linux/drivers/clk/bcm/clk-bcm2835.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2010,2015 Broadcom
   3 * Copyright (C) 2012 Stephen Warren
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License as published by
   7 * the Free Software Foundation; either version 2 of the License, or
   8 * (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 */
  16
  17/**
  18 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
  19 *
  20 * The clock tree on the 2835 has several levels.  There's a root
  21 * oscillator running at 19.2Mhz.  After the oscillator there are 5
  22 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
  23 * and "HDMI displays".  Those 5 PLLs each can divide their output to
  24 * produce up to 4 channels.  Finally, there is the level of clocks to
  25 * be consumed by other hardware components (like "H264" or "HDMI
  26 * state machine"), which divide off of some subset of the PLL
  27 * channels.
  28 *
  29 * All of the clocks in the tree are exposed in the DT, because the DT
  30 * may want to make assignments of the final layer of clocks to the
  31 * PLL channels, and some components of the hardware will actually
  32 * skip layers of the tree (for example, the pixel clock comes
  33 * directly from the PLLH PIX channel without using a CM_*CTL clock
  34 * generator).
  35 */
  36
  37#include <linux/clk-provider.h>
  38#include <linux/clkdev.h>
  39#include <linux/clk.h>
  40#include <linux/debugfs.h>
  41#include <linux/delay.h>
  42#include <linux/module.h>
  43#include <linux/of.h>
  44#include <linux/platform_device.h>
  45#include <linux/slab.h>
  46#include <dt-bindings/clock/bcm2835.h>
  47
  48#define CM_PASSWORD             0x5a000000
  49
  50#define CM_GNRICCTL             0x000
  51#define CM_GNRICDIV             0x004
  52# define CM_DIV_FRAC_BITS       12
  53# define CM_DIV_FRAC_MASK       GENMASK(CM_DIV_FRAC_BITS - 1, 0)
  54
  55#define CM_VPUCTL               0x008
  56#define CM_VPUDIV               0x00c
  57#define CM_SYSCTL               0x010
  58#define CM_SYSDIV               0x014
  59#define CM_PERIACTL             0x018
  60#define CM_PERIADIV             0x01c
  61#define CM_PERIICTL             0x020
  62#define CM_PERIIDIV             0x024
  63#define CM_H264CTL              0x028
  64#define CM_H264DIV              0x02c
  65#define CM_ISPCTL               0x030
  66#define CM_ISPDIV               0x034
  67#define CM_V3DCTL               0x038
  68#define CM_V3DDIV               0x03c
  69#define CM_CAM0CTL              0x040
  70#define CM_CAM0DIV              0x044
  71#define CM_CAM1CTL              0x048
  72#define CM_CAM1DIV              0x04c
  73#define CM_CCP2CTL              0x050
  74#define CM_CCP2DIV              0x054
  75#define CM_DSI0ECTL             0x058
  76#define CM_DSI0EDIV             0x05c
  77#define CM_DSI0PCTL             0x060
  78#define CM_DSI0PDIV             0x064
  79#define CM_DPICTL               0x068
  80#define CM_DPIDIV               0x06c
  81#define CM_GP0CTL               0x070
  82#define CM_GP0DIV               0x074
  83#define CM_GP1CTL               0x078
  84#define CM_GP1DIV               0x07c
  85#define CM_GP2CTL               0x080
  86#define CM_GP2DIV               0x084
  87#define CM_HSMCTL               0x088
  88#define CM_HSMDIV               0x08c
  89#define CM_OTPCTL               0x090
  90#define CM_OTPDIV               0x094
  91#define CM_PCMCTL               0x098
  92#define CM_PCMDIV               0x09c
  93#define CM_PWMCTL               0x0a0
  94#define CM_PWMDIV               0x0a4
  95#define CM_SLIMCTL              0x0a8
  96#define CM_SLIMDIV              0x0ac
  97#define CM_SMICTL               0x0b0
  98#define CM_SMIDIV               0x0b4
  99/* no definition for 0x0b8  and 0x0bc */
 100#define CM_TCNTCTL              0x0c0
 101# define CM_TCNT_SRC1_SHIFT             12
 102#define CM_TCNTCNT              0x0c4
 103#define CM_TECCTL               0x0c8
 104#define CM_TECDIV               0x0cc
 105#define CM_TD0CTL               0x0d0
 106#define CM_TD0DIV               0x0d4
 107#define CM_TD1CTL               0x0d8
 108#define CM_TD1DIV               0x0dc
 109#define CM_TSENSCTL             0x0e0
 110#define CM_TSENSDIV             0x0e4
 111#define CM_TIMERCTL             0x0e8
 112#define CM_TIMERDIV             0x0ec
 113#define CM_UARTCTL              0x0f0
 114#define CM_UARTDIV              0x0f4
 115#define CM_VECCTL               0x0f8
 116#define CM_VECDIV               0x0fc
 117#define CM_PULSECTL             0x190
 118#define CM_PULSEDIV             0x194
 119#define CM_SDCCTL               0x1a8
 120#define CM_SDCDIV               0x1ac
 121#define CM_ARMCTL               0x1b0
 122#define CM_AVEOCTL              0x1b8
 123#define CM_AVEODIV              0x1bc
 124#define CM_EMMCCTL              0x1c0
 125#define CM_EMMCDIV              0x1c4
 126
 127/* General bits for the CM_*CTL regs */
 128# define CM_ENABLE                      BIT(4)
 129# define CM_KILL                        BIT(5)
 130# define CM_GATE_BIT                    6
 131# define CM_GATE                        BIT(CM_GATE_BIT)
 132# define CM_BUSY                        BIT(7)
 133# define CM_BUSYD                       BIT(8)
 134# define CM_FRAC                        BIT(9)
 135# define CM_SRC_SHIFT                   0
 136# define CM_SRC_BITS                    4
 137# define CM_SRC_MASK                    0xf
 138# define CM_SRC_GND                     0
 139# define CM_SRC_OSC                     1
 140# define CM_SRC_TESTDEBUG0              2
 141# define CM_SRC_TESTDEBUG1              3
 142# define CM_SRC_PLLA_CORE               4
 143# define CM_SRC_PLLA_PER                4
 144# define CM_SRC_PLLC_CORE0              5
 145# define CM_SRC_PLLC_PER                5
 146# define CM_SRC_PLLC_CORE1              8
 147# define CM_SRC_PLLD_CORE               6
 148# define CM_SRC_PLLD_PER                6
 149# define CM_SRC_PLLH_AUX                7
 150# define CM_SRC_PLLC_CORE1              8
 151# define CM_SRC_PLLC_CORE2              9
 152
 153#define CM_OSCCOUNT             0x100
 154
 155#define CM_PLLA                 0x104
 156# define CM_PLL_ANARST                  BIT(8)
 157# define CM_PLLA_HOLDPER                BIT(7)
 158# define CM_PLLA_LOADPER                BIT(6)
 159# define CM_PLLA_HOLDCORE               BIT(5)
 160# define CM_PLLA_LOADCORE               BIT(4)
 161# define CM_PLLA_HOLDCCP2               BIT(3)
 162# define CM_PLLA_LOADCCP2               BIT(2)
 163# define CM_PLLA_HOLDDSI0               BIT(1)
 164# define CM_PLLA_LOADDSI0               BIT(0)
 165
 166#define CM_PLLC                 0x108
 167# define CM_PLLC_HOLDPER                BIT(7)
 168# define CM_PLLC_LOADPER                BIT(6)
 169# define CM_PLLC_HOLDCORE2              BIT(5)
 170# define CM_PLLC_LOADCORE2              BIT(4)
 171# define CM_PLLC_HOLDCORE1              BIT(3)
 172# define CM_PLLC_LOADCORE1              BIT(2)
 173# define CM_PLLC_HOLDCORE0              BIT(1)
 174# define CM_PLLC_LOADCORE0              BIT(0)
 175
 176#define CM_PLLD                 0x10c
 177# define CM_PLLD_HOLDPER                BIT(7)
 178# define CM_PLLD_LOADPER                BIT(6)
 179# define CM_PLLD_HOLDCORE               BIT(5)
 180# define CM_PLLD_LOADCORE               BIT(4)
 181# define CM_PLLD_HOLDDSI1               BIT(3)
 182# define CM_PLLD_LOADDSI1               BIT(2)
 183# define CM_PLLD_HOLDDSI0               BIT(1)
 184# define CM_PLLD_LOADDSI0               BIT(0)
 185
 186#define CM_PLLH                 0x110
 187# define CM_PLLH_LOADRCAL               BIT(2)
 188# define CM_PLLH_LOADAUX                BIT(1)
 189# define CM_PLLH_LOADPIX                BIT(0)
 190
 191#define CM_LOCK                 0x114
 192# define CM_LOCK_FLOCKH                 BIT(12)
 193# define CM_LOCK_FLOCKD                 BIT(11)
 194# define CM_LOCK_FLOCKC                 BIT(10)
 195# define CM_LOCK_FLOCKB                 BIT(9)
 196# define CM_LOCK_FLOCKA                 BIT(8)
 197
 198#define CM_EVENT                0x118
 199#define CM_DSI1ECTL             0x158
 200#define CM_DSI1EDIV             0x15c
 201#define CM_DSI1PCTL             0x160
