linux/drivers/firewire/ohci.c
<<
>>
Prefs
   1/*
   2 * Driver for OHCI 1394 controllers
   3 *
   4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software Foundation,
  18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21#include <linux/bitops.h>
  22#include <linux/bug.h>
  23#include <linux/compiler.h>
  24#include <linux/delay.h>
  25#include <linux/device.h>
  26#include <linux/dma-mapping.h>
  27#include <linux/firewire.h>
  28#include <linux/firewire-constants.h>
  29#include <linux/init.h>
  30#include <linux/interrupt.h>
  31#include <linux/io.h>
  32#include <linux/kernel.h>
  33#include <linux/list.h>
  34#include <linux/mm.h>
  35#include <linux/module.h>
  36#include <linux/moduleparam.h>
  37#include <linux/mutex.h>
  38#include <linux/pci.h>
  39#include <linux/pci_ids.h>
  40#include <linux/slab.h>
  41#include <linux/spinlock.h>
  42#include <linux/string.h>
  43#include <linux/time.h>
  44#include <linux/vmalloc.h>
  45#include <linux/workqueue.h>
  46
  47#include <asm/byteorder.h>
  48#include <asm/page.h>
  49
  50#ifdef CONFIG_PPC_PMAC
  51#include <asm/pmac_feature.h>
  52#endif
  53
  54#include "core.h"
  55#include "ohci.h"
  56
  57#define ohci_info(ohci, f, args...)     dev_info(ohci->card.device, f, ##args)
  58#define ohci_notice(ohci, f, args...)   dev_notice(ohci->card.device, f, ##args)
  59#define ohci_err(ohci, f, args...)      dev_err(ohci->card.device, f, ##args)
  60
  61#define DESCRIPTOR_OUTPUT_MORE          0
  62#define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
  63#define DESCRIPTOR_INPUT_MORE           (2 << 12)
  64#define DESCRIPTOR_INPUT_LAST           (3 << 12)
  65#define DESCRIPTOR_STATUS               (1 << 11)
  66#define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
  67#define DESCRIPTOR_PING                 (1 << 7)
  68#define DESCRIPTOR_YY                   (1 << 6)
  69#define DESCRIPTOR_NO_IRQ               (0 << 4)
  70#define DESCRIPTOR_IRQ_ERROR            (1 << 4)
  71#define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
  72#define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
  73#define DESCRIPTOR_WAIT                 (3 << 0)
  74
  75#define DESCRIPTOR_CMD                  (0xf << 12)
  76
  77struct descriptor {
  78        __le16 req_count;
  79        __le16 control;
  80        __le32 data_address;
  81        __le32 branch_address;
  82        __le16 res_count;
  83        __le16 transfer_status;
  84} __attribute__((aligned(16)));
  85
  86#define CONTROL_SET(regs)       (regs)
  87#define CONTROL_CLEAR(regs)     ((regs) + 4)
  88#define COMMAND_PTR(regs)       ((regs) + 12)
  89#define CONTEXT_MATCH(regs)     ((regs) + 16)
  90
  91#define AR_BUFFER_SIZE  (32*1024)
  92#define AR_BUFFERS_MIN  DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
  93/* we need at least two pages for proper list management */
  94#define AR_BUFFERS      (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
  95
  96#define MAX_ASYNC_PAYLOAD       4096
  97#define MAX_AR_PACKET_SIZE      (16 + MAX_ASYNC_PAYLOAD + 4)
  98#define AR_WRAPAROUND_PAGES     DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
  99
 100struct ar_context {
 101        struct fw_ohci *ohci;
 102        struct page *pages[AR_BUFFERS];
 103        void *buffer;
 104        struct descriptor *descriptors;
 105        dma_addr_t descriptors_bus;
 106        void *pointer;
 107        unsigned int last_buffer_index;
 108        u32 regs;
 109        struct tasklet_struct tasklet;
 110};
 111
 112struct context;
 113
 114typedef int (*descriptor_callback_t)(struct context *ctx,
 115                                     struct descriptor *d,
 116                                     struct descriptor *last);
 117
 118/*
 119 * A buffer that contains a block of DMA-able coherent memory used for
 120 * storing a portion of a DMA descriptor program.
 121 */
 122struct descriptor_buffer {
 123        struct list_head list;
 124        dma_addr_t buffer_bus;
 125        size_t buffer_size;
 126        size_t used;
 127        struct descriptor buffer[0];
 128};
 129
 130struct context {
 131        struct fw_ohci *ohci;
 132        u32 regs;
 133        int total_allocation;
 134        u32 current_bus;
 135        bool running;
 136        bool flushing;
 137
 138        /*
 139         * List of page-sized buffers for storing DMA descriptors.
 140         * Head of list contains buffers in use and tail of list contains
 141         * free buffers.
 142         */
 143        struct list_head buffer_list;
 144
 145        /*
 146         * Pointer to a buffer inside buffer_list that contains the tail
 147         * end of the current DMA program.
 148         */
 149        struct descriptor_buffer *buffer_tail;
 150
 151        /*
 152         * The descriptor containing the branch address of the first
 153         * descriptor that has not yet been filled by the device.
 154         */
 155        struct descriptor *last;
 156
 157        /*
 158         * The last descriptor block in the DMA program. It contains the branch
 159         * address that must be updated upon appending a new descriptor.
 160         */
 161        struct descriptor *prev;
 162        int prev_z;
 163
 164        descriptor_callback_t callback;
 165
 166        struct tasklet_struct tasklet;
 167};
 168
 169#define IT_HEADER_SY(v)          ((v) <<  0)
 170#define IT_HEADER_TCODE(v)       ((v) <<  4)
 171#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
 172#define IT_HEADER_TAG(v)         ((v) << 14)
 173#define IT_HEADER_SPEED(v)       ((v) << 16)
 174#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
 175
 176struct iso_context {
 177        struct fw_iso_context base;
 178        struct context context;
 179        void *header;
 180        size_t header_length;
 181        unsigned long flushing_completions;
 182        u32 mc_buffer_bus;
 183        u16 mc_completed;
 184        u16 last_timestamp;
 185        u8 sync;
 186        u8 tags;
 187};
 188
 189#define CONFIG_ROM_SIZE 1024
 190
 191struct fw_ohci {
 192        struct fw_card card;
 193
 194        __iomem char *registers;
 195        int node_id;
 196        int generation;
 197        int request_generation; /* for timestamping incoming requests */
 198        unsigned quirks;
 199        unsigned int pri_req_max;
 200        u32 bus_time;
 201        bool bus_time_running;
 202        bool is_root;
 203        bool csr_state_setclear_abdicate;
 204        int n_ir;
 205        int n_it;
 206        /*
 207         * Spinlock for accessing fw_ohci data.  Never call out of
 208         * this driver with this lock held.
 209         */
 210        spinlock_t lock;
 211
 212        struct mutex phy_reg_mutex;
 213
 214        void *misc_buffer;
 215        dma_addr_t misc_buffer_bus;
 216
 217        struct ar_context ar_request_ctx;
 218        struct ar_context ar_response_ctx;
 219        struct context at_request_ctx;
 220        struct context at_response_ctx;
 221
 222        u32 it_context_support;
 223        u32 it_context_mask;     /* unoccupied IT contexts */
 224        struct iso_context *it_context_list;
 225        u64 ir_context_channels; /* unoccupied channels */
 226        u32 ir_context_support;
 227        u32 ir_context_mask;     /* unoccupied IR contexts */
 228        struct iso_context *ir_context_list;
 229        u64 mc_channels; /* channels in use by the multichannel IR context */
 230        bool mc_allocated;
 231
 232        __be32    *config_rom;
 233        dma_addr_t config_rom_bus;
 234        __be32    *next_config_rom;
 235        dma_addr_t next_config_rom_bus;
 236        __be32     next_header;
 237
 238        __le32    *self_id;
 239        dma_addr_t self_id_bus;
 240        struct work_struct bus_reset_work;
 241
 242        u32 self_id_buffer[512];
 243};
 244
 245static struct workqueue_struct *selfid_workqueue;
 246
 247static inline struct fw_ohci *fw_ohci(struct fw_card *card)
 248{
 249        return container_of(card, struct fw_ohci, card);
 250}
 251
 252#define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
 253#define IR_CONTEXT_BUFFER_FILL          0x80000000
 254#define IR_CONTEXT_ISOCH_HEADER         0x40000000
 255#define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
 256#define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
 257#define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
 258
 259#define CONTEXT_RUN     0x8000
 260#define CONTEXT_WAKE    0x1000
 261#define CONTEXT_DEAD    0x0800
 262#define CONTEXT_ACTIVE  0x0400
 263
 264#define OHCI1394_MAX_AT_REQ_RETRIES     0xf
 265#define OHCI1394_MAX_AT_RESP_RETRIES    0x2
 266#define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
 267
 268#define OHCI1394_REGISTER_SIZE          0x800
 269#define OHCI1394_PCI_HCI_Control        0x40
 270#define SELF_ID_BUF_SIZE                0x800
 271#define OHCI_TCODE_PHY_PACKET           0x0e
 272#define OHCI_VERSION_1_1                0x010010
 273
 274static char ohci_driver_name[] = KBUILD_MODNAME;
 275
 276#define PCI_VENDOR_ID_PINNACLE_SYSTEMS  0x11bd
 277#define PCI_DEVICE_ID_AGERE_FW643       0x5901
 278#define PCI_DEVICE_ID_CREATIVE_SB1394   0x4001
 279#define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
 280#define PCI_DEVICE_ID_TI_TSB12LV22      0x8009
 281#define PCI_DEVICE_ID_TI_TSB12LV26      0x8020
 282#define PCI_DEVICE_ID_TI_TSB82AA2       0x8025
 283#define PCI_DEVICE_ID_VIA_VT630X        0x3044
 284#define PCI_REV_ID_VIA_VT6306           0x46
 285#define PCI_DEVICE_ID_VIA_VT6315        0x3403
 286
 287#define QUIRK_CYCLE_TIMER               0x1
 288#define QUIRK_RESET_PACKET              0x2
 289#define QUIRK_BE_HEADERS                0x4
 290#define QUIRK_NO_1394A                  0x8
 291#define QUIRK_NO_MSI                    0x10
 292#define QUIRK_TI_SLLZ059                0x20
 293#define QUIRK_IR_WAKE                   0x40
 294
 295/* In case of multiple matches in ohci_quirks[], only the first one is used. */
 296static const struct {
 297        unsigned short vendor, device, revision, flags;
 298} ohci_quirks[] = {
 299        {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
 300                QUIRK_CYCLE_TIMER},
 301
 302        {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
 303                QUIRK_BE_HEADERS},
 304
 305        {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
 306                QUIRK_NO_MSI},
 307
 308        {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
 309                QUIRK_RESET_PACKET},
 310
 311        {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
 312                QUIRK_NO_MSI},
 313
 314        {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
 315                QUIRK_CYCLE_TIMER},
 316
 317        {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
 318                QUIRK_NO_MSI},
 319
 320        {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
 321                QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
 322
 323        {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
 324                QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
 325
 326        {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
 327                QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
 328
 329        {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
 330                QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
 331
 332        {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
 333                QUIRK_RESET_PACKET},
 334
 335        {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
 336                QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
 337
 338        {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
 339                QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
 340
 341        {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
 342                QUIRK_NO_MSI},
 343
 344        {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
 345                QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
 346};
 347
 348/* This overrides anything that was found in ohci_quirks[]. */
 349static int param_quirks;
 350module_param_named(quirks, param_quirks, int, 0644);
 351MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
 352        ", nonatomic cycle timer = "    __stringify(QUIRK_CYCLE_TIMER)
 353        ", reset packet generation = "  __stringify(QUIRK_RESET_PACKET)
 354        ", AR/selfID endianness = "     __stringify(QUIRK_BE_HEADERS)
 355        ", no 1394a enhancements = "    __stringify(QUIRK_NO_1394A)
 356        ", disable MSI = "              __stringify(QUIRK_NO_MSI)
 357        ", TI SLLZ059 erratum = "       __stringify(QUIRK_TI_SLLZ059)
 358        ", IR wake unreliable = "       __stringify(QUIRK_IR_WAKE)
 359        ")");
 360
 361#define OHCI_PARAM_DEBUG_AT_AR          1
 362#define OHCI_PARAM_DEBUG_SELFIDS        2
 363#define OHCI_PARAM_DEBUG_IRQS           4
 364#define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
 365
 366static int param_debug;
 367module_param_named(debug, param_debug, int, 0644);
 368MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
 369        ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
 370        ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
 371        ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
 372        ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
 373        ", or a combination, or all = -1)");
 374
 375static bool param_remote_dma;
 376module_param_named(remote_dma, param_remote_dma, bool, 0444);
 377MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
 378
 379static void log_irqs(struct fw_ohci *ohci, u32 evt)
 380{
 381        if (likely(!(param_debug &
 382                        (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
 383                return;
 384
 385        if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
 386            !(evt & OHCI1394_busReset))
 387                return;
 388
 389        ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
 390            evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
 391            evt & OHCI1394_RQPkt                ? " AR_req"             : "",
 392            evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
 393            evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
 394            evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
 395            evt & OHCI1394_isochRx              ? " IR"                 : "",
 396            evt & OHCI1394_isochTx              ? " IT"                 : "",
 397            evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
 398            evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
 399            evt & OHCI1394_cycle64Seconds       ? " cycle64Seconds"     : "",
 400            evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
 401            evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
 402            evt & OHCI1394_unrecoverableError   ? " unrecoverableError" : "",
 403            evt & OHCI1394_busReset             ? " busReset"           : "",
 404            evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
 405                    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
 406                    OHCI1394_respTxComplete | OHCI1394_isochRx |
 407                    OHCI1394_isochTx | OHCI1394_postedWriteErr |
 408                    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
 409                    OHCI1394_cycleInconsistent |
 410                    OHCI1394_regAccessFail | OHCI1394_busReset)
 411                                                ? " ?"                  : "");
 412}
 413
 414static const char *speed[] = {
 415        [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
 416};
 417static const char *power[] = {
 418        [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
 419        [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
 420};
 421static const char port[] = { '.', '-', 'p', 'c', };
 422
 423static char _p(u32 *s, int shift)
 424{
 425        return port[*s >> shift & 3];
 426}
 427
 428static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
 429{
 430        u32 *s;
 431
 432        if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
 433                return;
 434
 435        ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
 436                    self_id_count, generation, ohci->node_id);
 437
 438        for (s = ohci->self_id_buffer; self_id_count--; ++s)
 439                if ((*s & 1 << 23) == 0)
 440                        ohci_notice(ohci,
 441                            "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
 442                            *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
 443                            speed[*s >> 14 & 3], *s >> 16 & 63,
 444                            power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
 445                            *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
 446                else
 447                        ohci_notice(ohci,
 448                            "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
 449                            *s, *s >> 24 & 63,
 450                            _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
 451                            _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
 452}
 453
 454static const char *evts[] = {
 455        [0x00] = "evt_no_status",       [0x01] = "-reserved-",
 456        [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
 457        [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
 458        [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
 459        [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
 460        [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
 461        [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
 462        [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
 463        [0x10] = "-reserved-",          [0x11] = "ack_complete",
 464        [0x12] = "ack_pending ",        [0x13] = "-reserved-",
 465        [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
 466        [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
 467        [0x18] = "-reserved-",          [0x19] = "-reserved-",
 468        [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
 469        [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
 470        [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
 471        [0x20] = "pending/cancelled",
 472};
 473static const char *tcodes[] = {
 474        [0x0] = "QW req",               [0x1] = "BW req",
 475        [0x2] = "W resp",               [0x3] = "-reserved-",
 476        [0x4] = "QR req",               [0x5] = "BR req",
 477        [0x6] = "QR resp",              [0x7] = "BR resp",
 478        [0x8] = "cycle start",          [0x9] = "Lk req",
 479        [0xa] = "async stream packet",  [0xb] = "Lk resp",
 480        [0xc] = "-reserved-",           [0xd] = "-reserved-",
 481        [0xe] = "link internal",        [0xf] = "-reserved-",
 482};
 483
 484static void log_ar_at_event(struct fw_ohci *ohci,
 485                            char dir, int speed, u32 *header, int evt)
 486{
 487        int tcode = header[0] >> 4 & 0xf;
 488        char specific[12];
 489
 490        if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
 491                return;
 492
 493        if (unlikely(evt >= ARRAY_SIZE(evts)))
 494                        evt = 0x1f;
 495
 496        if (evt == OHCI1394_evt_bus_reset) {
 497                ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
 498                            dir, (header[2] >> 16) & 0xff);
 499                return;
 500        }
 501
 502        switch (tcode) {
 503        case 0x0: case 0x6: case 0x8:
 504                snprintf(specific, sizeof(specific), " = %08x",
 505                         be32_to_cpu((__force __be32)header[3]));
 506                break;
 507        case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
 508                snprintf(specific, sizeof(specific), " %x,%x",
 509                         header[3] >> 16, header[3] & 0xffff);
 510                break;
 511        default:
 512                specific[0] = '\0';
 513        }
 514
 515        switch (tcode) {
 516        case 0xa:
 517                ohci_notice(ohci, "A%c %s, %s\n",
 518                            dir, evts[evt], tcodes[tcode]);
 519                break;
 520        case 0xe:
 521                ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
 522                            dir, evts[evt], header[1], header[2]);
 523                break;
 524        case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
 525                ohci_notice(ohci,
 526                            "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
 527                            dir, speed, header[0] >> 10 & 0x3f,
 528                            header[1] >> 16, header[0] >> 16, evts[evt],
 529                            tcodes[tcode], header[1] & 0xffff, header[2], specific);
 530                break;
 531        default:
 532                ohci_notice(ohci,
 533                            "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
 534                            dir, speed, header[0] >> 10 & 0x3f,
 535                            header[1] >> 16, header[0] >> 16, evts[evt],
 536                            tcodes[tcode], specific);
 537        }
 538}
 539
 540static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
 541{
 542        writel(data, ohci->registers + offset);
 543}
 544
 545static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
 546{
 547        return readl(ohci->registers + offset);
 548}
 549
 550static inline void flush_writes(const struct fw_ohci *ohci)
 551{
 552        /* Do a dummy read to flush writes. */
 553        reg_read(ohci, OHCI1394_Version);
 554}
 555
 556/*
 557 * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
 558 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
 559 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
 560 * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
 561 */
 562static int read_phy_reg(struct fw_ohci *ohci, int addr)
 563{
 564        u32 val;
 565        int i;
 566
 567        reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
 568        for (i = 0; i < 3 + 100; i++) {
 569                val = reg_read(ohci, OHCI1394_PhyControl);
 570                if (!~val)
 571                        return -ENODEV; /* Card was ejected. */
 572
 573                if (val & OHCI1394_PhyControl_ReadDone)
 574                        return OHCI1394_PhyControl_ReadData(val);
 575
 576                /*
 577                 * Try a few times without waiting.  Sleeping is necessary
 578                 * only when the link/PHY interface is busy.
