %s\n", file_name);
 419        kfree(file_name);
 420
 421        return len;
 422out:
 423        if (bitmap)
 424                kvfree(bitmap);
 425
 426        if (bdev)
 427                blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
 428
 429        if (backing_dev)
 430                filp_close(backing_dev, NULL);
 431
 432        up_write(&zram->init_lock);
 433
 434        kfree(file_name);
 435
 436        return err;
 437}
 438
 439static unsigned long get_entry_bdev(struct zram *zram)
 440{
 441        unsigned long entry;
 442
 443        spin_lock(&zram->bitmap_lock);
 444        /* skip 0 bit to confuse zram.handle = 0 */
 445        entry = find_next_zero_bit(zram->bitmap, zram->nr_pages, 1);
 446        if (entry == zram->nr_pages) {
 447                spin_unlock(&zram->bitmap_lock);
 448                return 0;
 449        }
 450
 451        set_bit(entry, zram->bitmap);
 452        spin_unlock(&zram->bitmap_lock);
 453
 454        return entry;
 455}
 456
 457static void put_entry_bdev(struct zram *zram, unsigned long entry)
 458{
 459        int was_set;
 460
 461        spin_lock(&zram->bitmap_lock);
 462        was_set = test_and_clear_bit(entry, zram->bitmap);
 463        spin_unlock(&zram->bitmap_lock);
 464        WARN_ON_ONCE(!was_set);
 465}
 466
 467static void zram_page_end_io(struct bio *bio)
 468{
 469        struct page *page = bio_first_page_all(bio);
 470
 471        page_endio(page, op_is_write(bio_op(bio)),
 472                        blk_status_to_errno(bio->bi_status));
 473        bio_put(bio);
 474}
 475
 476/*
 477 * Returns 1 if the submission is successful.
 478 */
 479static int read_from_bdev_async(struct zram *zram, struct bio_vec *bvec,
 480                        unsigned long entry, struct bio *parent)
 481{
 482        struct bio *bio;
 483
 484        bio = bio_alloc(GFP_ATOMIC, 1);
 485        if (!bio)
 486                return -ENOMEM;
 487
 488        bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
 489        bio_set_dev(bio, zram->bdev);
 490        if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset)) {
 491                bio_put(bio);
 492                return -EIO;
 493        }
 494
 495        if (!parent) {
 496                bio->bi_opf = REQ_OP_READ;
 497                bio->bi_end_io = zram_page_end_io;
 498        } else {
 499                bio->bi_opf = parent->bi_opf;
 500                bio_chain(bio, parent);
 501        }
 502
 503        submit_bio(bio);
 504        return 1;
 505}
 506
 507struct zram_work {
 508        struct work_struct work;
 509        struct zram *zram;
 510        unsigned long entry;
 511        struct bio *bio;
 512};
 513
 514#if PAGE_SIZE != 4096
 515static void zram_sync_read(struct work_struct *work)
 516{
 517        struct bio_vec bvec;
 518        struct zram_work *zw = container_of(work, struct zram_work, work);
 519        struct zram *zram = zw->zram;
 520        unsigned long entry = zw->entry;
 521        struct bio *bio = zw->bio;
 522
 523        read_from_bdev_async(zram, &bvec, entry, bio);
 524}
 525
 526/*
 527 * Block layer want one ->make_request_fn to be active at a time
 528 * so if we use chained IO with parent IO in same context,
 529 * it's a deadlock. To avoid, it, it uses worker thread context.
 530 */
 531static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
 532                                unsigned long entry, struct bio *bio)
 533{
 534        struct zram_work work;
 535
 536        work.zram = zram;
 537        work.entry = entry;
 538        work.bio = bio;
 539
 540        INIT_WORK_ONSTACK(&work.work, zram_sync_read);
 541        queue_work(system_unbound_wq, &work.work);
 542        flush_work(&work.work);
 543        destroy_work_on_stack(&work.work);
 544
 545        return 1;
 546}
 547#else
 548static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
 549                                unsigned long entry, struct bio *bio)
 550{
 551        WARN_ON(1);
 552        return -EIO;
 553}
 554#endif
 555
 556static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
 557                        unsigned long entry, struct bio *parent, bool sync)
 558{
 559        if (sync)
 560                return read_from_bdev_sync(zram, bvec, entry, parent);
 561        else
 562                return read_from_bdev_async(zram, bvec, entry, parent);
 563}
 564
 565static int write_to_bdev(struct zram *zram, struct bio_vec *bvec,
 566                                        u32 index, struct bio *parent,
 567                                        unsigned long *pentry)
 568{
 569        struct bio *bio;
 570        unsigned long entry;
 571
 572        bio = bio_alloc(GFP_ATOMIC, 1);
 573        if (!bio)
 574                return -ENOMEM;
 575
 576        entry = get_entry_bdev(zram);
 577        if (!entry) {
 578                bio_put(bio);
 579                return -ENOSPC;
 580        }
 581
 582        bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
 583        bio_set_dev(bio, zram->bdev);
 584        if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len,
 585                                        bvec->bv_offset)) {
 586                bio_put(bio);
 587                put_entry_bdev(zram, entry);
 588                return -EIO;
 589        }
 590
 591        if (!parent) {
 592                bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
 593                bio->bi_end_io = zram_page_end_io;
 594        } else {
 595                bio->bi_opf = parent->bi_opf;
 596                bio_chain(bio, parent);
 597        }
 598
 599        submit_bio(bio);
 600        *pentry = entry;
 601
 602        return 0;
 603}
 604
 605static void zram_wb_clear(struct zram *zram, u32 index)
 606{
 607        unsigned long entry;
 608
 609        zram_clear_flag(zram, index, ZRAM_WB);
 610        entry = zram_get_element(zram, index);
 611        zram_set_element(zram, index, 0);
 612        put_entry_bdev(zram, entry);