 202#define CM_DSI1PDIV             0x164
 203#define CM_DFTCTL               0x168
 204#define CM_DFTDIV               0x16c
 205
 206#define CM_PLLB                 0x170
 207# define CM_PLLB_HOLDARM                BIT(1)
 208# define CM_PLLB_LOADARM                BIT(0)
 209
 210#define A2W_PLLA_CTRL           0x1100
 211#define A2W_PLLC_CTRL           0x1120
 212#define A2W_PLLD_CTRL           0x1140
 213#define A2W_PLLH_CTRL           0x1160
 214#define A2W_PLLB_CTRL           0x11e0
 215# define A2W_PLL_CTRL_PRST_DISABLE      BIT(17)
 216# define A2W_PLL_CTRL_PWRDN             BIT(16)
 217# define A2W_PLL_CTRL_PDIV_MASK         0x000007000
 218# define A2W_PLL_CTRL_PDIV_SHIFT        12
 219# define A2W_PLL_CTRL_NDIV_MASK         0x0000003ff
 220# define A2W_PLL_CTRL_NDIV_SHIFT        0
 221
 222#define A2W_PLLA_ANA0           0x1010
 223#define A2W_PLLC_ANA0           0x1030
 224#define A2W_PLLD_ANA0           0x1050
 225#define A2W_PLLH_ANA0           0x1070
 226#define A2W_PLLB_ANA0           0x10f0
 227
 228#define A2W_PLL_KA_SHIFT        7
 229#define A2W_PLL_KA_MASK         GENMASK(9, 7)
 230#define A2W_PLL_KI_SHIFT        19
 231#define A2W_PLL_KI_MASK         GENMASK(21, 19)
 232#define A2W_PLL_KP_SHIFT        15
 233#define A2W_PLL_KP_MASK         GENMASK(18, 15)
 234
 235#define A2W_PLLH_KA_SHIFT       19
 236#define A2W_PLLH_KA_MASK        GENMASK(21, 19)
 237#define A2W_PLLH_KI_LOW_SHIFT   22
 238#define A2W_PLLH_KI_LOW_MASK    GENMASK(23, 22)
 239#define A2W_PLLH_KI_HIGH_SHIFT  0
 240#define A2W_PLLH_KI_HIGH_MASK   GENMASK(0, 0)
 241#define A2W_PLLH_KP_SHIFT       1
 242#define A2W_PLLH_KP_MASK        GENMASK(4, 1)
 243
 244#define A2W_XOSC_CTRL           0x1190
 245# define A2W_XOSC_CTRL_PLLB_ENABLE      BIT(7)
 246# define A2W_XOSC_CTRL_PLLA_ENABLE      BIT(6)
 247# define A2W_XOSC_CTRL_PLLD_ENABLE      BIT(5)
 248# define A2W_XOSC_CTRL_DDR_ENABLE       BIT(4)
 249# define A2W_XOSC_CTRL_CPR1_ENABLE      BIT(3)
 250# define A2W_XOSC_CTRL_USB_ENABLE       BIT(2)
 251# define A2W_XOSC_CTRL_HDMI_ENABLE      BIT(1)
 252# define A2W_XOSC_CTRL_PLLC_ENABLE      BIT(0)
 253
 254#define A2W_PLLA_FRAC           0x1200
 255#define A2W_PLLC_FRAC           0x1220
 256#define A2W_PLLD_FRAC           0x1240
 257#define A2W_PLLH_FRAC           0x1260
 258#define A2W_PLLB_FRAC           0x12e0
 259# define A2W_PLL_FRAC_MASK              ((1 << A2W_PLL_FRAC_BITS) - 1)
 260# define A2W_PLL_FRAC_BITS              20
 261
 262#define A2W_PLL_CHANNEL_DISABLE         BIT(8)
 263#define A2W_PLL_DIV_BITS                8
 264#define A2W_PLL_DIV_SHIFT               0
 265
 266#define A2W_PLLA_DSI0           0x1300
 267#define A2W_PLLA_CORE           0x1400
 268#define A2W_PLLA_PER            0x1500
 269#define A2W_PLLA_CCP2           0x1600
 270
 271#define A2W_PLLC_CORE2          0x1320
 272#define A2W_PLLC_CORE1          0x1420
 273#define A2W_PLLC_PER            0x1520
 274#define A2W_PLLC_CORE0          0x1620
 275
 276#define A2W_PLLD_DSI0           0x1340
 277#define A2W_PLLD_CORE           0x1440
 278#define A2W_PLLD_PER            0x1540
 279#define A2W_PLLD_DSI1           0x1640
 280
 281#define A2W_PLLH_AUX            0x1360
 282#define A2W_PLLH_RCAL           0x1460
 283#define A2W_PLLH_PIX            0x1560
 284#define A2W_PLLH_STS            0x1660
 285
 286#define A2W_PLLH_CTRLR          0x1960
 287#define A2W_PLLH_FRACR          0x1a60
 288#define A2W_PLLH_AUXR           0x1b60
 289#define A2W_PLLH_RCALR          0x1c60
 290#define A2W_PLLH_PIXR           0x1d60
 291#define A2W_PLLH_STSR           0x1e60
 292
 293#define A2W_PLLB_ARM            0x13e0
 294#define A2W_PLLB_SP0            0x14e0
 295#define A2W_PLLB_SP1            0x15e0
 296#define A2W_PLLB_SP2            0x16e0
 297
 298#define LOCK_TIMEOUT_NS         100000000
 299#define BCM2835_MAX_FB_RATE     1750000000u
 300
 301/*
 302 * Names of clocks used within the driver that need to be replaced
 303 * with an external parent's name.  This array is in the order that
 304 * the clocks node in the DT references external clocks.
 305 */
 306static const char *const cprman_parent_names[] = {
 307        "xosc",
 308        "dsi0_byte",
 309        "dsi0_ddr2",
 310        "dsi0_ddr",
 311        "dsi1_byte",
 312        "dsi1_ddr2",
 313        "dsi1_ddr",
 314};
 315
 316struct bcm2835_cprman {
 317        struct device *dev;
 318        void __iomem *regs;
 319        spinlock_t regs_lock; /* spinlock for all clocks */
 320
 321        /*
 322         * Real names of cprman clock parents looked up through
 323         * of_clk_get_parent_name(), which will be used in the
 324         * parent_names[] arrays for clock registration.
 325         */
 326        const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)];
 327
 328        /* Must be last */
 329        struct clk_hw_onecell_data onecell;
 330};
 331
 332static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
 333{
 334        writel(CM_PASSWORD | val, cprman->regs + reg);
 335}
 336
 337static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
 338{
 339        return readl(cprman->regs + reg);
 340}
 341
 342/* Does a cycle of measuring a clock through the TCNT clock, which may
 343 * source from many other clocks in the system.
 344 */
 345static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman,
 346                                              u32 tcnt_mux)
 347{
 348        u32 osccount = 19200; /* 1ms */
 349        u32 count;
 350        ktime_t timeout;
 351
 352        spin_lock(&cprman->regs_lock);
 353
 354        cprman_write(cprman, CM_TCNTCTL, CM_KILL);
 355
 356        cprman_write(cprman, CM_TCNTCTL,
 357                     (tcnt_mux & CM_SRC_MASK) |
 358                     (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT);
 359
 360        cprman_write(cprman, CM_OSCCOUNT, osccount);
 361
 362        /* do a kind delay at the start */
 363        mdelay(1);
 364
 365        /* Finish off whatever is left of OSCCOUNT */
 366        timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
 367        while (cprman_read(cprman, CM_OSCCOUNT)) {
 368                if (ktime_after(ktime_get(), timeout)) {
 369                        dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n");
 370                        count = 0;
 371                        goto out;
 372                }
 373                cpu_relax();
 374        }
 375
 376        /* Wait for BUSY to clear. */
 377        timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
 378        while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) {
 379                if (ktime_after(ktime_get(), timeout)) {
 380                        dev_err(cprman->dev, "timeout waiting for !BUSY\n");
 381                        count = 0;
 382                        goto out;
 383                }
 384                cpu_relax();
 385        }
 386
 387        count = cprman_read(cprman, CM_TCNTCNT);
 388
 389        cprman_write(cprman, CM_TCNTCTL, 0);
 390
 391out:
 392        spin_unlock(&cprman->regs_lock);
 393
 394        return count * 1000;
 395}
 396
 397static void bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
 398                                  struct debugfs_reg32 *regs, size_t nregs,
 399                                  struct dentry *dentry)
 400{
 401        struct debugfs_regset32 *regset;
 402
 403        regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
 404        if (!regset)
 405                return;
 406
 407        regset->regs = regs;
 408        regset->nregs = nregs;
 409        regset->base = cprman->regs + base;
 410
 411        debugfs_create_regset32("regdump", S_IRUGO, dentry, regset);
 412}
 413
 414struct bcm2835_pll_data {
 415        const char *name;
 416        u32 cm_ctrl_reg;
 417        u32 a2w_ctrl_reg;
 418        u32 frac_reg;
 419        u32 ana_reg_base;
 420        u32 reference_enable_mask;
 421        /* Bit in CM_LOCK to indicate when the PLL has locked. */
 422        u32 lock_mask;
 423
 424        const struct bcm2835_pll_ana_bits *ana;
 425
 426        unsigned long min_rate;
 427        unsigned long max_rate;
 428        /*
 429         * Highest rate for the VCO before we have to use the
 430         * pre-divide-by-2.