 579                 */
 580                if (i >= 3)
 581                        msleep(1);
 582        }
 583        ohci_err(ohci, "failed to read phy reg %d\n", addr);
 584        dump_stack();
 585
 586        return -EBUSY;
 587}
 588
 589static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
 590{
 591        int i;
 592
 593        reg_write(ohci, OHCI1394_PhyControl,
 594                  OHCI1394_PhyControl_Write(addr, val));
 595        for (i = 0; i < 3 + 100; i++) {
 596                val = reg_read(ohci, OHCI1394_PhyControl);
 597                if (!~val)
 598                        return -ENODEV; /* Card was ejected. */
 599
 600                if (!(val & OHCI1394_PhyControl_WritePending))
 601                        return 0;
 602
 603                if (i >= 3)
 604                        msleep(1);
 605        }
 606        ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
 607        dump_stack();
 608
 609        return -EBUSY;
 610}
 611
 612static int update_phy_reg(struct fw_ohci *ohci, int addr,
 613                          int clear_bits, int set_bits)
 614{
 615        int ret = read_phy_reg(ohci, addr);
 616        if (ret < 0)
 617                return ret;
 618
 619        /*
 620         * The interrupt status bits are cleared by writing a one bit.
 621         * Avoid clearing them unless explicitly requested in set_bits.
 622         */
 623        if (addr == 5)
 624                clear_bits |= PHY_INT_STATUS_BITS;
 625
 626        return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
 627}
 628
 629static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
 630{
 631        int ret;
 632
 633        ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
 634        if (ret < 0)
 635                return ret;
 636
 637        return read_phy_reg(ohci, addr);
 638}
 639
 640static int ohci_read_phy_reg(struct fw_card *card, int addr)
 641{
 642        struct fw_ohci *ohci = fw_ohci(card);
 643        int ret;
 644
 645        mutex_lock(&ohci->phy_reg_mutex);
 646        ret = read_phy_reg(ohci, addr);
 647        mutex_unlock(&ohci->phy_reg_mutex);
 648
 649        return ret;
 650}
 651
 652static int ohci_update_phy_reg(struct fw_card *card, int addr,
 653                               int clear_bits, int set_bits)
 654{
 655        struct fw_ohci *ohci = fw_ohci(card);
 656        int ret;
 657
 658        mutex_lock(&ohci->phy_reg_mutex);
 659        ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
 660        mutex_unlock(&ohci->phy_reg_mutex);
 661
 662        return ret;
 663}
 664
 665static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
 666{
 667        return page_private(ctx->pages[i]);
 668}
 669
 670static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
 671{
 672        struct descriptor *d;
 673
 674        d = &ctx->descriptors[index];
 675        d->branch_address  &= cpu_to_le32(~0xf);
 676        d->res_count       =  cpu_to_le16(PAGE_SIZE);
 677        d->transfer_status =  0;
 678
 679        wmb(); /* finish init of new descriptors before branch_address update */
 680        d = &ctx->descriptors[ctx->last_buffer_index];
 681        d->branch_address  |= cpu_to_le32(1);
 682
 683        ctx->last_buffer_index = index;
 684
 685        reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
 686}
 687
 688static void ar_context_release(struct ar_context *ctx)
 689{
 690        unsigned int i;
 691
 692        vunmap(ctx->buffer);
 693
 694        for (i = 0; i < AR_BUFFERS; i++)
 695                if (ctx->pages[i]) {
 696                        dma_unmap_page(ctx->ohci->card.device,
 697                                       ar_buffer_bus(ctx, i),
 698                                       PAGE_SIZE, DMA_FROM_DEVICE);
 699                        __free_page(ctx->pages[i]);
 700                }
 701}
 702
 703static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
 704{
 705        struct fw_ohci *ohci = ctx->ohci;
 706
 707        if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
 708                reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
 709                flush_writes(ohci);
 710
 711                ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
 712        }
 713        /* FIXME: restart? */
 714}
 715
 716static inline unsigned int ar_next_buffer_index(unsigned int index)
 717{
 718        return (index + 1) % AR_BUFFERS;
 719}
 720
 721static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
 722{
 723        return ar_next_buffer_index(ctx->last_buffer_index);
 724}
 725
 726/*
 727 * We search for the buffer that contains the last AR packet DMA data written
 728 * by the controller.
 729 */
 730static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
 731                                                 unsigned int *buffer_offset)
 732{
 733        unsigned int i, next_i, last = ctx->last_buffer_index;
 734        __le16 res_count, next_res_count;
 735
 736        i = ar_first_buffer_index(ctx);
 737        res_count = READ_ONCE(ctx->descriptors[i].res_count);
 738
 739        /* A buffer that is not yet completely filled must be the last one. */
 740        while (i != last && res_count == 0) {
 741
 742                /* Peek at the next descriptor. */
 743                next_i = ar_next_buffer_index(i);
 744                rmb(); /* read descriptors in order */
 745                next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
 746                /*
 747                 * If the next descriptor is still empty, we must stop at this
 748                 * descriptor.
 749                 */
 750                if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
 751                        /*
 752                         * The exception is when the DMA data for one packet is
 753                         * split over three buffers; in this case, the middle
 754                         * buffer's descriptor might be never updated by the
 755                         * controller and look still empty, and we have to peek
 756                         * at the third one.
 757                         */
 758                        if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
 759                                next_i = ar_next_buffer_index(next_i);
 760                                rmb();
 761                                next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
 762                                if (next_res_count != cpu_to_le16(PAGE_SIZE))
 763                                        goto next_buffer_is_active;
 764                        }
 765
 766                        break;
 767                }
 768
 769next_buffer_is_active:
 770                i = next_i;
 771                res_count = next_res_count;
 772        }
 773
 774        rmb(); /* read res_count before the DMA data */
 775
 776        *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
 777        if (*buffer_offset > PAGE_SIZE) {
 778                *buffer_offset = 0;
 779                ar_context_abort(ctx, "corrupted descriptor");
 780        }
 781
 782        return i;
 783}
 784
 785static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
 786                                    unsigned int end_buffer_index,
 787                                    unsigned int end_buffer_offset)
 788{
 789        unsigned int i;
 790
 791        i = ar_first_buffer_index(ctx);
 792        while (i != end_buffer_index) {
 793                dma_sync_single_for_cpu(ctx->ohci->card.device,
 794                                        ar_buffer_bus(ctx, i),
 795                                        PAGE_SIZE, DMA_FROM_DEVICE);
 796                i = ar_next_buffer_index(i);
 797        }
 798        if (end_buffer_offset > 0)
 799                dma_sync_single_for_cpu(ctx->ohci->card.device,
 800                                        ar_buffer_bus(ctx, i),
 801                                        end_buffer_offset, DMA_FROM_DEVICE);
 802}
 803
 804#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
 805#define cond_le32_to_cpu(v) \
 806        (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
 807#else
 808#define cond_le32_to_cpu(v) le32_to_cpu(v)
 809#endif
 810
 811static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
 812{
 813        struct fw_ohci *ohci = ctx->ohci;
 814        struct fw_packet p;
 815        u32 status, length, tcode;
 816        int evt;
 817
 818        p.header[0] = cond_le32_to_cpu(buffer[0]);
 819        p.header[1] = cond_le32_to_cpu(buffer[1]);
 820        p.header[2] = cond_le32_to_cpu(buffer[2]);
 821
 822        tcode = (p.header[0] >> 4) & 0x0f;
 823        switch (tcode) {
 824        case TCODE_WRITE_QUADLET_REQUEST:
 825        case TCODE_READ_QUADLET_RESPONSE:
 826                p.header[3] = (__force __u32) buffer[3];
 827                p.header_length = 16;
 828                p.payload_length = 0;
 829                break;
 830
 831        case TCODE_READ_BLOCK_REQUEST :
 832                p.header[3] = cond_le32_to_cpu(buffer[3]);
 833                p.header_length = 16;
 834                p.payload_length = 0;
 835                break;
 836
 837        case TCODE_WRITE_BLOCK_REQUEST:
 838        case TCODE_READ_BLOCK_RESPONSE:
 839        case TCODE_LOCK_REQUEST:
 840        case TCODE_LOCK_RESPONSE:
 841                p.header[3] = cond_le32_to_cpu(buffer[3]);
 842                p.header_length = 16;
 843                p.payload_length = p.header[3] >> 16;
 844                if (p.payload_length > MAX_ASYNC_PAYLOAD) {
 845                        ar_context_abort(ctx, "invalid packet length");
 846                        return NULL;
 847                }
 848                break;
 849
 850        case TCODE_WRITE_RESPONSE:
 851        case TCODE_READ_QUADLET_REQUEST:
 852        case OHCI_TCODE_PHY_PACKET:
 853                p.header_length = 12;
 854                p.payload_length = 0;
 855                break;
 856
 857        default:
 858                ar_context_abort(ctx, "invalid tcode");
 859                return NULL;
 860        }
 861
 862        p.payload = (void *) buffer + p.header_length;
 863
 864        /* FIXME: What to do about evt_* errors? */
 865        length = (p.header_length + p.payload_length + 3) / 4;
 866        status = cond_le32_to_cpu(buffer[length]);
 867        evt    = (status >> 16) & 0x1f;
 868
 869        p.ack        = evt - 16;
 870        p.speed      = (status >> 21) & 0x7;
 871        p.timestamp  = status & 0xffff;
 872        p.generation = ohci->request_generation;
 873
 874        log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
 875
 876        /*
 877         * Several controllers, notably from NEC and VIA, forget to
 878         * write ack_complete status at PHY packet reception.
 879         */
 880        if (evt == OHCI1394_evt_no_status &&
 881            (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
 882                p.ack = ACK_COMPLETE;
 883
 884        /*
 885         * The OHCI bus reset handler synthesizes a PHY packet with
 886         * the new generation number when a bus reset happens (see
 887         * section 8.4.2.3).  This helps us determine when a request
 888         * was received and make sure we send the response in the same
 889         * generation.  We only need this for requests; for responses
 890         * we use the unique tlabel for finding the matching
 891         * request.
 892         *
 893         * Alas some chips sometimes emit bus reset packets with a
 894         * wrong generation.  We set the correct generation for these
 895         * at a slightly incorrect time (in bus_reset_work).
 896         */
 897        if (evt == OHCI1394_evt_bus_reset) {
 898                if (!(ohci->quirks & QUIRK_RESET_PACKET))
 899                        ohci->request_generation = (p.header[2] >> 16) & 0xff;
 900        } else if (ctx == &ohci->ar_request_ctx) {
 901                fw_core_handle_request(&ohci->card, &p);
 902        } else {
 903                fw_core_handle_response(&ohci->card, &p);
 904        }
 905
 906        return buffer + length + 1;
 907}
 908
 909static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
 910{
 911        void *next;
 912
 913        while (p < end) {
 914                next = handle_ar_packet(ctx, p);
 915                if (!next)
 916                        return p;
 917                p = next;
 918        }
 919
 920        return p;
 921}
 922
 923static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
 924{
 925        unsigned int i;
 926
 927        i = ar_first_buffer_index(ctx);
 928        while (i != end_buffer) {
 929                dma_sync_single_for_device(ctx->ohci->card.device,
 930                                           ar_buffer_bus(ctx, i),
 931                                           PAGE_SIZE, DMA_FROM_DEVICE);
 932                ar_context_link_page(ctx, i);
 933                i = ar_next_buffer_index(i);
 934        }
 935}
 936
 937static void ar_context_tasklet(unsigned long data)
 938{
 939        struct ar_context *ctx = (struct ar_context *)data;
 940        unsigned int end_buffer_index, end_buffer_offset;
 941        void *p, *end;
 942
 943        p = ctx->pointer;
 944        if (!p)
 945                return;
 946
 947        end_buffer_index = ar_search_last_active_buffer(ctx,
 948                                                        &end_buffer_offset);
 949        ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
 950        end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
 951
 952        if (end_buffer_index < ar_first_buffer_index(ctx)) {
 953                /*
 954                 * The filled part of the overall buffer wraps around; handle
 955                 * all packets up to the buffer end here.  If the last packet
 956                 * wraps around, its tail will be visible after the buffer end
 957                 * because the buffer start pages are mapped there again.
