linux/drivers/dma/amba-pl08x.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2006 ARM Ltd.
   3 * Copyright (c) 2010 ST-Ericsson SA
   4 * Copyirght (c) 2017 Linaro Ltd.
   5 *
   6 * Author: Peter Pearse <peter.pearse@arm.com>
   7 * Author: Linus Walleij <linus.walleij@linaro.org>
   8 *
   9 * This program is free software; you can redistribute it and/or modify it
  10 * under the terms of the GNU General Public License as published by the Free
  11 * Software Foundation; either version 2 of the License, or (at your option)
  12 * any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful, but WITHOUT
  15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  16 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  17 * more details.
  18 *
  19 * The full GNU General Public License is in this distribution in the file
  20 * called COPYING.
  21 *
  22 * Documentation: ARM DDI 0196G == PL080
  23 * Documentation: ARM DDI 0218E == PL081
  24 * Documentation: S3C6410 User's Manual == PL080S
  25 *
  26 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
  27 * channel.
  28 *
  29 * The PL080 has 8 channels available for simultaneous use, and the PL081
  30 * has only two channels. So on these DMA controllers the number of channels
  31 * and the number of incoming DMA signals are two totally different things.
  32 * It is usually not possible to theoretically handle all physical signals,
  33 * so a multiplexing scheme with possible denial of use is necessary.
  34 *
  35 * The PL080 has a dual bus master, PL081 has a single master.
  36 *
  37 * PL080S is a version modified by Samsung and used in S3C64xx SoCs.
  38 * It differs in following aspects:
  39 * - CH_CONFIG register at different offset,
  40 * - separate CH_CONTROL2 register for transfer size,
  41 * - bigger maximum transfer size,
  42 * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word,
  43 * - no support for peripheral flow control.
  44 *
  45 * Memory to peripheral transfer may be visualized as
  46 *      Get data from memory to DMAC
  47 *      Until no data left
  48 *              On burst request from peripheral
  49 *                      Destination burst from DMAC to peripheral
  50 *                      Clear burst request
  51 *      Raise terminal count interrupt
  52 *
  53 * For peripherals with a FIFO:
  54 * Source      burst size == half the depth of the peripheral FIFO
  55 * Destination burst size == the depth of the peripheral FIFO
  56 *
  57 * (Bursts are irrelevant for mem to mem transfers - there are no burst
  58 * signals, the DMA controller will simply facilitate its AHB master.)
  59 *
  60 * ASSUMES default (little) endianness for DMA transfers
  61 *
  62 * The PL08x has two flow control settings:
  63 *  - DMAC flow control: the transfer size defines the number of transfers
  64 *    which occur for the current LLI entry, and the DMAC raises TC at the
  65 *    end of every LLI entry.  Observed behaviour shows the DMAC listening
  66 *    to both the BREQ and SREQ signals (contrary to documented),
  67 *    transferring data if either is active.  The LBREQ and LSREQ signals
  68 *    are ignored.
  69 *
  70 *  - Peripheral flow control: the transfer size is ignored (and should be
  71 *    zero).  The data is transferred from the current LLI entry, until
  72 *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC
  73 *    will then move to the next LLI entry. Unsupported by PL080S.
  74 */
  75#include <linux/amba/bus.h>
  76#include <linux/amba/pl08x.h>
  77#include <linux/debugfs.h>
  78#include <linux/delay.h>
  79#include <linux/device.h>
  80#include <linux/dmaengine.h>
  81#include <linux/dmapool.h>
  82#include <linux/dma-mapping.h>
  83#include <linux/export.h>
  84#include <linux/init.h>
  85#include <linux/interrupt.h>
  86#include <linux/module.h>
  87#include <linux/of.h>
  88#include <linux/of_dma.h>
  89#include <linux/pm_runtime.h>
  90#include <linux/seq_file.h>
  91#include <linux/slab.h>
  92#include <linux/amba/pl080.h>
  93
  94#include "dmaengine.h"
  95#include "virt-dma.h"
  96
  97#define DRIVER_NAME     "pl08xdmac"
  98
  99#define PL80X_DMA_BUSWIDTHS \
 100        BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
 101        BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
 102        BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
 103        BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
 104
 105static struct amba_driver pl08x_amba_driver;
 106struct pl08x_driver_data;
 107
 108/**
 109 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
 110 * @config_offset: offset to the configuration register
 111 * @channels: the number of channels available in this variant
 112 * @signals: the number of request signals available from the hardware
 113 * @dualmaster: whether this version supports dual AHB masters or not.
 114 * @nomadik: whether this variant is a ST Microelectronics Nomadik, where the
 115 *      channels have Nomadik security extension bits that need to be checked
 116 *      for permission before use and some registers are missing
 117 * @pl080s: whether this variant is a Samsung PL080S, which has separate
 118 *      register and LLI word for transfer size.
 119 * @ftdmac020: whether this variant is a Faraday Technology FTDMAC020
 120 * @max_transfer_size: the maximum single element transfer size for this
 121 *      PL08x variant.
 122 */
 123struct vendor_data {
 124        u8 config_offset;
 125        u8 channels;
 126        u8 signals;
 127        bool dualmaster;
 128        bool nomadik;
 129        bool pl080s;
 130        bool ftdmac020;
 131        u32 max_transfer_size;
 132};
 133
 134/**
 135 * struct pl08x_bus_data - information of source or destination
 136 * busses for a transfer
 137 * @addr: current address
 138 * @maxwidth: the maximum width of a transfer on this bus
 139 * @buswidth: the width of this bus in bytes: 1, 2 or 4
 140 */
 141struct pl08x_bus_data {
 142        dma_addr_t addr;
 143        u8 maxwidth;
 144        u8 buswidth;
 145};
 146
 147#define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth)
 148
 149/**
 150 * struct pl08x_phy_chan - holder for the physical channels
 151 * @id: physical index to this channel
 152 * @base: memory base address for this physical channel
 153 * @reg_config: configuration address for this physical channel
 154 * @reg_control: control address for this physical channel
 155 * @reg_src: transfer source address register
 156 * @reg_dst: transfer destination address register
 157 * @reg_lli: transfer LLI address register
 158 * @reg_busy: if the variant has a special per-channel busy register,
 159 * this contains a pointer to it
 160 * @lock: a lock to use when altering an instance of this struct
 161 * @serving: the virtual channel currently being served by this physical
 162 * channel
 163 * @locked: channel unavailable for the system, e.g. dedicated to secure
 164 * world
 165 * @ftdmac020: channel is on a FTDMAC020
 166 * @pl080s: channel is on a PL08s
 167 */
 168struct pl08x_phy_chan {
 169        unsigned int id;
 170        void __iomem *base;
 171        void __iomem *reg_config;
 172        void __iomem *reg_control;
 173        void __iomem *reg_src;
 174        void __iomem *reg_dst;
 175        void __iomem *reg_lli;
 176        void __iomem *reg_busy;
 177        spinlock_t lock;
 178        struct pl08x_dma_chan *serving;
 179        bool locked;
 180        bool ftdmac020;
 181        bool pl080s;
 182};
 183
 184/**
 185 * struct pl08x_sg - structure containing data per sg
 186 * @src_addr: src address of sg
 187 * @dst_addr: dst address of sg
 188 * @len: transfer len in bytes
 189 * @node: node for txd's dsg_list
 190 */
 191struct pl08x_sg {
 192        dma_addr_t src_addr;
 193        dma_addr_t dst_addr;
 194        size_t len;
 195        struct list_head node;
 196};
 197
 198/**
 199 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
 200 * @vd: virtual DMA descriptor
 201 * @dsg_list: list of children sg's
 202 * @llis_bus: DMA memory address (physical) start for the LLIs
 203 * @llis_va: virtual memory address start for the LLIs
 204 * @cctl: control reg values for current txd
 205 * @ccfg: config reg values for current txd
 206 * @done: this marks completed descriptors, which should not have their
 207 *   mux released.
 208 * @cyclic: indicate cyclic transfers
 209 */
 210struct pl08x_txd {
 211        struct virt_dma_desc vd;
 212        struct list_head dsg_list;
 213        dma_addr_t llis_bus;
 214        u32 *llis_va;
 215        /* Default cctl value for LLIs */
 216        u32 cctl;
 217        /*
 218         * Settings to be put into the physical channel when we
 219         * trigger this txd.  Other registers are in llis_va[0].
 220         */
 221        u32 ccfg;
 222        bool done;
 223        bool cyclic;
 224};
 225
 226/**
 227 * enum pl08x_dma_chan_state - holds the PL08x specific virtual channel
 228 * states
 229 * @PL08X_CHAN_IDLE: the channel is idle
 230 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
 231 * channel and is running a transfer on it
 232 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
 233 * channel, but the transfer is currently paused
 234 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
 235 * channel to become available (only pertains to memcpy channels)
 236 */
 237enum pl08x_dma_chan_state {
 238        PL08X_CHAN_IDLE,
 239        PL08X_CHAN_RUNNING,
 240        PL08X_CHAN_PAUSED,
 241        PL08X_CHAN_WAITING,
 242};
 243
 244/**
 245 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
 246 * @vc: wrappped virtual channel
 247 * @phychan: the physical channel utilized by this channel, if there is one
 248 * @name: name of channel
 249 * @cd: channel platform data
 250 * @cfg: slave configuration
 251 * @at: active transaction on this channel
 252 * @host: a pointer to the host (internal use)
 253 * @state: whether the channel is idle, paused, running etc
 254 * @slave: whether this channel is a device (slave) or for memcpy
 255 * @signal: the physical DMA request signal which this channel is using
 256 * @mux_use: count of descriptors using this DMA request signal setting
 257 */
 258struct pl08x_dma_chan {
 259        struct virt_dma_chan vc;
 260        struct pl08x_phy_chan *phychan;
 261        const char *name;
 262        struct pl08x_channel_data *cd;
 263        struct dma_slave_config cfg;
 264        struct pl08x_txd *at;
 265        struct pl08x_driver_data *host;
 266        enum pl08x_dma_chan_state state;
 267        bool slave;
 268        int signal;
 269        unsigned mux_use;
 270};
 271
 272/**
 273 * struct pl08x_driver_data - the local state holder for the PL08x
 274 * @slave: optional slave engine for this instance
 275 * @memcpy: memcpy engine for this instance
 276 * @has_slave: the PL08x has a slave engine (routed signals)
 277 * @base: virtual memory base (remapped) for the PL08x
 278 * @adev: the corresponding AMBA (PrimeCell) bus entry
 279 * @vd: vendor data for this PL08x variant
 280 * @pd: platform data passed in from the platform/machine
 281 * @phy_chans: array of data for the physical channels
 282 * @pool: a pool for the LLI descriptors
 283 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
 284 * fetches
 285 * @mem_buses: set to indicate memory transfers on AHB2.
 286 * @lli_words: how many words are used in each LLI item for this variant
 287 */
 288struct pl08x_driver_data {
 289        struct dma_device slave;
 290        struct dma_device memcpy;
 291        bool has_slave;
 292        void __iomem *base;
 293        struct amba_device *adev;
 294        const struct vendor_data *vd;
 295        struct pl08x_platform_data *pd;
 296        struct pl08x_phy_chan *phy_chans;
 297        struct dma_pool *pool;
 298        u8 lli_buses;
 299        u8 mem_buses;
 300        u8 lli_words;
 301};
 302
 303/*
 304 * PL08X specific defines
 305 */
 306
 307/* The order of words in an LLI. */
 308#define PL080_LLI_SRC           0
 309#define PL080_LLI_DST           1
 310#define PL080_LLI_LLI           2
 311#define PL080_LLI_CCTL          3
 312#define PL080S_LLI_CCTL2        4
 313
 314/* Total words in an LLI. */
 315#define PL080_LLI_WORDS         4
 316#define PL080S_LLI_WORDS        8
 317
 318/*
 319 * Number of LLIs in each LLI buffer allocated for one transfer
 320 * (maximum times we call dma_pool_alloc on this pool without freeing)
 321 */
 322#define MAX_NUM_TSFR_LLIS       512
 323#define PL08X_ALIGN             8
 324
 325static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
 326{
 327        return container_of(chan, struct pl08x_dma_chan, vc.chan);
 328}
 329
 330static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
 331{
 332        return container_of(tx, struct pl08x_txd, vd.tx);
 333}
 334
 335/*
 336 * Mux handling.
 337 *
 338 * This gives us the DMA request input to the PL08x primecell which the
 339 * peripheral described by the channel data will be routed to, possibly
 340 * via a board/SoC specific external MUX.  One important point to note
 341 * here is that this does not depend on the physical channel.
 342 */
 343static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
 344{
 345        const struct pl08x_platform_data *pd = plchan->host->pd;
 346        int ret;
 347
 348        if (plchan->mux_use++ == 0 && pd->get_xfer_signal) {
 349                ret = pd->get_xfer_signal(plchan->cd);
 350                if (ret < 0) {
 351                        plchan->mux_use = 0;
 352                        return ret;
 353                }
 354
 355                plchan->signal = ret;
 356        }
 357        return 0;
 358}
 359
 360static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
 361{
 362        const struct pl08x_platform_data *pd = plchan->host->pd;
 363
 364        if (plchan->signal >= 0) {
 365                WARN_ON(plchan->mux_use == 0);
 366
 367                if (--plchan->mux_use == 0 && pd->put_xfer_signal) {
 368                        pd->put_xfer_signal(plchan->cd, plchan->signal);
 369                        plchan->signal = -1;
 370                }
 371        }
 372}
 373
 374/*
 375 * Physical channel handling
 376 */
 377
 378/* Whether a certain channel is busy or not */
 379static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
 380{
 381        unsigned int val;
 382
 383        /* If we have a special busy register, take a shortcut */
 384        if (ch->reg_busy) {
 385                val = readl(ch->reg_busy);
 386                return !!(val & BIT(ch->id));
 387        }
 388        val = readl(ch->reg_config);
 389        return val & PL080_CONFIG_ACTIVE;
 390}
 391
 392/*
 393 * pl08x_write_lli() - Write an LLI into the DMA controller.