 431         */
 432        unsigned long max_fb_rate;
 433};
 434
 435struct bcm2835_pll_ana_bits {
 436        u32 mask0;
 437        u32 set0;
 438        u32 mask1;
 439        u32 set1;
 440        u32 mask3;
 441        u32 set3;
 442        u32 fb_prediv_mask;
 443};
 444
 445static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
 446        .mask0 = 0,
 447        .set0 = 0,
 448        .mask1 = A2W_PLL_KI_MASK | A2W_PLL_KP_MASK,
 449        .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
 450        .mask3 = A2W_PLL_KA_MASK,
 451        .set3 = (2 << A2W_PLL_KA_SHIFT),
 452        .fb_prediv_mask = BIT(14),
 453};
 454
 455static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
 456        .mask0 = A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK,
 457        .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
 458        .mask1 = A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK,
 459        .set1 = (6 << A2W_PLLH_KP_SHIFT),
 460        .mask3 = 0,
 461        .set3 = 0,
 462        .fb_prediv_mask = BIT(11),
 463};
 464
 465struct bcm2835_pll_divider_data {
 466        const char *name;
 467        const char *source_pll;
 468
 469        u32 cm_reg;
 470        u32 a2w_reg;
 471
 472        u32 load_mask;
 473        u32 hold_mask;
 474        u32 fixed_divider;
 475        u32 flags;
 476};
 477
 478struct bcm2835_clock_data {
 479        const char *name;
 480
 481        const char *const *parents;
 482        int num_mux_parents;
 483
 484        /* Bitmap encoding which parents accept rate change propagation. */
 485        unsigned int set_rate_parent;
 486
 487        u32 ctl_reg;
 488        u32 div_reg;
 489
 490        /* Number of integer bits in the divider */
 491        u32 int_bits;
 492        /* Number of fractional bits in the divider */
 493        u32 frac_bits;
 494
 495        u32 flags;
 496
 497        bool is_vpu_clock;
 498        bool is_mash_clock;
 499        bool low_jitter;
 500
 501        u32 tcnt_mux;
 502};
 503
 504struct bcm2835_gate_data {
 505        const char *name;
 506        const char *parent;
 507
 508        u32 ctl_reg;
 509};
 510
 511struct bcm2835_pll {
 512        struct clk_hw hw;
 513        struct bcm2835_cprman *cprman;
 514        const struct bcm2835_pll_data *data;
 515};
 516
 517static int bcm2835_pll_is_on(struct clk_hw *hw)
 518{
 519        struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
 520        struct bcm2835_cprman *cprman = pll->cprman;
 521        const struct bcm2835_pll_data *data = pll->data;
 522
 523        return cprman_read(cprman, data->a2w_ctrl_reg) &
 524                A2W_PLL_CTRL_PRST_DISABLE;
 525}
 526
 527static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
 528                                             unsigned long parent_rate,
 529                                             u32 *ndiv, u32 *fdiv)
 530{
 531        u64 div;
 532
 533        div = (u64)rate << A2W_PLL_FRAC_BITS;
 534        do_div(div, parent_rate);
 535
 536        *ndiv = div >> A2W_PLL_FRAC_BITS;
 537        *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
 538}
 539
 540static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
 541                                           u32 ndiv, u32 fdiv, u32 pdiv)
 542{
 543        u64 rate;
 544
 545        if (pdiv == 0)
 546                return 0;
 547
 548        rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
 549        do_div(rate, pdiv);
 550        return rate >> A2W_PLL_FRAC_BITS;
 551}
 552
 553static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
 554                                   unsigned long *parent_rate)
 555{
 556        struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
 557        const struct bcm2835_pll_data *data = pll->data;
 558        u32 ndiv, fdiv;
 559
 560        rate = clamp(rate, data->min_rate, data->max_rate);
 561
 562        bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
 563
 564        return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
 565}
 566
 567static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
 568                                          unsigned long parent_rate)
 569{
 570        struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
 571        struct bcm2835_cprman *cprman = pll->cprman;
 572        const struct bcm2835_pll_data *data = pll->data;
 573        u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
 574        u32 ndiv, pdiv, fdiv;
 575        bool using_prediv;
 576
 577        if (parent_rate == 0)
 578                return 0;
 579
 580        fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
 581        ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
 582        pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
 583        using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
 584                data->ana->fb_prediv_mask;
 585
 586        if (using_prediv) {
 587                ndiv *= 2;
 588                fdiv *= 2;
 589        }
 590
 591        return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
 592}
 593
 594static void bcm2835_pll_off(struct clk_hw *hw)
 595{
 596        struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
 597        struct bcm2835_cprman *cprman = pll->cprman;
 598        const struct bcm2835_pll_data *data = pll->data;
 599
 600        spin_lock(&cprman->regs_lock);
 601        cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST);
 602        cprman_write(cprman, data->a2w_ctrl_reg,
 603                     cprman_read(cprman, data->a2w_ctrl_reg) |
 604                     A2W_PLL_CTRL_PWRDN);
 605        spin_unlock(&cprman->regs_lock);
 606}
 607
 608static int bcm2835_pll_on(struct clk_hw *hw)
 609{
 610        struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
 611        struct bcm2835_cprman *cprman = pll->cprman;
 612        const struct bcm2835_pll_data *data = pll->data;
 613        ktime_t timeout;
 614
 615        cprman_write(cprman, data->a2w_ctrl_reg,
 616                     cprman_read(cprman, data->a2w_ctrl_reg) &
 617                     ~A2W_PLL_CTRL_PWRDN);
 618
 619        /* Take the PLL out of reset. */
 620        spin_lock(&cprman->regs_lock);
 621        cprman_write(cprman, data->cm_ctrl_reg,
 622                     cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
 623        spin_unlock(&cprman->regs_lock);
 624
 625        /* Wait for the PLL to lock. */
 626        timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
 627        while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
 628                if (ktime_after(ktime_get(), timeout)) {
 629                        dev_err(cprman->dev, "%s: couldn't lock PLL\n",
 630                                clk_hw_get_name(hw));
 631                        return -ETIMEDOUT;
 632                }
 633
 634                cpu_relax();
 635        }
 636
 637        cprman_write(cprman, data->a2w_ctrl_reg,
 638                     cprman_read(cprman, data->a2w_ctrl_reg) |
 639                     A2W_PLL_CTRL_PRST_DISABLE);
 640
 641        return 0;
 642}
 643
 644static void
 645bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
 646{
 647        int i;
 648
 649        /*
 650         * ANA register setup is done as a series of writes to
 651         * ANA3-ANA0, in that order.  This lets us write all 4
 652         * registers as a single cycle of the serdes interface (taking
 653         * 100 xosc clocks), whereas if we were to update ana0, 1, and
 654         * 3 individually through their partial-write registers, each
 655         * would be their own serdes cycle.
 656         */
 657        for (i = 3; i >= 0; i--)
 658                cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
 659}
 660
 661static int bcm2835_pll_set_rate(struct clk_hw *hw,
 662                                unsigned long rate, unsigned long parent_rate)
 663{
 664        struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
 665        struct bcm2835_cprman *cprman = pll->cprman;
 666        const struct bcm2835_pll_data *data = pll->data;
 667        bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
 668        u32 ndiv, fdiv, a2w_ctl;
 669        u32 ana[4];
 670        int i;
 671
 672        if (rate > data->max_fb_rate) {
 673                use_fb_prediv = true;
 674                rate /= 2;
 675        } else {
 676                use_fb_prediv = false;
 677        }
 678
 679        bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
 680
 681        for (i = 3; i >= 0; i--)
 682                ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
 683
 684        was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
 685
 686        ana[0] &= ~data->ana->mask0;
 687        ana[0] |= data->ana->set0;
 688        ana[1] &= ~data->ana->mask1;
 689        ana[1] |= data->ana->set1;
 690        ana[3] &= ~data->ana->mask3;
 691        ana[3] |= data->ana->set3;
 692
 693        if (was_using_prediv && !use_fb_prediv) {
 694                ana[1] &= ~data->ana->fb_prediv_mask;
 695                do_ana_setup_first = true;
 696        } else if (!was_using_prediv && use_fb_prediv) {
 697                ana[1] |= data->ana->fb_prediv_mask;
 698                do_ana_setup_first = false;
 699        } else {
 700                do_ana_setup_first = true;
 701        }
 702
 703        /* Unmask the reference clock from the oscillator. */
 704        spin_lock(&cprman->regs_lock);
 705        cprman_write(cprman, A2W_XOSC_CTRL,
 706                     cprman_read(cprman, A2W_XOSC_CTRL) |
 707                     data->reference_enable_mask);
 708        spin_unlock(&cprman->regs_lock);
 709
 710        if (do_ana_setup_first)
 711                bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
 712
 713        /* Set the PLL multiplier from the oscillator. */
 714        cprman_write(cprman, data->frac_reg, fdiv);
 715
 716        a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
 717        a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
 718        a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
 719        a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
 720        a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
 721        cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
 722
 723        if (!do_ana_setup_first)
 724                bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
 725
 726        return 0;
 727}
 728
 729static void bcm2835_pll_debug_init(struct clk_hw *hw,
 730                                  struct dentry *dentry)
 731{
 732        struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
 733        struct bcm2835_cprman *cprman = pll->cprman;
 734        const struct bcm2835_pll_data *data = pll->data;
 735        struct debugfs_reg32 *regs;
 736
 737        regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
 738        if (!regs)
 739                return;
 740
 741        regs[0].name = "cm_ctrl";
 742        regs[0].offset = data->cm_ctrl_reg;
 743        regs[1].name = "a2w_ctrl";
 744        regs[1].offset = data->a2w_ctrl_reg;
 745        regs[2].name = "frac";
 746        regs[2].offset = data->frac_reg;
 747        regs[3].name = "ana0";
 748        regs[3].offset = data->ana_reg_base + 0 * 4;
 749        regs[4].name = "ana1";
 750        regs[4].offset = data->ana_reg_base + 1 * 4;
 751        regs[5].name = "ana2";
 752        regs[5].offset = data->ana_reg_base + 2 * 4;
 753        regs[6].name = "ana3";
 754        regs[6].offset = data->ana_reg_base + 3 * 4;
 755
 756        bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
 757}
 758
 759static const struct clk_ops bcm2835_pll_clk_ops = {
 760        .is_prepared = bcm2835_pll_is_on,
 761        .prepare = bcm2835_pll_on,
 762        .unprepare = bcm2835_pll_off,
 763        .recalc_rate = bcm2835_pll_get_rate,
 764        .set_rate = bcm2835_pll_set_rate,
 765        .round_rate = bcm2835_pll_round_rate,
 766        .debug_init = bcm2835_pll_debug_init,
 767};
 768
 769struct bcm2835_pll_divider {
 770        struct clk_divider div;
 771        struct bcm2835_cprman *cprman;
 772        const struct bcm2835_pll_divider_data *data;
 773};
 774
 775static struct bcm2835_pll_divider *
 776bcm2835_pll_divider_from_hw(struct clk_hw *hw)
 777{
 778        return container_of(hw, struct bcm2835_pll_divider, div.hw);
 779}
 780
 781static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
 782{
 783        struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
 784        struct bcm2835_cprman *cprman = divider->cprman;
 785        const struct bcm2835_pll_divider_data *data = divider->data;
 786
 787        return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
 788}
 789
 790static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
 791                                           unsigned long rate,
 792                                           unsigned long *parent_rate)
 793{
 794        return clk_divider_ops.round_rate(hw, rate, parent_rate);
 795}
 796
 797static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
 798                                                  unsigned long parent_rate)
 799{
 800        return clk_divider_ops.recalc_rate(hw, parent_rate);
 801}
 802
 803static void bcm2835_pll_divider_off(struct clk_hw *hw)
 804{
 805        struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
 806        struct bcm2835_cprman *cprman = divider->cprman;
 807        const struct bcm2835_pll_divider_data *data = divider->data;
 808
 809        spin_lock(&cprman->regs_lock);
 810        cprman_write(cprman, data->cm_reg,
 811                     (cprman_read(cprman, data->cm_reg) &
 812                      ~data->load_mask) | data->hold_mask);
 813        cprman_write(cprman, data->a2w_reg,
 814                     cprman_read(cprman, data->a2w_reg) |
 815                     A2W_PLL_CHANNEL_DISABLE);
 816        spin_unlock(&cprman->regs_lock);
 817}
 818
 819static int bcm2835_pll_divider_on(struct clk_hw *hw)
 820{
 821        struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
 822        struct bcm2835_cprman *cprman = divider->cprman;
 823        const struct bcm2835_pll_divider_data *data = divider->data;
 824
 825        spin_lock(&cprman->regs_lock);
 826        cprman_write(cprman, data->a2w_reg,
 827                     cprman_read(cprman, data->a2w_reg) &
 828                     ~A2W_PLL_CHANNEL_DISABLE);
 829
 830        cprman_write(cprman, data->cm_reg,
 831                     cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
 832        spin_unlock(&cprman->regs_lock);
 833
 834        return 0;
 835}
 836
 837static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
 838                                        unsigned long rate,
 839                                        unsigned long parent_rate)
 840{
 841        struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
 842        struct bcm2835_cprman *cprman = divider->cprman;
 843        const struct bcm2835_pll_divider_data *data = divider->data;
 844        u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
 845
 846        div = DIV_ROUND_UP_ULL(parent_rate, rate);
 847
 848        div = min(div, max_div);
 849        if (div == max_div)
 850                div = 0;
 851
 852        cprman_write(cprman, data->a2w_reg, div);
 853        cm = cprman_read(cprman, data->cm_reg);
 854        cprman_write(cprman, data->cm_reg, cm | data->load_mask);
 855        cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
 856
 857        return 0;
 858}
 859
 860static void bcm2835_pll_divider_debug_init(struct clk_hw *hw,
 861                                           struct dentry *dentry)
 862{
 863        struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
 864        struct bcm2835_cprman *cprman = divider->cprman;
 865        const struct bcm2835_pll_divider_data *data = divider->data;
 866        struct debugfs_reg32 *regs;
 867
 868        regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
 869        if (!regs)
 870                return;
 871
 872        regs[0].name = "cm";
 873        regs[0].offset = data->cm_reg;
 874        regs[1].name = "a2w";
 875        regs[1].offset = data->a2w_reg;
 876
 877        bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
 878}
 879
 880static const struct clk_ops bcm2835_pll_divider_clk_ops = {
 881        .is_prepared = bcm2835_pll_divider_is_on,
 882        .prepare = bcm2835_pll_divider_on,
 883        .unprepare = bcm2835_pll_divider_off,
 884        .recalc_rate = bcm2835_pll_divider_get_rate,
 885        .set_rate = bcm2835_pll_divider_set_rate,
 886        .round_rate = bcm2835_pll_divider_round_rate,
 887        .debug_init = bcm2835_pll_divider_debug_init,
 888};
 889
 890/*
 891 * The CM dividers do fixed-point division, so we can't use the
 892 * generic integer divider code like the PLL dividers do (and we can't
 893 * fake it by having some fixed shifts preceding it in the clock tree,
 894 * because we'd run out of bits in a 32-bit unsigned long).