 613}
 614
 615#else
 616static bool zram_wb_enabled(struct zram *zram) { return false; }
 617static inline void reset_bdev(struct zram *zram) {};
 618static int write_to_bdev(struct zram *zram, struct bio_vec *bvec,
 619                                        u32 index, struct bio *parent,
 620                                        unsigned long *pentry)
 621
 622{
 623        return -EIO;
 624}
 625
 626static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
 627                        unsigned long entry, struct bio *parent, bool sync)
 628{
 629        return -EIO;
 630}
 631static void zram_wb_clear(struct zram *zram, u32 index) {}
 632#endif
 633
 634#ifdef CONFIG_ZRAM_MEMORY_TRACKING
 635
 636static struct dentry *zram_debugfs_root;
 637
 638static void zram_debugfs_create(void)
 639{
 640        zram_debugfs_root = debugfs_create_dir("zram", NULL);
 641}
 642
 643static void zram_debugfs_destroy(void)
 644{
 645        debugfs_remove_recursive(zram_debugfs_root);
 646}
 647
 648static void zram_accessed(struct zram *zram, u32 index)
 649{
 650        zram->table[index].ac_time = ktime_get_boottime();
 651}
 652
 653static void zram_reset_access(struct zram *zram, u32 index)
 654{
 655        zram->table[index].ac_time = 0;
 656}
 657
 658static ssize_t read_block_state(struct file *file, char __user *buf,
 659                                size_t count, loff_t *ppos)
 660{
 661        char *kbuf;
 662        ssize_t index, written = 0;
 663        struct zram *zram = file->private_data;
 664        unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
 665        struct timespec64 ts;
 666
 667        kbuf = kvmalloc(count, GFP_KERNEL);
 668        if (!kbuf)
 669                return -ENOMEM;
 670
 671        down_read(&zram->init_lock);
 672        if (!init_done(zram)) {
 673                up_read(&zram->init_lock);
 674                kvfree(kbuf);
 675                return -EINVAL;
 676        }
 677
 678        for (index = *ppos; index < nr_pages; index++) {
 679                int copied;
 680
 681                zram_slot_lock(zram, index);
 682                if (!zram_allocated(zram, index))
 683                        goto next;
 684
 685                ts = ktime_to_timespec64(zram->table[index].ac_time);
 686                copied = snprintf(kbuf + written, count,
 687                        "%12zd %12lld.%06lu %c%c%c\n",
 688                        index, (s64)ts.tv_sec,
 689                        ts.tv_nsec / NSEC_PER_USEC,
 690                        zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.',
 691                        zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.',
 692                        zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.');
 693
 694                if (count < copied) {
 695                        zram_slot_unlock(zram, index);
 696                        break;
 697                }
 698                written += copied;
 699                count -= copied;
 700next:
 701                zram_slot_unlock(zram, index);
 702                *ppos += 1;
 703        }
 704
 705        up_read(&zram->init_lock);
 706        if (copy_to_user(buf, kbuf, written))
 707                written = -EFAULT;
 708        kvfree(kbuf);
 709
 710        return written;
 711}
 712
 713static const struct file_operations proc_zram_block_state_op = {
 714        .open = simple_open,
 715        .read = read_block_state,
 716        .llseek = default_llseek,
 717};
 718
 719static void zram_debugfs_register(struct zram *zram)
 720{
 721        if (!zram_debugfs_root)
 722                return;
 723
 724        zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name,
 725                                                zram_debugfs_root);
 726        debugfs_create_file("block_state", 0400, zram->debugfs_dir,
 727                                zram, &proc_zram_block_state_op);
 728}
 729
 730static void zram_debugfs_unregister(struct zram *zram)
 731{
 732        debugfs_remove_recursive(zram->debugfs_dir);
 733}
 734#else
 735static void zram_debugfs_create(void) {};
 736static void zram_debugfs_destroy(void) {};
 737static void zram_accessed(struct zram *zram, u32 index) {};
 738static void zram_reset_access(struct zram *zram, u32 index) {};
 739static void zram_debugfs_register(struct zram *zram) {};
 740static void zram_debugfs_unregister(struct zram *zram) {};
 741#endif
 742
 743/*
 744 * We switched to per-cpu streams and this attr is not needed anymore.
 745 * However, we will keep it around for some time, because:
 746 * a) we may revert per-cpu streams in the future
 747 * b) it's visible to user space and we need to follow our 2 years
 748 *    retirement rule; but we already have a number of 'soon to be
 749 *    altered' attrs, so max_comp_streams need to wait for the next
 750 *    layoff cycle.
 751 */
 752static ssize_t max_comp_streams_show(struct device *dev,
 753                struct device_attribute *attr, char *buf)
 754{
 755        return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
 756}
 757
 758static ssize_t max_comp_streams_store(struct device *dev,
 759                struct device_attribute *attr, const char *buf, size_t len)
 760{
 761        return len;
 762}
 763
 764static ssize_t comp_algorithm_show(struct device *dev,
 765                struct device_attribute *attr, char *buf)
 766{
 767        size_t sz;
 768        struct zram *zram = dev_to_zram(dev);
 769
 770        down_read(&zram->init_lock);
 771        sz = zcomp_available_show(zram->compressor, buf);
 772        up_read(&zram->init_lock);
 773
 774        return sz;
 775}
 776
 777static ssize_t comp_algorithm_store(struct device *dev,
 778                struct device_attribute *attr, const char *buf, size_t len)
 779{
 780        struct zram *zram = dev_to_zram(dev);
 781        char compressor[ARRAY_SIZE(zram->compressor)];
 782        size_t sz;
 783
 784        strlcpy(compressor, buf, sizeof(compressor));