 958                 */
 959                void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
 960                p = handle_ar_packets(ctx, p, buffer_end);
 961                if (p < buffer_end)
 962                        goto error;
 963                /* adjust p to point back into the actual buffer */
 964                p -= AR_BUFFERS * PAGE_SIZE;
 965        }
 966
 967        p = handle_ar_packets(ctx, p, end);
 968        if (p != end) {
 969                if (p > end)
 970                        ar_context_abort(ctx, "inconsistent descriptor");
 971                goto error;
 972        }
 973
 974        ctx->pointer = p;
 975        ar_recycle_buffers(ctx, end_buffer_index);
 976
 977        return;
 978
 979error:
 980        ctx->pointer = NULL;
 981}
 982
 983static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
 984                           unsigned int descriptors_offset, u32 regs)
 985{
 986        unsigned int i;
 987        dma_addr_t dma_addr;
 988        struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
 989        struct descriptor *d;
 990
 991        ctx->regs        = regs;
 992        ctx->ohci        = ohci;
 993        tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
 994
 995        for (i = 0; i < AR_BUFFERS; i++) {
 996                ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
 997                if (!ctx->pages[i])
 998                        goto out_of_memory;
 999                dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
1000                                        0, PAGE_SIZE, DMA_FROM_DEVICE);
1001                if (dma_mapping_error(ohci->card.device, dma_addr)) {
1002                        __free_page(ctx->pages[i]);
1003                        ctx->pages[i] = NULL;
1004                        goto out_of_memory;
1005                }
1006                set_page_private(ctx->pages[i], dma_addr);
1007        }
1008
1009        for (i = 0; i < AR_BUFFERS; i++)
1010                pages[i]              = ctx->pages[i];
1011        for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1012                pages[AR_BUFFERS + i] = ctx->pages[i];
1013        ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
1014        if (!ctx->buffer)
1015                goto out_of_memory;
1016
1017        ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
1018        ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1019
1020        for (i = 0; i < AR_BUFFERS; i++) {
1021                d = &ctx->descriptors[i];
1022                d->req_count      = cpu_to_le16(PAGE_SIZE);
1023                d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1024                                                DESCRIPTOR_STATUS |
1025                                                DESCRIPTOR_BRANCH_ALWAYS);
1026                d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
1027                d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1028                        ar_next_buffer_index(i) * sizeof(struct descriptor));
1029        }
1030
1031        return 0;
1032
1033out_of_memory:
1034        ar_context_release(ctx);
1035
1036        return -ENOMEM;
1037}
1038
1039static void ar_context_run(struct ar_context *ctx)
1040{
1041        unsigned int i;
1042
1043        for (i = 0; i < AR_BUFFERS; i++)
1044                ar_context_link_page(ctx, i);
1045
1046        ctx->pointer = ctx->buffer;
1047
1048        reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1049        reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1050}
1051
1052static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1053{
1054        __le16 branch;
1055
1056        branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1057
1058        /* figure out which descriptor the branch address goes in */
1059        if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1060                return d;
1061        else
1062                return d + z - 1;
1063}
1064
1065static void context_tasklet(unsigned long data)
1066{
1067        struct context *ctx = (struct context *) data;
1068        struct descriptor *d, *last;
1069        u32 address;
1070        int z;
1071        struct descriptor_buffer *desc;
1072
1073        desc = list_entry(ctx->buffer_list.next,
1074                        struct descriptor_buffer, list);
1075        last = ctx->last;
1076        while (last->branch_address != 0) {
1077                struct descriptor_buffer *old_desc = desc;
1078                address = le32_to_cpu(last->branch_address);
1079                z = address & 0xf;
1080                address &= ~0xf;
1081                ctx->current_bus = address;
1082
1083                /* If the branch address points to a buffer outside of the
1084                 * current buffer, advance to the next buffer. */
1085                if (address < desc->buffer_bus ||
1086                                address >= desc->buffer_bus + desc->used)
1087                        desc = list_entry(desc->list.next,
1088                                        struct descriptor_buffer, list);
1089                d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1090                last = find_branch_descriptor(d, z);
1091
1092                if (!ctx->callback(ctx, d, last))
1093                        break;
1094
1095                if (old_desc != desc) {
1096                        /* If we've advanced to the next buffer, move the
1097                         * previous buffer to the free list. */
1098                        unsigned long flags;
1099                        old_desc->used = 0;
1100                        spin_lock_irqsave(&ctx->ohci->lock, flags);
1101                        list_move_tail(&old_desc->list, &ctx->buffer_list);
1102                        spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1103                }
1104                ctx->last = last;
1105        }
1106}
1107
1108/*
1109 * Allocate a new buffer and add it to the list of free buffers for this
1110 * context.  Must be called with ohci->lock held.
1111 */
1112static int context_add_buffer(struct context *ctx)
1113{
1114        struct descriptor_buffer *desc;
1115        dma_addr_t uninitialized_var(bus_addr);
1116        int offset;
1117
1118        /*
1119         * 16MB of descriptors should be far more than enough for any DMA
1120         * program.  This will catch run-away userspace or DoS attacks.
1121         */
1122        if (ctx->total_allocation >= 16*1024*1024)
1123                return -ENOMEM;
1124
1125        desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1126                        &bus_addr, GFP_ATOMIC);
1127        if (!desc)
1128                return -ENOMEM;
1129
1130        offset = (void *)&desc->buffer - (void *)desc;
1131        /*
1132         * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1133         * for descriptors, even 0x10-byte ones. This can cause page faults when
1134         * an IOMMU is in use and the oversized read crosses a page boundary.
1135         * Work around this by always leaving at least 0x10 bytes of padding.
1136         */
1137        desc->buffer_size = PAGE_SIZE - offset - 0x10;
1138        desc->buffer_bus = bus_addr + offset;
1139        desc->used = 0;
1140
1141        list_add_tail(&desc->list, &ctx->buffer_list);
1142        ctx->total_allocation += PAGE_SIZE;
1143
1144        return 0;
1145}
1146
1147static int context_init(struct context *ctx, struct fw_ohci *ohci,
1148                        u32 regs, descriptor_callback_t callback)
1149{
1150        ctx->ohci = ohci;
1151        ctx->regs = regs;
1152        ctx->total_allocation = 0;
1153
1154        INIT_LIST_HEAD(&ctx->buffer_list);
1155        if (context_add_buffer(ctx) < 0)
1156                return -ENOMEM;
1157
1158        ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1159                        struct descriptor_buffer, list);
1160
1161        tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1162        ctx->callback = callback;
1163
1164        /*
1165         * We put a dummy descriptor in the buffer that has a NULL
1166         * branch address and looks like it's been sent.  That way we
1167         * have a descriptor to append DMA programs to.
1168         */
1169        memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1170        ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1171        ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1172        ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1173        ctx->last = ctx->buffer_tail->buffer;
1174        ctx->prev = ctx->buffer_tail->buffer;
1175        ctx->prev_z = 1;
1176
1177        return 0;
1178}
1179
1180static void context_release(struct context *ctx)
1181{
1182        struct fw_card *card = &ctx->ohci->card;
1183        struct descriptor_buffer *desc, *tmp;
1184
1185        list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1186                dma_free_coherent(card->device, PAGE_SIZE, desc,
1187                        desc->buffer_bus -
1188                        ((void *)&desc->buffer - (void *)desc));
1189}
1190
1191/* Must be called with ohci->lock held */
1192static struct descriptor *context_get_descriptors(struct context *ctx,
1193                                                  int z, dma_addr_t *d_bus)
1194{
1195        struct descriptor *d = NULL;
1196        struct descriptor_buffer *desc = ctx->buffer_tail;
1197
1198        if (z * sizeof(*d) > desc->buffer_size)
1199                return NULL;
1200
1201        if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1202                /* No room for the descriptor in this buffer, so advance to the
1203                 * next one. */
1204
1205                if (desc->list.next == &ctx->buffer_list) {
1206                        /* If there is no free buffer next in the list,
1207                         * allocate one. */
1208                        if (context_add_buffer(ctx) < 0)
1209                                return NULL;
1210                }
1211                desc = list_entry(desc->list.next,
1212                                struct descriptor_buffer, list);
1213                ctx->buffer_tail = desc;
1214        }
1215
1216        d = desc->buffer + desc->used / sizeof(*d);
1217        memset(d, 0, z * sizeof(*d));
1218        *d_bus = desc->buffer_bus + desc->used;
1219
1220        return d;
1221}
1222
1223static void context_run(struct context *ctx, u32 extra)
1224{
1225        struct fw_ohci *ohci = ctx->ohci;
1226
1227        reg_write(ohci, COMMAND_PTR(ctx->regs),
1228                  le32_to_cpu(ctx->last->branch_address));
1229        reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1230        reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1231        ctx->running = true;
1232        flush_writes(ohci);
1233}
1234
1235static void context_append(struct context *ctx,
1236                           struct descriptor *d, int z, int extra)
1237{
1238        dma_addr_t d_bus;
1239        struct descriptor_buffer *desc = ctx->buffer_tail;
1240        struct descriptor *d_branch;
1241
1242        d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1243
1244        desc->used += (z + extra) * sizeof(*d);
1245
1246        wmb(); /* finish init of new descriptors before branch_address update */
1247
1248        d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1249        d_branch->branch_address = cpu_to_le32(d_bus | z);
1250
1251        /*
1252         * VT6306 incorrectly checks only the single descriptor at the
1253         * CommandPtr when the wake bit is written, so if it's a
1254         * multi-descriptor block starting with an INPUT_MORE, put a copy of
1255         * the branch address in the first descriptor.
1256         *
1257         * Not doing this for transmit contexts since not sure how it interacts
1258         * with skip addresses.
1259         */
1260        if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1261            d_branch != ctx->prev &&
1262            (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1263             cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1264                ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1265        }
1266
1267        ctx->prev = d;
1268        ctx->prev_z = z;
1269}
1270
1271static void context_stop(struct context *ctx)
1272{
1273        struct fw_ohci *ohci = ctx->ohci;
1274        u32 reg;
1275        int i;
1276
1277        reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1278        ctx->running = false;
1279
1280        for (i = 0; i < 1000; i++) {
1281                reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1282                if ((reg & CONTEXT_ACTIVE) == 0)
1283                        return;
1284
1285                if (i)
1286                        udelay(10);
1287        }
1288        ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1289}
1290
1291struct driver_data {
1292        u8 inline_data[8];
1293        struct fw_packet *packet;
1294};
1295
1296/*
1297 * This function apppends a packet to the DMA queue for transmission.
1298 * Must always be called with the ochi->lock held to ensure proper
1299 * generation handling and locking around packet queue manipulation.
1300 */
1301static int at_context_queue_packet(struct context *ctx,
1302                                   struct fw_packet *packet)
1303{
1304        struct fw_ohci *ohci = ctx->ohci;
1305        dma_addr_t d_bus, uninitialized_var(payload_bus);
1306        struct driver_data *driver_data;
1307        struct descriptor *d, *last;
1308        __le32 *header;
1309        int z, tcode;
1310
1311        d = context_get_descriptors(ctx, 4, &d_bus);
1312        if (d == NULL) {
1313                packet->ack = RCODE_SEND_ERROR;
1314                return -1;
1315        }
1316
1317        d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1318        d[0].res_count = cpu_to_le16(packet->timestamp);
1319
1320        /*
1321         * The DMA format for asynchronous link packets is different
1322         * from the IEEE1394 layout, so shift the fields around
1323         * accordingly.
1324         */
1325
1326        tcode = (packet->header[0] >> 4) & 0x0f;
1327        header = (__le32 *) &d[1];
1328        switch (tcode) {
1329        case TCODE_WRITE_QUADLET_REQUEST:
1330        case TCODE_WRITE_BLOCK_REQUEST:
1331        case TCODE_WRITE_RESPONSE:
1332        case TCODE_READ_QUADLET_REQUEST:
1333        case TCODE_READ_BLOCK_REQUEST:
1334        case TCODE_READ_QUADLET_RESPONSE:
1335        case TCODE_READ_BLOCK_RESPONSE:
1336        case TCODE_LOCK_REQUEST:
1337        case TCODE_LOCK_RESPONSE:
1338                header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1339                                        (packet->speed << 16));
1340                header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1341                                        (packet->header[0] & 0xffff0000));
1342                header[2] = cpu_to_le32(packet->header[2]);
1343
1344                if (TCODE_IS_BLOCK_PACKET(tcode))
1345                        header[3] = cpu_to_le32(packet->header[3]);
1346                else
1347                        header[3] = (__force __le32) packet->header[3];
1348
1349                d[0].req_count = cpu_to_le16(packet->header_length);
1350                break;
1351
1352        case TCODE_LINK_INTERNAL:
1353                header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1354                                        (packet->speed << 16));
1355                header[1] = cpu_to_le32(packet->header[1]);
1356                header[2] = cpu_to_le32(packet->header[2]);
1357                d[0].req_count = cpu_to_le16(12);
1358
1359                if (is_ping_packet(&packet->header[1]))
1360                        d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1361                break;
1362
1363        case TCODE_STREAM_DATA:
1364                header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1365                                        (packet->speed << 16));
1366                header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1367                d[0].req_count = cpu_to_le16(8);
1368                break;
1369
1370        default:
1371                /* BUG(); */
1372                packet->ack = RCODE_SEND_ERROR;
1373                return -1;
1374        }
1375
1376        BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1377        driver_data = (struct driver_data *) &d[3];
1378        driver_data->packet = packet;
1379        packet->driver_data = driver_data;
1380
1381        if (packet->payload_length > 0) {
1382                if (packet->payload_length > sizeof(driver_data->inline_data)) {
1383                        payload_bus = dma_map_single(ohci->card.device,
1384                                                     packet->payload,
1385                                                     packet->payload_length,
1386                                                     DMA_TO_DEVICE);
1387                        if (dma_mapping_error(ohci->card.device, payload_bus)) {
1388                                packet->ack = RCODE_SEND_ERROR;
1389                                return -1;
1390                        }
1391                        packet->payload_bus     = payload_bus;
1392                        packet->payload_mapped  = true;
1393                } else {
1394                        memcpy(driver_data->inline_data, packet->payload,
1395                               packet->payload_length);
1396                        payload_bus = d_bus + 3 * sizeof(*d);
1397                }
1398
1399                d[2].req_count    = cpu_to_le16(packet->payload_length);
1400                d[2].data_address = cpu_to_le32(payload_bus);
1401                last = &d[2];
1402                z = 3;
1403        } else {
1404                last = &d[0];
1405                z = 2;
1406        }
1407
1408        last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1409                                     DESCRIPTOR_IRQ_ALWAYS |
1410                                     DESCRIPTOR_BRANCH_ALWAYS);
1411
1412        /* FIXME: Document how the locking works. */
1413        if (ohci->generation != packet->generation) {
1414                if (packet->payload_mapped)
1415                        dma_unmap_single(ohci->card.device, payload_bus,
1416                                         packet->payload_length, DMA_TO_DEVICE);
1417                packet->ack = RCODE_GENERATION;
1418                return -1;
1419        }
1420
1421        context_append(ctx, d, z, 4 - z);
1422
1423        if (ctx->running)
1424                reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1425        else
1426                context_run(ctx, 0);
1427
1428        return 0;
1429}
1430
1431static void at_context_flush(struct context *ctx)
1432{
1433        tasklet_disable(&ctx->tasklet);
1434
1435        ctx->flushing = true;
1436        context_tasklet((unsigned long)ctx);
1437        ctx->flushing = false;
1438
1439        tasklet_enable(&ctx->tasklet);
1440}
1441
1442static int handle_at_packet(struct context *context,
1443                            struct descriptor *d,
1444                            struct descriptor *last)
1445{
1446        struct driver_data *driver_data;
1447        struct fw_packet *packet;
1448        struct fw_ohci *ohci = context->ohci;
1449        int evt;
1450
1451        if (last->transfer_status == 0 && !context->flushing)
1452                /* This descriptor isn't done yet, stop iteration. */
1453                return 0;
1454
1455        driver_data = (struct driver_data *) &d[3];
1456        packet = driver_data->packet;
1457        if (packet == NULL)
1458                /* This packet was cancelled, just continue. */
1459                return 1;
1460
1461        if (packet->payload_mapped)
1462                dma_unmap_single(ohci->card.device, packet->payload_bus,
1463                                 packet->payload_length, DMA_TO_DEVICE);
1464
1465        evt = le16_to_cpu(last->transfer_status) & 0x1f;
1466        packet->timestamp = le16_to_cpu(last->res_count);
1467
1468        log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1469
1470        switch (evt) {
1471        case OHCI1394_evt_timeout:
1472                /* Async response transmit timed out. */
1473                packet->ack = RCODE_CANCELLED;
1474                break;
1475
1476        case OHCI1394_evt_flushed:
1477                /*
1478                 * The packet was flushed should give same error as
1479                 * when we try to use a stale generation count.