 895 */
 896struct bcm2835_clock {
 897        struct clk_hw hw;
 898        struct bcm2835_cprman *cprman;
 899        const struct bcm2835_clock_data *data;
 900};
 901
 902static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
 903{
 904        return container_of(hw, struct bcm2835_clock, hw);
 905}
 906
 907static int bcm2835_clock_is_on(struct clk_hw *hw)
 908{
 909        struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
 910        struct bcm2835_cprman *cprman = clock->cprman;
 911        const struct bcm2835_clock_data *data = clock->data;
 912
 913        return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
 914}
 915
 916static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
 917                                    unsigned long rate,
 918                                    unsigned long parent_rate,
 919                                    bool round_up)
 920{
 921        struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
 922        const struct bcm2835_clock_data *data = clock->data;
 923        u32 unused_frac_mask =
 924                GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
 925        u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
 926        u64 rem;
 927        u32 div, mindiv, maxdiv;
 928
 929        rem = do_div(temp, rate);
 930        div = temp;
 931
 932        /* Round up and mask off the unused bits */
 933        if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
 934                div += unused_frac_mask + 1;
 935        div &= ~unused_frac_mask;
 936
 937        /* different clamping limits apply for a mash clock */
 938        if (data->is_mash_clock) {
 939                /* clamp to min divider of 2 */
 940                mindiv = 2 << CM_DIV_FRAC_BITS;
 941                /* clamp to the highest possible integer divider */
 942                maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
 943        } else {
 944                /* clamp to min divider of 1 */
 945                mindiv = 1 << CM_DIV_FRAC_BITS;
 946                /* clamp to the highest possible fractional divider */
 947                maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
 948                                 CM_DIV_FRAC_BITS - data->frac_bits);
 949        }
 950
 951        /* apply the clamping  limits */
 952        div = max_t(u32, div, mindiv);
 953        div = min_t(u32, div, maxdiv);
 954
 955        return div;
 956}
 957
 958static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
 959                                            unsigned long parent_rate,
 960                                            u32 div)
 961{
 962        const struct bcm2835_clock_data *data = clock->data;
 963        u64 temp;
 964
 965        if (data->int_bits == 0 && data->frac_bits == 0)
 966                return parent_rate;
 967
 968        /*
 969         * The divisor is a 12.12 fixed point field, but only some of
 970         * the bits are populated in any given clock.
 971         */
 972        div >>= CM_DIV_FRAC_BITS - data->frac_bits;
 973        div &= (1 << (data->int_bits + data->frac_bits)) - 1;
 974
 975        if (div == 0)
 976                return 0;
 977
 978        temp = (u64)parent_rate << data->frac_bits;
 979
 980        do_div(temp, div);
 981
 982        return temp;
 983}
 984
 985static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
 986                                            unsigned long parent_rate)
 987{
 988        struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
 989        struct bcm2835_cprman *cprman = clock->cprman;
 990        const struct bcm2835_clock_data *data = clock->data;
 991        u32 div;
 992
 993        if (data->int_bits == 0 && data->frac_bits == 0)
 994                return parent_rate;
 995
 996        div = cprman_read(cprman, data->div_reg);
 997
 998        return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
 999}
1000
1001static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
1002{
1003        struct bcm2835_cprman *cprman = clock->cprman;
1004        const struct bcm2835_clock_data *data = clock->data;
1005        ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
1006
1007        while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
1008                if (ktime_after(ktime_get(), timeout)) {
1009                        dev_err(cprman->dev, "%s: couldn't lock PLL\n",
1010                                clk_hw_get_name(&clock->hw));
1011                        return;
1012                }
1013                cpu_relax();
1014        }
1015}
1016
1017static void bcm2835_clock_off(struct clk_hw *hw)
1018{
1019        struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1020        struct bcm2835_cprman *cprman = clock->cprman;
1021        const struct bcm2835_clock_data *data = clock->data;
1022
1023        spin_lock(&cprman->regs_lock);
1024        cprman_write(cprman, data->ctl_reg,
1025                     cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
1026        spin_unlock(&cprman->regs_lock);
1027
1028        /* BUSY will remain high until the divider completes its cycle. */
1029        bcm2835_clock_wait_busy(clock);
1030}
1031
1032static int bcm2835_clock_on(struct clk_hw *hw)
1033{
1034        struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1035        struct bcm2835_cprman *cprman = clock->cprman;
1036        const struct bcm2835_clock_data *data = clock->data;
1037
1038        spin_lock(&cprman->regs_lock);
1039        cprman_write(cprman, data->ctl_reg,
1040                     cprman_read(cprman, data->ctl_reg) |
1041                     CM_ENABLE |
1042                     CM_GATE);
1043        spin_unlock(&cprman->regs_lock);
1044
1045        /* Debug code to measure the clock once it's turned on to see
1046         * if it's ticking at the rate we expect.
1047         */
1048        if (data->tcnt_mux && false) {
1049                dev_info(cprman->dev,
1050                         "clk %s: rate %ld, measure %ld\n",
1051                         data->name,
1052                         clk_hw_get_rate(hw),
1053                         bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux));
1054        }
1055
1056        return 0;
1057}
1058
1059static int bcm2835_clock_set_rate(struct clk_hw *hw,
1060                                  unsigned long rate, unsigned long parent_rate)
1061{
1062        struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1063        struct bcm2835_cprman *cprman = clock->cprman;
1064        const struct bcm2835_clock_data *data = clock->data;
1065        u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
1066        u32 ctl;
1067
1068        spin_lock(&cprman->regs_lock);
1069
1070        /*
1071         * Setting up frac support
1072         *
1073         * In principle it is recommended to stop/start the clock first,
1074         * but as we set CLK_SET_RATE_GATE during registration of the
1075         * clock this requirement should be take care of by the
1076         * clk-framework.
1077         */
1078        ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1079        ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1080        cprman_write(cprman, data->ctl_reg, ctl);
1081
1082        cprman_write(cprman, data->div_reg, div);
1083
1084        spin_unlock(&cprman->regs_lock);
1085
1086        return 0;
1087}
1088
1089static bool
1090bcm2835_clk_is_pllc(struct clk_hw *hw)
1091{
1092        if (!hw)
1093                return false;
1094
1095        return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1096}
1097
1098static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
1099                                                        int parent_idx,
1100                                                        unsigned long rate,
1101                                                        u32 *div,
1102                                                        unsigned long *prate,
1103                                                        unsigned long *avgrate)
1104{
1105        struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1106        struct bcm2835_cprman *cprman = clock->cprman;
1107        const struct bcm2835_clock_data *data = clock->data;
1108        unsigned long best_rate = 0;
1109        u32 curdiv, mindiv, maxdiv;
1110        struct clk_hw *parent;
1111
1112        parent = clk_hw_get_parent_by_index(hw, parent_idx);
1113
1114        if (!(BIT(parent_idx) & data->set_rate_parent)) {
1115                *prate = clk_hw_get_rate(parent);
1116                *div = bcm2835_clock_choose_div(hw, rate, *prate, true);
1117
1118                *avgrate = bcm2835_clock_rate_from_divisor(clock, *prate, *div);
1119
1120                if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) {
1121                        unsigned long high, low;
1122                        u32 int_div = *div & ~CM_DIV_FRAC_MASK;
1123
1124                        high = bcm2835_clock_rate_from_divisor(clock, *prate,
1125                                                               int_div);
1126                        int_div += CM_DIV_FRAC_MASK + 1;
1127                        low = bcm2835_clock_rate_from_divisor(clock, *prate,
1128                                                              int_div);
1129
1130                        /*
1131                         * Return a value which is the maximum deviation
1132                         * below the ideal rate, for use as a metric.