 785        /* ignore trailing newline */
 786        sz = strlen(compressor);
 787        if (sz > 0 && compressor[sz - 1] == '\n')
 788                compressor[sz - 1] = 0x00;
 789
 790        if (!zcomp_available_algorithm(compressor))
 791                return -EINVAL;
 792
 793        down_write(&zram->init_lock);
 794        if (init_done(zram)) {
 795                up_write(&zram->init_lock);
 796                pr_info("Can't change algorithm for initialized device\n");
 797                return -EBUSY;
 798        }
 799
 800        strcpy(zram->compressor, compressor);
 801        up_write(&zram->init_lock);
 802        return len;
 803}
 804
 805static ssize_t compact_store(struct device *dev,
 806                struct device_attribute *attr, const char *buf, size_t len)
 807{
 808        struct zram *zram = dev_to_zram(dev);
 809
 810        down_read(&zram->init_lock);
 811        if (!init_done(zram)) {
 812                up_read(&zram->init_lock);
 813                return -EINVAL;
 814        }
 815
 816        zs_compact(zram->mem_pool);
 817        up_read(&zram->init_lock);
 818
 819        return len;
 820}
 821
 822static ssize_t io_stat_show(struct device *dev,
 823                struct device_attribute *attr, char *buf)
 824{
 825        struct zram *zram = dev_to_zram(dev);
 826        ssize_t ret;
 827
 828        down_read(&zram->init_lock);
 829        ret = scnprintf(buf, PAGE_SIZE,
 830                        "%8llu %8llu %8llu %8llu\n",
 831                        (u64)atomic64_read(&zram->stats.failed_reads),
 832                        (u64)atomic64_read(&zram->stats.failed_writes),
 833                        (u64)atomic64_read(&zram->stats.invalid_io),
 834                        (u64)atomic64_read(&zram->stats.notify_free));
 835        up_read(&zram->init_lock);
 836
 837        return ret;
 838}
 839
 840static ssize_t mm_stat_show(struct device *dev,
 841                struct device_attribute *attr, char *buf)
 842{
 843        struct zram *zram = dev_to_zram(dev);
 844        struct zs_pool_stats pool_stats;
 845        u64 orig_size, mem_used = 0;
 846        long max_used;
 847        ssize_t ret;
 848
 849        memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
 850
 851        down_read(&zram->init_lock);
 852        if (init_done(zram)) {
 853                mem_used = zs_get_total_pages(zram->mem_pool);
 854                zs_pool_stats(zram->mem_pool, &pool_stats);
 855        }
 856
 857        orig_size = atomic64_read(&zram->stats.pages_stored);
 858        max_used = atomic_long_read(&zram->stats.max_used_pages);
 859
 860        ret = scnprintf(buf, PAGE_SIZE,
 861                        "%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu\n",
 862                        orig_size << PAGE_SHIFT,
 863                        (u64)atomic64_read(&zram->stats.compr_data_size),
 864                        mem_used << PAGE_SHIFT,
 865                        zram->limit_pages << PAGE_SHIFT,
 866                        max_used << PAGE_SHIFT,
 867                        (u64)atomic64_read(&zram->stats.same_pages),
 868                        pool_stats.pages_compacted,
 869                        (u64)atomic64_read(&zram->stats.huge_pages));
 870        up_read(&zram->init_lock);
 871
 872        return ret;
 873}
 874
 875static ssize_t debug_stat_show(struct device *dev,
 876                struct device_attribute *attr, char *buf)
 877{
 878        int version = 1;
 879        struct zram *zram = dev_to_zram(dev);
 880        ssize_t ret;
 881
 882        down_read(&zram->init_lock);
 883        ret = scnprintf(buf, PAGE_SIZE,
 884                        "version: %d\n%8llu\n",
 885                        version,
 886                        (u64)atomic64_read(&zram->stats.writestall));
 887        up_read(&zram->init_lock);
 888
 889        return ret;
 890}
 891
 892static DEVICE_ATTR_RO(io_stat);
 893static DEVICE_ATTR_RO(mm_stat);
 894static DEVICE_ATTR_RO(debug_stat);
 895
 896static void zram_meta_free(struct zram *zram, u64 disksize)
 897{
 898        size_t num_pages = disksize >> PAGE_SHIFT;
 899        size_t index;
 900
 901        /* Free all pages that are still in this zram device */
 902        for (index = 0; index < num_pages; index++)
 903                zram_free_page(zram, index);
 904
 905        zs_destroy_pool(zram->mem_pool);
 906        vfree(zram->table);
 907}
 908
 909static bool zram_meta_alloc(struct zram *zram, u64 disksize)
 910{
 911        size_t num_pages;
 912
 913        num_pages = disksize >> PAGE_SHIFT;
 914        zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table)));
 915        if (!zram->table)
 916                return false;
 917
 918        zram->mem_pool = zs_create_pool(zram->disk->disk_name);
 919        if (!zram->mem_pool) {
 920                vfree(zram->table);
 921                return false;
 922        }
 923
 924        if (!huge_class_size)
 925                huge_class_size = zs_huge_class_size(zram->mem_pool);
 926        return true;
 927}
 928
 929/*
 930 * To protect concurrent access to the same index entry,
 931 * caller should hold this table index entry's bit_spinlock to
 932 * indicate this index entry is accessing.
 933 */
 934static void zram_free_page(struct zram *zram, size_t index)
 935{
 936        unsigned long handle;
 937
 938        zram_reset_access(zram, index);
 939
 940        if (zram_test_flag(zram, index, ZRAM_HUGE)) {
 941                zram_clear_flag(zram, index, ZRAM_HUGE);
 942                atomic64_dec(&zram->stats.huge_pages);
 943        }
 944
 945        if (zram_wb_enabled(zram) && zram_test_flag(zram, index, ZRAM_WB)) {
 946                zram_wb_clear(zram, index);
 947                atomic64_dec(&zram->stats.pages_stored);
 948                return;
 949        }
 950
 951        /*
 952         * No memory is allocated for same element filled pages.
 953         * Simply clear same page flag.