 394 *
 395 * The PL08x derivatives support linked lists, but the first item of the
 396 * list containing the source, destination, control word and next LLI is
 397 * ignored. Instead the driver has to write those values directly into the
 398 * SRC, DST, LLI and control registers. On FTDMAC020 also the SIZE
 399 * register need to be set up for the first transfer.
 400 */
 401static void pl08x_write_lli(struct pl08x_driver_data *pl08x,
 402                struct pl08x_phy_chan *phychan, const u32 *lli, u32 ccfg)
 403{
 404        if (pl08x->vd->pl080s)
 405                dev_vdbg(&pl08x->adev->dev,
 406                        "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
 407                        "clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n",
 408                        phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
 409                        lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL],
 410                        lli[PL080S_LLI_CCTL2], ccfg);
 411        else
 412                dev_vdbg(&pl08x->adev->dev,
 413                        "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
 414                        "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
 415                        phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
 416                        lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], ccfg);
 417
 418        writel_relaxed(lli[PL080_LLI_SRC], phychan->reg_src);
 419        writel_relaxed(lli[PL080_LLI_DST], phychan->reg_dst);
 420        writel_relaxed(lli[PL080_LLI_LLI], phychan->reg_lli);
 421
 422        /*
 423         * The FTMAC020 has a different layout in the CCTL word of the LLI
 424         * and the CCTL register which is split in CSR and SIZE registers.
 425         * Convert the LLI item CCTL into the proper values to write into
 426         * the CSR and SIZE registers.
 427         */
 428        if (phychan->ftdmac020) {
 429                u32 llictl = lli[PL080_LLI_CCTL];
 430                u32 val = 0;
 431
 432                /* Write the transfer size (12 bits) to the size register */
 433                writel_relaxed(llictl & FTDMAC020_LLI_TRANSFER_SIZE_MASK,
 434                               phychan->base + FTDMAC020_CH_SIZE);
 435                /*
 436                 * Then write the control bits 28..16 to the control register
 437                 * by shuffleing the bits around to where they are in the
 438                 * main register. The mapping is as follows:
 439                 * Bit 28: TC_MSK - mask on all except last LLI
 440                 * Bit 27..25: SRC_WIDTH
 441                 * Bit 24..22: DST_WIDTH
 442                 * Bit 21..20: SRCAD_CTRL
 443                 * Bit 19..17: DSTAD_CTRL
 444                 * Bit 17: SRC_SEL
 445                 * Bit 16: DST_SEL
 446                 */
 447                if (llictl & FTDMAC020_LLI_TC_MSK)
 448                        val |= FTDMAC020_CH_CSR_TC_MSK;
 449                val |= ((llictl  & FTDMAC020_LLI_SRC_WIDTH_MSK) >>
 450                        (FTDMAC020_LLI_SRC_WIDTH_SHIFT -
 451                         FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT));
 452                val |= ((llictl  & FTDMAC020_LLI_DST_WIDTH_MSK) >>
 453                        (FTDMAC020_LLI_DST_WIDTH_SHIFT -
 454                         FTDMAC020_CH_CSR_DST_WIDTH_SHIFT));
 455                val |= ((llictl  & FTDMAC020_LLI_SRCAD_CTL_MSK) >>
 456                        (FTDMAC020_LLI_SRCAD_CTL_SHIFT -
 457                         FTDMAC020_CH_CSR_SRCAD_CTL_SHIFT));
 458                val |= ((llictl  & FTDMAC020_LLI_DSTAD_CTL_MSK) >>
 459                        (FTDMAC020_LLI_DSTAD_CTL_SHIFT -
 460                         FTDMAC020_CH_CSR_DSTAD_CTL_SHIFT));
 461                if (llictl & FTDMAC020_LLI_SRC_SEL)
 462                        val |= FTDMAC020_CH_CSR_SRC_SEL;
 463                if (llictl & FTDMAC020_LLI_DST_SEL)
 464                        val |= FTDMAC020_CH_CSR_DST_SEL;
 465
 466                /*
 467                 * Set up the bits that exist in the CSR but are not
 468                 * part the LLI, i.e. only gets written to the control
 469                 * register right here.
 470                 *
 471                 * FIXME: do not just handle memcpy, also handle slave DMA.
 472                 */
 473                switch (pl08x->pd->memcpy_burst_size) {
 474                default:
 475                case PL08X_BURST_SZ_1:
 476                        val |= PL080_BSIZE_1 <<
 477                                FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
 478                        break;
 479                case PL08X_BURST_SZ_4:
 480                        val |= PL080_BSIZE_4 <<
 481                                FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
 482                        break;
 483                case PL08X_BURST_SZ_8:
 484                        val |= PL080_BSIZE_8 <<
 485                                FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
 486                        break;
 487                case PL08X_BURST_SZ_16:
 488                        val |= PL080_BSIZE_16 <<
 489                                FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
 490                        break;
 491                case PL08X_BURST_SZ_32:
 492                        val |= PL080_BSIZE_32 <<
 493                                FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
 494                        break;
 495                case PL08X_BURST_SZ_64:
 496                        val |= PL080_BSIZE_64 <<
 497                                FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
 498                        break;
 499                case PL08X_BURST_SZ_128:
 500                        val |= PL080_BSIZE_128 <<
 501                                FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
 502                        break;
 503                case PL08X_BURST_SZ_256:
 504                        val |= PL080_BSIZE_256 <<
 505                                FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
 506                        break;
 507                }
 508
 509                /* Protection flags */
 510                if (pl08x->pd->memcpy_prot_buff)
 511                        val |= FTDMAC020_CH_CSR_PROT2;
 512                if (pl08x->pd->memcpy_prot_cache)
 513                        val |= FTDMAC020_CH_CSR_PROT3;
 514                /* We are the kernel, so we are in privileged mode */
 515                val |= FTDMAC020_CH_CSR_PROT1;
 516
 517                writel_relaxed(val, phychan->reg_control);
 518        } else {
 519                /* Bits are just identical */
 520                writel_relaxed(lli[PL080_LLI_CCTL], phychan->reg_control);
 521        }
 522
 523        /* Second control word on the PL080s */
 524        if (pl08x->vd->pl080s)
 525                writel_relaxed(lli[PL080S_LLI_CCTL2],
 526                                phychan->base + PL080S_CH_CONTROL2);
 527
 528        writel(ccfg, phychan->reg_config);
 529}
 530
 531/*
 532 * Set the initial DMA register values i.e. those for the first LLI
 533 * The next LLI pointer and the configuration interrupt bit have
 534 * been set when the LLIs were constructed.  Poke them into the hardware
 535 * and start the transfer.
 536 */
 537static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
 538{
 539        struct pl08x_driver_data *pl08x = plchan->host;
 540        struct pl08x_phy_chan *phychan = plchan->phychan;
 541        struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
 542        struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
 543        u32 val;
 544
 545        list_del(&txd->vd.node);
 546
 547        plchan->at = txd;
 548
 549        /* Wait for channel inactive */
 550        while (pl08x_phy_channel_busy(phychan))
 551                cpu_relax();
 552
 553        pl08x_write_lli(pl08x, phychan, &txd->llis_va[0], txd->ccfg);
 554
 555        /* Enable the DMA channel */
 556        /* Do not access config register until channel shows as disabled */
 557        while (readl(pl08x->base + PL080_EN_CHAN) & BIT(phychan->id))
 558                cpu_relax();
 559
 560        /* Do not access config register until channel shows as inactive */
 561        if (phychan->ftdmac020) {
 562                val = readl(phychan->reg_config);
 563                while (val & FTDMAC020_CH_CFG_BUSY)
 564                        val = readl(phychan->reg_config);
 565
 566                val = readl(phychan->reg_control);
 567                while (val & FTDMAC020_CH_CSR_EN)
 568                        val = readl(phychan->reg_control);
 569
 570                writel(val | FTDMAC020_CH_CSR_EN,
 571                       phychan->reg_control);
 572        } else {
 573                val = readl(phychan->reg_config);
 574                while ((val & PL080_CONFIG_ACTIVE) ||
 575                       (val & PL080_CONFIG_ENABLE))
 576                        val = readl(phychan->reg_config);
 577
 578                writel(val | PL080_CONFIG_ENABLE, phychan->reg_config);
 579        }
 580}
 581
 582/*
 583 * Pause the channel by setting the HALT bit.
 584 *
 585 * For M->P transfers, pause the DMAC first and then stop the peripheral -
 586 * the FIFO can only drain if the peripheral is still requesting data.
 587 * (note: this can still timeout if the DMAC FIFO never drains of data.)
 588 *
 589 * For P->M transfers, disable the peripheral first to stop it filling
 590 * the DMAC FIFO, and then pause the DMAC.
 591 */
 592static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
 593{
 594        u32 val;
 595        int timeout;
 596
 597        if (ch->ftdmac020) {
 598                /* Use the enable bit on the FTDMAC020 */
 599                val = readl(ch->reg_control);
 600                val &= ~FTDMAC020_CH_CSR_EN;
 601                writel(val, ch->reg_control);
 602                return;
 603        }
 604
 605        /* Set the HALT bit and wait for the FIFO to drain */
 606        val = readl(ch->reg_config);
 607        val |= PL080_CONFIG_HALT;
 608        writel(val, ch->reg_config);
 609
 610        /* Wait for channel inactive */
 611        for (timeout = 1000; timeout; timeout--) {
 612                if (!pl08x_phy_channel_busy(ch))
 613                        break;
 614                udelay(1);
 615        }
 616        if (pl08x_phy_channel_busy(ch))
 617                pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
 618}
 619
 620static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
 621{
 622        u32 val;
 623
 624        /* Use the enable bit on the FTDMAC020 */
 625        if (ch->ftdmac020) {
 626                val = readl(ch->reg_control);
 627                val |= FTDMAC020_CH_CSR_EN;
 628                writel(val, ch->reg_control);
 629                return;
 630        }
 631
 632        /* Clear the HALT bit */
 633        val = readl(ch->reg_config);
 634        val &= ~PL080_CONFIG_HALT;
 635        writel(val, ch->reg_config);
 636}
 637
 638/*
 639 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
 640 * clears any pending interrupt status.  This should not be used for
 641 * an on-going transfer, but as a method of shutting down a channel
 642 * (eg, when it's no longer used) or terminating a transfer.
 643 */
 644static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
 645        struct pl08x_phy_chan *ch)
 646{
 647        u32 val;
 648
 649        /* The layout for the FTDMAC020 is different */
 650        if (ch->ftdmac020) {
 651                /* Disable all interrupts */
 652                val = readl(ch->reg_config);
 653                val |= (FTDMAC020_CH_CFG_INT_ABT_MASK |
 654                        FTDMAC020_CH_CFG_INT_ERR_MASK |
 655                        FTDMAC020_CH_CFG_INT_TC_MASK);
 656                writel(val, ch->reg_config);
 657
 658                /* Abort and disable channel */
 659                val = readl(ch->reg_control);
 660                val &= ~FTDMAC020_CH_CSR_EN;
 661                val |= FTDMAC020_CH_CSR_ABT;
 662                writel(val, ch->reg_control);
 663
 664                /* Clear ABT and ERR interrupt flags */
 665                writel(BIT(ch->id) | BIT(ch->id + 16),
 666                       pl08x->base + PL080_ERR_CLEAR);
 667                writel(BIT(ch->id), pl08x->base + PL080_TC_CLEAR);
 668
 669                return;
 670        }
 671
 672        val = readl(ch->reg_config);
 673        val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
 674                 PL080_CONFIG_TC_IRQ_MASK);
 675        writel(val, ch->reg_config);
 676
 677        writel(BIT(ch->id), pl08x->base + PL080_ERR_CLEAR);
 678        writel(BIT(ch->id), pl08x->base + PL080_TC_CLEAR);
 679}
 680
 681static u32 get_bytes_in_phy_channel(struct pl08x_phy_chan *ch)
 682{
 683        u32 val;
 684        u32 bytes;
 685
 686        if (ch->ftdmac020) {
 687                bytes = readl(ch->base + FTDMAC020_CH_SIZE);
 688
 689                val = readl(ch->reg_control);
 690                val &= FTDMAC020_CH_CSR_SRC_WIDTH_MSK;
 691                val >>= FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT;
 692        } else if (ch->pl080s) {
 693                val = readl(ch->base + PL080S_CH_CONTROL2);
 694                bytes = val & PL080S_CONTROL_TRANSFER_SIZE_MASK;
 695
 696                val = readl(ch->reg_control);
 697                val &= PL080_CONTROL_SWIDTH_MASK;
 698                val >>= PL080_CONTROL_SWIDTH_SHIFT;
 699        } else {
 700                /* Plain PL08x */
 701                val = readl(ch->reg_control);
 702                bytes = val & PL080_CONTROL_TRANSFER_SIZE_MASK;
 703
 704                val &= PL080_CONTROL_SWIDTH_MASK;
 705                val >>= PL080_CONTROL_SWIDTH_SHIFT;
 706        }
 707
 708        switch (val) {
 709        case PL080_WIDTH_8BIT:
 710                break;
 711        case PL080_WIDTH_16BIT:
 712                bytes *= 2;
 713                break;
 714        case PL080_WIDTH_32BIT:
 715                bytes *= 4;
 716                break;
 717        }
 718        return bytes;
 719}
 720
 721static u32 get_bytes_in_lli(struct pl08x_phy_chan *ch, const u32 *llis_va)
 722{
 723        u32 val;
 724        u32 bytes;
 725
 726        if (ch->ftdmac020) {
 727                val = llis_va[PL080_LLI_CCTL];
 728                bytes = val & FTDMAC020_LLI_TRANSFER_SIZE_MASK;
 729
 730                val = llis_va[PL080_LLI_CCTL];
 731                val &= FTDMAC020_LLI_SRC_WIDTH_MSK;
 732                val >>= FTDMAC020_LLI_SRC_WIDTH_SHIFT;
 733        } else if (ch->pl080s) {
 734                val = llis_va[PL080S_LLI_CCTL2];
 735                bytes = val & PL080S_CONTROL_TRANSFER_SIZE_MASK;
 736
 737                val = llis_va[PL080_LLI_CCTL];
 738                val &= PL080_CONTROL_SWIDTH_MASK;
 739                val >>= PL080_CONTROL_SWIDTH_SHIFT;
 740        } else {
 741                /* Plain PL08x */
 742                val = llis_va[PL080_LLI_CCTL];
 743                bytes = val & PL080_CONTROL_TRANSFER_SIZE_MASK;
 744
 745                val &= PL080_CONTROL_SWIDTH_MASK;
 746                val >>= PL080_CONTROL_SWIDTH_SHIFT;
 747        }
 748
 749        switch (val) {
 750        case PL080_WIDTH_8BIT:
 751                break;
 752        case PL080_WIDTH_16BIT:
 753                bytes *= 2;
 754                break;
 755        case PL080_WIDTH_32BIT:
 756                bytes *= 4;
 757                break;
 758        }
 759        return bytes;
 760}
 761
 762/* The channel should be paused when calling this */
 763static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
 764{
 765        struct pl08x_driver_data *pl08x = plchan->host;
 766        const u32 *llis_va, *llis_va_limit;
 767        struct pl08x_phy_chan *ch;
 768        dma_addr_t llis_bus;
 769        struct pl08x_txd *txd;
 770        u32 llis_max_words;
 771        size_t bytes;
 772        u32 clli;
 773
 774        ch = plchan->phychan;
 775        txd = plchan->at;
 776
 777        if (!ch || !txd)
 778                return 0;
 779
 780        /*
 781         * Follow the LLIs to get the number of remaining
 782         * bytes in the currently active transaction.