1133                         */
1134                        return *avgrate - max(*avgrate - low, high - *avgrate);
1135                }
1136                return *avgrate;
1137        }
1138
1139        if (data->frac_bits)
1140                dev_warn(cprman->dev,
1141                        "frac bits are not used when propagating rate change");
1142
1143        /* clamp to min divider of 2 if we're dealing with a mash clock */
1144        mindiv = data->is_mash_clock ? 2 : 1;
1145        maxdiv = BIT(data->int_bits) - 1;
1146
1147        /* TODO: Be smart, and only test a subset of the available divisors. */
1148        for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
1149                unsigned long tmp_rate;
1150
1151                tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
1152                tmp_rate /= curdiv;
1153                if (curdiv == mindiv ||
1154                    (tmp_rate > best_rate && tmp_rate <= rate))
1155                        best_rate = tmp_rate;
1156
1157                if (best_rate == rate)
1158                        break;
1159        }
1160
1161        *div = curdiv << CM_DIV_FRAC_BITS;
1162        *prate = curdiv * best_rate;
1163        *avgrate = best_rate;
1164
1165        return best_rate;
1166}
1167
1168static int bcm2835_clock_determine_rate(struct clk_hw *hw,
1169                                        struct clk_rate_request *req)
1170{
1171        struct clk_hw *parent, *best_parent = NULL;
1172        bool current_parent_is_pllc;
1173        unsigned long rate, best_rate = 0;
1174        unsigned long prate, best_prate = 0;
1175        unsigned long avgrate, best_avgrate = 0;
1176        size_t i;
1177        u32 div;
1178
1179        current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1180
1181        /*
1182         * Select parent clock that results in the closest but lower rate
1183         */
1184        for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1185                parent = clk_hw_get_parent_by_index(hw, i);
1186                if (!parent)
1187                        continue;
1188
1189                /*
1190                 * Don't choose a PLLC-derived clock as our parent
1191                 * unless it had been manually set that way.  PLLC's
1192                 * frequency gets adjusted by the firmware due to
1193                 * over-temp or under-voltage conditions, without
1194                 * prior notification to our clock consumer.
1195                 */
1196                if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1197                        continue;
1198
1199                rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
1200                                                          &div, &prate,
1201                                                          &avgrate);
1202                if (rate > best_rate && rate <= req->rate) {
1203                        best_parent = parent;
1204                        best_prate = prate;
1205                        best_rate = rate;
1206                        best_avgrate = avgrate;
1207                }
1208        }
1209
1210        if (!best_parent)
1211                return -EINVAL;
1212
1213        req->best_parent_hw = best_parent;
1214        req->best_parent_rate = best_prate;
1215
1216        req->rate = best_avgrate;
1217
1218        return 0;
1219}
1220
1221static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1222{
1223        struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1224        struct bcm2835_cprman *cprman = clock->cprman;
1225        const struct bcm2835_clock_data *data = clock->data;
1226        u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1227
1228        cprman_write(cprman, data->ctl_reg, src);
1229        return 0;
1230}
1231
1232static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1233{
1234        struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1235        struct bcm2835_cprman *cprman = clock->cprman;
1236        const struct bcm2835_clock_data *data = clock->data;
1237        u32 src = cprman_read(cprman, data->ctl_reg);
1238
1239        return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1240}
1241
1242static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1243        {
1244                .name = "ctl",
1245                .offset = 0,
1246        },
1247        {
1248                .name = "div",
1249                .offset = 4,
1250        },
1251};
1252
1253static void bcm2835_clock_debug_init(struct clk_hw *hw,
1254                                    struct dentry *dentry)
1255{
1256        struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1257        struct bcm2835_cprman *cprman = clock->cprman;
1258        const struct bcm2835_clock_data *data = clock->data;
1259
1260        bcm2835_debugfs_regset(cprman, data->ctl_reg,
1261                bcm2835_debugfs_clock_reg32,
1262                ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1263                dentry);
1264}
1265
1266static const struct clk_ops bcm2835_clock_clk_ops = {
1267        .is_prepared = bcm2835_clock_is_on,
1268        .prepare = bcm2835_clock_on,
1269        .unprepare = bcm2835_clock_off,
1270        .recalc_rate = bcm2835_clock_get_rate,
1271        .set_rate = bcm2835_clock_set_rate,
1272        .determine_rate = bcm2835_clock_determine_rate,
1273        .set_parent = bcm2835_clock_set_parent,
1274        .get_parent = bcm2835_clock_get_parent,
1275        .debug_init = bcm2835_clock_debug_init,
1276};
1277
1278static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1279{
1280        return true;
1281}
1282
1283/*
1284 * The VPU clock can never be disabled (it doesn't have an ENABLE
1285 * bit), so it gets its own set of clock ops.
1286 */
1287static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1288        .is_prepared = bcm2835_vpu_clock_is_on,
1289        .recalc_rate = bcm2835_clock_get_rate,
1290        .set_rate = bcm2835_clock_set_rate,
1291        .determine_rate = bcm2835_clock_determine_rate,
1292        .set_parent = bcm2835_clock_set_parent,
1293        .get_parent = bcm2835_clock_get_parent,
1294        .debug_init = bcm2835_clock_debug_init,
1295};
1296
1297static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1298                                           const struct bcm2835_pll_data *data)
1299{
1300        struct bcm2835_pll *pll;
1301        struct clk_init_data init;
1302        int ret;
1303
1304        memset(&init, 0, sizeof(init));
1305
1306        /* All of the PLLs derive from the external oscillator. */
1307        init.parent_names = &cprman->real_parent_names[0];
1308        init.num_parents = 1;
1309        init.name = data->name;
1310        init.ops = &bcm2835_pll_clk_ops;
1311        init.flags = CLK_IGNORE_UNUSED;
1312
1313        pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1314        if (!pll)
1315                return NULL;
1316
1317        pll->cprman = cprman;
1318        pll->data = data;
1319        pll->hw.init = &init;
1320
1321        ret = devm_clk_hw_register(cprman->dev, &pll->hw);
1322        if (ret)
1323                return NULL;
1324        return &pll->hw;
1325}
1326
1327static struct clk_hw *
1328bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1329                             const struct bcm2835_pll_divider_data *data)
1330{
1331        struct bcm2835_pll_divider *divider;
1332        struct clk_init_data init;
1333        const char *divider_name;
1334        int ret;
1335
1336        if (data->fixed_divider != 1) {
1337                divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1338                                              "%s_prediv", data->name);
1339                if (!divider_name)
1340                        return NULL;
1341        } else {
1342                divider_name = data->name;
1343        }
1344
1345        memset(&init, 0, sizeof(init));
1346
1347        init.parent_names = &data->source_pll;
1348        init.num_parents = 1;
1349        init.name = divider_name;
1350        init.ops = &bcm2835_pll_divider_clk_ops;
1351        init.flags = data->flags | CLK_IGNORE_UNUSED;
1352
1353        divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1354        if (!divider)
1355                return NULL;
1356
1357        divider->div.reg = cprman->regs + data->a2w_reg;
1358        divider->div.shift = A2W_PLL_DIV_SHIFT;
1359        divider->div.width = A2W_PLL_DIV_BITS;
1360        divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1361        divider->div.lock = &cprman->regs_lock;
1362        divider->div.hw.init = &init;
1363        divider->div.table = NULL;
1364
1365        divider->cprman = cprman;
1366        divider->data = data;
1367
1368        ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
1369        if (ret)
1370                return ERR_PTR(ret);
1371
1372        /*
1373         * PLLH's channels have a fixed divide by 10 afterwards, which
1374         * is what our consumers are actually using.
1375         */
1376        if (data->fixed_divider != 1) {
1377                return clk_hw_register_fixed_factor(cprman->dev, data->name,
1378                                                    divider_name,
1379                                                    CLK_SET_RATE_PARENT,
1380                                                    1,
1381                                                    data->fixed_divider);
1382        }
1383
1384        return &divider->div.hw;
1385}
1386
1387static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1388                                          const struct bcm2835_clock_data *data)
1389{
1390        struct bcm2835_clock *clock;
1391        struct clk_init_data init;
1392        const char *parents[1 << CM_SRC_BITS];
1393        size_t i;
1394        int ret;
1395
1396        /*
1397         * Replace our strings referencing parent clocks with the
1398         * actual clock-output-name of the parent.
1399         */
1400        for (i = 0; i < data->num_mux_parents; i++) {
1401                parents[i] = data->parents[i];
1402
1403                ret = match_string(cprman_parent_names,
1404                                   ARRAY_SIZE(cprman_parent_names),
1405                                   parents[i]);
1406                if (ret >= 0)
1407                        parents[i] = cprman->real_parent_names[ret];
1408        }
1409
1410        memset(&init, 0, sizeof(init));
1411        init.parent_names = parents;
1412        init.num_parents = data->num_mux_parents;
1413        init.name = data->name;
1414        init.flags = data->flags | CLK_IGNORE_UNUSED;
1415
1416        /*
1417         * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1418         * rate changes on at least of the parents.
1419         */
1420        if (data->set_rate_parent)
1421                init.flags |= CLK_SET_RATE_PARENT;
1422
1423        if (data->is_vpu_clock) {
1424                init.ops = &bcm2835_vpu_clock_clk_ops;
1425        } else {
1426                init.ops = &bcm2835_clock_clk_ops;
1427                init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1428
1429                /* If the clock wasn't actually enabled at boot, it's not
1430                 * critical.