 954         */
 955        if (zram_test_flag(zram, index, ZRAM_SAME)) {
 956                zram_clear_flag(zram, index, ZRAM_SAME);
 957                zram_set_element(zram, index, 0);
 958                atomic64_dec(&zram->stats.same_pages);
 959                atomic64_dec(&zram->stats.pages_stored);
 960                return;
 961        }
 962
 963        handle = zram_get_handle(zram, index);
 964        if (!handle)
 965                return;
 966
 967        zs_free(zram->mem_pool, handle);
 968
 969        atomic64_sub(zram_get_obj_size(zram, index),
 970                        &zram->stats.compr_data_size);
 971        atomic64_dec(&zram->stats.pages_stored);
 972
 973        zram_set_handle(zram, index, 0);
 974        zram_set_obj_size(zram, index, 0);
 975}
 976
 977static int __zram_bvec_read(struct zram *zram, struct page *page, u32 index,
 978                                struct bio *bio, bool partial_io)
 979{
 980        int ret;
 981        unsigned long handle;
 982        unsigned int size;
 983        void *src, *dst;
 984
 985        if (zram_wb_enabled(zram)) {
 986                zram_slot_lock(zram, index);
 987                if (zram_test_flag(zram, index, ZRAM_WB)) {
 988                        struct bio_vec bvec;
 989
 990                        zram_slot_unlock(zram, index);
 991
 992                        bvec.bv_page = page;
 993                        bvec.bv_len = PAGE_SIZE;
 994                        bvec.bv_offset = 0;
 995                        return read_from_bdev(zram, &bvec,
 996                                        zram_get_element(zram, index),
 997                                        bio, partial_io);
 998                }
 999                zram_slot_unlock(zram, index);
1000        }
1001
1002        zram_slot_lock(zram, index);
1003        handle = zram_get_handle(zram, index);
1004        if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) {
1005                unsigned long value;
1006                void *mem;
1007
1008                value = handle ? zram_get_element(zram, index) : 0;
1009                mem = kmap_atomic(page);
1010                zram_fill_page(mem, PAGE_SIZE, value);
1011                kunmap_atomic(mem);
1012                zram_slot_unlock(zram, index);
1013                return 0;
1014        }
1015
1016        size = zram_get_obj_size(zram, index);
1017
1018        src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
1019        if (size == PAGE_SIZE) {
1020                dst = kmap_atomic(page);
1021                memcpy(dst, src, PAGE_SIZE);
1022                kunmap_atomic(dst);
1023                ret = 0;
1024        } else {
1025                struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp);
1026
1027                dst = kmap_atomic(page);
1028                ret = zcomp_decompress(zstrm, src, size, dst);
1029                kunmap_atomic(dst);
1030                zcomp_stream_put(zram->comp);
1031        }
1032        zs_unmap_object(zram->mem_pool, handle);
1033        zram_slot_unlock(zram, index);
1034
1035        /* Should NEVER happen. Return bio error if it does. */
1036        if (unlikely(ret))
1037                pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
1038
1039        return ret;
1040}
1041
1042static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
1043                                u32 index, int offset, struct bio *bio)
1044{
1045        int ret;
1046        struct page *page;
1047
1048        page = bvec->bv_page;
1049        if (is_partial_io(bvec)) {
1050                /* Use a temporary buffer to decompress the page */
1051                page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1052                if (!page)
1053                        return -ENOMEM;
1054        }
1055
1056        ret = __zram_bvec_read(zram, page, index, bio, is_partial_io(bvec));
1057        if (unlikely(ret))
1058                goto out;
1059
1060        if (is_partial_io(bvec)) {
1061                void *dst = kmap_atomic(bvec->bv_page);
1062                void *src = kmap_atomic(page);
1063
1064                memcpy(dst + bvec->bv_offset, src + offset, bvec->bv_len);
1065                kunmap_atomic(src);
1066                kunmap_atomic(dst);
1067        }
1068out:
1069        if (is_partial_io(bvec))
1070                __free_page(page);
1071
1072        return ret;
1073}
1074
1075static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1076                                u32 index, struct bio *bio)
1077{
1078        int ret = 0;
1079        unsigned long alloced_pages;
1080        unsigned long handle = 0;
1081        unsigned int comp_len = 0;
1082        void *src, *dst, *mem;
1083        struct zcomp_strm *zstrm;
1084        struct page *page = bvec->bv_page;
1085        unsigned long element = 0;
1086        enum zram_pageflags flags = 0;
1087        bool allow_wb = true;
1088
1089        mem = kmap_atomic(page);
1090        if (page_same_filled(mem, &element)) {
1091                kunmap_atomic(mem);
1092                /* Free memory associated with this sector now. */
1093                flags = ZRAM_SAME;
1094                atomic64_inc(&zram->stats.same_pages);
1095                goto out;
1096        }
1097        kunmap_atomic(mem);
1098
1099compress_again:
1100        zstrm = zcomp_stream_get(zram->comp);
1101        src = kmap_atomic(page);
1102        ret = zcomp_compress(zstrm, src, &comp_len);
1103        kunmap_atomic(src);
1104
1105        if (unlikely(ret)) {
1106                zcomp_stream_put(zram->comp);
1107                pr_err("Compression failed! err=%d\n", ret);
1108                zs_free(zram->mem_pool, handle);
1109                return ret;
1110        }
1111
1112        if (unlikely(comp_len >= huge_class_size)) {
1113                comp_len = PAGE_SIZE;
1114                if (zram_wb_enabled(zram) && allow_wb) {
1115                        zcomp_stream_put(zram->comp);
1116                        ret = write_to_bdev(zram, bvec, index, bio, &element);
1117                        if (!ret) {
1118                                flags = ZRAM_WB;
1119                                ret = 1;
1120                                goto out;
1121                        }
1122                        allow_wb = false;
1123                        goto compress_again;
1124                }
1125        }
1126
1127        /*
1128         * handle allocation has 2 paths:
1129         * a) fast path is executed with preemption disabled (for
1130         *  per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
1131         *  since we can't sleep;
1132         * b) slow path enables preemption and attempts to allocate
1133         *  the page with __GFP_DIRECT_RECLAIM bit set. we have to
1134         *  put per-cpu compression stream and, thus, to re-do
1135         *  the compression once handle is allocated.
1136         *
1137         * if we have a 'non-null' handle here then we are coming
1138         * from the slow path and handle has already been allocated.