 783         */
 784        clli = readl(ch->reg_lli) & ~PL080_LLI_LM_AHB2;
 785
 786        /* First get the remaining bytes in the active transfer */
 787        bytes = get_bytes_in_phy_channel(ch);
 788
 789        if (!clli)
 790                return bytes;
 791
 792        llis_va = txd->llis_va;
 793        llis_bus = txd->llis_bus;
 794
 795        llis_max_words = pl08x->lli_words * MAX_NUM_TSFR_LLIS;
 796        BUG_ON(clli < llis_bus || clli >= llis_bus +
 797                                                sizeof(u32) * llis_max_words);
 798
 799        /*
 800         * Locate the next LLI - as this is an array,
 801         * it's simple maths to find.
 802         */
 803        llis_va += (clli - llis_bus) / sizeof(u32);
 804
 805        llis_va_limit = llis_va + llis_max_words;
 806
 807        for (; llis_va < llis_va_limit; llis_va += pl08x->lli_words) {
 808                bytes += get_bytes_in_lli(ch, llis_va);
 809
 810                /*
 811                 * A LLI pointer going backward terminates the LLI list
 812                 */
 813                if (llis_va[PL080_LLI_LLI] <= clli)
 814                        break;
 815        }
 816
 817        return bytes;
 818}
 819
 820/*
 821 * Allocate a physical channel for a virtual channel
 822 *
 823 * Try to locate a physical channel to be used for this transfer. If all
 824 * are taken return NULL and the requester will have to cope by using
 825 * some fallback PIO mode or retrying later.
 826 */
 827static struct pl08x_phy_chan *
 828pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
 829                      struct pl08x_dma_chan *virt_chan)
 830{
 831        struct pl08x_phy_chan *ch = NULL;
 832        unsigned long flags;
 833        int i;
 834
 835        for (i = 0; i < pl08x->vd->channels; i++) {
 836                ch = &pl08x->phy_chans[i];
 837
 838                spin_lock_irqsave(&ch->lock, flags);
 839
 840                if (!ch->locked && !ch->serving) {
 841                        ch->serving = virt_chan;
 842                        spin_unlock_irqrestore(&ch->lock, flags);
 843                        break;
 844                }
 845
 846                spin_unlock_irqrestore(&ch->lock, flags);
 847        }
 848
 849        if (i == pl08x->vd->channels) {
 850                /* No physical channel available, cope with it */
 851                return NULL;
 852        }
 853
 854        return ch;
 855}
 856
 857/* Mark the physical channel as free.  Note, this write is atomic. */
 858static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
 859                                         struct pl08x_phy_chan *ch)
 860{
 861        ch->serving = NULL;
 862}
 863
 864/*
 865 * Try to allocate a physical channel.  When successful, assign it to
 866 * this virtual channel, and initiate the next descriptor.  The
 867 * virtual channel lock must be held at this point.
 868 */
 869static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
 870{
 871        struct pl08x_driver_data *pl08x = plchan->host;
 872        struct pl08x_phy_chan *ch;
 873
 874        ch = pl08x_get_phy_channel(pl08x, plchan);
 875        if (!ch) {
 876                dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
 877                plchan->state = PL08X_CHAN_WAITING;
 878                return;
 879        }
 880
 881        dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
 882                ch->id, plchan->name);
 883
 884        plchan->phychan = ch;
 885        plchan->state = PL08X_CHAN_RUNNING;
 886        pl08x_start_next_txd(plchan);
 887}
 888
 889static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
 890        struct pl08x_dma_chan *plchan)
 891{
 892        struct pl08x_driver_data *pl08x = plchan->host;
 893
 894        dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
 895                ch->id, plchan->name);
 896
 897        /*
 898         * We do this without taking the lock; we're really only concerned
 899         * about whether this pointer is NULL or not, and we're guaranteed
 900         * that this will only be called when it _already_ is non-NULL.
 901         */
 902        ch->serving = plchan;
 903        plchan->phychan = ch;
 904        plchan->state = PL08X_CHAN_RUNNING;
 905        pl08x_start_next_txd(plchan);
 906}
 907
 908/*
 909 * Free a physical DMA channel, potentially reallocating it to another
 910 * virtual channel if we have any pending.
 911 */
 912static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
 913{
 914        struct pl08x_driver_data *pl08x = plchan->host;
 915        struct pl08x_dma_chan *p, *next;
 916
 917 retry:
 918        next = NULL;
 919
 920        /* Find a waiting virtual channel for the next transfer. */
 921        list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
 922                if (p->state == PL08X_CHAN_WAITING) {
 923                        next = p;
 924                        break;
 925                }
 926
 927        if (!next && pl08x->has_slave) {
 928                list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
 929                        if (p->state == PL08X_CHAN_WAITING) {
 930                                next = p;
 931                                break;
 932                        }
 933        }
 934
 935        /* Ensure that the physical channel is stopped */
 936        pl08x_terminate_phy_chan(pl08x, plchan->phychan);
 937
 938        if (next) {
 939                bool success;
 940
 941                /*
 942                 * Eww.  We know this isn't going to deadlock
 943                 * but lockdep probably doesn't.
 944                 */
 945                spin_lock(&next->vc.lock);
 946                /* Re-check the state now that we have the lock */
 947                success = next->state == PL08X_CHAN_WAITING;
 948                if (success)
 949                        pl08x_phy_reassign_start(plchan->phychan, next);
 950                spin_unlock(&next->vc.lock);
 951
 952                /* If the state changed, try to find another channel */
 953                if (!success)
 954                        goto retry;
 955        } else {
 956                /* No more jobs, so free up the physical channel */
 957                pl08x_put_phy_channel(pl08x, plchan->phychan);
 958        }
 959
 960        plchan->phychan = NULL;
 961        plchan->state = PL08X_CHAN_IDLE;
 962}
 963
 964/*
 965 * LLI handling
 966 */
 967
 968static inline unsigned int
 969pl08x_get_bytes_for_lli(struct pl08x_driver_data *pl08x,
 970                        u32 cctl,
 971                        bool source)
 972{
 973        u32 val;
 974
 975        if (pl08x->vd->ftdmac020) {
 976                if (source)
 977                        val = (cctl & FTDMAC020_LLI_SRC_WIDTH_MSK) >>
 978                                FTDMAC020_LLI_SRC_WIDTH_SHIFT;
 979                else
 980                        val = (cctl & FTDMAC020_LLI_DST_WIDTH_MSK) >>
 981                                FTDMAC020_LLI_DST_WIDTH_SHIFT;
 982        } else {
 983                if (source)
 984                        val = (cctl & PL080_CONTROL_SWIDTH_MASK) >>
 985                                PL080_CONTROL_SWIDTH_SHIFT;
 986                else
 987                        val = (cctl & PL080_CONTROL_DWIDTH_MASK) >>
 988                                PL080_CONTROL_DWIDTH_SHIFT;
 989        }
 990
 991        switch (val) {
 992        case PL080_WIDTH_8BIT:
 993                return 1;
 994        case PL080_WIDTH_16BIT:
 995                return 2;
 996        case PL080_WIDTH_32BIT:
 997                return 4;
 998        default:
 999                break;
1000        }
1001        BUG();
1002        return 0;
1003}
1004
1005static inline u32 pl08x_lli_control_bits(struct pl08x_driver_data *pl08x,
1006                                         u32 cctl,
1007                                         u8 srcwidth, u8 dstwidth,
1008                                         size_t tsize)
1009{
1010        u32 retbits = cctl;
1011
1012        /*
1013         * Remove all src, dst and transfer size bits, then set the
1014         * width and size according to the parameters. The bit offsets
1015         * are different in the FTDMAC020 so we need to accound for this.
1016         */
1017        if (pl08x->vd->ftdmac020) {
1018                retbits &= ~FTDMAC020_LLI_DST_WIDTH_MSK;
1019                retbits &= ~FTDMAC020_LLI_SRC_WIDTH_MSK;
1020                retbits &= ~FTDMAC020_LLI_TRANSFER_SIZE_MASK;
1021
1022                switch (srcwidth) {
1023                case 1:
1024                        retbits |= PL080_WIDTH_8BIT <<
1025                                FTDMAC020_LLI_SRC_WIDTH_SHIFT;
1026                        break;
1027                case 2:
1028                        retbits |= PL080_WIDTH_16BIT <<
1029                                FTDMAC020_LLI_SRC_WIDTH_SHIFT;
1030                        break;
1031                case 4:
1032                        retbits |= PL080_WIDTH_32BIT <<
1033                                FTDMAC020_LLI_SRC_WIDTH_SHIFT;
1034                        break;
1035                default:
1036                        BUG();
1037                        break;
1038                }
1039
1040                switch (dstwidth) {
1041                case 1:
1042                        retbits |= PL080_WIDTH_8BIT <<
1043                                FTDMAC020_LLI_DST_WIDTH_SHIFT;
1044                        break;
1045                case 2:
1046                        retbits |= PL080_WIDTH_16BIT <<
1047                                FTDMAC020_LLI_DST_WIDTH_SHIFT;
1048                        break;
1049                case 4:
1050                        retbits |= PL080_WIDTH_32BIT <<
1051                                FTDMAC020_LLI_DST_WIDTH_SHIFT;
1052                        break;
1053                default:
1054                        BUG();
1055                        break;
1056                }
1057
1058                tsize &= FTDMAC020_LLI_TRANSFER_SIZE_MASK;
1059                retbits |= tsize << FTDMAC020_LLI_TRANSFER_SIZE_SHIFT;
1060        } else {
1061                retbits &= ~PL080_CONTROL_DWIDTH_MASK;
1062                retbits &= ~PL080_CONTROL_SWIDTH_MASK;
1063                retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
1064
1065                switch (srcwidth) {
1066                case 1:
1067                        retbits |= PL080_WIDTH_8BIT <<
1068                                PL080_CONTROL_SWIDTH_SHIFT;
1069                        break;
1070                case 2:
1071                        retbits |= PL080_WIDTH_16BIT <<
1072                                PL080_CONTROL_SWIDTH_SHIFT;
1073                        break;
1074                case 4:
1075                        retbits |= PL080_WIDTH_32BIT <<
1076                                PL080_CONTROL_SWIDTH_SHIFT;
1077                        break;
1078                default:
1079                        BUG();
1080                        break;
1081                }
1082
1083                switch (dstwidth) {
1084                case 1:
1085                        retbits |= PL080_WIDTH_8BIT <<
1086                                PL080_CONTROL_DWIDTH_SHIFT;
1087                        break;
1088                case 2:
1089                        retbits |= PL080_WIDTH_16BIT <<
1090                                PL080_CONTROL_DWIDTH_SHIFT;
1091                        break;
1092                case 4:
1093                        retbits |= PL080_WIDTH_32BIT <<
1094                                PL080_CONTROL_DWIDTH_SHIFT;
1095                        break;
1096                default:
1097                        BUG();
1098                        break;
1099                }
1100
1101                tsize &= PL080_CONTROL_TRANSFER_SIZE_MASK;
1102                retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
1103        }
1104
1105        return retbits;
1106}
1107
1108struct pl08x_lli_build_data {
1109        struct pl08x_txd *txd;
1110        struct pl08x_bus_data srcbus;
1111        struct pl08x_bus_data dstbus;
1112        size_t remainder;
1113        u32 lli_bus;
1114};
1115
1116/*
1117 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
1118 * victim in case src & dest are not similarly aligned. i.e. If after aligning
1119 * masters address with width requirements of transfer (by sending few byte by
1120 * byte data), slave is still not aligned, then its width will be reduced to
1121 * BYTE.
1122 * - prefers the destination bus if both available
1123 * - prefers bus with fixed address (i.e. peripheral)
1124 */
1125static void pl08x_choose_master_bus(struct pl08x_driver_data *pl08x,
1126                                    struct pl08x_lli_build_data *bd,
1127                                    struct pl08x_bus_data **mbus,
1128                                    struct pl08x_bus_data **sbus,
1129                                    u32 cctl)
1130{
1131        bool dst_incr;
1132        bool src_incr;
1133
1134        /*
1135         * The FTDMAC020 only supports memory-to-memory transfer, so
1136         * source and destination always increase.