1480                 */
1481                packet->ack = RCODE_GENERATION;
1482                break;
1483
1484        case OHCI1394_evt_missing_ack:
1485                if (context->flushing)
1486                        packet->ack = RCODE_GENERATION;
1487                else {
1488                        /*
1489                         * Using a valid (current) generation count, but the
1490                         * node is not on the bus or not sending acks.
1491                         */
1492                        packet->ack = RCODE_NO_ACK;
1493                }
1494                break;
1495
1496        case ACK_COMPLETE + 0x10:
1497        case ACK_PENDING + 0x10:
1498        case ACK_BUSY_X + 0x10:
1499        case ACK_BUSY_A + 0x10:
1500        case ACK_BUSY_B + 0x10:
1501        case ACK_DATA_ERROR + 0x10:
1502        case ACK_TYPE_ERROR + 0x10:
1503                packet->ack = evt - 0x10;
1504                break;
1505
1506        case OHCI1394_evt_no_status:
1507                if (context->flushing) {
1508                        packet->ack = RCODE_GENERATION;
1509                        break;
1510                }
1511                /* fall through */
1512
1513        default:
1514                packet->ack = RCODE_SEND_ERROR;
1515                break;
1516        }
1517
1518        packet->callback(packet, &ohci->card, packet->ack);
1519
1520        return 1;
1521}
1522
1523#define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1524#define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1525#define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1526#define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1527#define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1528
1529static void handle_local_rom(struct fw_ohci *ohci,
1530                             struct fw_packet *packet, u32 csr)
1531{
1532        struct fw_packet response;
1533        int tcode, length, i;
1534
1535        tcode = HEADER_GET_TCODE(packet->header[0]);
1536        if (TCODE_IS_BLOCK_PACKET(tcode))
1537                length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1538        else
1539                length = 4;
1540
1541        i = csr - CSR_CONFIG_ROM;
1542        if (i + length > CONFIG_ROM_SIZE) {
1543                fw_fill_response(&response, packet->header,
1544                                 RCODE_ADDRESS_ERROR, NULL, 0);
1545        } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1546                fw_fill_response(&response, packet->header,
1547                                 RCODE_TYPE_ERROR, NULL, 0);
1548        } else {
1549                fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1550                                 (void *) ohci->config_rom + i, length);
1551        }
1552
1553        fw_core_handle_response(&ohci->card, &response);
1554}
1555
1556static void handle_local_lock(struct fw_ohci *ohci,
1557                              struct fw_packet *packet, u32 csr)
1558{
1559        struct fw_packet response;
1560        int tcode, length, ext_tcode, sel, try;
1561        __be32 *payload, lock_old;
1562        u32 lock_arg, lock_data;
1563
1564        tcode = HEADER_GET_TCODE(packet->header[0]);
1565        length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1566        payload = packet->payload;
1567        ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1568
1569        if (tcode == TCODE_LOCK_REQUEST &&
1570            ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1571                lock_arg = be32_to_cpu(payload[0]);
1572                lock_data = be32_to_cpu(payload[1]);
1573        } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1574                lock_arg = 0;
1575                lock_data = 0;
1576        } else {
1577                fw_fill_response(&response, packet->header,
1578                                 RCODE_TYPE_ERROR, NULL, 0);
1579                goto out;
1580        }
1581
1582        sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1583        reg_write(ohci, OHCI1394_CSRData, lock_data);
1584        reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1585        reg_write(ohci, OHCI1394_CSRControl, sel);
1586
1587        for (try = 0; try < 20; try++)
1588                if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1589                        lock_old = cpu_to_be32(reg_read(ohci,
1590                                                        OHCI1394_CSRData));
1591                        fw_fill_response(&response, packet->header,
1592                                         RCODE_COMPLETE,
1593                                         &lock_old, sizeof(lock_old));
1594                        goto out;
1595                }
1596
1597        ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1598        fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1599
1600 out:
1601        fw_core_handle_response(&ohci->card, &response);
1602}
1603
1604static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1605{
1606        u64 offset, csr;
1607
1608        if (ctx == &ctx->ohci->at_request_ctx) {
1609                packet->ack = ACK_PENDING;
1610                packet->callback(packet, &ctx->ohci->card, packet->ack);
1611        }
1612
1613        offset =
1614                ((unsigned long long)
1615                 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1616                packet->header[2];
1617        csr = offset - CSR_REGISTER_BASE;
1618
1619        /* Handle config rom reads. */
1620        if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1621                handle_local_rom(ctx->ohci, packet, csr);
1622        else switch (csr) {
1623        case CSR_BUS_MANAGER_ID:
1624        case CSR_BANDWIDTH_AVAILABLE:
1625        case CSR_CHANNELS_AVAILABLE_HI:
1626        case CSR_CHANNELS_AVAILABLE_LO:
1627                handle_local_lock(ctx->ohci, packet, csr);
1628                break;
1629        default:
1630                if (ctx == &ctx->ohci->at_request_ctx)
1631                        fw_core_handle_request(&ctx->ohci->card, packet);
1632                else
1633                        fw_core_handle_response(&ctx->ohci->card, packet);
1634                break;
1635        }
1636
1637        if (ctx == &ctx->ohci->at_response_ctx) {
1638                packet->ack = ACK_COMPLETE;
1639                packet->callback(packet, &ctx->ohci->card, packet->ack);
1640        }
1641}
1642
1643static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1644{
1645        unsigned long flags;
1646        int ret;
1647
1648        spin_lock_irqsave(&ctx->ohci->lock, flags);
1649
1650        if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1651            ctx->ohci->generation == packet->generation) {
1652                spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1653                handle_local_request(ctx, packet);
1654                return;
1655        }
1656
1657        ret = at_context_queue_packet(ctx, packet);
1658        spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1659
1660        if (ret < 0)
1661                packet->callback(packet, &ctx->ohci->card, packet->ack);
1662
1663}
1664
1665static void detect_dead_context(struct fw_ohci *ohci,
1666                                const char *name, unsigned int regs)
1667{
1668        u32 ctl;
1669
1670        ctl = reg_read(ohci, CONTROL_SET(regs));
1671        if (ctl & CONTEXT_DEAD)
1672                ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1673                        name, evts[ctl & 0x1f]);
1674}
1675
1676static void handle_dead_contexts(struct fw_ohci *ohci)
1677{
1678        unsigned int i;
1679        char name[8];
1680
1681        detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1682        detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1683        detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1684        detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1685        for (i = 0; i < 32; ++i) {
1686                if (!(ohci->it_context_support & (1 << i)))
1687                        continue;
1688                sprintf(name, "IT%u", i);
1689                detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1690        }
1691        for (i = 0; i < 32; ++i) {
1692                if (!(ohci->ir_context_support & (1 << i)))
1693                        continue;
1694                sprintf(name, "IR%u", i);
1695                detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1696        }
1697        /* TODO: maybe try to flush and restart the dead contexts */
1698}
1699
1700static u32 cycle_timer_ticks(u32 cycle_timer)
1701{
1702        u32 ticks;
1703
1704        ticks = cycle_timer & 0xfff;
1705        ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1706        ticks += (3072 * 8000) * (cycle_timer >> 25);
1707
1708        return ticks;
1709}
1710
1711/*
1712 * Some controllers exhibit one or more of the following bugs when updating the
1713 * iso cycle timer register:
1714 *  - When the lowest six bits are wrapping around to zero, a read that happens
1715 *    at the same time will return garbage in the lowest ten bits.
1716 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1717 *    not incremented for about 60 ns.
1718 *  - Occasionally, the entire register reads zero.
1719 *
1720 * To catch these, we read the register three times and ensure that the
1721 * difference between each two consecutive reads is approximately the same, i.e.
1722 * less than twice the other.  Furthermore, any negative difference indicates an
1723 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1724 * execute, so we have enough precision to compute the ratio of the differences.)
1725 */
1726static u32 get_cycle_time(struct fw_ohci *ohci)
1727{
1728        u32 c0, c1, c2;
1729        u32 t0, t1, t2;
1730        s32 diff01, diff12;
1731        int i;
1732
1733        c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1734
1735        if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1736                i = 0;
1737                c1 = c2;
1738                c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1739                do {
1740                        c0 = c1;
1741                        c1 = c2;
1742                        c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1743                        t0 = cycle_timer_ticks(c0);
1744                        t1 = cycle_timer_ticks(c1);
1745                        t2 = cycle_timer_ticks(c2);
1746                        diff01 = t1 - t0;
1747                        diff12 = t2 - t1;
1748                } while ((diff01 <= 0 || diff12 <= 0 ||
1749                          diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1750                         && i++ < 20);
1751        }
1752
1753        return c2;
1754}
1755
1756/*
1757 * This function has to be called at least every 64 seconds.  The bus_time
1758 * field stores not only the upper 25 bits of the BUS_TIME register but also
1759 * the most significant bit of the cycle timer in bit 6 so that we can detect
1760 * changes in this bit.
1761 */
1762static u32 update_bus_time(struct fw_ohci *ohci)
1763{
1764        u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1765
1766        if (unlikely(!ohci->bus_time_running)) {
1767                reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1768                ohci->bus_time = (lower_32_bits(get_seconds()) & ~0x7f) |
1769                                 (cycle_time_seconds & 0x40);
1770                ohci->bus_time_running = true;
1771        }
1772
1773        if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1774                ohci->bus_time += 0x40;
1775
1776        return ohci->bus_time | cycle_time_seconds;
1777}
1778
1779static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1780{
1781        int reg;
1782
1783        mutex_lock(&ohci->phy_reg_mutex);
1784        reg = write_phy_reg(ohci, 7, port_index);
1785        if (reg >= 0)
1786                reg = read_phy_reg(ohci, 8);
1787        mutex_unlock(&ohci->phy_reg_mutex);
1788        if (reg < 0)
1789                return reg;
1790
1791        switch (reg & 0x0f) {
1792        case 0x06:
1793                return 2;       /* is child node (connected to parent node) */
1794        case 0x0e:
1795                return 3;       /* is parent node (connected to child node) */
1796        }
1797        return 1;               /* not connected */
1798}
1799
1800static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1801        int self_id_count)
1802{
1803        int i;
1804        u32 entry;
1805
1806        for (i = 0; i < self_id_count; i++) {
1807                entry = ohci->self_id_buffer[i];
1808                if ((self_id & 0xff000000) == (entry & 0xff000000))
1809                        return -1;
1810                if ((self_id & 0xff000000) < (entry & 0xff000000))
1811                        return i;
1812        }
1813        return i;
1814}
1815
1816static int initiated_reset(struct fw_ohci *ohci)
1817{
1818        int reg;
1819        int ret = 0;
1820
1821        mutex_lock(&ohci->phy_reg_mutex);
1822        reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1823        if (reg >= 0) {
1824                reg = read_phy_reg(ohci, 8);
1825                reg |= 0x40;
1826                reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1827                if (reg >= 0) {
1828                        reg = read_phy_reg(ohci, 12); /* read register 12 */
1829                        if (reg >= 0) {
1830                                if ((reg & 0x08) == 0x08) {
1831                                        /* bit 3 indicates "initiated reset" */
1832                                        ret = 0x2;
1833                                }
1834                        }
1835                }
1836        }
1837        mutex_unlock(&ohci->phy_reg_mutex);
1838        return ret;
1839}
1840
1841/*
1842 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1843 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1844 * Construct the selfID from phy register contents.