1139         */
1140        if (!handle)
1141                handle = zs_malloc(zram->mem_pool, comp_len,
1142                                __GFP_KSWAPD_RECLAIM |
1143                                __GFP_NOWARN |
1144                                __GFP_HIGHMEM |
1145                                __GFP_MOVABLE);
1146        if (!handle) {
1147                zcomp_stream_put(zram->comp);
1148                atomic64_inc(&zram->stats.writestall);
1149                handle = zs_malloc(zram->mem_pool, comp_len,
1150                                GFP_NOIO | __GFP_HIGHMEM |
1151                                __GFP_MOVABLE);
1152                if (handle)
1153                        goto compress_again;
1154                return -ENOMEM;
1155        }
1156
1157        alloced_pages = zs_get_total_pages(zram->mem_pool);
1158        update_used_max(zram, alloced_pages);
1159
1160        if (zram->limit_pages && alloced_pages > zram->limit_pages) {
1161                zcomp_stream_put(zram->comp);
1162                zs_free(zram->mem_pool, handle);
1163                return -ENOMEM;
1164        }
1165
1166        dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
1167
1168        src = zstrm->buffer;
1169        if (comp_len == PAGE_SIZE)
1170                src = kmap_atomic(page);
1171        memcpy(dst, src, comp_len);
1172        if (comp_len == PAGE_SIZE)
1173                kunmap_atomic(src);
1174
1175        zcomp_stream_put(zram->comp);
1176        zs_unmap_object(zram->mem_pool, handle);
1177        atomic64_add(comp_len, &zram->stats.compr_data_size);
1178out:
1179        /*
1180         * Free memory associated with this sector
1181         * before overwriting unused sectors.
1182         */
1183        zram_slot_lock(zram, index);
1184        zram_free_page(zram, index);
1185
1186        if (comp_len == PAGE_SIZE) {
1187                zram_set_flag(zram, index, ZRAM_HUGE);
1188                atomic64_inc(&zram->stats.huge_pages);
1189        }
1190
1191        if (flags) {
1192                zram_set_flag(zram, index, flags);
1193                zram_set_element(zram, index, element);
1194        }  else {
1195                zram_set_handle(zram, index, handle);
1196                zram_set_obj_size(zram, index, comp_len);
1197        }
1198        zram_slot_unlock(zram, index);
1199
1200        /* Update stats */
1201        atomic64_inc(&zram->stats.pages_stored);
1202        return ret;
1203}
1204
1205static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1206                                u32 index, int offset, struct bio *bio)
1207{
1208        int ret;
1209        struct page *page = NULL;
1210        void *src;
1211        struct bio_vec vec;
1212
1213        vec = *bvec;
1214        if (is_partial_io(bvec)) {
1215                void *dst;
1216                /*
1217                 * This is a partial IO. We need to read the full page
1218                 * before to write the changes.
1219                 */
1220                page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1221                if (!page)
1222                        return -ENOMEM;
1223
1224                ret = __zram_bvec_read(zram, page, index, bio, true);
1225                if (ret)
1226                        goto out;
1227
1228                src = kmap_atomic(bvec->bv_page);
1229                dst = kmap_atomic(page);
1230                memcpy(dst + offset, src + bvec->bv_offset, bvec->bv_len);
1231                kunmap_atomic(dst);
1232                kunmap_atomic(src);
1233
1234                vec.bv_page = page;
1235                vec.bv_len = PAGE_SIZE;
1236                vec.bv_offset = 0;
1237        }
1238
1239        ret = __zram_bvec_write(zram, &vec, index, bio);
1240out:
1241        if (is_partial_io(bvec))
1242                __free_page(page);
1243        return ret;
1244}
1245
1246/*
1247 * zram_bio_discard - handler on discard request
1248 * @index: physical block index in PAGE_SIZE units
1249 * @offset: byte offset within physical block
1250 */
1251static void zram_bio_discard(struct zram *zram, u32 index,
1252                             int offset, struct bio *bio)
1253{
1254        size_t n = bio->bi_iter.bi_size;
1255
1256        /*
1257         * zram manages data in physical block size units. Because logical block
1258         * size isn't identical with physical block size on some arch, we
1259         * could get a discard request pointing to a specific offset within a
1260         * certain physical block.  Although we can handle this request by
1261         * reading that physiclal block and decompressing and partially zeroing
1262         * and re-compressing and then re-storing it, this isn't reasonable
1263         * because our intent with a discard request is to save memory.  So
1264         * skipping this logical block is appropriate here.
1265         */
1266        if (offset) {
1267                if (n <= (PAGE_SIZE - offset))
1268                        return;
1269
1270                n -= (PAGE_SIZE - offset);
1271                index++;
1272        }
1273
1274        while (n >= PAGE_SIZE) {
1275                zram_slot_lock(zram, index);
1276                zram_free_page(zram, index);
1277                zram_slot_unlock(zram, index);
1278                atomic64_inc(&zram->stats.notify_free);
1279                index++;
1280                n -= PAGE_SIZE;
1281        }
1282}
1283
1284/*
1285 * Returns errno if it has some problem. Otherwise return 0 or 1.
1286 * Returns 0 if IO request was done synchronously
1287 * Returns 1 if IO request was successfully submitted.
1288 */
1289static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
1290                        int offset, unsigned int op, struct bio *bio)
1291{
1292        unsigned long start_time = jiffies;
1293        struct request_queue *q = zram->disk->queue;
1294        int ret;
1295
1296        generic_start_io_acct(q, op, bvec->bv_len >> SECTOR_SHIFT,
1297                        &zram->disk->part0);
1298
1299        if (!op_is_write(op)) {
1300                atomic64_inc(&zram->stats.num_reads);
1301                ret = zram_bvec_read(zram, bvec, index, offset, bio);
1302                flush_dcache_page(bvec->bv_page);
1303        } else {
1304                atomic64_inc(&zram->stats.num_writes);
1305                ret = zram_bvec_write(zram, bvec, index, offset, bio);
1306        }
1307
1308        generic_end_io_acct(q, op, &zram->disk->part0, start_time);
1309
1310        zram_slot_lock(zram, index);
1311        zram_accessed(zram, index);
1312        zram_slot_unlock(zram, index);
1313
1314        if (unlikely(ret < 0)) {
1315                if (!op_is_write(op))
1316                        atomic64_inc(&zram->stats.failed_reads);
1317                else
1318                        atomic64_inc(&zram->stats.failed_writes);
1319        }
1320
1321        return ret;
1322}
1323
1324static void __zram_make_request(struct zram *zram, struct bio *bio)
1325{
1326        int offset;
1327        u32 index;
1328        struct bio_vec bvec;
1329        struct bvec_iter iter;
1330
1331        index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1332        offset = (bio->bi_iter.bi_sector &
1333                  (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1334
1335        switch (bio_op(bio)) {
1336        case REQ_OP_DISCARD:
1337        case REQ_OP_WRITE_ZEROES:
1338                zram_bio_discard(zram, index, offset, bio);
1339                bio_endio(bio);
1340                return;
1341        default:
1342                break;
1343        }
1344
1345        bio_for_each_segment(bvec, bio, iter) {
1346                struct bio_vec bv = bvec;
1347                unsigned int unwritten = bvec.bv_len;
1348
1349                do {
1350                        bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset,
1351                                                        unwritten);
1352                        if (zram_bvec_rw(zram, &bv, index, offset,
1353                                         bio_op(bio), bio) < 0)
1354                                goto out;
1355
1356                        bv.bv_offset += bv.bv_len;
1357                        unwritten -= bv.bv_len;
1358
1359                        update_position(&index, &offset, &bv);
1360                } while (unwritten);
1361        }
1362
1363        bio_endio(bio);
1364        return;
1365
1366out:
1367        bio_io_error(bio);
1368}
1369
1370/*
1371 * Handler function for all zram I/O requests.