1431                 */
1432                if (!(cprman_read(cprman, data->ctl_reg) & CM_ENABLE))
1433                        init.flags &= ~CLK_IS_CRITICAL;
1434        }
1435
1436        clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1437        if (!clock)
1438                return NULL;
1439
1440        clock->cprman = cprman;
1441        clock->data = data;
1442        clock->hw.init = &init;
1443
1444        ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1445        if (ret)
1446                return ERR_PTR(ret);
1447        return &clock->hw;
1448}
1449
1450static struct clk *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1451                                         const struct bcm2835_gate_data *data)
1452{
1453        return clk_register_gate(cprman->dev, data->name, data->parent,
1454                                 CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1455                                 cprman->regs + data->ctl_reg,
1456                                 CM_GATE_BIT, 0, &cprman->regs_lock);
1457}
1458
1459typedef struct clk_hw *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman,
1460                                               const void *data);
1461struct bcm2835_clk_desc {
1462        bcm2835_clk_register clk_register;
1463        const void *data;
1464};
1465
1466/* assignment helper macros for different clock types */
1467#define _REGISTER(f, ...) { .clk_register = (bcm2835_clk_register)f, \
1468                            .data = __VA_ARGS__ }
1469#define REGISTER_PLL(...)       _REGISTER(&bcm2835_register_pll,        \
1470                                          &(struct bcm2835_pll_data)    \
1471                                          {__VA_ARGS__})
1472#define REGISTER_PLL_DIV(...)   _REGISTER(&bcm2835_register_pll_divider, \
1473                                          &(struct bcm2835_pll_divider_data) \
1474                                          {__VA_ARGS__})
1475#define REGISTER_CLK(...)       _REGISTER(&bcm2835_register_clock,      \
1476                                          &(struct bcm2835_clock_data)  \
1477                                          {__VA_ARGS__})
1478#define REGISTER_GATE(...)      _REGISTER(&bcm2835_register_gate,       \
1479                                          &(struct bcm2835_gate_data)   \
1480                                          {__VA_ARGS__})
1481
1482/* parent mux arrays plus helper macros */
1483
1484/* main oscillator parent mux */
1485static const char *const bcm2835_clock_osc_parents[] = {
1486        "gnd",
1487        "xosc",
1488        "testdebug0",
1489        "testdebug1"
1490};
1491
1492#define REGISTER_OSC_CLK(...)   REGISTER_CLK(                           \
1493        .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),       \
1494        .parents = bcm2835_clock_osc_parents,                           \
1495        __VA_ARGS__)
1496
1497/* main peripherial parent mux */
1498static const char *const bcm2835_clock_per_parents[] = {
1499        "gnd",
1500        "xosc",
1501        "testdebug0",
1502        "testdebug1",
1503        "plla_per",
1504        "pllc_per",
1505        "plld_per",
1506        "pllh_aux",
1507};
1508
1509#define REGISTER_PER_CLK(...)   REGISTER_CLK(                           \
1510        .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),       \
1511        .parents = bcm2835_clock_per_parents,                           \
1512        __VA_ARGS__)
1513
1514/*
1515 * Restrict clock sources for the PCM peripheral to the oscillator and
1516 * PLLD_PER because other source may have varying rates or be switched
1517 * off.
1518 *
1519 * Prevent other sources from being selected by replacing their names in
1520 * the list of potential parents with dummy entries (entry index is
1521 * significant).
1522 */
1523static const char *const bcm2835_pcm_per_parents[] = {
1524        "-",
1525        "xosc",
1526        "-",
1527        "-",
1528        "-",
1529        "-",
1530        "plld_per",
1531        "-",
1532};
1533
1534#define REGISTER_PCM_CLK(...)   REGISTER_CLK(                           \
1535        .num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents),         \
1536        .parents = bcm2835_pcm_per_parents,                             \
1537        __VA_ARGS__)
1538
1539/* main vpu parent mux */
1540static const char *const bcm2835_clock_vpu_parents[] = {
1541        "gnd",
1542        "xosc",
1543        "testdebug0",
1544        "testdebug1",
1545        "plla_core",
1546        "pllc_core0",
1547        "plld_core",
1548        "pllh_aux",
1549        "pllc_core1",
1550        "pllc_core2",
1551};
1552
1553#define REGISTER_VPU_CLK(...)   REGISTER_CLK(                           \
1554        .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),       \
1555        .parents = bcm2835_clock_vpu_parents,                           \
1556        __VA_ARGS__)
1557
1558/*
1559 * DSI parent clocks.  The DSI byte/DDR/DDR2 clocks come from the DSI
1560 * analog PHY.  The _inv variants are generated internally to cprman,
1561 * but we don't use them so they aren't hooked up.
1562 */
1563static const char *const bcm2835_clock_dsi0_parents[] = {
1564        "gnd",
1565        "xosc",
1566        "testdebug0",
1567        "testdebug1",
1568        "dsi0_ddr",
1569        "dsi0_ddr_inv",
1570        "dsi0_ddr2",
1571        "dsi0_ddr2_inv",
1572        "dsi0_byte",
1573        "dsi0_byte_inv",
1574};
1575
1576static const char *const bcm2835_clock_dsi1_parents[] = {
1577        "gnd",
1578        "xosc",
1579        "testdebug0",
1580        "testdebug1",
1581        "dsi1_ddr",
1582        "dsi1_ddr_inv",
1583        "dsi1_ddr2",
1584        "dsi1_ddr2_inv",
1585        "dsi1_byte",
1586        "dsi1_byte_inv",
1587};
1588
1589#define REGISTER_DSI0_CLK(...)  REGISTER_CLK(                           \
1590        .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents),      \
1591        .parents = bcm2835_clock_dsi0_parents,                          \
1592        __VA_ARGS__)
1593
1594#define REGISTER_DSI1_CLK(...)  REGISTER_CLK(                           \
1595        .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents),      \
1596        .parents = bcm2835_clock_dsi1_parents,                          \
1597        __VA_ARGS__)
1598
1599/*
1600 * the real definition of all the pll, pll_dividers and clocks
1601 * these make use of the above REGISTER_* macros
1602 */
1603static const struct bcm2835_clk_desc clk_desc_array[] = {
1604        /* the PLL + PLL dividers */
1605
1606        /*
1607         * PLLA is the auxiliary PLL, used to drive the CCP2
1608         * (Compact Camera Port 2) transmitter clock.
1609         *
1610         * It is in the PX LDO power domain, which is on when the
1611         * AUDIO domain is on.
1612         */
1613        [BCM2835_PLLA]          = REGISTER_PLL(
1614                .name = "plla",
1615                .cm_ctrl_reg = CM_PLLA,
1616                .a2w_ctrl_reg = A2W_PLLA_CTRL,
1617                .frac_reg = A2W_PLLA_FRAC,
1618                .ana_reg_base = A2W_PLLA_ANA0,
1619                .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1620                .lock_mask = CM_LOCK_FLOCKA,
1621
1622                .ana = &bcm2835_ana_default,
1623
1624                .min_rate = 600000000u,
1625                .max_rate = 2400000000u,
1626                .max_fb_rate = BCM2835_MAX_FB_RATE),
1627        [BCM2835_PLLA_CORE]     = REGISTER_PLL_DIV(
1628                .name = "plla_core",
1629                .source_pll = "plla",
1630                .cm_reg = CM_PLLA,
1631                .a2w_reg = A2W_PLLA_CORE,
1632                .load_mask = CM_PLLA_LOADCORE,
1633                .hold_mask = CM_PLLA_HOLDCORE,
1634                .fixed_divider = 1,
1635                .flags = CLK_SET_RATE_PARENT),
1636        [BCM2835_PLLA_PER]      = REGISTER_PLL_DIV(
1637                .name = "plla_per",
1638                .source_pll = "plla",
1639                .cm_reg = CM_PLLA,
1640                .a2w_reg = A2W_PLLA_PER,
1641                .load_mask = CM_PLLA_LOADPER,
1642                .hold_mask = CM_PLLA_HOLDPER,
1643                .fixed_divider = 1,
1644                .flags = CLK_SET_RATE_PARENT),
1645        [BCM2835_PLLA_DSI0]     = REGISTER_PLL_DIV(
1646                .name = "plla_dsi0",
1647                .source_pll = "plla",
1648                .cm_reg = CM_PLLA,
1649                .a2w_reg = A2W_PLLA_DSI0,
1650                .load_mask = CM_PLLA_LOADDSI0,
1651                .hold_mask = CM_PLLA_HOLDDSI0,
1652                .fixed_divider = 1),
1653        [BCM2835_PLLA_CCP2]     = REGISTER_PLL_DIV(
1654                .name = "plla_ccp2",
1655                .source_pll = "plla",
1656                .cm_reg = CM_PLLA,
1657                .a2w_reg = A2W_PLLA_CCP2,
1658                .load_mask = CM_PLLA_LOADCCP2,
1659                .hold_mask = CM_PLLA_HOLDCCP2,
1660                .fixed_divider = 1,
1661                .flags = CLK_SET_RATE_PARENT),
1662
1663        /* PLLB is used for the ARM's clock. */
1664        [BCM2835_PLLB]          = REGISTER_PLL(
1665                .name = "pllb",
1666                .cm_ctrl_reg = CM_PLLB,
1667                .a2w_ctrl_reg = A2W_PLLB_CTRL,
1668                .frac_reg = A2W_PLLB_FRAC,
1669                .ana_reg_base = A2W_PLLB_ANA0,
1670                .reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
1671                .lock_mask = CM_LOCK_FLOCKB,
1672
1673                .ana = &bcm2835_ana_default,
1674
1675                .min_rate = 600000000u,
1676                .max_rate = 3000000000u,
1677                .max_fb_rate = BCM2835_MAX_FB_RATE),
1678        [BCM2835_PLLB_ARM]      = REGISTER_PLL_DIV(
1679                .name = "pllb_arm",
1680                .source_pll = "pllb",
1681                .cm_reg = CM_PLLB,
1682                .a2w_reg = A2W_PLLB_ARM,
1683                .load_mask = CM_PLLB_LOADARM,
1684                .hold_mask = CM_PLLB_HOLDARM,
1685                .fixed_divider = 1,
1686                .flags = CLK_SET_RATE_PARENT),
1687
1688        /*
1689         * PLLC is the core PLL, used to drive the core VPU clock.
1690         *
1691         * It is in the PX LDO power domain, which is on when the
1692         * AUDIO domain is on.
1693         */
1694        [BCM2835_PLLC]          = REGISTER_PLL(
1695                .name = "pllc",
1696                .cm_ctrl_reg = CM_PLLC,
1697                .a2w_ctrl_reg = A2W_PLLC_CTRL,
1698                .frac_reg = A2W_PLLC_FRAC,
1699                .ana_reg_base = A2W_PLLC_ANA0,
1700                .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1701                .lock_mask = CM_LOCK_FLOCKC,
1702
1703                .ana = &bcm2835_ana_default,
1704
1705                .min_rate = 600000000u,
1706                .max_rate = 3000000000u,
1707                .max_fb_rate = BCM2835_MAX_FB_RATE),
1708        [BCM2835_PLLC_CORE0]    = REGISTER_PLL_DIV(
1709                .name = "pllc_core0",
1710                .source_pll = "pllc",
1711                .cm_reg = CM_PLLC,
1712                .a2w_reg = A2W_PLLC_CORE0,
1713                .load_mask = CM_PLLC_LOADCORE0,
1714                .hold_mask = CM_PLLC_HOLDCORE0,
1715                .fixed_divider = 1,
1716                .flags = CLK_SET_RATE_PARENT),
1717        [BCM2835_PLLC_CORE1]    = REGISTER_PLL_DIV(
1718                .name = "pllc_core1",
1719                .source_pll = "pllc",
1720                .cm_reg = CM_PLLC,
1721                .a2w_reg = A2W_PLLC_CORE1,
1722                .load_mask = CM_PLLC_LOADCORE1,
1723                .hold_mask = CM_PLLC_HOLDCORE1,
1724                .fixed_divider = 1,
1725                .flags = CLK_SET_RATE_PARENT),
1726        [BCM2835_PLLC_CORE2]    = REGISTER_PLL_DIV(
1727                .name = "pllc_core2",
1728                .source_pll = "pllc",
1729                .cm_reg = CM_PLLC,
1730                .a2w_reg = A2W_PLLC_CORE2,
1731                .load_mask = CM_PLLC_LOADCORE2,
1732                .hold_mask = CM_PLLC_HOLDCORE2,
1733                .fixed_divider = 1,
1734                .flags = CLK_SET_RATE_PARENT),
1735        [BCM2835_PLLC_PER]      = REGISTER_PLL_DIV(
1736                .name = "pllc_per",
1737                .source_pll = "pllc",
1738                .cm_reg = CM_PLLC,
1739                .a2w_reg = A2W_PLLC_PER,
1740                .load_mask = CM_PLLC_LOADPER,
1741                .hold_mask = CM_PLLC_HOLDPER,
1742                .fixed_divider = 1,
1743                .flags = CLK_SET_RATE_PARENT),
1744
1745        /*
1746         * PLLD is the display PLL, used to drive DSI display panels.