1845 */
1846static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1847{
1848        int reg, i, pos, status;
1849        /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1850        u32 self_id = 0x8040c800;
1851
1852        reg = reg_read(ohci, OHCI1394_NodeID);
1853        if (!(reg & OHCI1394_NodeID_idValid)) {
1854                ohci_notice(ohci,
1855                            "node ID not valid, new bus reset in progress\n");
1856                return -EBUSY;
1857        }
1858        self_id |= ((reg & 0x3f) << 24); /* phy ID */
1859
1860        reg = ohci_read_phy_reg(&ohci->card, 4);
1861        if (reg < 0)
1862                return reg;
1863        self_id |= ((reg & 0x07) << 8); /* power class */
1864
1865        reg = ohci_read_phy_reg(&ohci->card, 1);
1866        if (reg < 0)
1867                return reg;
1868        self_id |= ((reg & 0x3f) << 16); /* gap count */
1869
1870        for (i = 0; i < 3; i++) {
1871                status = get_status_for_port(ohci, i);
1872                if (status < 0)
1873                        return status;
1874                self_id |= ((status & 0x3) << (6 - (i * 2)));
1875        }
1876
1877        self_id |= initiated_reset(ohci);
1878
1879        pos = get_self_id_pos(ohci, self_id, self_id_count);
1880        if (pos >= 0) {
1881                memmove(&(ohci->self_id_buffer[pos+1]),
1882                        &(ohci->self_id_buffer[pos]),
1883                        (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1884                ohci->self_id_buffer[pos] = self_id;
1885                self_id_count++;
1886        }
1887        return self_id_count;
1888}
1889
1890static void bus_reset_work(struct work_struct *work)
1891{
1892        struct fw_ohci *ohci =
1893                container_of(work, struct fw_ohci, bus_reset_work);
1894        int self_id_count, generation, new_generation, i, j;
1895        u32 reg;
1896        void *free_rom = NULL;
1897        dma_addr_t free_rom_bus = 0;
1898        bool is_new_root;
1899
1900        reg = reg_read(ohci, OHCI1394_NodeID);
1901        if (!(reg & OHCI1394_NodeID_idValid)) {
1902                ohci_notice(ohci,
1903                            "node ID not valid, new bus reset in progress\n");
1904                return;
1905        }
1906        if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1907                ohci_notice(ohci, "malconfigured bus\n");
1908                return;
1909        }
1910        ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1911                               OHCI1394_NodeID_nodeNumber);
1912
1913        is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1914        if (!(ohci->is_root && is_new_root))
1915                reg_write(ohci, OHCI1394_LinkControlSet,
1916                          OHCI1394_LinkControl_cycleMaster);
1917        ohci->is_root = is_new_root;
1918
1919        reg = reg_read(ohci, OHCI1394_SelfIDCount);
1920        if (reg & OHCI1394_SelfIDCount_selfIDError) {
1921                ohci_notice(ohci, "self ID receive error\n");
1922                return;
1923        }
1924        /*
1925         * The count in the SelfIDCount register is the number of
1926         * bytes in the self ID receive buffer.  Since we also receive
1927         * the inverted quadlets and a header quadlet, we shift one
1928         * bit extra to get the actual number of self IDs.
1929         */
1930        self_id_count = (reg >> 3) & 0xff;
1931
1932        if (self_id_count > 252) {
1933                ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1934                return;
1935        }
1936
1937        generation = (cond_le32_to_cpu(ohci->self_id[0]) >> 16) & 0xff;
1938        rmb();
1939
1940        for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1941                u32 id  = cond_le32_to_cpu(ohci->self_id[i]);
1942                u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1]);
1943
1944                if (id != ~id2) {
1945                        /*
1946                         * If the invalid data looks like a cycle start packet,
1947                         * it's likely to be the result of the cycle master
1948                         * having a wrong gap count.  In this case, the self IDs
1949                         * so far are valid and should be processed so that the
1950                         * bus manager can then correct the gap count.
1951                         */
1952                        if (id == 0xffff008f) {
1953                                ohci_notice(ohci, "ignoring spurious self IDs\n");
1954                                self_id_count = j;
1955                                break;
1956                        }
1957
1958                        ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
1959                                    j, self_id_count, id, id2);
1960                        return;
1961                }
1962                ohci->self_id_buffer[j] = id;
1963        }
1964
1965        if (ohci->quirks & QUIRK_TI_SLLZ059) {
1966                self_id_count = find_and_insert_self_id(ohci, self_id_count);
1967                if (self_id_count < 0) {
1968                        ohci_notice(ohci,
1969                                    "could not construct local self ID\n");
1970                        return;
1971                }
1972        }
1973
1974        if (self_id_count == 0) {
1975                ohci_notice(ohci, "no self IDs\n");
1976                return;
1977        }
1978        rmb();
1979
1980        /*
1981         * Check the consistency of the self IDs we just read.  The
1982         * problem we face is that a new bus reset can start while we
1983         * read out the self IDs from the DMA buffer. If this happens,
1984         * the DMA buffer will be overwritten with new self IDs and we
1985         * will read out inconsistent data.  The OHCI specification
1986         * (section 11.2) recommends a technique similar to
1987         * linux/seqlock.h, where we remember the generation of the
1988         * self IDs in the buffer before reading them out and compare
1989         * it to the current generation after reading them out.  If
1990         * the two generations match we know we have a consistent set
1991         * of self IDs.
1992         */
1993
1994        new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1995        if (new_generation != generation) {
1996                ohci_notice(ohci, "new bus reset, discarding self ids\n");
1997                return;
1998        }
1999
2000        /* FIXME: Document how the locking works. */
2001        spin_lock_irq(&ohci->lock);
2002
2003        ohci->generation = -1; /* prevent AT packet queueing */
2004        context_stop(&ohci->at_request_ctx);
2005        context_stop(&ohci->at_response_ctx);
2006
2007        spin_unlock_irq(&ohci->lock);
2008
2009        /*
2010         * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2011         * packets in the AT queues and software needs to drain them.
2012         * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2013         */
2014        at_context_flush(&ohci->at_request_ctx);
2015        at_context_flush(&ohci->at_response_ctx);
2016
2017        spin_lock_irq(&ohci->lock);
2018
2019        ohci->generation = generation;
2020        reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2021
2022        if (ohci->quirks & QUIRK_RESET_PACKET)
2023                ohci->request_generation = generation;
2024
2025        /*
2026         * This next bit is unrelated to the AT context stuff but we
2027         * have to do it under the spinlock also.  If a new config rom
2028         * was set up before this reset, the old one is now no longer
2029         * in use and we can free it. Update the config rom pointers
2030         * to point to the current config rom and clear the
2031         * next_config_rom pointer so a new update can take place.
2032         */
2033
2034        if (ohci->next_config_rom != NULL) {
2035                if (ohci->next_config_rom != ohci->config_rom) {
2036                        free_rom      = ohci->config_rom;
2037                        free_rom_bus  = ohci->config_rom_bus;
2038                }
2039                ohci->config_rom      = ohci->next_config_rom;
2040                ohci->config_rom_bus  = ohci->next_config_rom_bus;
2041                ohci->next_config_rom = NULL;
2042
2043                /*
2044                 * Restore config_rom image and manually update
2045                 * config_rom registers.  Writing the header quadlet
2046                 * will indicate that the config rom is ready, so we
2047                 * do that last.
2048                 */
2049                reg_write(ohci, OHCI1394_BusOptions,
2050                          be32_to_cpu(ohci->config_rom[2]));
2051                ohci->config_rom[0] = ohci->next_header;
2052                reg_write(ohci, OHCI1394_ConfigROMhdr,
2053                          be32_to_cpu(ohci->next_header));
2054        }
2055
2056        if (param_remote_dma) {
2057                reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2058                reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2059        }
2060
2061        spin_unlock_irq(&ohci->lock);
2062
2063        if (free_rom)
2064                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2065                                  free_rom, free_rom_bus);
2066
2067        log_selfids(ohci, generation, self_id_count);
2068
2069        fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2070                                 self_id_count, ohci->self_id_buffer,
2071                                 ohci->csr_state_setclear_abdicate);
2072        ohci->csr_state_setclear_abdicate = false;
2073}
2074
2075static irqreturn_t irq_handler(int irq, void *data)
2076{
2077        struct fw_ohci *ohci = data;
2078        u32 event, iso_event;
2079        int i;
2080
2081        event = reg_read(ohci, OHCI1394_IntEventClear);
2082
2083        if (!event || !~event)
2084                return IRQ_NONE;
2085
2086        /*
2087         * busReset and postedWriteErr must not be cleared yet
2088         * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2089         */
2090        reg_write(ohci, OHCI1394_IntEventClear,
2091                  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2092        log_irqs(ohci, event);
2093
2094        if (event & OHCI1394_selfIDComplete)
2095                queue_work(selfid_workqueue, &ohci->bus_reset_work);
2096
2097        if (event & OHCI1394_RQPkt)
2098                tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2099
2100        if (event & OHCI1394_RSPkt)
2101                tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2102
2103        if (event & OHCI1394_reqTxComplete)
2104                tasklet_schedule(&ohci->at_request_ctx.tasklet);
2105
2106        if (event & OHCI1394_respTxComplete)
2107                tasklet_schedule(&ohci->at_response_ctx.tasklet);
2108
2109        if (event & OHCI1394_isochRx) {
2110                iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2111                reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2112
2113                while (iso_event) {
2114                        i = ffs(iso_event) - 1;
2115                        tasklet_schedule(
2116                                &ohci->ir_context_list[i].context.tasklet);
2117                        iso_event &= ~(1 << i);
2118                }
2119        }
2120
2121        if (event & OHCI1394_isochTx) {
2122                iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2123                reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2124
2125                while (iso_event) {
2126                        i = ffs(iso_event) - 1;
2127                        tasklet_schedule(
2128                                &ohci->it_context_list[i].context.tasklet);
2129                        iso_event &= ~(1 << i);
2130                }
2131        }
2132
2133        if (unlikely(event & OHCI1394_regAccessFail))
2134                ohci_err(ohci, "register access failure\n");
2135
2136        if (unlikely(event & OHCI1394_postedWriteErr)) {
2137                reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2138                reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2139                reg_write(ohci, OHCI1394_IntEventClear,
2140                          OHCI1394_postedWriteErr);
2141                if (printk_ratelimit())
2142                        ohci_err(ohci, "PCI posted write error\n");
2143        }
2144
2145        if (unlikely(event & OHCI1394_cycleTooLong)) {
2146                if (printk_ratelimit())
2147                        ohci_notice(ohci, "isochronous cycle too long\n");
2148                reg_write(ohci, OHCI1394_LinkControlSet,
2149                          OHCI1394_LinkControl_cycleMaster);
2150        }
2151
2152        if (unlikely(event & OHCI1394_cycleInconsistent)) {
2153                /*
2154                 * We need to clear this event bit in order to make
2155                 * cycleMatch isochronous I/O work.  In theory we should
2156                 * stop active cycleMatch iso contexts now and restart
2157                 * them at least two cycles later.  (FIXME?)
2158                 */
2159                if (printk_ratelimit())
2160                        ohci_notice(ohci, "isochronous cycle inconsistent\n");
2161        }
2162
2163        if (unlikely(event & OHCI1394_unrecoverableError))
2164                handle_dead_contexts(ohci);
2165
2166        if (event & OHCI1394_cycle64Seconds) {
2167                spin_lock(&ohci->lock);
2168                update_bus_time(ohci);
2169                spin_unlock(&ohci->lock);
2170        } else
2171                flush_writes(ohci);
2172
2173        return IRQ_HANDLED;
2174}
2175
2176static int software_reset(struct fw_ohci *ohci)
2177{
2178        u32 val;
2179        int i;
2180
2181        reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2182        for (i = 0; i < 500; i++) {
2183                val = reg_read(ohci, OHCI1394_HCControlSet);
2184                if (!~val)
2185                        return -ENODEV; /* Card was ejected. */
2186
2187                if (!(val & OHCI1394_HCControl_softReset))
2188                        return 0;
2189
2190                msleep(1);
2191        }
2192
2193        return -EBUSY;
2194}
2195
2196static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2197{
2198        size_t size = length * 4;
2199
2200        memcpy(dest, src, size);
2201        if (size < CONFIG_ROM_SIZE)
2202                memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2203}
2204
2205static int configure_1394a_enhancements(struct fw_ohci *ohci)
2206{
2207        bool enable_1394a;
2208        int ret, clear, set, offset;
2209
2210        /* Check if the driver should configure link and PHY. */
2211        if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2212              OHCI1394_HCControl_programPhyEnable))
2213                return 0;
2214
2215        /* Paranoia: check whether the PHY supports 1394a, too. */
2216        enable_1394a = false;
2217        ret = read_phy_reg(ohci, 2);
2218        if (ret < 0)
2219                return ret;
2220        if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2221                ret = read_paged_phy_reg(ohci, 1, 8);
2222                if (ret < 0)
2223                        return ret;
2224                if (ret >= 1)
2225                        enable_1394a = true;
2226        }
2227
2228        if (ohci->quirks & QUIRK_NO_1394A)
2229                enable_1394a = false;
2230
2231        /* Configure PHY and link consistently. */
2232        if (enable_1394a) {
2233                clear = 0;
2234                set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2235        } else {
2236                clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2237                set = 0;
2238        }
2239        ret = update_phy_reg(ohci, 5, clear, set);
2240        if (ret < 0)
2241                return ret;
2242
2243        if (enable_1394a)
2244                offset = OHCI1394_HCControlSet;
2245        else
2246                offset = OHCI1394_HCControlClear;
2247        reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2248
2249        /* Clean up: configuration has been taken care of. */
2250        reg_write(ohci, OHCI1394_HCControlClear,
2251                  OHCI1394_HCControl_programPhyEnable);
2252
2253        return 0;
2254}
2255
2256static int probe_tsb41ba3d(struct fw_ohci *ohci)
2257{
2258        /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2259        static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2260        int reg, i;
2261
2262        reg = read_phy_reg(ohci, 2);
2263        if (reg < 0)
2264                return reg;
2265        if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2266                return 0;
2267
2268        for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2269                reg = read_paged_phy_reg(ohci, 1, i + 10);
2270                if (reg < 0)
2271                        return reg;
2272                if (reg != id[i])
2273                        return 0;
2274        }
2275        return 1;
2276}
2277
2278static int ohci_enable(struct fw_card *card,
2279                       const __be32 *config_rom, size_t length)
2280{
2281        struct fw_ohci *ohci = fw_ohci(card);
2282        u32 lps, version, irqs;
2283        int i, ret;
2284
2285        ret = software_reset(ohci);
2286        if (ret < 0) {
2287                ohci_err(ohci, "failed to reset ohci card\n");
2288                return ret;
2289        }
2290
2291        /*
2292         * Now enable LPS, which we need in order to start accessing
2293         * most of the registers.  In fact, on some cards (ALI M5251),
2294         * accessing registers in the SClk domain without LPS enabled
2295         * will lock up the machine.  Wait 50msec to make sure we have
2296         * full link enabled.  However, with some cards (well, at least
2297         * a JMicron PCIe card), we have to try again sometimes.
2298         *
2299         * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2300         * cannot actually use the phy at that time.  These need tens of
2301         * millisecods pause between LPS write and first phy access too.