1372 */
1373static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
1374{
1375        struct zram *zram = queue->queuedata;
1376
1377        if (!valid_io_request(zram, bio->bi_iter.bi_sector,
1378                                        bio->bi_iter.bi_size)) {
1379                atomic64_inc(&zram->stats.invalid_io);
1380                goto error;
1381        }
1382
1383        __zram_make_request(zram, bio);
1384        return BLK_QC_T_NONE;
1385
1386error:
1387        bio_io_error(bio);
1388        return BLK_QC_T_NONE;
1389}
1390
1391static void zram_slot_free_notify(struct block_device *bdev,
1392                                unsigned long index)
1393{
1394        struct zram *zram;
1395
1396        zram = bdev->bd_disk->private_data;
1397
1398        zram_slot_lock(zram, index);
1399        zram_free_page(zram, index);
1400        zram_slot_unlock(zram, index);
1401        atomic64_inc(&zram->stats.notify_free);
1402}
1403
1404static int zram_rw_page(struct block_device *bdev, sector_t sector,
1405                       struct page *page, unsigned int op)
1406{
1407        int offset, ret;
1408        u32 index;
1409        struct zram *zram;
1410        struct bio_vec bv;
1411
1412        if (PageTransHuge(page))
1413                return -ENOTSUPP;
1414        zram = bdev->bd_disk->private_data;
1415
1416        if (!valid_io_request(zram, sector, PAGE_SIZE)) {
1417                atomic64_inc(&zram->stats.invalid_io);
1418                ret = -EINVAL;
1419                goto out;
1420        }
1421
1422        index = sector >> SECTORS_PER_PAGE_SHIFT;
1423        offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1424
1425        bv.bv_page = page;
1426        bv.bv_len = PAGE_SIZE;
1427        bv.bv_offset = 0;
1428
1429        ret = zram_bvec_rw(zram, &bv, index, offset, op, NULL);
1430out:
1431        /*
1432         * If I/O fails, just return error(ie, non-zero) without
1433         * calling page_endio.
1434         * It causes resubmit the I/O with bio request by upper functions
1435         * of rw_page(e.g., swap_readpage, __swap_writepage) and
1436         * bio->bi_end_io does things to handle the error
1437         * (e.g., SetPageError, set_page_dirty and extra works).
1438         */
1439        if (unlikely(ret < 0))
1440                return ret;
1441
1442        switch (ret) {
1443        case 0:
1444                page_endio(page, op_is_write(op), 0);
1445                break;
1446        case 1:
1447                ret = 0;
1448                break;
1449        default:
1450                WARN_ON(1);
1451        }
1452        return ret;
1453}
1454
1455static void zram_reset_device(struct zram *zram)
1456{
1457        struct zcomp *comp;
1458        u64 disksize;
1459
1460        down_write(&zram->init_lock);
1461
1462        zram->limit_pages = 0;
1463
1464        if (!init_done(zram)) {
1465                up_write(&zram->init_lock);
1466                return;
1467        }
1468
1469        comp = zram->comp;
1470        disksize = zram->disksize;
1471        zram->disksize = 0;
1472
1473        set_capacity(zram->disk, 0);
1474        part_stat_set_all(&zram->disk->part0, 0);
1475
1476        up_write(&zram->init_lock);
1477        /* I/O operation under all of CPU are done so let's free */
1478        zram_meta_free(zram, disksize);
1479        memset(&zram->stats, 0, sizeof(zram->stats));
1480        zcomp_destroy(comp);
1481        reset_bdev(zram);
1482}
1483
1484static ssize_t disksize_store(struct device *dev,
1485                struct device_attribute *attr, const char *buf, size_t len)
1486{
1487        u64 disksize;
1488        struct zcomp *comp;
1489        struct zram *zram = dev_to_zram(dev);
1490        int err;
1491
1492        disksize = memparse(buf, NULL);
1493        if (!disksize)
1494                return -EINVAL;
1495
1496        down_write(&zram->init_lock);
1497        if (init_done(zram)) {
1498                pr_info("Cannot change disksize for initialized device\n");
1499                err = -EBUSY;
1500                goto out_unlock;
1501        }
1502
1503        disksize = PAGE_ALIGN(disksize);
1504        if (!zram_meta_alloc(zram, disksize)) {
1505                err = -ENOMEM;
1506                goto out_unlock;
1507        }
1508
1509        comp = zcomp_create(zram->compressor);
1510        if (IS_ERR(comp)) {
1511                pr_err("Cannot initialise %s compressing backend\n",
1512                                zram->compressor);
1513                err = PTR_ERR(comp);
1514                goto out_free_meta;
1515        }
1516
1517        zram->comp = comp;
1518        zram->disksize = disksize;
1519        set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1520
1521        revalidate_disk(zram->disk);
1522        up_write(&zram->init_lock);
1523
1524        return len;
1525
1526out_free_meta:
1527        zram_meta_free(zram, disksize);
1528out_unlock:
1529        up_write(&zram->init_lock);
1530        return err;
1531}
1532
1533static ssize_t reset_store(struct device *dev,
1534                struct device_attribute *attr, const char *buf, size_t len)
1535{
1536        int ret;
1537        unsigned short do_reset;
1538        struct zram *zram;
1539        struct block_device *bdev;
1540
1541        ret = kstrtou16(buf, 10, &do_reset);
1542        if (ret)
1543                return ret;
1544
1545        if (!do_reset)
1546                return -EINVAL;
1547
1548        zram = dev_to_zram(dev);
1549        bdev = bdget_disk(zram->disk, 0);
1550        if (!bdev)
1551                return -ENOMEM;
1552
1553        mutex_lock(&bdev->bd_mutex);