1747         *
1748         * It is in the PX LDO power domain, which is on when the
1749         * AUDIO domain is on.
1750         */
1751        [BCM2835_PLLD]          = REGISTER_PLL(
1752                .name = "plld",
1753                .cm_ctrl_reg = CM_PLLD,
1754                .a2w_ctrl_reg = A2W_PLLD_CTRL,
1755                .frac_reg = A2W_PLLD_FRAC,
1756                .ana_reg_base = A2W_PLLD_ANA0,
1757                .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1758                .lock_mask = CM_LOCK_FLOCKD,
1759
1760                .ana = &bcm2835_ana_default,
1761
1762                .min_rate = 600000000u,
1763                .max_rate = 2400000000u,
1764                .max_fb_rate = BCM2835_MAX_FB_RATE),
1765        [BCM2835_PLLD_CORE]     = REGISTER_PLL_DIV(
1766                .name = "plld_core",
1767                .source_pll = "plld",
1768                .cm_reg = CM_PLLD,
1769                .a2w_reg = A2W_PLLD_CORE,
1770                .load_mask = CM_PLLD_LOADCORE,
1771                .hold_mask = CM_PLLD_HOLDCORE,
1772                .fixed_divider = 1,
1773                .flags = CLK_SET_RATE_PARENT),
1774        [BCM2835_PLLD_PER]      = REGISTER_PLL_DIV(
1775                .name = "plld_per",
1776                .source_pll = "plld",
1777                .cm_reg = CM_PLLD,
1778                .a2w_reg = A2W_PLLD_PER,
1779                .load_mask = CM_PLLD_LOADPER,
1780                .hold_mask = CM_PLLD_HOLDPER,
1781                .fixed_divider = 1,
1782                .flags = CLK_SET_RATE_PARENT),
1783        [BCM2835_PLLD_DSI0]     = REGISTER_PLL_DIV(
1784                .name = "plld_dsi0",
1785                .source_pll = "plld",
1786                .cm_reg = CM_PLLD,
1787                .a2w_reg = A2W_PLLD_DSI0,
1788                .load_mask = CM_PLLD_LOADDSI0,
1789                .hold_mask = CM_PLLD_HOLDDSI0,
1790                .fixed_divider = 1),
1791        [BCM2835_PLLD_DSI1]     = REGISTER_PLL_DIV(
1792                .name = "plld_dsi1",
1793                .source_pll = "plld",
1794                .cm_reg = CM_PLLD,
1795                .a2w_reg = A2W_PLLD_DSI1,
1796                .load_mask = CM_PLLD_LOADDSI1,
1797                .hold_mask = CM_PLLD_HOLDDSI1,
1798                .fixed_divider = 1),
1799
1800        /*
1801         * PLLH is used to supply the pixel clock or the AUX clock for the
1802         * TV encoder.
1803         *
1804         * It is in the HDMI power domain.
1805         */
1806        [BCM2835_PLLH]          = REGISTER_PLL(
1807                "pllh",
1808                .cm_ctrl_reg = CM_PLLH,
1809                .a2w_ctrl_reg = A2W_PLLH_CTRL,
1810                .frac_reg = A2W_PLLH_FRAC,
1811                .ana_reg_base = A2W_PLLH_ANA0,
1812                .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1813                .lock_mask = CM_LOCK_FLOCKH,
1814
1815                .ana = &bcm2835_ana_pllh,
1816
1817                .min_rate = 600000000u,
1818                .max_rate = 3000000000u,
1819                .max_fb_rate = BCM2835_MAX_FB_RATE),
1820        [BCM2835_PLLH_RCAL]     = REGISTER_PLL_DIV(
1821                .name = "pllh_rcal",
1822                .source_pll = "pllh",
1823                .cm_reg = CM_PLLH,
1824                .a2w_reg = A2W_PLLH_RCAL,
1825                .load_mask = CM_PLLH_LOADRCAL,
1826                .hold_mask = 0,
1827                .fixed_divider = 10,
1828                .flags = CLK_SET_RATE_PARENT),
1829        [BCM2835_PLLH_AUX]      = REGISTER_PLL_DIV(
1830                .name = "pllh_aux",
1831                .source_pll = "pllh",
1832                .cm_reg = CM_PLLH,
1833                .a2w_reg = A2W_PLLH_AUX,
1834                .load_mask = CM_PLLH_LOADAUX,
1835                .hold_mask = 0,
1836                .fixed_divider = 1,
1837                .flags = CLK_SET_RATE_PARENT),
1838        [BCM2835_PLLH_PIX]      = REGISTER_PLL_DIV(
1839                .name = "pllh_pix",
1840                .source_pll = "pllh",
1841                .cm_reg = CM_PLLH,
1842                .a2w_reg = A2W_PLLH_PIX,
1843                .load_mask = CM_PLLH_LOADPIX,
1844                .hold_mask = 0,
1845                .fixed_divider = 10,
1846                .flags = CLK_SET_RATE_PARENT),
1847
1848        /* the clocks */
1849
1850        /* clocks with oscillator parent mux */
1851
1852        /* One Time Programmable Memory clock.  Maximum 10Mhz. */
1853        [BCM2835_CLOCK_OTP]     = REGISTER_OSC_CLK(
1854                .name = "otp",
1855                .ctl_reg = CM_OTPCTL,
1856                .div_reg = CM_OTPDIV,
1857                .int_bits = 4,
1858                .frac_bits = 0,
1859                .tcnt_mux = 6),
1860        /*
1861         * Used for a 1Mhz clock for the system clocksource, and also used
1862         * bythe watchdog timer and the camera pulse generator.
1863         */
1864        [BCM2835_CLOCK_TIMER]   = REGISTER_OSC_CLK(
1865                .name = "timer",
1866                .ctl_reg = CM_TIMERCTL,
1867                .div_reg = CM_TIMERDIV,
1868                .int_bits = 6,
1869                .frac_bits = 12),
1870        /*
1871         * Clock for the temperature sensor.
1872         * Generally run at 2Mhz, max 5Mhz.
1873         */
1874        [BCM2835_CLOCK_TSENS]   = REGISTER_OSC_CLK(
1875                .name = "tsens",
1876                .ctl_reg = CM_TSENSCTL,
1877                .div_reg = CM_TSENSDIV,
1878                .int_bits = 5,
1879                .frac_bits = 0),
1880        [BCM2835_CLOCK_TEC]     = REGISTER_OSC_CLK(
1881                .name = "tec",
1882                .ctl_reg = CM_TECCTL,
1883                .div_reg = CM_TECDIV,
1884                .int_bits = 6,
1885                .frac_bits = 0),
1886
1887        /* clocks with vpu parent mux */
1888        [BCM2835_CLOCK_H264]    = REGISTER_VPU_CLK(
1889                .name = "h264",
1890                .ctl_reg = CM_H264CTL,
1891                .div_reg = CM_H264DIV,
1892                .int_bits = 4,
1893                .frac_bits = 8,
1894                .tcnt_mux = 1),
1895        [BCM2835_CLOCK_ISP]     = REGISTER_VPU_CLK(
1896                .name = "isp",
1897                .ctl_reg = CM_ISPCTL,
1898                .div_reg = CM_ISPDIV,
1899                .int_bits = 4,
1900                .frac_bits = 8,
1901                .tcnt_mux = 2),
1902
1903        /*
1904         * Secondary SDRAM clock.  Used for low-voltage modes when the PLL
1905         * in the SDRAM controller can't be used.
1906         */
1907        [BCM2835_CLOCK_SDRAM]   = REGISTER_VPU_CLK(
1908                .name = "sdram",
1909                .ctl_reg = CM_SDCCTL,
1910                .div_reg = CM_SDCDIV,
1911                .int_bits = 6,
1912                .frac_bits = 0,
1913                .tcnt_mux = 3),
1914        [BCM2835_CLOCK_V3D]     = REGISTER_VPU_CLK(
1915                .name = "v3d",
1916                .ctl_reg = CM_V3DCTL,
1917                .div_reg = CM_V3DDIV,
1918                .int_bits = 4,
1919                .frac_bits = 8,
1920                .tcnt_mux = 4),
1921        /*
1922         * VPU clock.  This doesn't have an enable bit, since it drives
1923         * the bus for everything else, and is special so it doesn't need
1924         * to be gated for rate changes.  It is also known as "clk_audio"
1925         * in various hardware documentation.