2302         */
2303
2304        reg_write(ohci, OHCI1394_HCControlSet,
2305                  OHCI1394_HCControl_LPS |
2306                  OHCI1394_HCControl_postedWriteEnable);
2307        flush_writes(ohci);
2308
2309        for (lps = 0, i = 0; !lps && i < 3; i++) {
2310                msleep(50);
2311                lps = reg_read(ohci, OHCI1394_HCControlSet) &
2312                      OHCI1394_HCControl_LPS;
2313        }
2314
2315        if (!lps) {
2316                ohci_err(ohci, "failed to set Link Power Status\n");
2317                return -EIO;
2318        }
2319
2320        if (ohci->quirks & QUIRK_TI_SLLZ059) {
2321                ret = probe_tsb41ba3d(ohci);
2322                if (ret < 0)
2323                        return ret;
2324                if (ret)
2325                        ohci_notice(ohci, "local TSB41BA3D phy\n");
2326                else
2327                        ohci->quirks &= ~QUIRK_TI_SLLZ059;
2328        }
2329
2330        reg_write(ohci, OHCI1394_HCControlClear,
2331                  OHCI1394_HCControl_noByteSwapData);
2332
2333        reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2334        reg_write(ohci, OHCI1394_LinkControlSet,
2335                  OHCI1394_LinkControl_cycleTimerEnable |
2336                  OHCI1394_LinkControl_cycleMaster);
2337
2338        reg_write(ohci, OHCI1394_ATRetries,
2339                  OHCI1394_MAX_AT_REQ_RETRIES |
2340                  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2341                  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2342                  (200 << 16));
2343
2344        ohci->bus_time_running = false;
2345
2346        for (i = 0; i < 32; i++)
2347                if (ohci->ir_context_support & (1 << i))
2348                        reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2349                                  IR_CONTEXT_MULTI_CHANNEL_MODE);
2350
2351        version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2352        if (version >= OHCI_VERSION_1_1) {
2353                reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2354                          0xfffffffe);
2355                card->broadcast_channel_auto_allocated = true;
2356        }
2357
2358        /* Get implemented bits of the priority arbitration request counter. */
2359        reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2360        ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2361        reg_write(ohci, OHCI1394_FairnessControl, 0);
2362        card->priority_budget_implemented = ohci->pri_req_max != 0;
2363
2364        reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2365        reg_write(ohci, OHCI1394_IntEventClear, ~0);
2366        reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2367
2368        ret = configure_1394a_enhancements(ohci);
2369        if (ret < 0)
2370                return ret;
2371
2372        /* Activate link_on bit and contender bit in our self ID packets.*/
2373        ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2374        if (ret < 0)
2375                return ret;
2376
2377        /*
2378         * When the link is not yet enabled, the atomic config rom
2379         * update mechanism described below in ohci_set_config_rom()
2380         * is not active.  We have to update ConfigRomHeader and
2381         * BusOptions manually, and the write to ConfigROMmap takes
2382         * effect immediately.  We tie this to the enabling of the
2383         * link, so we have a valid config rom before enabling - the
2384         * OHCI requires that ConfigROMhdr and BusOptions have valid
2385         * values before enabling.
2386         *
2387         * However, when the ConfigROMmap is written, some controllers
2388         * always read back quadlets 0 and 2 from the config rom to
2389         * the ConfigRomHeader and BusOptions registers on bus reset.
2390         * They shouldn't do that in this initial case where the link
2391         * isn't enabled.  This means we have to use the same
2392         * workaround here, setting the bus header to 0 and then write
2393         * the right values in the bus reset tasklet.
2394         */
2395
2396        if (config_rom) {
2397                ohci->next_config_rom =
2398                        dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2399                                           &ohci->next_config_rom_bus,
2400                                           GFP_KERNEL);
2401                if (ohci->next_config_rom == NULL)
2402                        return -ENOMEM;
2403
2404                copy_config_rom(ohci->next_config_rom, config_rom, length);
2405        } else {
2406                /*
2407                 * In the suspend case, config_rom is NULL, which
2408                 * means that we just reuse the old config rom.
2409                 */
2410                ohci->next_config_rom = ohci->config_rom;
2411                ohci->next_config_rom_bus = ohci->config_rom_bus;
2412        }
2413
2414        ohci->next_header = ohci->next_config_rom[0];
2415        ohci->next_config_rom[0] = 0;
2416        reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2417        reg_write(ohci, OHCI1394_BusOptions,
2418                  be32_to_cpu(ohci->next_config_rom[2]));
2419        reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2420
2421        reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2422
2423        irqs =  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2424                OHCI1394_RQPkt | OHCI1394_RSPkt |
2425                OHCI1394_isochTx | OHCI1394_isochRx |
2426                OHCI1394_postedWriteErr |
2427                OHCI1394_selfIDComplete |
2428                OHCI1394_regAccessFail |
2429                OHCI1394_cycleInconsistent |
2430                OHCI1394_unrecoverableError |
2431                OHCI1394_cycleTooLong |
2432                OHCI1394_masterIntEnable;
2433        if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2434                irqs |= OHCI1394_busReset;
2435        reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2436
2437        reg_write(ohci, OHCI1394_HCControlSet,
2438                  OHCI1394_HCControl_linkEnable |
2439                  OHCI1394_HCControl_BIBimageValid);
2440
2441        reg_write(ohci, OHCI1394_LinkControlSet,
2442                  OHCI1394_LinkControl_rcvSelfID |
2443                  OHCI1394_LinkControl_rcvPhyPkt);
2444
2445        ar_context_run(&ohci->ar_request_ctx);
2446        ar_context_run(&ohci->ar_response_ctx);
2447
2448        flush_writes(ohci);
2449
2450        /* We are ready to go, reset bus to finish initialization. */
2451        fw_schedule_bus_reset(&ohci->card, false, true);
2452
2453        return 0;
2454}
2455
2456static int ohci_set_config_rom(struct fw_card *card,
2457                               const __be32 *config_rom, size_t length)
2458{
2459        struct fw_ohci *ohci;
2460        __be32 *next_config_rom;
2461        dma_addr_t uninitialized_var(next_config_rom_bus);
2462
2463        ohci = fw_ohci(card);
2464
2465        /*
2466         * When the OHCI controller is enabled, the config rom update
2467         * mechanism is a bit tricky, but easy enough to use.  See
2468         * section 5.5.6 in the OHCI specification.
2469         *
2470         * The OHCI controller caches the new config rom address in a
2471         * shadow register (ConfigROMmapNext) and needs a bus reset
2472         * for the changes to take place.  When the bus reset is
2473         * detected, the controller loads the new values for the
2474         * ConfigRomHeader and BusOptions registers from the specified
2475         * config rom and loads ConfigROMmap from the ConfigROMmapNext
2476         * shadow register. All automatically and atomically.
2477         *
2478         * Now, there's a twist to this story.  The automatic load of
2479         * ConfigRomHeader and BusOptions doesn't honor the
2480         * noByteSwapData bit, so with a be32 config rom, the
2481         * controller will load be32 values in to these registers
2482         * during the atomic update, even on litte endian
2483         * architectures.  The workaround we use is to put a 0 in the
2484         * header quadlet; 0 is endian agnostic and means that the
2485         * config rom isn't ready yet.  In the bus reset tasklet we
2486         * then set up the real values for the two registers.
2487         *
2488         * We use ohci->lock to avoid racing with the code that sets
2489         * ohci->next_config_rom to NULL (see bus_reset_work).
2490         */
2491
2492        next_config_rom =
2493                dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2494                                   &next_config_rom_bus, GFP_KERNEL);
2495        if (next_config_rom == NULL)
2496                return -ENOMEM;
2497
2498        spin_lock_irq(&ohci->lock);
2499
2500        /*
2501         * If there is not an already pending config_rom update,
2502         * push our new allocation into the ohci->next_config_rom
2503         * and then mark the local variable as null so that we
2504         * won't deallocate the new buffer.
2505         *
2506         * OTOH, if there is a pending config_rom update, just
2507         * use that buffer with the new config_rom data, and
2508         * let this routine free the unused DMA allocation.
2509         */
2510
2511        if (ohci->next_config_rom == NULL) {
2512                ohci->next_config_rom = next_config_rom;
2513                ohci->next_config_rom_bus = next_config_rom_bus;
2514                next_config_rom = NULL;
2515        }
2516
2517        copy_config_rom(ohci->next_config_rom, config_rom, length);
2518
2519        ohci->next_header = config_rom[0];
2520        ohci->next_config_rom[0] = 0;
2521
2522        reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2523
2524        spin_unlock_irq(&ohci->lock);
2525
2526        /* If we didn't use the DMA allocation, delete it. */
2527        if (next_config_rom != NULL)
2528                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2529                                  next_config_rom, next_config_rom_bus);
2530
2531        /*
2532         * Now initiate a bus reset to have the changes take
2533         * effect. We clean up the old config rom memory and DMA
2534         * mappings in the bus reset tasklet, since the OHCI
2535         * controller could need to access it before the bus reset
2536         * takes effect.
2537         */
2538
2539        fw_schedule_bus_reset(&ohci->card, true, true);
2540
2541        return 0;
2542}
2543
2544static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2545{
2546        struct fw_ohci *ohci = fw_ohci(card);
2547
2548        at_context_transmit(&ohci->at_request_ctx, packet);
2549}
2550
2551static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2552{
2553        struct fw_ohci *ohci = fw_ohci(card);
2554
2555        at_context_transmit(&ohci->at_response_ctx, packet);
2556}
2557
2558static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2559{
2560        struct fw_ohci *ohci = fw_ohci(card);
2561        struct context *ctx = &ohci->at_request_ctx;
2562        struct driver_data *driver_data = packet->driver_data;
2563        int ret = -ENOENT;
2564
2565        tasklet_disable(&ctx->tasklet);
2566
2567        if (packet->ack != 0)
2568                goto out;
2569
2570        if (packet->payload_mapped)
2571                dma_unmap_single(ohci->card.device, packet->payload_bus,
2572                                 packet->payload_length, DMA_TO_DEVICE);
2573
2574        log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2575        driver_data->packet = NULL;
2576        packet->ack = RCODE_CANCELLED;
2577        packet->callback(packet, &ohci->card, packet->ack);
2578        ret = 0;
2579 out:
2580        tasklet_enable(&ctx->tasklet);
2581
2582        return ret;
2583}
2584
2585static int ohci_enable_phys_dma(struct fw_card *card,
2586                                int node_id, int generation)
2587{
2588        struct fw_ohci *ohci = fw_ohci(card);
2589        unsigned long flags;
2590        int n, ret = 0;
2591
2592        if (param_remote_dma)
2593                return 0;
2594
2595        /*
2596         * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2597         * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2598         */
2599
2600        spin_lock_irqsave(&ohci->lock, flags);
2601
2602        if (ohci->generation != generation) {
2603                ret = -ESTALE;
2604                goto out;
2605        }
2606
2607        /*
2608         * Note, if the node ID contains a non-local bus ID, physical DMA is
2609         * enabled for _all_ nodes on remote buses.
2610         */
2611
2612        n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2613        if (n < 32)
2614                reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2615        else
2616                reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2617
2618        flush_writes(ohci);
2619 out:
2620        spin_unlock_irqrestore(&ohci->lock, flags);
2621
2622        return ret;
2623}
2624
2625static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2626{
2627        struct fw_ohci *ohci = fw_ohci(card);
2628        unsigned long flags;
2629        u32 value;
2630
2631        switch (csr_offset) {
2632        case CSR_STATE_CLEAR:
2633        case CSR_STATE_SET:
2634                if (ohci->is_root &&
2635                    (reg_read(ohci, OHCI1394_LinkControlSet) &
2636                     OHCI1394_LinkControl_cycleMaster))
2637                        value = CSR_STATE_BIT_CMSTR;
2638                else
2639                        value = 0;
2640                if (ohci->csr_state_setclear_abdicate)
2641                        value |= CSR_STATE_BIT_ABDICATE;
2642
2643                return value;
2644
2645        case CSR_NODE_IDS:
2646                return reg_read(ohci, OHCI1394_NodeID) << 16;
2647
2648        case CSR_CYCLE_TIME:
2649                return get_cycle_time(ohci);
2650
2651        case CSR_BUS_TIME:
2652                /*
2653                 * We might be called just after the cycle timer has wrapped
2654                 * around but just before the cycle64Seconds handler, so we
2655                 * better check here, too, if the bus time needs to be updated.
2656                 */
2657                spin_lock_irqsave(&ohci->lock, flags);
2658                value = update_bus_time(ohci);
2659                spin_unlock_irqrestore(&ohci->lock, flags);
2660                return value;
2661
2662        case CSR_BUSY_TIMEOUT:
2663                value = reg_read(ohci, OHCI1394_ATRetries);
2664                return (value >> 4) & 0x0ffff00f;
2665
2666        case CSR_PRIORITY_BUDGET:
2667                return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2668                        (ohci->pri_req_max << 8);
2669
2670        default:
2671                WARN_ON(1);
2672                return 0;
2673        }
2674}
2675
2676static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2677{
2678        struct fw_ohci *ohci = fw_ohci(card);
2679        unsigned long flags;
2680
2681        switch (csr_offset) {
2682        case CSR_STATE_CLEAR:
2683                if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2684                        reg_write(ohci, OHCI1394_LinkControlClear,
2685                                  OHCI1394_LinkControl_cycleMaster);
2686                        flush_writes(ohci);
2687                }
2688                if (value & CSR_STATE_BIT_ABDICATE)
2689                        ohci->csr_state_setclear_abdicate = false;
2690                break;
2691
2692        case CSR_STATE_SET:
2693                if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2694                        reg_write(ohci, OHCI1394_LinkControlSet,
2695                                  OHCI1394_LinkControl_cycleMaster);
2696                        flush_writes(ohci);
2697                }
2698                if (value & CSR_STATE_BIT_ABDICATE)
2699                        ohci->csr_state_setclear_abdicate = true;
2700                break;
2701
2702        case CSR_NODE_IDS:
2703                reg_write(ohci, OHCI1394_NodeID, value >> 16);
2704                flush_writes(ohci);
2705                break;
2706
2707        case CSR_CYCLE_TIME:
2708                reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2709                reg_write(ohci, OHCI1394_IntEventSet,
2710                          OHCI1394_cycleInconsistent);
2711                flush_writes(ohci);
2712                break;
2713
2714        case CSR_BUS_TIME:
2715                spin_lock_irqsave(&ohci->lock, flags);
2716                ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2717                                 (value & ~0x7f);
2718                spin_unlock_irqrestore(&ohci->lock, flags);
2719                break;
2720
2721        case CSR_BUSY_TIMEOUT:
2722                value = (value & 0xf) | ((value & 0xf) << 4) |
2723                        ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2724                reg_write(ohci, OHCI1394_ATRetries, value);
2725                flush_writes(ohci);
2726                break;
2727
2728        case CSR_PRIORITY_BUDGET:
2729                reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2730                flush_writes(ohci);
2731                break;
2732
2733        default:
2734                WARN_ON(1);
2735                break;
2736        }
2737}
2738
2739static void flush_iso_completions(struct iso_context *ctx)
2740{
2741        ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2742                              ctx->header_length, ctx->header,
2743                              ctx->base.callback_data);
2744        ctx->header_length = 0;
2745}
2746
2747static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2748{
2749        u32 *ctx_hdr;
2750
2751        if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2752                if (ctx->base.drop_overflow_headers)
2753                        return;
2754                flush_iso_completions(ctx);
2755        }
2756
2757        ctx_hdr = ctx->header + ctx->header_length;
2758        ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2759
2760        /*
2761         * The two iso header quadlets are byteswapped to little
2762         * endian by the controller, but we want to present them
2763         * as big endian for consistency with the bus endianness.