1554        /* Do not reset an active device or claimed device */
1555        if (bdev->bd_openers || zram->claim) {
1556                mutex_unlock(&bdev->bd_mutex);
1557                bdput(bdev);
1558                return -EBUSY;
1559        }
1560
1561        /* From now on, anyone can't open /dev/zram[0-9] */
1562        zram->claim = true;
1563        mutex_unlock(&bdev->bd_mutex);
1564
1565        /* Make sure all the pending I/O are finished */
1566        fsync_bdev(bdev);
1567        zram_reset_device(zram);
1568        revalidate_disk(zram->disk);
1569        bdput(bdev);
1570
1571        mutex_lock(&bdev->bd_mutex);
1572        zram->claim = false;
1573        mutex_unlock(&bdev->bd_mutex);
1574
1575        return len;
1576}
1577
1578static int zram_open(struct block_device *bdev, fmode_t mode)
1579{
1580        int ret = 0;
1581        struct zram *zram;
1582
1583        WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1584
1585        zram = bdev->bd_disk->private_data;
1586        /* zram was claimed to reset so open request fails */
1587        if (zram->claim)
1588                ret = -EBUSY;
1589
1590        return ret;
1591}
1592
1593static const struct block_device_operations zram_devops = {
1594        .open = zram_open,
1595        .swap_slot_free_notify = zram_slot_free_notify,
1596        .rw_page = zram_rw_page,
1597        .owner = THIS_MODULE
1598};
1599
1600static DEVICE_ATTR_WO(compact);
1601static DEVICE_ATTR_RW(disksize);
1602static DEVICE_ATTR_RO(initstate);
1603static DEVICE_ATTR_WO(reset);
1604static DEVICE_ATTR_WO(mem_limit);
1605static DEVICE_ATTR_WO(mem_used_max);
1606static DEVICE_ATTR_RW(max_comp_streams);
1607static DEVICE_ATTR_RW(comp_algorithm);
1608#ifdef CONFIG_ZRAM_WRITEBACK
1609static DEVICE_ATTR_RW(backing_dev);
1610#endif
1611
1612static struct attribute *zram_disk_attrs[] = {
1613        &dev_attr_disksize.attr,
1614        &dev_attr_initstate.attr,
1615        &dev_attr_reset.attr,
1616        &dev_attr_compact.attr,
1617        &dev_attr_mem_limit.attr,
1618        &dev_attr_mem_used_max.attr,
1619        &dev_attr_max_comp_streams.attr,
1620        &dev_attr_comp_algorithm.attr,
1621#ifdef CONFIG_ZRAM_WRITEBACK
1622        &dev_attr_backing_dev.attr,
1623#endif
1624        &dev_attr_io_stat.attr,
1625        &dev_attr_mm_stat.attr,
1626        &dev_attr_debug_stat.attr,
1627        NULL,
1628};
1629
1630static const struct attribute_group zram_disk_attr_group = {
1631        .attrs = zram_disk_attrs,
1632};
1633
1634/*
1635 * Allocate and initialize new zram device. the function returns
1636 * '>= 0' device_id upon success, and negative value otherwise.
1637 */
1638static int zram_add(void)
1639{
1640        struct zram *zram;
1641        struct request_queue *queue;
1642        int ret, device_id;
1643
1644        zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1645        if (!zram)
1646                return -ENOMEM;
1647
1648        ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1649        if (ret < 0)
1650                goto out_free_dev;
1651        device_id = ret;
1652
1653        init_rwsem(&zram->init_lock);
1654
1655        queue = blk_alloc_queue(GFP_KERNEL);
1656        if (!queue) {
1657                pr_err("Error allocating disk queue for device %d\n",
1658                        device_id);
1659                ret = -ENOMEM;
1660                goto out_free_idr;
1661        }
1662
1663        blk_queue_make_request(queue, zram_make_request);
1664
1665        /* gendisk structure */
1666        zram->disk = alloc_disk(1);
1667        if (!zram->disk) {
1668                pr_err("Error allocating disk structure for device %d\n",
1669                        device_id);
1670                ret = -ENOMEM;
1671                goto out_free_queue;
1672        }
1673
1674        zram->disk->major = zram_major;
1675        zram->disk->first_minor = device_id;
1676        zram->disk->fops = &zram_devops;
1677        zram->disk->queue = queue;
1678        zram->disk->queue->queuedata = zram;
1679        zram->disk->private_data = zram;
1680        snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1681
1682        /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1683        set_capacity(zram->disk, 0);
1684        /* zram devices sort of resembles non-rotational disks */
1685        blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue);
1686        blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1687
1688        /*
1689         * To ensure that we always get PAGE_SIZE aligned
1690         * and n*PAGE_SIZED sized I/O requests.
1691         */
1692        blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1693        blk_queue_logical_block_size(zram->disk->queue,
1694                                        ZRAM_LOGICAL_BLOCK_SIZE);
1695        blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1696        blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1697        zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1698        blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1699        blk_queue_flag_set(QUEUE_FLAG_DISCARD, zram->disk->queue);
1700
1701        /*
1702         * zram_bio_discard() will clear all logical blocks if logical block
1703         * size is identical with physical block size(PAGE_SIZE). But if it is
1704         * different, we will skip discarding some parts of logical blocks in
1705         * the part of the request range which isn't aligned to physical block
1706         * size.  So we can't ensure that all discarded logical blocks are
1707         * zeroed.