1137         */
1138        if (pl08x->vd->ftdmac020) {
1139                dst_incr = true;
1140                src_incr = true;
1141        } else {
1142                dst_incr = !!(cctl & PL080_CONTROL_DST_INCR);
1143                src_incr = !!(cctl & PL080_CONTROL_SRC_INCR);
1144        }
1145
1146        /*
1147         * If either bus is not advancing, i.e. it is a peripheral, that
1148         * one becomes master
1149         */
1150        if (!dst_incr) {
1151                *mbus = &bd->dstbus;
1152                *sbus = &bd->srcbus;
1153        } else if (!src_incr) {
1154                *mbus = &bd->srcbus;
1155                *sbus = &bd->dstbus;
1156        } else {
1157                if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
1158                        *mbus = &bd->dstbus;
1159                        *sbus = &bd->srcbus;
1160                } else {
1161                        *mbus = &bd->srcbus;
1162                        *sbus = &bd->dstbus;
1163                }
1164        }
1165}
1166
1167/*
1168 * Fills in one LLI for a certain transfer descriptor and advance the counter
1169 */
1170static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
1171                                    struct pl08x_lli_build_data *bd,
1172                                    int num_llis, int len, u32 cctl, u32 cctl2)
1173{
1174        u32 offset = num_llis * pl08x->lli_words;
1175        u32 *llis_va = bd->txd->llis_va + offset;
1176        dma_addr_t llis_bus = bd->txd->llis_bus;
1177
1178        BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
1179
1180        /* Advance the offset to next LLI. */
1181        offset += pl08x->lli_words;
1182
1183        llis_va[PL080_LLI_SRC] = bd->srcbus.addr;
1184        llis_va[PL080_LLI_DST] = bd->dstbus.addr;
1185        llis_va[PL080_LLI_LLI] = (llis_bus + sizeof(u32) * offset);
1186        llis_va[PL080_LLI_LLI] |= bd->lli_bus;
1187        llis_va[PL080_LLI_CCTL] = cctl;
1188        if (pl08x->vd->pl080s)
1189                llis_va[PL080S_LLI_CCTL2] = cctl2;
1190
1191        if (pl08x->vd->ftdmac020) {
1192                /* FIXME: only memcpy so far so both increase */
1193                bd->srcbus.addr += len;
1194                bd->dstbus.addr += len;
1195        } else {
1196                if (cctl & PL080_CONTROL_SRC_INCR)
1197                        bd->srcbus.addr += len;
1198                if (cctl & PL080_CONTROL_DST_INCR)
1199                        bd->dstbus.addr += len;
1200        }
1201
1202        BUG_ON(bd->remainder < len);
1203
1204        bd->remainder -= len;
1205}
1206
1207static inline void prep_byte_width_lli(struct pl08x_driver_data *pl08x,
1208                        struct pl08x_lli_build_data *bd, u32 *cctl, u32 len,
1209                        int num_llis, size_t *total_bytes)
1210{
1211        *cctl = pl08x_lli_control_bits(pl08x, *cctl, 1, 1, len);
1212        pl08x_fill_lli_for_desc(pl08x, bd, num_llis, len, *cctl, len);
1213        (*total_bytes) += len;
1214}
1215
1216#if 1
1217static void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
1218                           const u32 *llis_va, int num_llis)
1219{
1220        int i;
1221
1222        if (pl08x->vd->pl080s) {
1223                dev_vdbg(&pl08x->adev->dev,
1224                        "%-3s %-9s  %-10s %-10s %-10s %-10s %s\n",
1225                        "lli", "", "csrc", "cdst", "clli", "cctl", "cctl2");
1226                for (i = 0; i < num_llis; i++) {
1227                        dev_vdbg(&pl08x->adev->dev,
1228                                "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
1229                                i, llis_va, llis_va[PL080_LLI_SRC],
1230                                llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
1231                                llis_va[PL080_LLI_CCTL],
1232                                llis_va[PL080S_LLI_CCTL2]);
1233                        llis_va += pl08x->lli_words;
1234                }
1235        } else {
1236                dev_vdbg(&pl08x->adev->dev,
1237                        "%-3s %-9s  %-10s %-10s %-10s %s\n",
1238                        "lli", "", "csrc", "cdst", "clli", "cctl");
1239                for (i = 0; i < num_llis; i++) {
1240                        dev_vdbg(&pl08x->adev->dev,
1241                                "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1242                                i, llis_va, llis_va[PL080_LLI_SRC],
1243                                llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
1244                                llis_va[PL080_LLI_CCTL]);
1245                        llis_va += pl08x->lli_words;
1246                }
1247        }
1248}
1249#else
1250static inline void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
1251                                  const u32 *llis_va, int num_llis) {}
1252#endif
1253
1254/*
1255 * This fills in the table of LLIs for the transfer descriptor
1256 * Note that we assume we never have to change the burst sizes
1257 * Return 0 for error
1258 */
1259static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
1260                              struct pl08x_txd *txd)
1261{
1262        struct pl08x_bus_data *mbus, *sbus;
1263        struct pl08x_lli_build_data bd;
1264        int num_llis = 0;
1265        u32 cctl, early_bytes = 0;
1266        size_t max_bytes_per_lli, total_bytes;
1267        u32 *llis_va, *last_lli;
1268        struct pl08x_sg *dsg;
1269
1270        txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
1271        if (!txd->llis_va) {
1272                dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
1273                return 0;
1274        }
1275
1276        bd.txd = txd;
1277        bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
1278        cctl = txd->cctl;
1279
1280        /* Find maximum width of the source bus */
1281        bd.srcbus.maxwidth = pl08x_get_bytes_for_lli(pl08x, cctl, true);
1282
1283        /* Find maximum width of the destination bus */
1284        bd.dstbus.maxwidth = pl08x_get_bytes_for_lli(pl08x, cctl, false);
1285
1286        list_for_each_entry(dsg, &txd->dsg_list, node) {
1287                total_bytes = 0;
1288                cctl = txd->cctl;
1289
1290                bd.srcbus.addr = dsg->src_addr;
1291                bd.dstbus.addr = dsg->dst_addr;
1292                bd.remainder = dsg->len;
1293                bd.srcbus.buswidth = bd.srcbus.maxwidth;
1294                bd.dstbus.buswidth = bd.dstbus.maxwidth;
1295
1296                pl08x_choose_master_bus(pl08x, &bd, &mbus, &sbus, cctl);
1297
1298                dev_vdbg(&pl08x->adev->dev,
1299                        "src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n",
1300                        (u64)bd.srcbus.addr,
1301                        cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
1302                        bd.srcbus.buswidth,
1303                        (u64)bd.dstbus.addr,
1304                        cctl & PL080_CONTROL_DST_INCR ? "+" : "",
1305                        bd.dstbus.buswidth,
1306                        bd.remainder);
1307                dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
1308                        mbus == &bd.srcbus ? "src" : "dst",
1309                        sbus == &bd.srcbus ? "src" : "dst");
1310
1311                /*
1312                 * Zero length is only allowed if all these requirements are
1313                 * met:
1314                 * - flow controller is peripheral.
1315                 * - src.addr is aligned to src.width
1316                 * - dst.addr is aligned to dst.width
1317                 *
1318                 * sg_len == 1 should be true, as there can be two cases here:
1319                 *
1320                 * - Memory addresses are contiguous and are not scattered.
1321                 *   Here, Only one sg will be passed by user driver, with
1322                 *   memory address and zero length. We pass this to controller
1323                 *   and after the transfer it will receive the last burst
1324                 *   request from peripheral and so transfer finishes.
1325                 *
1326                 * - Memory addresses are scattered and are not contiguous.
1327                 *   Here, Obviously as DMA controller doesn't know when a lli's
1328                 *   transfer gets over, it can't load next lli. So in this
1329                 *   case, there has to be an assumption that only one lli is
1330                 *   supported. Thus, we can't have scattered addresses.
1331                 */
1332                if (!bd.remainder) {
1333                        u32 fc;
1334
1335                        /* FTDMAC020 only does memory-to-memory */
1336                        if (pl08x->vd->ftdmac020)
1337                                fc = PL080_FLOW_MEM2MEM;
1338                        else
1339                                fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
1340                                        PL080_CONFIG_FLOW_CONTROL_SHIFT;
1341                        if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
1342                                        (fc <= PL080_FLOW_SRC2DST_SRC))) {
1343                                dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
1344                                        __func__);
1345                                return 0;
1346                        }
1347
1348                        if (!IS_BUS_ALIGNED(&bd.srcbus) ||
1349                                !IS_BUS_ALIGNED(&bd.dstbus)) {
1350                                dev_err(&pl08x->adev->dev,
1351                                        "%s src & dst address must be aligned to src"
1352                                        " & dst width if peripheral is flow controller",
1353                                        __func__);
1354                                return 0;
1355                        }
1356
1357                        cctl = pl08x_lli_control_bits(pl08x, cctl,
1358                                        bd.srcbus.buswidth, bd.dstbus.buswidth,
1359                                        0);
1360                        pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1361                                        0, cctl, 0);
1362                        break;
1363                }
1364
1365                /*
1366                 * Send byte by byte for following cases
1367                 * - Less than a bus width available
1368                 * - until master bus is aligned
1369                 */
1370                if (bd.remainder < mbus->buswidth)
1371                        early_bytes = bd.remainder;
1372                else if (!IS_BUS_ALIGNED(mbus)) {
1373                        early_bytes = mbus->buswidth -
1374                                (mbus->addr & (mbus->buswidth - 1));
1375                        if ((bd.remainder - early_bytes) < mbus->buswidth)
1376                                early_bytes = bd.remainder;
1377                }
1378
1379                if (early_bytes) {
1380                        dev_vdbg(&pl08x->adev->dev,
1381                                "%s byte width LLIs (remain 0x%08zx)\n",
1382                                __func__, bd.remainder);
1383                        prep_byte_width_lli(pl08x, &bd, &cctl, early_bytes,
1384                                num_llis++, &total_bytes);
1385                }
1386
1387                if (bd.remainder) {
1388                        /*
1389                         * Master now aligned
1390                         * - if slave is not then we must set its width down
1391                         */
1392                        if (!IS_BUS_ALIGNED(sbus)) {
1393                                dev_dbg(&pl08x->adev->dev,
1394                                        "%s set down bus width to one byte\n",
1395                                        __func__);
1396
1397                                sbus->buswidth = 1;
1398                        }
1399
1400                        /*
1401                         * Bytes transferred = tsize * src width, not
1402                         * MIN(buswidths)
1403                         */
1404                        max_bytes_per_lli = bd.srcbus.buswidth *
1405                                                pl08x->vd->max_transfer_size;
1406                        dev_vdbg(&pl08x->adev->dev,
1407                                "%s max bytes per lli = %zu\n",
1408                                __func__, max_bytes_per_lli);
1409
1410                        /*
1411                         * Make largest possible LLIs until less than one bus
1412                         * width left
1413                         */
1414                        while (bd.remainder > (mbus->buswidth - 1)) {
1415                                size_t lli_len, tsize, width;
1416
1417                                /*
1418                                 * If enough left try to send max possible,
1419                                 * otherwise try to send the remainder
1420                                 */
1421                                lli_len = min(bd.remainder, max_bytes_per_lli);
1422
1423                                /*
1424                                 * Check against maximum bus alignment:
1425                                 * Calculate actual transfer size in relation to
1426                                 * bus width an get a maximum remainder of the
1427                                 * highest bus width - 1
1428                                 */
1429                                width = max(mbus->buswidth, sbus->buswidth);
1430                                lli_len = (lli_len / width) * width;
1431                                tsize = lli_len / bd.srcbus.buswidth;
1432
1433                                dev_vdbg(&pl08x->adev->dev,
1434                                        "%s fill lli with single lli chunk of "
1435                                        "size 0x%08zx (remainder 0x%08zx)\n",
1436                                        __func__, lli_len, bd.remainder);
1437
1438                                cctl = pl08x_lli_control_bits(pl08x, cctl,
1439                                        bd.srcbus.buswidth, bd.dstbus.buswidth,
1440                                        tsize);
1441                                pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1442                                                lli_len, cctl, tsize);
1443                                total_bytes += lli_len;
1444                        }
1445
1446                        /*
1447                         * Send any odd bytes
1448                         */
1449                        if (bd.remainder) {
1450                                dev_vdbg(&pl08x->adev->dev,
1451                                        "%s align with boundary, send odd bytes (remain %zu)\n",
1452                                        __func__, bd.remainder);
1453                                prep_byte_width_lli(pl08x, &bd, &cctl,
1454                                        bd.remainder, num_llis++, &total_bytes);
1455                        }
1456                }
1457
1458                if (total_bytes != dsg->len) {
1459                        dev_err(&pl08x->adev->dev,
1460                                "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
1461                                __func__, total_bytes, dsg->len);
1462                        return 0;
1463                }
1464
1465                if (num_llis >= MAX_NUM_TSFR_LLIS) {
1466                        dev_err(&pl08x->adev->dev,
1467                                "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1468                                __func__, MAX_NUM_TSFR_LLIS);
1469                        return 0;
1470                }
1471        }
1472
1473        llis_va = txd->llis_va;
1474        last_lli = llis_va + (num_llis - 1) * pl08x->lli_words;
1475
1476        if (txd->cyclic) {
1477                /* Link back to the first LLI. */
1478                last_lli[PL080_LLI_LLI] = txd->llis_bus | bd.lli_bus;
1479        } else {
1480                /* The final LLI terminates the LLI. */
1481                last_lli[PL080_LLI_LLI] = 0;
1482                /* The final LLI element shall also fire an interrupt. */
1483                if (pl08x->vd->ftdmac020)
1484                        last_lli[PL080_LLI_CCTL] &= ~FTDMAC020_LLI_TC_MSK;
1485                else
1486                        last_lli[PL080_LLI_CCTL] |= PL080_CONTROL_TC_IRQ_EN;
1487        }
1488
1489        pl08x_dump_lli(pl08x, llis_va, num_llis);
1490
1491        return num_llis;
1492}
1493
1494static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
1495                           struct pl08x_txd *txd)
1496{
1497        struct pl08x_sg *dsg, *_dsg;
1498
1499        if (txd->llis_va)
1500                dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
1501
1502        list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
1503                list_del(&dsg->node);
1504                kfree(dsg);
1505        }
1506
1507        kfree(txd);
1508}
1509
1510static void pl08x_desc_free(struct virt_dma_desc *vd)
1511{
1512        struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1513        struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan);
1514
1515        dma_descriptor_unmap(&vd->tx);
1516        if (!txd->done)
1517                pl08x_release_mux(plchan);
1518
1519        pl08x_free_txd(plchan->host, txd);
1520}
1521
1522static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
1523                                struct pl08x_dma_chan *plchan)
1524{
1525        LIST_HEAD(head);
1526
1527        vchan_get_all_descriptors(&plchan->vc, &head);
1528        vchan_dma_desc_free_list(&plchan->vc, &head);
1529}
1530
1531/*
1532 * The DMA ENGINE API
1533 */
1534static void pl08x_free_chan_resources(struct dma_chan *chan)
1535{
1536        /* Ensure all queued descriptors are freed */
1537        vchan_free_chan_resources(to_virt_chan(chan));
1538}
1539
1540static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
1541                struct dma_chan *chan, unsigned long flags)
1542{
1543        struct dma_async_tx_descriptor *retval = NULL;
1544
1545        return retval;
1546}
1547
1548/*
1549 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1550 * If slaves are relying on interrupts to signal completion this function
1551 * must not be called with interrupts disabled.