2764         */
2765        if (ctx->base.header_size > 0)
2766                ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2767        if (ctx->base.header_size > 4)
2768                ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2769        if (ctx->base.header_size > 8)
2770                memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2771        ctx->header_length += ctx->base.header_size;
2772}
2773
2774static int handle_ir_packet_per_buffer(struct context *context,
2775                                       struct descriptor *d,
2776                                       struct descriptor *last)
2777{
2778        struct iso_context *ctx =
2779                container_of(context, struct iso_context, context);
2780        struct descriptor *pd;
2781        u32 buffer_dma;
2782
2783        for (pd = d; pd <= last; pd++)
2784                if (pd->transfer_status)
2785                        break;
2786        if (pd > last)
2787                /* Descriptor(s) not done yet, stop iteration */
2788                return 0;
2789
2790        while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2791                d++;
2792                buffer_dma = le32_to_cpu(d->data_address);
2793                dma_sync_single_range_for_cpu(context->ohci->card.device,
2794                                              buffer_dma & PAGE_MASK,
2795                                              buffer_dma & ~PAGE_MASK,
2796                                              le16_to_cpu(d->req_count),
2797                                              DMA_FROM_DEVICE);
2798        }
2799
2800        copy_iso_headers(ctx, (u32 *) (last + 1));
2801
2802        if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2803                flush_iso_completions(ctx);
2804
2805        return 1;
2806}
2807
2808/* d == last because each descriptor block is only a single descriptor. */
2809static int handle_ir_buffer_fill(struct context *context,
2810                                 struct descriptor *d,
2811                                 struct descriptor *last)
2812{
2813        struct iso_context *ctx =
2814                container_of(context, struct iso_context, context);
2815        unsigned int req_count, res_count, completed;
2816        u32 buffer_dma;
2817
2818        req_count = le16_to_cpu(last->req_count);
2819        res_count = le16_to_cpu(READ_ONCE(last->res_count));
2820        completed = req_count - res_count;
2821        buffer_dma = le32_to_cpu(last->data_address);
2822
2823        if (completed > 0) {
2824                ctx->mc_buffer_bus = buffer_dma;
2825                ctx->mc_completed = completed;
2826        }
2827
2828        if (res_count != 0)
2829                /* Descriptor(s) not done yet, stop iteration */
2830                return 0;
2831
2832        dma_sync_single_range_for_cpu(context->ohci->card.device,
2833                                      buffer_dma & PAGE_MASK,
2834                                      buffer_dma & ~PAGE_MASK,
2835                                      completed, DMA_FROM_DEVICE);
2836
2837        if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2838                ctx->base.callback.mc(&ctx->base,
2839                                      buffer_dma + completed,
2840                                      ctx->base.callback_data);
2841                ctx->mc_completed = 0;
2842        }
2843
2844        return 1;
2845}
2846
2847static void flush_ir_buffer_fill(struct iso_context *ctx)
2848{
2849        dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2850                                      ctx->mc_buffer_bus & PAGE_MASK,
2851                                      ctx->mc_buffer_bus & ~PAGE_MASK,
2852                                      ctx->mc_completed, DMA_FROM_DEVICE);
2853
2854        ctx->base.callback.mc(&ctx->base,
2855                              ctx->mc_buffer_bus + ctx->mc_completed,
2856                              ctx->base.callback_data);
2857        ctx->mc_completed = 0;
2858}
2859
2860static inline void sync_it_packet_for_cpu(struct context *context,
2861                                          struct descriptor *pd)
2862{
2863        __le16 control;
2864        u32 buffer_dma;
2865
2866        /* only packets beginning with OUTPUT_MORE* have data buffers */
2867        if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2868                return;
2869
2870        /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2871        pd += 2;
2872
2873        /*
2874         * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2875         * data buffer is in the context program's coherent page and must not
2876         * be synced.
2877         */
2878        if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2879            (context->current_bus          & PAGE_MASK)) {
2880                if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2881                        return;
2882                pd++;
2883        }
2884
2885        do {
2886                buffer_dma = le32_to_cpu(pd->data_address);
2887                dma_sync_single_range_for_cpu(context->ohci->card.device,
2888                                              buffer_dma & PAGE_MASK,
2889                                              buffer_dma & ~PAGE_MASK,
2890                                              le16_to_cpu(pd->req_count),
2891                                              DMA_TO_DEVICE);
2892                control = pd->control;
2893                pd++;
2894        } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2895}
2896
2897static int handle_it_packet(struct context *context,
2898                            struct descriptor *d,
2899                            struct descriptor *last)
2900{
2901        struct iso_context *ctx =
2902                container_of(context, struct iso_context, context);
2903        struct descriptor *pd;
2904        __be32 *ctx_hdr;
2905
2906        for (pd = d; pd <= last; pd++)
2907                if (pd->transfer_status)
2908                        break;
2909        if (pd > last)
2910                /* Descriptor(s) not done yet, stop iteration */
2911                return 0;
2912
2913        sync_it_packet_for_cpu(context, d);
2914
2915        if (ctx->header_length + 4 > PAGE_SIZE) {
2916                if (ctx->base.drop_overflow_headers)
2917                        return 1;
2918                flush_iso_completions(ctx);
2919        }
2920
2921        ctx_hdr = ctx->header + ctx->header_length;
2922        ctx->last_timestamp = le16_to_cpu(last->res_count);
2923        /* Present this value as big-endian to match the receive code */
2924        *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2925                               le16_to_cpu(pd->res_count));
2926        ctx->header_length += 4;
2927
2928        if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2929                flush_iso_completions(ctx);
2930
2931        return 1;
2932}
2933
2934static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2935{
2936        u32 hi = channels >> 32, lo = channels;
2937
2938        reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2939        reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2940        reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2941        reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2942        ohci->mc_channels = channels;
2943}
2944
2945static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2946                                int type, int channel, size_t header_size)
2947{
2948        struct fw_ohci *ohci = fw_ohci(card);
2949        struct iso_context *uninitialized_var(ctx);
2950        descriptor_callback_t uninitialized_var(callback);
2951        u64 *uninitialized_var(channels);
2952        u32 *uninitialized_var(mask), uninitialized_var(regs);
2953        int index, ret = -EBUSY;
2954
2955        spin_lock_irq(&ohci->lock);
2956
2957        switch (type) {
2958        case FW_ISO_CONTEXT_TRANSMIT:
2959                mask     = &ohci->it_context_mask;
2960                callback = handle_it_packet;
2961                index    = ffs(*mask) - 1;
2962                if (index >= 0) {
2963                        *mask &= ~(1 << index);
2964                        regs = OHCI1394_IsoXmitContextBase(index);
2965                        ctx  = &ohci->it_context_list[index];
2966                }
2967                break;
2968
2969        case FW_ISO_CONTEXT_RECEIVE:
2970                channels = &ohci->ir_context_channels;
2971                mask     = &ohci->ir_context_mask;
2972                callback = handle_ir_packet_per_buffer;
2973                index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2974                if (index >= 0) {
2975                        *channels &= ~(1ULL << channel);
2976                        *mask     &= ~(1 << index);
2977                        regs = OHCI1394_IsoRcvContextBase(index);
2978                        ctx  = &ohci->ir_context_list[index];
2979                }
2980                break;
2981
2982        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2983                mask     = &ohci->ir_context_mask;
2984                callback = handle_ir_buffer_fill;
2985                index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2986                if (index >= 0) {
2987                        ohci->mc_allocated = true;
2988                        *mask &= ~(1 << index);
2989                        regs = OHCI1394_IsoRcvContextBase(index);
2990                        ctx  = &ohci->ir_context_list[index];
2991                }
2992                break;
2993
2994        default:
2995                index = -1;
2996                ret = -ENOSYS;
2997        }
2998
2999        spin_unlock_irq(&ohci->lock);
3000
3001        if (index < 0)
3002                return ERR_PTR(ret);
3003
3004        memset(ctx, 0, sizeof(*ctx));
3005        ctx->header_length = 0;
3006        ctx->header = (void *) __get_free_page(GFP_KERNEL);
3007        if (ctx->header == NULL) {
3008                ret = -ENOMEM;
3009                goto out;
3010        }
3011        ret = context_init(&ctx->context, ohci, regs, callback);
3012        if (ret < 0)
3013                goto out_with_header;
3014
3015        if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3016                set_multichannel_mask(ohci, 0);
3017                ctx->mc_completed = 0;
3018        }
3019
3020        return &ctx->base;
3021
3022 out_with_header:
3023        free_page((unsigned long)ctx->header);
3024 out:
3025        spin_lock_irq(&ohci->lock);
3026
3027        switch (type) {
3028        case FW_ISO_CONTEXT_RECEIVE:
3029                *channels |= 1ULL << channel;
3030                break;
3031
3032        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3033                ohci->mc_allocated = false;
3034                break;
3035        }
3036        *mask |= 1 << index;
3037
3038        spin_unlock_irq(&ohci->lock);
3039
3040        return ERR_PTR(ret);
3041}
3042
3043static int ohci_start_iso(struct fw_iso_context *base,
3044                          s32 cycle, u32 sync, u32 tags)
3045{
3046        struct iso_context *ctx = container_of(base, struct iso_context, base);
3047        struct fw_ohci *ohci = ctx->context.ohci;
3048        u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3049        int index;
3050
3051        /* the controller cannot start without any queued packets */
3052        if (ctx->context.last->branch_address == 0)
3053                return -ENODATA;
3054
3055        switch (ctx->base.type) {
3056        case FW_ISO_CONTEXT_TRANSMIT:
3057                index = ctx - ohci->it_context_list;
3058                match = 0;
3059                if (cycle >= 0)
3060                        match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3061                                (cycle & 0x7fff) << 16;
3062
3063                reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3064                reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3065                context_run(&ctx->context, match);
3066                break;
3067
3068        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3069                control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3070                /* fall through */
3071        case FW_ISO_CONTEXT_RECEIVE:
3072                index = ctx - ohci->ir_context_list;
3073                match = (tags << 28) | (sync << 8) | ctx->base.channel;
3074                if (cycle >= 0) {
3075                        match |= (cycle & 0x07fff) << 12;
3076                        control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3077                }
3078
3079                reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3080                reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3081                reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3082                context_run(&ctx->context, control);
3083
3084                ctx->sync = sync;
3085                ctx->tags = tags;
3086
3087                break;
3088        }
3089
3090        return 0;
3091}
3092
3093static int ohci_stop_iso(struct fw_iso_context *base)
3094{
3095        struct fw_ohci *ohci = fw_ohci(base->card);
3096        struct iso_context *ctx = container_of(base, struct iso_context, base);
3097        int index;
3098
3099        switch (ctx->base.type) {
3100        case FW_ISO_CONTEXT_TRANSMIT:
3101                index = ctx - ohci->it_context_list;
3102                reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3103                break;
3104
3105        case FW_ISO_CONTEXT_RECEIVE:
3106        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3107                index = ctx - ohci->ir_context_list;
3108                reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3109                break;
3110        }
3111        flush_writes(ohci);
3112        context_stop(&ctx->context);
3113        tasklet_kill(&ctx->context.tasklet);
3114
3115        return 0;
3116}
3117
3118static void ohci_free_iso_context(struct fw_iso_context *base)
3119{
3120        struct fw_ohci *ohci = fw_ohci(base->card);
3121        struct iso_context *ctx = container_of(base, struct iso_context, base);
3122        unsigned long flags;
3123        int index;
3124
3125        ohci_stop_iso(base);
3126        context_release(&ctx->context);
3127        free_page((unsigned long)ctx->header);
3128
3129        spin_lock_irqsave(&ohci->lock, flags);
3130
3131        switch (base->type) {
3132        case FW_ISO_CONTEXT_TRANSMIT:
3133                index = ctx - ohci->it_context_list;
3134                ohci->it_context_mask |= 1 << index;
3135                break;
3136
3137        case FW_ISO_CONTEXT_RECEIVE:
3138                index = ctx - ohci->ir_context_list;
3139                ohci->ir_context_mask |= 1 << index;
3140                ohci->ir_context_channels |= 1ULL << base->channel;
3141                break;
3142
3143        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3144                index = ctx - ohci->ir_context_list;
3145                ohci->ir_context_mask |= 1 << index;
3146                ohci->ir_context_channels |= ohci->mc_channels;
3147                ohci->mc_channels = 0;
3148                ohci->mc_allocated = false;
3149                break;
3150        }
3151
3152        spin_unlock_irqrestore(&ohci->lock, flags);
3153}
3154
3155static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3156{
3157        struct fw_ohci *ohci = fw_ohci(base->card);
3158        unsigned long flags;
3159        int ret;
3160
3161        switch (base->type) {
3162        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3163
3164                spin_lock_irqsave(&ohci->lock, flags);
3165
3166                /* Don't allow multichannel to grab other contexts' channels. */
3167                if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3168                        *channels = ohci->ir_context_channels;
3169                        ret = -EBUSY;
3170                } else {
3171                        set_multichannel_mask(ohci, *channels);
3172                        ret = 0;
3173                }
3174
3175                spin_unlock_irqrestore(&ohci->lock, flags);
3176
3177                break;
3178        default:
3179                ret = -EINVAL;
3180        }
3181
3182        return ret;
3183}
3184
3185#ifdef CONFIG_PM
3186static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3187{
3188        int i;
3189        struct iso_context *ctx;
3190
3191        for (i = 0 ; i < ohci->n_ir ; i++) {
3192                ctx = &ohci->ir_context_list[i];
3193                if (ctx->context.running)
3194                        ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3195        }
3196
3197        for (i = 0 ; i < ohci->n_it ; i++) {
3198                ctx = &ohci->it_context_list[i];
3199                if (ctx->context.running)
3200                        ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3201        }
3202}
3203#endif
3204
3205static int queue_iso_transmit(struct iso_context *ctx,
3206                              struct fw_iso_packet *packet,
3207                              struct fw_iso_buffer *buffer,
3208                              unsigned long payload)
3209{
3210        struct descriptor *d, *last, *pd;
3211        struct fw_iso_packet *p;
3212        __le32 *header;
3213        dma_addr_t d_bus, page_bus;
3214        u32 z, header_z, payload_z, irq;
3215        u32 payload_index, payload_end_index, next_page_index;
3216        int page, end_page, i, length, offset;
3217
3218        p = packet;
3219        payload_index = payload;
3220
3221        if (p->skip)
3222                z = 1;
3223        else
3224                z = 2;
3225        if (p->header_length > 0)
3226                z++;
3227
3228        /* Determine the first page the payload isn't contained in. */
3229        end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3230        if (p->payload_length > 0)
3231                payload_z = end_page - (payload_index >> PAGE_SHIFT);
3232        else
3233                payload_z = 0;
3234
3235        z += payload_z;
3236
3237        /* Get header size in number of descriptors. */
3238        header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3239
3240        d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3241        if (d == NULL)
3242                return -ENOMEM;
3243
3244        if (!p->skip) {
3245                d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3246                d[0].req_count = cpu_to_le16(8);
3247                /*
3248                 * Link the skip address to this descriptor itself.  This causes
3249                 * a context to skip a cycle whenever lost cycles or FIFO
3250                 * overruns occur, without dropping the data.  The application
3251                 * should then decide whether this is an error condition or not.
3252                 * FIXME:  Make the context's cycle-lost behaviour configurable?