1708         */
1709        if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1710                blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX);
1711
1712        zram->disk->queue->backing_dev_info->capabilities |=
1713                        (BDI_CAP_STABLE_WRITES | BDI_CAP_SYNCHRONOUS_IO);
1714        add_disk(zram->disk);
1715
1716        ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1717                                &zram_disk_attr_group);
1718        if (ret < 0) {
1719                pr_err("Error creating sysfs group for device %d\n",
1720                                device_id);
1721                goto out_free_disk;
1722        }
1723        strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1724
1725        zram_debugfs_register(zram);
1726        pr_info("Added device: %s\n", zram->disk->disk_name);
1727        return device_id;
1728
1729out_free_disk:
1730        del_gendisk(zram->disk);
1731        put_disk(zram->disk);
1732out_free_queue:
1733        blk_cleanup_queue(queue);
1734out_free_idr:
1735        idr_remove(&zram_index_idr, device_id);
1736out_free_dev:
1737        kfree(zram);
1738        return ret;
1739}
1740
1741static int zram_remove(struct zram *zram)
1742{
1743        struct block_device *bdev;
1744
1745        bdev = bdget_disk(zram->disk, 0);
1746        if (!bdev)
1747                return -ENOMEM;
1748
1749        mutex_lock(&bdev->bd_mutex);
1750        if (bdev->bd_openers || zram->claim) {
1751                mutex_unlock(&bdev->bd_mutex);
1752                bdput(bdev);
1753                return -EBUSY;
1754        }
1755
1756        zram->claim = true;
1757        mutex_unlock(&bdev->bd_mutex);
1758
1759        zram_debugfs_unregister(zram);
1760        /*
1761         * Remove sysfs first, so no one will perform a disksize
1762         * store while we destroy the devices. This also helps during
1763         * hot_remove -- zram_reset_device() is the last holder of
1764         * ->init_lock, no later/concurrent disksize_store() or any
1765         * other sysfs handlers are possible.
1766         */
1767        sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1768                        &zram_disk_attr_group);
1769
1770        /* Make sure all the pending I/O are finished */
1771        fsync_bdev(bdev);
1772        zram_reset_device(zram);
1773        bdput(bdev);
1774
1775        pr_info("Removed device: %s\n", zram->disk->disk_name);
1776
1777        del_gendisk(zram->disk);
1778        blk_cleanup_queue(zram->disk->queue);
1779        put_disk(zram->disk);
1780        kfree(zram);
1781        return 0;
1782}
1783
1784/* zram-control sysfs attributes */
1785
1786/*
1787 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
1788 * sense that reading from this file does alter the state of your system -- it
1789 * creates a new un-initialized zram device and returns back this device's
1790 * device_id (or an error code if it fails to create a new device).
1791 */
1792static ssize_t hot_add_show(struct class *class,
1793                        struct class_attribute *attr,
1794                        char *buf)
1795{
1796        int ret;
1797
1798        mutex_lock(&zram_index_mutex);
1799        ret = zram_add();
1800        mutex_unlock(&zram_index_mutex);
1801
1802        if (ret < 0)
1803                return ret;
1804        return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
1805}
1806static CLASS_ATTR_RO(hot_add);
1807
1808static ssize_t hot_remove_store(struct class *class,
1809                        struct class_attribute *attr,
1810                        const char *buf,
1811                        size_t count)
1812{
1813        struct zram *zram;
1814        int ret, dev_id;
1815
1816        /* dev_id is gendisk->first_minor, which is `int' */
1817        ret = kstrtoint(buf, 10, &dev_id);
1818        if (ret)
1819                return ret;
1820        if (dev_id < 0)
1821                return -EINVAL;
1822
1823        mutex_lock(&zram_index_mutex);
1824
1825        zram = idr_find(&zram_index_idr, dev_id);
1826        if (zram) {
1827                ret = zram_remove(zram);
1828                if (!ret)
1829                        idr_remove(&zram_index_idr, dev_id);
1830        } else {
1831                ret = -ENODEV;
1832        }
1833
1834        mutex_unlock(&zram_index_mutex);
1835        return ret ? ret : count;
1836}
1837static CLASS_ATTR_WO(hot_remove);
1838
1839static struct attribute *zram_control_class_attrs[] = {
1840        &class_attr_hot_add.attr,
1841        &class_attr_hot_remove.attr,
1842        NULL,
1843};
1844ATTRIBUTE_GROUPS(zram_control_class);
1845
1846static struct class zram_control_class = {
1847        .name           = "zram-control",
1848        .owner          = THIS_MODULE,
1849        .class_groups   = zram_control_class_groups,
1850};
1851
1852static int zram_remove_cb(int id, void *ptr, void *data)
1853{
1854        zram_remove(ptr);
1855        return 0;
1856}
1857
1858static void destroy_devices(void)
1859{
1860        class_unregister(&zram_control_class);
1861        idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
1862        zram_debugfs_destroy();
1863        idr_destroy(&zram_index_idr);
1864        unregister_blkdev(zram_major, "zram");
1865        cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1866}
1867
1868static int __init zram_init(void)
1869{
1870        int ret;
1871
1872        ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
1873                                      zcomp_cpu_up_prepare, zcomp_cpu_dead);
1874        if (ret < 0)
1875                return ret;
1876
1877        ret = class_register(&zram_control_class);
1878        if (ret) {
1879                pr_err("Unable to register zram-control class\n");
1880                cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1881                return ret;
1882        }
1883
1884        zram_debugfs_create();
1885        zram_major = register_blkdev(0, "zram");
1886        if (zram_major <= 0) {
1887                pr_err("Unable to get major number\n");
1888                class_unregister(&zram_control_class);
1889                cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1890                return -EBUSY;
1891        }
1892
1893        while (num_devices != 0) {
1894                mutex_lock(&zram_index_mutex);
1895                ret = zram_add();
1896                mutex_unlock(&zram_index_mutex);
1897                if (ret < 0)
1898                        goto out_error;
1899                num_devices--;
1900        }
1901
1902        return 0;
1903
1904out_error:
1905        destroy_devices();
1906        return ret;
1907}
1908
1909static void __exit zram_exit(void)
1910{
1911        destroy_devices();
1912}
1913
1914module_init(zram_init);
1915module_exit(zram_exit);
1916
1917module_param(num_devices, uint, 0);
1918MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
1919
1920MODULE_LICENSE("Dual BSD/GPL");
1921MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1922MODULE_DESCRIPTION("Compressed RAM Block Device");
1923