1926         */
1927        [BCM2835_CLOCK_VPU]     = REGISTER_VPU_CLK(
1928                .name = "vpu",
1929                .ctl_reg = CM_VPUCTL,
1930                .div_reg = CM_VPUDIV,
1931                .int_bits = 12,
1932                .frac_bits = 8,
1933                .flags = CLK_IS_CRITICAL,
1934                .is_vpu_clock = true,
1935                .tcnt_mux = 5),
1936
1937        /* clocks with per parent mux */
1938        [BCM2835_CLOCK_AVEO]    = REGISTER_PER_CLK(
1939                .name = "aveo",
1940                .ctl_reg = CM_AVEOCTL,
1941                .div_reg = CM_AVEODIV,
1942                .int_bits = 4,
1943                .frac_bits = 0,
1944                .tcnt_mux = 38),
1945        [BCM2835_CLOCK_CAM0]    = REGISTER_PER_CLK(
1946                .name = "cam0",
1947                .ctl_reg = CM_CAM0CTL,
1948                .div_reg = CM_CAM0DIV,
1949                .int_bits = 4,
1950                .frac_bits = 8,
1951                .tcnt_mux = 14),
1952        [BCM2835_CLOCK_CAM1]    = REGISTER_PER_CLK(
1953                .name = "cam1",
1954                .ctl_reg = CM_CAM1CTL,
1955                .div_reg = CM_CAM1DIV,
1956                .int_bits = 4,
1957                .frac_bits = 8,
1958                .tcnt_mux = 15),
1959        [BCM2835_CLOCK_DFT]     = REGISTER_PER_CLK(
1960                .name = "dft",
1961                .ctl_reg = CM_DFTCTL,
1962                .div_reg = CM_DFTDIV,
1963                .int_bits = 5,
1964                .frac_bits = 0),
1965        [BCM2835_CLOCK_DPI]     = REGISTER_PER_CLK(
1966                .name = "dpi",
1967                .ctl_reg = CM_DPICTL,
1968                .div_reg = CM_DPIDIV,
1969                .int_bits = 4,
1970                .frac_bits = 8,
1971                .tcnt_mux = 17),
1972
1973        /* Arasan EMMC clock */
1974        [BCM2835_CLOCK_EMMC]    = REGISTER_PER_CLK(
1975                .name = "emmc",
1976                .ctl_reg = CM_EMMCCTL,
1977                .div_reg = CM_EMMCDIV,
1978                .int_bits = 4,
1979                .frac_bits = 8,
1980                .tcnt_mux = 39),
1981
1982        /* General purpose (GPIO) clocks */
1983        [BCM2835_CLOCK_GP0]     = REGISTER_PER_CLK(
1984                .name = "gp0",
1985                .ctl_reg = CM_GP0CTL,
1986                .div_reg = CM_GP0DIV,
1987                .int_bits = 12,
1988                .frac_bits = 12,
1989                .is_mash_clock = true,
1990                .tcnt_mux = 20),
1991        [BCM2835_CLOCK_GP1]     = REGISTER_PER_CLK(
1992                .name = "gp1",
1993                .ctl_reg = CM_GP1CTL,
1994                .div_reg = CM_GP1DIV,
1995                .int_bits = 12,
1996                .frac_bits = 12,
1997                .flags = CLK_IS_CRITICAL,
1998                .is_mash_clock = true,
1999                .tcnt_mux = 21),
2000        [BCM2835_CLOCK_GP2]     = REGISTER_PER_CLK(
2001                .name = "gp2",
2002                .ctl_reg = CM_GP2CTL,
2003                .div_reg = CM_GP2DIV,
2004                .int_bits = 12,
2005                .frac_bits = 12,
2006                .flags = CLK_IS_CRITICAL),
2007
2008        /* HDMI state machine */
2009        [BCM2835_CLOCK_HSM]     = REGISTER_PER_CLK(
2010                .name = "hsm",
2011                .ctl_reg = CM_HSMCTL,
2012                .div_reg = CM_HSMDIV,
2013                .int_bits = 4,
2014                .frac_bits = 8,
2015                .tcnt_mux = 22),
2016        [BCM2835_CLOCK_PCM]     = REGISTER_PCM_CLK(
2017                .name = "pcm",
2018                .ctl_reg = CM_PCMCTL,
2019                .div_reg = CM_PCMDIV,
2020                .int_bits = 12,
2021                .frac_bits = 12,
2022                .is_mash_clock = true,
2023                .low_jitter = true,
2024                .tcnt_mux = 23),
2025        [BCM2835_CLOCK_PWM]     = REGISTER_PER_CLK(
2026                .name = "pwm",
2027                .ctl_reg = CM_PWMCTL,
2028                .div_reg = CM_PWMDIV,
2029                .int_bits = 12,
2030                .frac_bits = 12,
2031                .is_mash_clock = true,
2032                .tcnt_mux = 24),
2033        [BCM2835_CLOCK_SLIM]    = REGISTER_PER_CLK(
2034                .name = "slim",
2035                .ctl_reg = CM_SLIMCTL,
2036                .div_reg = CM_SLIMDIV,
2037                .int_bits = 12,
2038                .frac_bits = 12,
2039                .is_mash_clock = true,
2040                .tcnt_mux = 25),
2041        [BCM2835_CLOCK_SMI]     = REGISTER_PER_CLK(
2042                .name = "smi",
2043                .ctl_reg = CM_SMICTL,
2044                .div_reg = CM_SMIDIV,
2045                .int_bits = 4,
2046                .frac_bits = 8,
2047                .tcnt_mux = 27),
2048        [BCM2835_CLOCK_UART]    = REGISTER_PER_CLK(
2049                .name = "uart",
2050                .ctl_reg = CM_UARTCTL,
2051                .div_reg = CM_UARTDIV,
2052                .int_bits = 10,
2053                .frac_bits = 12,
2054                .tcnt_mux = 28),
2055
2056        /* TV encoder clock.  Only operating frequency is 108Mhz.  */
2057        [BCM2835_CLOCK_VEC]     = REGISTER_PER_CLK(
2058                .name = "vec",
2059                .ctl_reg = CM_VECCTL,
2060                .div_reg = CM_VECDIV,
2061                .int_bits = 4,
2062                .frac_bits = 0,
2063                /*
2064                 * Allow rate change propagation only on PLLH_AUX which is
2065                 * assigned index 7 in the parent array.
2066                 */
2067                .set_rate_parent = BIT(7),
2068                .tcnt_mux = 29),
2069
2070        /* dsi clocks */
2071        [BCM2835_CLOCK_DSI0E]   = REGISTER_PER_CLK(
2072                .name = "dsi0e",
2073                .ctl_reg = CM_DSI0ECTL,
2074                .div_reg = CM_DSI0EDIV,
2075                .int_bits = 4,
2076                .frac_bits = 8,
2077                .tcnt_mux = 18),
2078        [BCM2835_CLOCK_DSI1E]   = REGISTER_PER_CLK(
2079                .name = "dsi1e",
2080                .ctl_reg = CM_DSI1ECTL,
2081                .div_reg = CM_DSI1EDIV,
2082                .int_bits = 4,
2083                .frac_bits = 8,
2084                .tcnt_mux = 19),
2085        [BCM2835_CLOCK_DSI0P]   = REGISTER_DSI0_CLK(
2086                .name = "dsi0p",
2087                .ctl_reg = CM_DSI0PCTL,
2088                .div_reg = CM_DSI0PDIV,
2089                .int_bits = 0,
2090                .frac_bits = 0,
2091                .tcnt_mux = 12),
2092        [BCM2835_CLOCK_DSI1P]   = REGISTER_DSI1_CLK(
2093                .name = "dsi1p",
2094                .ctl_reg = CM_DSI1PCTL,
2095                .div_reg = CM_DSI1PDIV,
2096                .int_bits = 0,
2097                .frac_bits = 0,
2098                .tcnt_mux = 13),
2099
2100        /* the gates */
2101
2102        /*
2103         * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
2104         * you have the debug bit set in the power manager, which we
2105         * don't bother exposing) are individual gates off of the
2106         * non-stop vpu clock.
2107         */
2108        [BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
2109                .name = "peri_image",
2110                .parent = "vpu",
2111                .ctl_reg = CM_PERIICTL),
2112};
2113
2114/*
2115 * Permanently take a reference on the parent of the SDRAM clock.
2116 *
2117 * While the SDRAM is being driven by its dedicated PLL most of the
2118 * time, there is a little loop running in the firmware that
2119 * periodically switches the SDRAM to using our CM clock to do PVT
2120 * recalibration, with the assumption that the previously configured
2121 * SDRAM parent is still enabled and running.
2122 */
2123static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
2124{
2125        struct clk *parent = clk_get_parent(sdc);
2126
2127        if (IS_ERR(parent))
2128                return PTR_ERR(parent);
2129
2130        return clk_prepare_enable(parent);
2131}
2132
2133static int bcm2835_clk_probe(struct platform_device *pdev)
2134{
2135        struct device *dev = &pdev->dev;
2136        struct clk_hw **hws;
2137        struct bcm2835_cprman *cprman;
2138        struct resource *res;
2139        const struct bcm2835_clk_desc *desc;
2140        const size_t asize = ARRAY_SIZE(clk_desc_array);
2141        size_t i;
2142        int ret;
2143
2144        cprman = devm_kzalloc(dev,
2145                              struct_size(cprman, onecell.hws, asize),
2146                              GFP_KERNEL);
2147        if (!cprman)
2148                return -ENOMEM;
2149
2150        spin_lock_init(&cprman->regs_lock);
2151        cprman->dev = dev;
2152        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2153        cprman->regs = devm_ioremap_resource(dev, res);
2154        if (IS_ERR(cprman->regs))
2155                return PTR_ERR(cprman->regs);
2156
2157        memcpy(cprman->real_parent_names, cprman_parent_names,
2158               sizeof(cprman_parent_names));
2159        of_clk_parent_fill(dev->of_node, cprman->real_parent_names,
2160                           ARRAY_SIZE(cprman_parent_names));
2161
2162        /*
2163         * Make sure the external oscillator has been registered.
2164         *
2165         * The other (DSI) clocks are not present on older device
2166         * trees, which we still need to support for backwards
2167         * compatibility.
2168         */
2169        if (!cprman->real_parent_names[0])
2170                return -ENODEV;
2171
2172        platform_set_drvdata(pdev, cprman);
2173
2174        cprman->onecell.num = asize;
2175        hws = cprman->onecell.hws;
2176
2177        for (i = 0; i < asize; i++) {
2178                desc = &clk_desc_array[i];
2179                if (desc->clk_register && desc->data)
2180                        hws[i] = desc->clk_register(cprman, desc->data);
2181        }
2182
2183        ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
2184        if (ret)
2185                return ret;
2186
2187        return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
2188                                      &cprman->onecell);
2189}
2190
2191static const struct of_device_id bcm2835_clk_of_match[] = {
2192        { .compatible = "brcm,bcm2835-cprman", },
2193        {}
2194};
2195MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
2196
2197static struct platform_driver bcm2835_clk_driver = {
2198        .driver = {
2199                .name = "bcm2835-clk",
2200                .of_match_table = bcm2835_clk_of_match,
2201        },
2202        .probe          = bcm2835_clk_probe,
2203};
2204
2205builtin_platform_driver(bcm2835_clk_driver);
2206
2207MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
2208MODULE_DESCRIPTION("BCM2835 clock driver");
2209MODULE_LICENSE("GPL v2");
2210