1552 */
1553static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
1554                dma_cookie_t cookie, struct dma_tx_state *txstate)
1555{
1556        struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1557        struct virt_dma_desc *vd;
1558        unsigned long flags;
1559        enum dma_status ret;
1560        size_t bytes = 0;
1561
1562        ret = dma_cookie_status(chan, cookie, txstate);
1563        if (ret == DMA_COMPLETE)
1564                return ret;
1565
1566        /*
1567         * There's no point calculating the residue if there's
1568         * no txstate to store the value.
1569         */
1570        if (!txstate) {
1571                if (plchan->state == PL08X_CHAN_PAUSED)
1572                        ret = DMA_PAUSED;
1573                return ret;
1574        }
1575
1576        spin_lock_irqsave(&plchan->vc.lock, flags);
1577        ret = dma_cookie_status(chan, cookie, txstate);
1578        if (ret != DMA_COMPLETE) {
1579                vd = vchan_find_desc(&plchan->vc, cookie);
1580                if (vd) {
1581                        /* On the issued list, so hasn't been processed yet */
1582                        struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1583                        struct pl08x_sg *dsg;
1584
1585                        list_for_each_entry(dsg, &txd->dsg_list, node)
1586                                bytes += dsg->len;
1587                } else {
1588                        bytes = pl08x_getbytes_chan(plchan);
1589                }
1590        }
1591        spin_unlock_irqrestore(&plchan->vc.lock, flags);
1592
1593        /*
1594         * This cookie not complete yet
1595         * Get number of bytes left in the active transactions and queue
1596         */
1597        dma_set_residue(txstate, bytes);
1598
1599        if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS)
1600                ret = DMA_PAUSED;
1601
1602        /* Whether waiting or running, we're in progress */
1603        return ret;
1604}
1605
1606/* PrimeCell DMA extension */
1607struct burst_table {
1608        u32 burstwords;
1609        u32 reg;
1610};
1611
1612static const struct burst_table burst_sizes[] = {
1613        {
1614                .burstwords = 256,
1615                .reg = PL080_BSIZE_256,
1616        },
1617        {
1618                .burstwords = 128,
1619                .reg = PL080_BSIZE_128,
1620        },
1621        {
1622                .burstwords = 64,
1623                .reg = PL080_BSIZE_64,
1624        },
1625        {
1626                .burstwords = 32,
1627                .reg = PL080_BSIZE_32,
1628        },
1629        {
1630                .burstwords = 16,
1631                .reg = PL080_BSIZE_16,
1632        },
1633        {
1634                .burstwords = 8,
1635                .reg = PL080_BSIZE_8,
1636        },
1637        {
1638                .burstwords = 4,
1639                .reg = PL080_BSIZE_4,
1640        },
1641        {
1642                .burstwords = 0,
1643                .reg = PL080_BSIZE_1,
1644        },
1645};
1646
1647/*
1648 * Given the source and destination available bus masks, select which
1649 * will be routed to each port.  We try to have source and destination
1650 * on separate ports, but always respect the allowable settings.
1651 */
1652static u32 pl08x_select_bus(bool ftdmac020, u8 src, u8 dst)
1653{
1654        u32 cctl = 0;
1655        u32 dst_ahb2;
1656        u32 src_ahb2;
1657
1658        /* The FTDMAC020 use different bits to indicate src/dst bus */
1659        if (ftdmac020) {
1660                dst_ahb2 = FTDMAC020_LLI_DST_SEL;
1661                src_ahb2 = FTDMAC020_LLI_SRC_SEL;
1662        } else {
1663                dst_ahb2 = PL080_CONTROL_DST_AHB2;
1664                src_ahb2 = PL080_CONTROL_SRC_AHB2;
1665        }
1666
1667        if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1668                cctl |= dst_ahb2;
1669        if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1670                cctl |= src_ahb2;
1671
1672        return cctl;
1673}
1674
1675static u32 pl08x_cctl(u32 cctl)
1676{
1677        cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1678                  PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1679                  PL080_CONTROL_PROT_MASK);
1680
1681        /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1682        return cctl | PL080_CONTROL_PROT_SYS;
1683}
1684
1685static u32 pl08x_width(enum dma_slave_buswidth width)
1686{
1687        switch (width) {
1688        case DMA_SLAVE_BUSWIDTH_1_BYTE:
1689                return PL080_WIDTH_8BIT;
1690        case DMA_SLAVE_BUSWIDTH_2_BYTES:
1691                return PL080_WIDTH_16BIT;
1692        case DMA_SLAVE_BUSWIDTH_4_BYTES:
1693                return PL080_WIDTH_32BIT;
1694        default:
1695                return ~0;
1696        }
1697}
1698
1699static u32 pl08x_burst(u32 maxburst)
1700{
1701        int i;
1702
1703        for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1704                if (burst_sizes[i].burstwords <= maxburst)
1705                        break;
1706
1707        return burst_sizes[i].reg;
1708}
1709
1710static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
1711        enum dma_slave_buswidth addr_width, u32 maxburst)
1712{
1713        u32 width, burst, cctl = 0;
1714
1715        width = pl08x_width(addr_width);
1716        if (width == ~0)
1717                return ~0;
1718
1719        cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1720        cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1721
1722        /*
1723         * If this channel will only request single transfers, set this
1724         * down to ONE element.  Also select one element if no maxburst
1725         * is specified.
1726         */
1727        if (plchan->cd->single)
1728                maxburst = 1;
1729
1730        burst = pl08x_burst(maxburst);
1731        cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1732        cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1733
1734        return pl08x_cctl(cctl);
1735}
1736
1737/*
1738 * Slave transactions callback to the slave device to allow
1739 * synchronization of slave DMA signals with the DMAC enable
1740 */
1741static void pl08x_issue_pending(struct dma_chan *chan)
1742{
1743        struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1744        unsigned long flags;
1745
1746        spin_lock_irqsave(&plchan->vc.lock, flags);
1747        if (vchan_issue_pending(&plchan->vc)) {
1748                if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
1749                        pl08x_phy_alloc_and_start(plchan);
1750        }
1751        spin_unlock_irqrestore(&plchan->vc.lock, flags);
1752}
1753
1754static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
1755{
1756        struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1757
1758        if (txd)
1759                INIT_LIST_HEAD(&txd->dsg_list);
1760        return txd;
1761}
1762
1763static u32 pl08x_memcpy_cctl(struct pl08x_driver_data *pl08x)
1764{
1765        u32 cctl = 0;
1766
1767        /* Conjure cctl */
1768        switch (pl08x->pd->memcpy_burst_size) {
1769        default:
1770                dev_err(&pl08x->adev->dev,
1771                        "illegal burst size for memcpy, set to 1\n");
1772                /* Fall through */
1773        case PL08X_BURST_SZ_1:
1774                cctl |= PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT |
1775                        PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT;
1776                break;
1777        case PL08X_BURST_SZ_4:
1778                cctl |= PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT |
1779                        PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT;
1780                break;
1781        case PL08X_BURST_SZ_8:
1782                cctl |= PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT |
1783                        PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT;
1784                break;
1785        case PL08X_BURST_SZ_16:
1786                cctl |= PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT |
1787                        PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT;
1788                break;
1789        case PL08X_BURST_SZ_32:
1790                cctl |= PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT |
1791                        PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT;
1792                break;
1793        case PL08X_BURST_SZ_64:
1794                cctl |= PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT |
1795                        PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT;
1796                break;
1797        case PL08X_BURST_SZ_128:
1798                cctl |= PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT |
1799                        PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT;
1800                break;
1801        case PL08X_BURST_SZ_256:
1802                cctl |= PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT |
1803                        PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT;
1804                break;
1805        }
1806
1807        switch (pl08x->pd->memcpy_bus_width) {
1808        default:
1809                dev_err(&pl08x->adev->dev,
1810                        "illegal bus width for memcpy, set to 8 bits\n");
1811                /* Fall through */
1812        case PL08X_BUS_WIDTH_8_BITS:
1813                cctl |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT |
1814                        PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
1815                break;
1816        case PL08X_BUS_WIDTH_16_BITS:
1817                cctl |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT |
1818                        PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
1819                break;
1820        case PL08X_BUS_WIDTH_32_BITS:
1821                cctl |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT |
1822                        PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
1823                break;
1824        }
1825
1826        /* Protection flags */
1827        if (pl08x->pd->memcpy_prot_buff)
1828                cctl |= PL080_CONTROL_PROT_BUFF;
1829        if (pl08x->pd->memcpy_prot_cache)
1830                cctl |= PL080_CONTROL_PROT_CACHE;
1831
1832        /* We are the kernel, so we are in privileged mode */
1833        cctl |= PL080_CONTROL_PROT_SYS;
1834
1835        /* Both to be incremented or the code will break */
1836        cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1837
1838        if (pl08x->vd->dualmaster)
1839                cctl |= pl08x_select_bus(false,
1840                                         pl08x->mem_buses,
1841                                         pl08x->mem_buses);
1842
1843        return cctl;
1844}
1845
1846static u32 pl08x_ftdmac020_memcpy_cctl(struct pl08x_driver_data *pl08x)
1847{
1848        u32 cctl = 0;
1849
1850        /* Conjure cctl */
1851        switch (pl08x->pd->memcpy_bus_width) {
1852        default:
1853                dev_err(&pl08x->adev->dev,
1854                        "illegal bus width for memcpy, set to 8 bits\n");
1855                /* Fall through */
1856        case PL08X_BUS_WIDTH_8_BITS:
1857                cctl |= PL080_WIDTH_8BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
1858                        PL080_WIDTH_8BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
1859                break;
1860        case PL08X_BUS_WIDTH_16_BITS:
1861                cctl |= PL080_WIDTH_16BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
1862                        PL080_WIDTH_16BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
1863                break;
1864        case PL08X_BUS_WIDTH_32_BITS:
1865                cctl |= PL080_WIDTH_32BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
1866                        PL080_WIDTH_32BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
1867                break;
1868        }
1869
1870        /*
1871         * By default mask the TC IRQ on all LLIs, it will be unmasked on
1872         * the last LLI item by other code.
1873         */
1874        cctl |= FTDMAC020_LLI_TC_MSK;
1875
1876        /*
1877         * Both to be incremented so leave bits FTDMAC020_LLI_SRCAD_CTL
1878         * and FTDMAC020_LLI_DSTAD_CTL as zero
1879         */
1880        if (pl08x->vd->dualmaster)
1881                cctl |= pl08x_select_bus(true,
1882                                         pl08x->mem_buses,
1883                                         pl08x->mem_buses);
1884
1885        return cctl;
1886}
1887
1888/*
1889 * Initialize a descriptor to be used by memcpy submit
1890 */
1891static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1892                struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1893                size_t len, unsigned long flags)
1894{
1895        struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1896        struct pl08x_driver_data *pl08x = plchan->host;
1897        struct pl08x_txd *txd;
1898        struct pl08x_sg *dsg;
1899        int ret;
1900
1901        txd = pl08x_get_txd(plchan);
1902        if (!txd) {
1903                dev_err(&pl08x->adev->dev,
1904                        "%s no memory for descriptor\n", __func__);
1905                return NULL;
1906        }
1907
1908        dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1909        if (!dsg) {
1910                pl08x_free_txd(pl08x, txd);
1911                return NULL;
1912        }
1913        list_add_tail(&dsg->node, &txd->dsg_list);
1914
1915        dsg->src_addr = src;
1916        dsg->dst_addr = dest;
1917        dsg->len = len;
1918        if (pl08x->vd->ftdmac020) {
1919                /* Writing CCFG zero ENABLES all interrupts */
1920                txd->ccfg = 0;
1921                txd->cctl = pl08x_ftdmac020_memcpy_cctl(pl08x);
1922        } else {
1923                txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1924                        PL080_CONFIG_TC_IRQ_MASK |
1925                        PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1926                txd->cctl = pl08x_memcpy_cctl(pl08x);
1927        }
1928
1929        ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1930        if (!ret) {
1931                pl08x_free_txd(pl08x, txd);
1932                return NULL;
1933        }
1934
1935        return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1936}
1937
1938static struct pl08x_txd *pl08x_init_txd(
1939                struct dma_chan *chan,
1940                enum dma_transfer_direction direction,
1941                dma_addr_t *slave_addr)
1942{
1943        struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1944        struct pl08x_driver_data *pl08x = plchan->host;
1945        struct pl08x_txd *txd;
1946        enum dma_slave_buswidth addr_width;
1947        int ret, tmp;
1948        u8 src_buses, dst_buses;
1949        u32 maxburst, cctl;
1950
1951        txd = pl08x_get_txd(plchan);
1952        if (!txd) {
1953                dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1954                return NULL;
1955        }
1956
1957        /*
1958         * Set up addresses, the PrimeCell configured address
1959         * will take precedence since this may configure the
1960         * channel target address dynamically at runtime.
1961         */
1962        if (direction == DMA_MEM_TO_DEV) {
1963                cctl = PL080_CONTROL_SRC_INCR;
1964                *slave_addr = plchan->cfg.dst_addr;
1965                addr_width = plchan->cfg.dst_addr_width;
1966                maxburst = plchan->cfg.dst_maxburst;
1967                src_buses = pl08x->mem_buses;
1968                dst_buses = plchan->cd->periph_buses;
1969        } else if (direction == DMA_DEV_TO_MEM) {
1970                cctl = PL080_CONTROL_DST_INCR;
1971                *slave_addr = plchan->cfg.src_addr;
1972                addr_width = plchan->cfg.src_addr_width;
1973                maxburst = plchan->cfg.src_maxburst;
1974                src_buses = plchan->cd->periph_buses;
1975                dst_buses = pl08x->mem_buses;
1976        } else {
1977                pl08x_free_txd(pl08x, txd);
1978                dev_err(&pl08x->adev->dev,
1979                        "%s direction unsupported\n", __func__);
1980                return NULL;
1981        }
1982
1983        cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1984        if (cctl == ~0) {
1985                pl08x_free_txd(pl08x, txd);
1986                dev_err(&pl08x->adev->dev,
1987                        "DMA slave configuration botched?\n");
1988                return NULL;
1989        }
1990
1991        txd->cctl = cctl | pl08x_select_bus(false, src_buses, dst_buses);
1992
1993        if (plchan->cfg.device_fc)
1994                tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1995                        PL080_FLOW_PER2MEM_PER;
1996        else
1997                tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1998                        PL080_FLOW_PER2MEM;
1999
2000        txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
2001                PL080_CONFIG_TC_IRQ_MASK |
2002                tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
2003
2004        ret = pl08x_request_mux(plchan);
2005        if (ret < 0) {
2006                pl08x_free_txd(pl08x, txd);
2007                dev_dbg(&pl08x->adev->dev,
2008                        "unable to mux for transfer on %s due to platform restrictions\n",
2009                        plchan->name);
2010                return NULL;
2011        }
2012
2013        dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
2014                 plchan->signal, plchan->name);
2015
2016        /* Assign the flow control signal to this channel */
2017        if (direction == DMA_MEM_TO_DEV)
2018                txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
2019        else
2020                txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
2021
2022        return txd;
2023}
2024
2025static int pl08x_tx_add_sg(struct pl08x_txd *txd,
2026                           enum dma_transfer_direction direction,
2027                           dma_addr_t slave_addr,
2028                           dma_addr_t buf_addr,
2029                           unsigned int len)
2030{
2031        struct pl08x_sg *dsg;
2032
2033        dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
2034        if (!dsg)
2035                return -ENOMEM;
2036
2037        list_add_tail(&dsg->node, &txd->dsg_list);
2038
2039        dsg->len = len;
2040        if (direction == DMA_MEM_TO_DEV) {
2041                dsg->src_addr = buf_addr;
2042                dsg->dst_addr = slave_addr;
2043        } else {
2044                dsg->src_addr = slave_addr;
2045                dsg->dst_addr = buf_addr;
2046        }
2047
2048        return 0;
2049}
2050
2051static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
2052                struct dma_chan *chan, struct scatterlist *sgl,
2053                unsigned int sg_len, enum dma_transfer_direction direction,
2054                unsigned long flags, void *context)
2055{
2056        struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2057        struct pl08x_driver_data *pl08x = plchan->host;
2058        struct pl08x_txd *txd;
2059        struct scatterlist *sg;
2060        int ret, tmp;
2061        dma_addr_t slave_addr;
2062
2063        dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
2064                        __func__, sg_dma_len(sgl), plchan->name);
2065
2066        txd = pl08x_init_txd(chan, direction, &slave_addr);
2067        if (!txd)
2068                return NULL;
2069
2070        for_each_sg(sgl, sg, sg_len, tmp) {
2071                ret = pl08x_tx_add_sg(txd, direction, slave_addr,
2072                                      sg_dma_address(sg),
2073                                      sg_dma_len(sg));
2074                if (ret) {
2075                        pl08x_release_mux(plchan);
2076                        pl08x_free_txd(pl08x, txd);
2077                        dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
2078                                        __func__);
2079                        return NULL;
2080                }
2081        }
2082
2083        ret = pl08x_fill_llis_for_desc(plchan->host, txd);
2084        if (!ret) {
2085                pl08x_release_mux(plchan);
2086                pl08x_free_txd(pl08x, txd);
2087                return NULL;
2088        }
2089
2090        return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
2091}
2092
2093static struct dma_async_tx_descriptor *pl08x_prep_dma_cyclic(
2094                struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
2095                size_t period_len, enum dma_transfer_direction direction,
2096                unsigned long flags)
2097{
2098        struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2099        struct pl08x_driver_data *pl08x = plchan->host;
2100        struct pl08x_txd *txd;
2101        int ret, tmp;
2102        dma_addr_t slave_addr;
2103
2104        dev_dbg(&pl08x->adev->dev,
2105                "%s prepare cyclic transaction of %zd/%zd bytes %s %s\n",
2106                __func__, period_len, buf_len,
2107                direction == DMA_MEM_TO_DEV ? "to" : "from",
2108                plchan->name);
2109
2110        txd = pl08x_init_txd(chan, direction, &slave_addr);
2111        if (!txd)
2112                return NULL;
2113
2114        txd->cyclic = true;
2115        txd->cctl |= PL080_CONTROL_TC_IRQ_EN;
2116        for (tmp = 0; tmp < buf_len; tmp += period_len) {
2117                ret = pl08x_tx_add_sg(txd, direction, slave_addr,
2118                                      buf_addr + tmp, period_len);
2119                if (ret) {
2120                        pl08x_release_mux(plchan);
2121                        pl08x_free_txd(pl08x, txd);
2122                        return NULL;
2123                }
2124        }
2125
2126        ret = pl08x_fill_llis_for_desc(plchan->host, txd);
2127        if (!ret) {
2128                pl08x_release_mux(plchan);
2129                pl08x_free_txd(pl08x, txd);
2130                return NULL;
2131        }
2132
2133        return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
2134}
2135
2136static int pl08x_config(struct dma_chan *chan,
2137                        struct dma_slave_config *config)
2138{
2139        struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2140        struct pl08x_driver_data *pl08x = plchan->host;
2141
2142        if (!plchan->slave)
2143                return -EINVAL;
2144
2145        /* Reject definitely invalid configurations */
2146        if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
2147            config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
2148                return -EINVAL;
2149
2150        if (config->device_fc && pl08x->vd->pl080s) {
2151                dev_err(&pl08x->adev->dev,
2152                        "%s: PL080S does not support peripheral flow control\n",
2153                        __func__);
2154                return -EINVAL;
2155        }
2156
2157        plchan->cfg = *config;
2158
2159        return 0;
2160}
2161
2162static int pl08x_terminate_all(struct dma_chan *chan)
2163{
2164        struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2165        struct pl08x_driver_data *pl08x = plchan->host;
2166        unsigned long flags;
2167
2168        spin_lock_irqsave(&plchan->vc.lock, flags);
2169        if (!plchan->phychan && !plchan->at) {
2170                spin_unlock_irqrestore(&plchan->vc.lock, flags);
2171                return 0;
2172        }
2173
2174        plchan->state = PL08X_CHAN_IDLE;
2175
2176        if (plchan->phychan) {
2177                /*
2178                 * Mark physical channel as free and free any slave
2179                 * signal
2180                 */
2181                pl08x_phy_free(plchan);
2182        }
2183        /* Dequeue jobs and free LLIs */
2184        if (plchan->at) {
2185                vchan_terminate_vdesc(&plchan->at->vd);
2186                plchan->at = NULL;
2187        }
2188        /* Dequeue jobs not yet fired as well */
2189        pl08x_free_txd_list(pl08x, plchan);
2190
2191        spin_unlock_irqrestore(&plchan->vc.lock, flags);
2192
2193        return 0;
2194}
2195
2196static void pl08x_synchronize(struct dma_chan *chan)
2197{
2198        struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2199
2200        vchan_synchronize(&plchan->vc);
2201}
2202
2203static int pl08x_pause(struct dma_chan *chan)
2204{
2205        struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2206        unsigned long flags;
2207
2208        /*
2209         * Anything succeeds on channels with no physical allocation and
2210         * no queued transfers.
2211         */
2212        spin_lock_irqsave(&plchan->vc.lock, flags);
2213        if (!plchan->phychan && !plchan->at) {
2214                spin_unlock_irqrestore(&plchan->vc.lock, flags);
2215                return 0;
2216        }
2217
2218        pl08x_pause_phy_chan(plchan->phychan);
2219        plchan->state = PL08X_CHAN_PAUSED;
2220
2221        spin_unlock_irqrestore(&plchan->vc.lock, flags);
2222
2223        return 0;
2224}
2225
2226static int pl08x_resume(struct dma_chan *chan)
2227{
2228        struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2229        unsigned long flags;
2230
2231        /*
2232         * Anything succeeds on channels with no physical allocation and
2233         * no queued transfers.
2234         */
2235        spin_lock_irqsave(&plchan->vc.lock, flags);
2236        if (!plchan->phychan && !plchan->at) {
2237                spin_unlock_irqrestore(&plchan->vc.lock, flags);
2238                return 0;
2239        }
2240
2241        pl08x_resume_phy_chan(plchan->phychan);
2242        plchan->state = PL08X_CHAN_RUNNING;
2243
2244        spin_unlock_irqrestore(&plchan->vc.lock, flags);
2245
2246        return 0;
2247}
2248
2249bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
2250{
2251        struct pl08x_dma_chan *plchan;
2252        char *name = chan_id;
2253
2254        /* Reject channels for devices not bound to this driver */
2255        if (chan->device->dev->driver != &pl08x_amba_driver.drv)
2256                return false;
2257
2258        plchan = to_pl08x_chan(chan);
2259
2260        /* Check that the channel is not taken! */
2261        if (!strcmp(plchan->name, name))
2262                return true;
2263
2264        return false;
2265}
2266EXPORT_SYMBOL_GPL(pl08x_filter_id);
2267
2268static bool pl08x_filter_fn(struct dma_chan *chan, void *chan_id)
2269{
2270        struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2271
2272        return plchan->cd == chan_id;
2273}
2274
2275/*
2276 * Just check that the device is there and active
2277 * TODO: turn this bit on/off depending on the number of physical channels
2278 * actually used, if it is zero... well shut it off. That will save some
2279 * power. Cut the clock at the same time.
2280 */
2281static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
2282{
2283        /* The Nomadik variant does not have the config register */
2284        if (pl08x->vd->nomadik)
2285                return;
2286        /* The FTDMAC020 variant does this in another register */
2287        if (pl08x->vd->ftdmac020) {
2288                writel(PL080_CONFIG_ENABLE, pl08x->base + FTDMAC020_CSR);
2289                return;
2290        }
2291        writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
2292}
2293
2294static irqreturn_t pl08x_irq(int irq, void *dev)
2295{
2296        struct pl08x_driver_data *pl08x = dev;
2297        u32 mask = 0, err, tc, i;
2298
2299        /* check & clear - ERR & TC interrupts */
2300        err = readl(pl08x->base + PL080_ERR_STATUS);
2301        if (err) {
2302                dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
2303                        __func__, err);
2304                writel(err, pl08x->base + PL080_ERR_CLEAR);
2305        }
2306        tc = readl(pl08x->base + PL080_TC_STATUS);
2307        if (tc)
2308                writel(tc, pl08x->base + PL080_TC_CLEAR);
2309
2310        if (!err && !tc)
2311                return IRQ_NONE;
2312
2313        for (i = 0; i < pl08x->vd->channels; i++) {
2314                if ((BIT(i) & err) || (BIT(i) & tc)) {
2315                        /* Locate physical channel */
2316                        struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
2317                        struct pl08x_dma_chan *plchan = phychan->serving;
2318                        struct pl08x_txd *tx;
2319
2320                        if (!plchan) {
2321                                dev_err(&pl08x->adev->dev,
2322                                        "%s Error TC interrupt on unused channel: 0x%08x\n",
2323                                        __func__, i);
2324                                continue;
2325                        }
2326
2327                        spin_lock(&plchan->vc.lock);
2328                        tx = plchan->at;
2329                        if (tx && tx->cyclic) {
2330                                vchan_cyclic_callback(&tx->vd);
2331                        } else if (tx) {
2332                                plchan->at = NULL;
2333                                /*
2334                                 * This descriptor is done, release its mux
2335                                 * reservation.
2336                                 */
2337                                pl08x_release_mux(plchan);
2338                                tx->done = true;
2339                                vchan_cookie_complete(&tx->vd);
2340
2341                                /*
2342                                 * And start the next descriptor (if any),
2343                                 * otherwise free this channel.
2344                                 */
2345                                if (vchan_next_desc(&plchan->vc))
2346                                        pl08x_start_next_txd(plchan);
2347                                else
2348                                        pl08x_phy_free(plchan);
2349                        }
2350                        spin_unlock(&plchan->vc.lock);
2351
2352                        mask |= BIT(i);
2353                }
2354        }
2355
2356        return mask ? IRQ_HANDLED : IRQ_NONE;
2357}
2358
2359static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
2360{
2361        chan->slave = true;
2362        chan->name = chan->cd->bus_id;
2363        chan->cfg.src_addr = chan->cd->addr;
2364        chan->cfg.dst_addr = chan->cd->addr;
2365}
2366
2367/*
2368 * Initialise the DMAC memcpy/slave channels.
2369 * Make a local wrapper to hold required data
2370 */
2371static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
2372                struct dma_device *dmadev, unsigned int channels, bool slave)
2373{
2374        struct pl08x_dma_chan *chan;
2375        int i;
2376
2377        INIT_LIST_HEAD(&dmadev->channels);
2378
2379        /*
2380         * Register as many many memcpy as we have physical channels,
2381         * we won't always be able to use all but the code will have
2382         * to cope with that situation.
2383         */
2384        for (i = 0; i < channels; i++) {
2385                chan = kzalloc(sizeof(*chan), GFP_KERNEL);
2386                if (!chan)
2387                        return -ENOMEM;
2388
2389                chan->host = pl08x;
2390                chan->state = PL08X_CHAN_IDLE;
2391                chan->signal = -1;
2392
2393                if (slave) {
2394                        chan->cd = &pl08x->pd->slave_channels[i];
2395                        /*
2396                         * Some implementations have muxed signals, whereas some
2397                         * use a mux in front of the signals and need dynamic
2398                         * assignment of signals.
2399                         */
2400                        chan->signal = i;
2401                        pl08x_dma_slave_init(chan);
2402                } else {
2403                        chan->cd = kzalloc(sizeof(*chan->cd), GFP_KERNEL);
2404                        if (!chan->cd) {
2405                                kfree(chan);
2406                                return -ENOMEM;
2407                        }
2408                        chan->cd->bus_id = "memcpy";
2409                        chan->cd->periph_buses = pl08x->pd->mem_buses;
2410                        chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
2411                        if (!chan->name) {
2412                                kfree(chan->cd);
2413                                kfree(chan);
2414                                return -ENOMEM;
2415                        }
2416                }
2417                dev_dbg(&pl08x->adev->dev,
2418                         "initialize virtual channel \"%s\"\n",
2419                         chan->name);
2420
2421                chan->vc.desc_free = pl08x_desc_free;
2422                vchan_init(&chan->vc, dmadev);
2423        }
2424        dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
2425                 i, slave ? "slave" : "memcpy");
2426        return i;
2427}
2428
2429static void pl08x_free_virtual_channels(struct dma_device *dmadev)
2430{
2431        struct pl08x_dma_chan *chan = NULL;
2432        struct pl08x_dma_chan *next;
2433
2434        list_for_each_entry_safe(chan,
2435                                 next, &dmadev->channels, vc.chan.device_node) {
2436                list_del(&chan->vc.chan.device_node);
2437                kfree(chan);
2438        }
2439}
2440
2441#ifdef CONFIG_DEBUG_FS
2442static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
2443{
2444        switch (state) {
2445        case PL08X_CHAN_IDLE:
2446                return "idle";
2447        case PL08X_CHAN_RUNNING:
2448                return "running";
2449        case PL08X_CHAN_PAUSED:
2450                return "paused";
2451        case PL08X_CHAN_WAITING:
2452                return "waiting";
2453        default:
2454                break;
2455        }
2456        return "UNKNOWN STATE";
2457}
2458
2459static int pl08x_debugfs_show(struct seq_file *s, void *data)
2460{
2461        struct pl08x_driver_data *pl08x = s->private;
2462        struct pl08x_dma_chan *chan;
2463        struct pl08x_phy_chan *ch;
2464        unsigned long flags;
2465        int i;
2466
2467        seq_printf(s, "PL08x physical channels:\n");
2468        seq_printf(s, "CHANNEL:\tUSER:\n");
2469        seq_printf(s, "--------\t-----\n");
2470        for (i = 0; i < pl08x->vd->channels; i++) {
2471                struct pl08x_dma_chan *virt_chan;
2472
2473                ch = &pl08x->phy_chans[i];
2474
2475                spin_lock_irqsave(&ch->lock, flags);
2476                virt_chan = ch->serving;
2477
2478                seq_printf(s, "%d\t\t%s%s\n",
2479                           ch->id,
2480                           virt_chan ? virt_chan->name : "(none)",
2481                           ch->locked ? " LOCKED" : "");
2482
2483                spin_unlock_irqrestore(&ch->lock, flags);
2484        }
2485
2486        seq_printf(s, "\nPL08x virtual memcpy channels:\n");
2487        seq_printf(s, "CHANNEL:\tSTATE:\n");
2488        seq_printf(s, "--------\t------\n");
2489        list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
2490                seq_printf(s, "%s\t\t%s\n", chan->name,
2491                           pl08x_state_str(chan->state));
2492        }
2493
2494        if (pl08x->has_slave) {
2495                seq_printf(s, "\nPL08x virtual slave channels:\n");
2496                seq_printf(s, "CHANNEL:\tSTATE:\n");
2497                seq_printf(s, "--------\t------\n");
2498                list_for_each_entry(chan, &pl08x->slave.channels,
2499                                    vc.chan.device_node) {
2500                        seq_printf(s, "%s\t\t%s\n", chan->name,
2501                                   pl08x_state_str(chan->state));
2502                }
2503        }
2504
2505        return 0;
2506}
2507
2508static int pl08x_debugfs_open(struct inode *inode, struct file *file)
2509{
2510        return single_open(file, pl08x_debugfs_show, inode->i_private);
2511}
2512
2513static const struct file_operations pl08x_debugfs_operations = {
2514        .open           = pl08x_debugfs_open,
2515        .read           = seq_read,
2516        .llseek         = seq_lseek,
2517        .release        = single_release,
2518};
2519
2520static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2521{
2522        /* Expose a simple debugfs interface to view all clocks */
2523        (void) debugfs_create_file(dev_name(&pl08x->adev->dev),
2524                        S_IFREG | S_IRUGO, NULL, pl08x,
2525                        &pl08x_debugfs_operations);
2526}
2527
2528#else
2529static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2530{
2531}
2532#endif
2533
2534#ifdef CONFIG_OF
2535static struct dma_chan *pl08x_find_chan_id(struct pl08x_driver_data *pl08x,
2536                                         u32 id)
2537{
2538        struct pl08x_dma_chan *chan;
2539
2540        /* Trying to get a slave channel from something with no slave support */
2541        if (!pl08x->has_slave)
2542                return NULL;
2543
2544        list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
2545                if (chan->signal == id)
2546                        return &chan->vc.chan;
2547        }
2548
2549        return NULL;
2550}
2551
2552static struct dma_chan *pl08x_of_xlate(struct of_phandle_args *dma_spec,
2553                                       struct of_dma *ofdma)
2554{
2555        struct pl08x_driver_data *pl08x = ofdma->of_dma_data;
2556        struct dma_chan *dma_chan;
2557        struct pl08x_dma_chan *plchan;
2558
2559        if (!pl08x)
2560                return NULL;
2561
2562        if (dma_spec->args_count != 2) {
2563                dev_err(&pl08x->adev->dev,
2564                        "DMA channel translation requires two cells\n");
2565                return NULL;
2566        }
2567
2568        dma_chan = pl08x_find_chan_id(pl08x, dma_spec->args[0]);
2569        if (!dma_chan) {
2570                dev_err(&pl08x->adev->dev,
2571                        "DMA slave channel not found\n");
2572                return NULL;
2573        }
2574
2575        plchan = to_pl08x_chan(dma_chan);
2576        dev_dbg(&pl08x->adev->dev,
2577                "translated channel for signal %d\n",
2578                dma_spec->args[0]);
2579
2580        /* Augment channel data for applicable AHB buses */
2581        plchan->cd->periph_buses = dma_spec->args[1];
2582        return dma_get_slave_channel(dma_chan);
2583}
2584
2585static int pl08x_of_probe(struct amba_device *adev,
2586                          struct pl08x_driver_data *pl08x,
2587                          struct device_node *np)
2588{
2589        struct pl08x_platform_data *pd;
2590        struct pl08x_channel_data *chanp = NULL;
2591        u32 val;
2592        int ret;
2593        int i;
2594
2595        pd = devm_kzalloc(&adev->dev, sizeof(*pd), GFP_KERNEL);
2596        if (!pd)
2597                return -ENOMEM;
2598
2599        /* Eligible bus masters for fetching LLIs */
2600        if (of_property_read_bool(np, "lli-bus-interface-ahb1"))
2601                pd->lli_buses |= PL08X_AHB1;
2602        if (of_property_read_bool(np, "lli-bus-interface-ahb2"))
2603                pd->lli_buses |= PL08X_AHB2;
2604        if (!pd->lli_buses) {
2605                dev_info(&adev->dev, "no bus masters for LLIs stated, assume all\n");
2606                pd->lli_buses |= PL08X_AHB1 | PL08X_AHB2;
2607        }
2608
2609        /* Eligible bus masters for memory access */
2610        if (of_property_read_bool(np, "mem-bus-interface-ahb1"))
2611                pd->mem_buses |= PL08X_AHB1;
2612        if (of_property_read_bool(np, "mem-bus-interface-ahb2"))
2613                pd->mem_buses |= PL08X_AHB2;
2614        if (!pd->mem_buses) {
2615                dev_info(&adev->dev, "no bus masters for memory stated, assume all\n");
2616                pd->mem_buses |= PL08X_AHB1 | PL08X_AHB2;
2617        }
2618
2619        /* Parse the memcpy channel properties */
2620        ret = of_property_read_u32(np, "memcpy-burst-size", &val);
2621        if (ret) {
2622                dev_info(&adev->dev, "no memcpy burst size specified, using 1 byte\n");
2623                val = 1;
2624        }
2625        switch (val) {
2626        default:
2627                dev_err(&adev->dev, "illegal burst size for memcpy, set to 1\n");
2628                /* Fall through */
2629        case 1:
2630                pd->memcpy_burst_size = PL08X_BURST_SZ_1;
2631                break;
2632        case 4:
2633                pd->memcpy_burst_size = PL08X_BURST_SZ_4;
2634                break;
2635        case 8:
2636                pd->memcpy_burst_size = PL08X_BURST_SZ_8;
2637                break;
2638        case 16:
2639                pd->memcpy_burst_size = PL08X_BURST_SZ_16;
2640                break;
2641        case 32:
2642                pd->memcpy_burst_size = PL08X_BURST_SZ_32;
2643                break;
2644        case 64:
2645                pd->memcpy_burst_size = PL08X_BURST_SZ_64;
2646                break;
2647        case 128:
2648                pd->memcpy_burst_size = PL08X_BURST_SZ_128;
2649                break;
2650        case 256:
2651                pd->memcpy_burst_size = PL08X_BURST_SZ_256;
2652                break;
2653        }
2654
2655        ret = of_property_read_u32(np, "memcpy-bus-width", &val);
2656        if (ret) {
2657                dev_info(&adev->dev, "no memcpy bus width specified, using 8 bits\n");
2658                val = 8;
2659        }
2660        switch (val) {
2661        default:
2662                dev_err(&adev->dev, "illegal bus width for memcpy, set to 8 bits\n");
2663                /* Fall through */
2664        case 8:
2665                pd->memcpy_bus_width = PL08X_BUS_WIDTH_8_BITS;
2666                break;
2667        case 16:
2668                pd->memcpy_bus_width = PL08X_BUS_WIDTH_16_BITS;
2669                break;
2670        case 32:
2671                pd->memcpy_bus_width = PL08X_BUS_WIDTH_32_BITS;
2672                break;
2673        }
2674
2675        /*
2676         * Allocate channel data for all possible slave channels (one
2677         * for each possible signal), channels will then be allocated
2678         * for a device and have it's AHB interfaces set up at
2679         * translation time.
2680         */
2681        if (pl08x->vd->signals) {
2682                chanp = devm_kcalloc(&adev->dev,
2683                                     pl08x->vd->signals,
2684                                     sizeof(struct pl08x_channel_data),
2685                                     GFP_KERNEL);
2686                if (!chanp)
2687                        return -ENOMEM;
2688
2689                pd->slave_channels = chanp;
2690                for (i = 0; i < pl08x->vd->signals; i++) {
2691                        /*
2692                         * chanp->periph_buses will be assigned at translation
2693                         */
2694                        chanp->bus_id = kasprintf(GFP_KERNEL, "slave%d", i);
2695                        chanp++;
2696                }
2697                pd->num_slave_channels = pl08x->vd->signals;
2698        }
2699
2700        pl08x->pd = pd;
2701
2702        return of_dma_controller_register(adev->dev.of_node, pl08x_of_xlate,
2703                                          pl08x);
2704}
2705#else
2706static inline int pl08x_of_probe(struct amba_device *adev,
2707                                 struct pl08x_driver_data *pl08x,
2708                                 struct device_node *np)
2709{
2710        return -EINVAL;
2711}
2712#endif
2713
2714static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
2715{
2716        struct pl08x_driver_data *pl08x;
2717        struct vendor_data *vd = id->data;
2718        struct device_node *np = adev->dev.of_node;
2719        u32 tsfr_size;
2720        int ret = 0;
2721        int i;
2722
2723        ret = amba_request_regions(adev, NULL);
2724        if (ret)
2725                return ret;
2726
2727        /* Ensure that we can do DMA */
2728        ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2729        if (ret)
2730                goto out_no_pl08x;
2731
2732        /* Create the driver state holder */
2733        pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
2734        if (!pl08x) {
2735                ret = -ENOMEM;
2736                goto out_no_pl08x;
2737        }
2738
2739        /* Assign useful pointers to the driver state */
2740        pl08x->adev = adev;
2741        pl08x->vd = vd;
2742
2743        pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
2744        if (!pl08x->base) {
2745                ret = -ENOMEM;
2746                goto out_no_ioremap;
2747        }
2748
2749        if (vd->ftdmac020) {
2750                u32 val;
2751
2752                val = readl(pl08x->base + FTDMAC020_REVISION);
2753                dev_info(&pl08x->adev->dev, "FTDMAC020 %d.%d rel %d\n",
2754                         (val >> 16) & 0xff, (val >> 8) & 0xff, val & 0xff);
2755                val = readl(pl08x->base + FTDMAC020_FEATURE);
2756                dev_info(&pl08x->adev->dev, "FTDMAC020 %d channels, "
2757                         "%s built-in bridge, %s, %s linked lists\n",
2758                         (val >> 12) & 0x0f,
2759                         (val & BIT(10)) ? "no" : "has",
2760                         (val & BIT(9)) ? "AHB0 and AHB1" : "AHB0",
2761                         (val & BIT(8)) ? "supports" : "does not support");
2762
2763                /* Vendor data from feature register */
2764                if (!(val & BIT(8)))
2765                        dev_warn(&pl08x->adev->dev,
2766                                 "linked lists not supported, required\n");
2767                vd->channels = (val >> 12) & 0x0f;
2768                vd->dualmaster = !!(val & BIT(9));
2769        }
2770
2771        /* Initialize memcpy engine */
2772        dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
2773        pl08x->memcpy.dev = &adev->dev;
2774        pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
2775        pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
2776        pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
2777        pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
2778        pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
2779        pl08x->memcpy.device_config = pl08x_config;
2780        pl08x->memcpy.device_pause = pl08x_pause;
2781        pl08x->memcpy.device_resume = pl08x_resume;
2782        pl08x->memcpy.device_terminate_all = pl08x_terminate_all;
2783        pl08x->memcpy.device_synchronize = pl08x_synchronize;
2784        pl08x->memcpy.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2785        pl08x->memcpy.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2786        pl08x->memcpy.directions = BIT(DMA_MEM_TO_MEM);
2787        pl08x->memcpy.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2788        if (vd->ftdmac020)
2789                pl08x->memcpy.copy_align = DMAENGINE_ALIGN_4_BYTES;
2790
2791
2792        /*
2793         * Initialize slave engine, if the block has no signals, that means
2794         * we have no slave support.
2795         */
2796        if (vd->signals) {
2797                pl08x->has_slave = true;
2798                dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
2799                dma_cap_set(DMA_CYCLIC, pl08x->slave.cap_mask);
2800                pl08x->slave.dev = &adev->dev;
2801                pl08x->slave.device_free_chan_resources =
2802                        pl08x_free_chan_resources;
2803                pl08x->slave.device_prep_dma_interrupt =
2804                        pl08x_prep_dma_interrupt;
2805                pl08x->slave.device_tx_status = pl08x_dma_tx_status;
2806                pl08x->slave.device_issue_pending = pl08x_issue_pending;
2807                pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
2808                pl08x->slave.device_prep_dma_cyclic = pl08x_prep_dma_cyclic;
2809                pl08x->slave.device_config = pl08x_config;
2810                pl08x->slave.device_pause = pl08x_pause;
2811                pl08x->slave.device_resume = pl08x_resume;
2812                pl08x->slave.device_terminate_all = pl08x_terminate_all;
2813                pl08x->slave.device_synchronize = pl08x_synchronize;
2814                pl08x->slave.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2815                pl08x->slave.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2816                pl08x->slave.directions =
2817                        BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2818                pl08x->slave.residue_granularity =
2819                        DMA_RESIDUE_GRANULARITY_SEGMENT;
2820        }
2821
2822        /* Get the platform data */
2823        pl08x->pd = dev_get_platdata(&adev->dev);
2824        if (!pl08x->pd) {
2825                if (np) {
2826                        ret = pl08x_of_probe(adev, pl08x, np);
2827                        if (ret)
2828                                goto out_no_platdata;
2829                } else {
2830                        dev_err(&adev->dev, "no platform data supplied\n");
2831                        ret = -EINVAL;
2832                        goto out_no_platdata;
2833                }
2834        } else {
2835                pl08x->slave.filter.map = pl08x->pd->slave_map;
2836                pl08x->slave.filter.mapcnt = pl08x->pd->slave_map_len;
2837                pl08x->slave.filter.fn = pl08x_filter_fn;
2838        }
2839
2840        /* By default, AHB1 only.  If dualmaster, from platform */
2841        pl08x->lli_buses = PL08X_AHB1;
2842        pl08x->mem_buses = PL08X_AHB1;
2843        if (pl08x->vd->dualmaster) {
2844                pl08x->lli_buses = pl08x->pd->lli_buses;
2845                pl08x->mem_buses = pl08x->pd->mem_buses;
2846        }
2847
2848        if (vd->pl080s)
2849                pl08x->lli_words = PL080S_LLI_WORDS;
2850        else
2851                pl08x->lli_words = PL080_LLI_WORDS;
2852        tsfr_size = MAX_NUM_TSFR_LLIS * pl08x->lli_words * sizeof(u32);
2853
2854        /* A DMA memory pool for LLIs, align on 1-byte boundary */
2855        pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
2856                                                tsfr_size, PL08X_ALIGN, 0);
2857        if (!pl08x->pool) {
2858                ret = -ENOMEM;
2859                goto out_no_lli_pool;
2860        }
2861
2862        /* Turn on the PL08x */
2863        pl08x_ensure_on(pl08x);
2864
2865        /* Clear any pending interrupts */
2866        if (vd->ftdmac020)
2867                /* This variant has error IRQs in bits 16-19 */
2868                writel(0x0000FFFF, pl08x->base + PL080_ERR_CLEAR);
2869        else
2870                writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
2871        writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
2872
2873        /* Attach the interrupt handler */
2874        ret = request_irq(adev->irq[0], pl08x_irq, 0, DRIVER_NAME, pl08x);
2875        if (ret) {
2876                dev_err(&adev->dev, "%s failed to request interrupt %d\n",
2877                        __func__, adev->irq[0]);
2878                goto out_no_irq;
2879        }
2880
2881        /* Initialize physical channels */
2882        pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
2883                        GFP_KERNEL);
2884        if (!pl08x->phy_chans) {
2885                ret = -ENOMEM;
2886                goto out_no_phychans;
2887        }
2888
2889        for (i = 0; i < vd->channels; i++) {
2890                struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
2891
2892                ch->id = i;
2893                ch->base = pl08x->base + PL080_Cx_BASE(i);
2894                if (vd->ftdmac020) {
2895                        /* FTDMA020 has a special channel busy register */
2896                        ch->reg_busy = ch->base + FTDMAC020_CH_BUSY;
2897                        ch->reg_config = ch->base + FTDMAC020_CH_CFG;
2898                        ch->reg_control = ch->base + FTDMAC020_CH_CSR;
2899                        ch->reg_src = ch->base + FTDMAC020_CH_SRC_ADDR;
2900                        ch->reg_dst = ch->base + FTDMAC020_CH_DST_ADDR;
2901                        ch->reg_lli = ch->base + FTDMAC020_CH_LLP;
2902                        ch->ftdmac020 = true;
2903                } else {
2904                        ch->reg_config = ch->base + vd->config_offset;
2905                        ch->reg_control = ch->base + PL080_CH_CONTROL;
2906                        ch->reg_src = ch->base + PL080_CH_SRC_ADDR;
2907                        ch->reg_dst = ch->base + PL080_CH_DST_ADDR;
2908                        ch->reg_lli = ch->base + PL080_CH_LLI;
2909                }
2910                if (vd->pl080s)
2911                        ch->pl080s = true;
2912
2913                spin_lock_init(&ch->lock);
2914
2915                /*
2916                 * Nomadik variants can have channels that are locked
2917                 * down for the secure world only. Lock up these channels
2918                 * by perpetually serving a dummy virtual channel.
2919                 */
2920                if (vd->nomadik) {
2921                        u32 val;
2922
2923                        val = readl(ch->reg_config);
2924                        if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
2925                                dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
2926                                ch->locked = true;
2927                        }
2928                }
2929
2930                dev_dbg(&adev->dev, "physical channel %d is %s\n",
2931                        i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2932        }
2933
2934        /* Register as many memcpy channels as there are physical channels */
2935        ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
2936                                              pl08x->vd->channels, false);
2937        if (ret <= 0) {
2938                dev_warn(&pl08x->adev->dev,
2939                         "%s failed to enumerate memcpy channels - %d\n",
2940                         __func__, ret);
2941                goto out_no_memcpy;
2942        }
2943
2944        /* Register slave channels */
2945        if (pl08x->has_slave) {
2946                ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2947                                        pl08x->pd->num_slave_channels, true);
2948                if (ret < 0) {
2949                        dev_warn(&pl08x->adev->dev,
2950                                 "%s failed to enumerate slave channels - %d\n",
2951                                 __func__, ret);
2952                        goto out_no_slave;
2953                }
2954        }
2955
2956        ret = dma_async_device_register(&pl08x->memcpy);
2957        if (ret) {
2958                dev_warn(&pl08x->adev->dev,
2959                        "%s failed to register memcpy as an async device - %d\n",
2960                        __func__, ret);
2961                goto out_no_memcpy_reg;
2962        }
2963
2964        if (pl08x->has_slave) {
2965                ret = dma_async_device_register(&pl08x->slave);
2966                if (ret) {
2967                        dev_warn(&pl08x->adev->dev,
2968                        "%s failed to register slave as an async device - %d\n",
2969                        __func__, ret);
2970                        goto out_no_slave_reg;
2971                }
2972        }
2973
2974        amba_set_drvdata(adev, pl08x);
2975        init_pl08x_debugfs(pl08x);
2976        dev_info(&pl08x->adev->dev, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n",
2977                 amba_part(adev), pl08x->vd->pl080s ? "s" : "", amba_rev(adev),
2978                 (unsigned long long)adev->res.start, adev->irq[0]);
2979
2980        return 0;
2981
2982out_no_slave_reg:
2983        dma_async_device_unregister(&pl08x->memcpy);
2984out_no_memcpy_reg:
2985        if (pl08x->has_slave)
2986                pl08x_free_virtual_channels(&pl08x->slave);
2987out_no_slave:
2988        pl08x_free_virtual_channels(&pl08x->memcpy);
2989out_no_memcpy:
2990        kfree(pl08x->phy_chans);
2991out_no_phychans:
2992        free_irq(adev->irq[0], pl08x);
2993out_no_irq:
2994        dma_pool_destroy(pl08x->pool);
2995out_no_lli_pool:
2996out_no_platdata:
2997        iounmap(pl08x->base);
2998out_no_ioremap:
2999        kfree(pl08x);
3000out_no_pl08x:
3001        amba_release_regions(adev);
3002        return ret;
3003}
3004
3005/* PL080 has 8 channels and the PL080 have just 2 */
3006static struct vendor_data vendor_pl080 = {
3007        .config_offset = PL080_CH_CONFIG,
3008        .channels = 8,
3009        .signals = 16,
3010        .dualmaster = true,
3011        .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
3012};
3013
3014static struct vendor_data vendor_nomadik = {
3015        .config_offset = PL080_CH_CONFIG,
3016        .channels = 8,
3017        .signals = 32,
3018        .dualmaster = true,
3019        .nomadik = true,
3020        .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
3021};
3022
3023static struct vendor_data vendor_pl080s = {
3024        .config_offset = PL080S_CH_CONFIG,
3025        .channels = 8,
3026        .signals = 32,
3027        .pl080s = true,
3028        .max_transfer_size = PL080S_CONTROL_TRANSFER_SIZE_MASK,
3029};
3030
3031static struct vendor_data vendor_pl081 = {
3032        .config_offset = PL080_CH_CONFIG,
3033        .channels = 2,
3034        .signals = 16,
3035        .dualmaster = false,
3036        .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
3037};
3038
3039static struct vendor_data vendor_ftdmac020 = {
3040        .config_offset = PL080_CH_CONFIG,
3041        .ftdmac020 = true,
3042        .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
3043};
3044
3045static const struct amba_id pl08x_ids[] = {
3046        /* Samsung PL080S variant */
3047        {
3048                .id     = 0x0a141080,
3049                .mask   = 0xffffffff,
3050                .data   = &vendor_pl080s,
3051        },
3052        /* PL080 */
3053        {
3054                .id     = 0x00041080,
3055                .mask   = 0x000fffff,
3056                .data   = &vendor_pl080,
3057        },
3058        /* PL081 */
3059        {
3060                .id     = 0x00041081,
3061                .mask   = 0x000fffff,
3062                .data   = &vendor_pl081,
3063        },
3064        /* Nomadik 8815 PL080 variant */
3065        {
3066                .id     = 0x00280080,
3067                .mask   = 0x00ffffff,
3068                .data   = &vendor_nomadik,
3069        },
3070        /* Faraday Technology FTDMAC020 */
3071        {
3072                .id     = 0x0003b080,
3073                .mask   = 0x000fffff,
3074                .data   = &vendor_ftdmac020,
3075        },
3076        { 0, 0 },
3077};
3078
3079MODULE_DEVICE_TABLE(amba, pl08x_ids);
3080
3081static struct amba_driver pl08x_amba_driver = {
3082        .drv.name       = DRIVER_NAME,
3083        .id_table       = pl08x_ids,
3084        .probe          = pl08x_probe,
3085};
3086
3087static int __init pl08x_init(void)
3088{
3089        int retval;
3090        retval = amba_driver_register(&pl08x_amba_driver);
3091        if (retval)
3092                printk(KERN_WARNING DRIVER_NAME
3093                       "failed to register as an AMBA device (%d)\n",
3094                       retval);
3095        return retval;
3096}
3097subsys_initcall(pl08x_init);
3098