3253                 */
3254                d[0].branch_address = cpu_to_le32(d_bus | z);
3255
3256                header = (__le32 *) &d[1];
3257                header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3258                                        IT_HEADER_TAG(p->tag) |
3259                                        IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3260                                        IT_HEADER_CHANNEL(ctx->base.channel) |
3261                                        IT_HEADER_SPEED(ctx->base.speed));
3262                header[1] =
3263                        cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3264                                                          p->payload_length));
3265        }
3266
3267        if (p->header_length > 0) {
3268                d[2].req_count    = cpu_to_le16(p->header_length);
3269                d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3270                memcpy(&d[z], p->header, p->header_length);
3271        }
3272
3273        pd = d + z - payload_z;
3274        payload_end_index = payload_index + p->payload_length;
3275        for (i = 0; i < payload_z; i++) {
3276                page               = payload_index >> PAGE_SHIFT;
3277                offset             = payload_index & ~PAGE_MASK;
3278                next_page_index    = (page + 1) << PAGE_SHIFT;
3279                length             =
3280                        min(next_page_index, payload_end_index) - payload_index;
3281                pd[i].req_count    = cpu_to_le16(length);
3282
3283                page_bus = page_private(buffer->pages[page]);
3284                pd[i].data_address = cpu_to_le32(page_bus + offset);
3285
3286                dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3287                                                 page_bus, offset, length,
3288                                                 DMA_TO_DEVICE);
3289
3290                payload_index += length;
3291        }
3292
3293        if (p->interrupt)
3294                irq = DESCRIPTOR_IRQ_ALWAYS;
3295        else
3296                irq = DESCRIPTOR_NO_IRQ;
3297
3298        last = z == 2 ? d : d + z - 1;
3299        last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3300                                     DESCRIPTOR_STATUS |
3301                                     DESCRIPTOR_BRANCH_ALWAYS |
3302                                     irq);
3303
3304        context_append(&ctx->context, d, z, header_z);
3305
3306        return 0;
3307}
3308
3309static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3310                                       struct fw_iso_packet *packet,
3311                                       struct fw_iso_buffer *buffer,
3312                                       unsigned long payload)
3313{
3314        struct device *device = ctx->context.ohci->card.device;
3315        struct descriptor *d, *pd;
3316        dma_addr_t d_bus, page_bus;
3317        u32 z, header_z, rest;
3318        int i, j, length;
3319        int page, offset, packet_count, header_size, payload_per_buffer;
3320
3321        /*
3322         * The OHCI controller puts the isochronous header and trailer in the
3323         * buffer, so we need at least 8 bytes.
3324         */
3325        packet_count = packet->header_length / ctx->base.header_size;
3326        header_size  = max(ctx->base.header_size, (size_t)8);
3327
3328        /* Get header size in number of descriptors. */
3329        header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3330        page     = payload >> PAGE_SHIFT;
3331        offset   = payload & ~PAGE_MASK;
3332        payload_per_buffer = packet->payload_length / packet_count;
3333
3334        for (i = 0; i < packet_count; i++) {
3335                /* d points to the header descriptor */
3336                z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3337                d = context_get_descriptors(&ctx->context,
3338                                z + header_z, &d_bus);
3339                if (d == NULL)
3340                        return -ENOMEM;
3341
3342                d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3343                                              DESCRIPTOR_INPUT_MORE);
3344                if (packet->skip && i == 0)
3345                        d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3346                d->req_count    = cpu_to_le16(header_size);
3347                d->res_count    = d->req_count;
3348                d->transfer_status = 0;
3349                d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3350
3351                rest = payload_per_buffer;
3352                pd = d;
3353                for (j = 1; j < z; j++) {
3354                        pd++;
3355                        pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3356                                                  DESCRIPTOR_INPUT_MORE);
3357
3358                        if (offset + rest < PAGE_SIZE)
3359                                length = rest;
3360                        else
3361                                length = PAGE_SIZE - offset;
3362                        pd->req_count = cpu_to_le16(length);
3363                        pd->res_count = pd->req_count;
3364                        pd->transfer_status = 0;
3365
3366                        page_bus = page_private(buffer->pages[page]);
3367                        pd->data_address = cpu_to_le32(page_bus + offset);
3368
3369                        dma_sync_single_range_for_device(device, page_bus,
3370                                                         offset, length,
3371                                                         DMA_FROM_DEVICE);
3372
3373                        offset = (offset + length) & ~PAGE_MASK;
3374                        rest -= length;
3375                        if (offset == 0)
3376                                page++;
3377                }
3378                pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3379                                          DESCRIPTOR_INPUT_LAST |
3380                                          DESCRIPTOR_BRANCH_ALWAYS);
3381                if (packet->interrupt && i == packet_count - 1)
3382                        pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3383
3384                context_append(&ctx->context, d, z, header_z);
3385        }
3386
3387        return 0;
3388}
3389
3390static int queue_iso_buffer_fill(struct iso_context *ctx,
3391                                 struct fw_iso_packet *packet,
3392                                 struct fw_iso_buffer *buffer,
3393                                 unsigned long payload)
3394{
3395        struct descriptor *d;
3396        dma_addr_t d_bus, page_bus;
3397        int page, offset, rest, z, i, length;
3398
3399        page   = payload >> PAGE_SHIFT;
3400        offset = payload & ~PAGE_MASK;
3401        rest   = packet->payload_length;
3402
3403        /* We need one descriptor for each page in the buffer. */
3404        z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3405
3406        if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3407                return -EFAULT;
3408
3409        for (i = 0; i < z; i++) {
3410                d = context_get_descriptors(&ctx->context, 1, &d_bus);
3411                if (d == NULL)
3412                        return -ENOMEM;
3413
3414                d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3415                                         DESCRIPTOR_BRANCH_ALWAYS);
3416                if (packet->skip && i == 0)
3417                        d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3418                if (packet->interrupt && i == z - 1)
3419                        d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3420
3421                if (offset + rest < PAGE_SIZE)
3422                        length = rest;
3423                else
3424                        length = PAGE_SIZE - offset;
3425                d->req_count = cpu_to_le16(length);
3426                d->res_count = d->req_count;
3427                d->transfer_status = 0;
3428
3429                page_bus = page_private(buffer->pages[page]);
3430                d->data_address = cpu_to_le32(page_bus + offset);
3431
3432                dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3433                                                 page_bus, offset, length,
3434                                                 DMA_FROM_DEVICE);
3435
3436                rest -= length;
3437                offset = 0;
3438                page++;
3439
3440                context_append(&ctx->context, d, 1, 0);
3441        }
3442
3443        return 0;
3444}
3445
3446static int ohci_queue_iso(struct fw_iso_context *base,
3447                          struct fw_iso_packet *packet,
3448                          struct fw_iso_buffer *buffer,
3449                          unsigned long payload)
3450{
3451        struct iso_context *ctx = container_of(base, struct iso_context, base);
3452        unsigned long flags;
3453        int ret = -ENOSYS;
3454
3455        spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3456        switch (base->type) {
3457        case FW_ISO_CONTEXT_TRANSMIT:
3458                ret = queue_iso_transmit(ctx, packet, buffer, payload);
3459                break;
3460        case FW_ISO_CONTEXT_RECEIVE:
3461                ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3462                break;
3463        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3464                ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3465                break;
3466        }
3467        spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3468
3469        return ret;
3470}
3471
3472static void ohci_flush_queue_iso(struct fw_iso_context *base)
3473{
3474        struct context *ctx =
3475                        &container_of(base, struct iso_context, base)->context;
3476
3477        reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3478}
3479
3480static int ohci_flush_iso_completions(struct fw_iso_context *base)
3481{
3482        struct iso_context *ctx = container_of(base, struct iso_context, base);
3483        int ret = 0;
3484
3485        tasklet_disable(&ctx->context.tasklet);
3486
3487        if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3488                context_tasklet((unsigned long)&ctx->context);
3489
3490                switch (base->type) {
3491                case FW_ISO_CONTEXT_TRANSMIT:
3492                case FW_ISO_CONTEXT_RECEIVE:
3493                        if (ctx->header_length != 0)
3494                                flush_iso_completions(ctx);
3495                        break;
3496                case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3497                        if (ctx->mc_completed != 0)
3498                                flush_ir_buffer_fill(ctx);
3499                        break;
3500                default:
3501                        ret = -ENOSYS;
3502                }
3503
3504                clear_bit_unlock(0, &ctx->flushing_completions);
3505                smp_mb__after_atomic();
3506        }
3507
3508        tasklet_enable(&ctx->context.tasklet);
3509
3510        return ret;
3511}
3512
3513static const struct fw_card_driver ohci_driver = {
3514        .enable                 = ohci_enable,
3515        .read_phy_reg           = ohci_read_phy_reg,
3516        .update_phy_reg         = ohci_update_phy_reg,
3517        .set_config_rom         = ohci_set_config_rom,
3518        .send_request           = ohci_send_request,
3519        .send_response          = ohci_send_response,
3520        .cancel_packet          = ohci_cancel_packet,
3521        .enable_phys_dma        = ohci_enable_phys_dma,
3522        .read_csr               = ohci_read_csr,
3523        .write_csr              = ohci_write_csr,
3524
3525        .allocate_iso_context   = ohci_allocate_iso_context,
3526        .free_iso_context       = ohci_free_iso_context,
3527        .set_iso_channels       = ohci_set_iso_channels,
3528        .queue_iso              = ohci_queue_iso,
3529        .flush_queue_iso        = ohci_flush_queue_iso,
3530        .flush_iso_completions  = ohci_flush_iso_completions,
3531        .start_iso              = ohci_start_iso,
3532        .stop_iso               = ohci_stop_iso,
3533};
3534
3535#ifdef CONFIG_PPC_PMAC
3536static void pmac_ohci_on(struct pci_dev *dev)
3537{
3538        if (machine_is(powermac)) {
3539                struct device_node *ofn = pci_device_to_OF_node(dev);
3540
3541                if (ofn) {
3542                        pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3543                        pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3544                }
3545        }
3546}
3547
3548static void pmac_ohci_off(struct pci_dev *dev)
3549{
3550        if (machine_is(powermac)) {
3551                struct device_node *ofn = pci_device_to_OF_node(dev);
3552
3553                if (ofn) {
3554                        pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3555                        pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3556                }
3557        }
3558}
3559#else
3560static inline void pmac_ohci_on(struct pci_dev *dev) {}
3561static inline void pmac_ohci_off(struct pci_dev *dev) {}
3562#endif /* CONFIG_PPC_PMAC */
3563
3564static int pci_probe(struct pci_dev *dev,
3565                               const struct pci_device_id *ent)
3566{
3567        struct fw_ohci *ohci;
3568        u32 bus_options, max_receive, link_speed, version;
3569        u64 guid;
3570        int i, err;
3571        size_t size;
3572
3573        if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3574                dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3575                return -ENOSYS;
3576        }
3577
3578        ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3579        if (ohci == NULL) {
3580                err = -ENOMEM;
3581                goto fail;
3582        }
3583
3584        fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3585
3586        pmac_ohci_on(dev);
3587
3588        err = pci_enable_device(dev);
3589        if (err) {
3590                dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3591                goto fail_free;
3592        }
3593
3594        pci_set_master(dev);
3595        pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3596        pci_set_drvdata(dev, ohci);
3597
3598        spin_lock_init(&ohci->lock);
3599        mutex_init(&ohci->phy_reg_mutex);
3600
3601        INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3602
3603        if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3604            pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3605                ohci_err(ohci, "invalid MMIO resource\n");
3606                err = -ENXIO;
3607                goto fail_disable;
3608        }
3609
3610        err = pci_request_region(dev, 0, ohci_driver_name);
3611        if (err) {
3612                ohci_err(ohci, "MMIO resource unavailable\n");
3613                goto fail_disable;
3614        }
3615
3616        ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3617        if (ohci->registers == NULL) {
3618                ohci_err(ohci, "failed to remap registers\n");
3619                err = -ENXIO;
3620                goto fail_iomem;
3621        }
3622
3623        for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3624                if ((ohci_quirks[i].vendor == dev->vendor) &&
3625                    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3626                     ohci_quirks[i].device == dev->device) &&
3627                    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3628                     ohci_quirks[i].revision >= dev->revision)) {
3629                        ohci->quirks = ohci_quirks[i].flags;
3630                        break;
3631                }
3632        if (param_quirks)
3633                ohci->quirks = param_quirks;
3634
3635        /*
3636         * Because dma_alloc_coherent() allocates at least one page,
3637         * we save space by using a common buffer for the AR request/
3638         * response descriptors and the self IDs buffer.
3639         */
3640        BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3641        BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3642        ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3643                                               PAGE_SIZE,
3644                                               &ohci->misc_buffer_bus,
3645                                               GFP_KERNEL);
3646        if (!ohci->misc_buffer) {
3647                err = -ENOMEM;
3648                goto fail_iounmap;
3649        }
3650
3651        err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3652                              OHCI1394_AsReqRcvContextControlSet);
3653        if (err < 0)
3654                goto fail_misc_buf;
3655
3656        err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3657                              OHCI1394_AsRspRcvContextControlSet);
3658        if (err < 0)
3659                goto fail_arreq_ctx;
3660
3661        err = context_init(&ohci->at_request_ctx, ohci,
3662                           OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3663        if (err < 0)
3664                goto fail_arrsp_ctx;
3665
3666        err = context_init(&ohci->at_response_ctx, ohci,
3667                           OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3668        if (err < 0)
3669                goto fail_atreq_ctx;
3670
3671        reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3672        ohci->ir_context_channels = ~0ULL;
3673        ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3674        reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3675        ohci->ir_context_mask = ohci->ir_context_support;
3676        ohci->n_ir = hweight32(ohci->ir_context_mask);
3677        size = sizeof(struct iso_context) * ohci->n_ir;
3678        ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3679
3680        reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3681        ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3682        /* JMicron JMB38x often shows 0 at first read, just ignore it */
3683        if (!ohci->it_context_support) {
3684                ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3685                ohci->it_context_support = 0xf;
3686        }
3687        reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3688        ohci->it_context_mask = ohci->it_context_support;
3689        ohci->n_it = hweight32(ohci->it_context_mask);
3690        size = sizeof(struct iso_context) * ohci->n_it;
3691        ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3692
3693        if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3694                err = -ENOMEM;
3695                goto fail_contexts;
3696        }
3697
3698        ohci->self_id     = ohci->misc_buffer     + PAGE_SIZE/2;
3699        ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3700
3701        bus_options = reg_read(ohci, OHCI1394_BusOptions);
3702        max_receive = (bus_options >> 12) & 0xf;
3703        link_speed = bus_options & 0x7;
3704        guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3705                reg_read(ohci, OHCI1394_GUIDLo);
3706
3707        if (!(ohci->quirks & QUIRK_NO_MSI))
3708                pci_enable_msi(dev);
3709        if (request_irq(dev->irq, irq_handler,
3710                        pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
3711                        ohci_driver_name, ohci)) {
3712                ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq);
3713                err = -EIO;
3714                goto fail_msi;
3715        }
3716
3717        err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3718        if (err)
3719                goto fail_irq;
3720
3721        version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3722        ohci_notice(ohci,
3723                    "added OHCI v%x.%x device as card %d, "
3724                    "%d IR + %d IT contexts, quirks 0x%x%s\n",
3725                    version >> 16, version & 0xff, ohci->card.index,
3726                    ohci->n_ir, ohci->n_it, ohci->quirks,
3727                    reg_read(ohci, OHCI1394_PhyUpperBound) ?
3728                        ", physUB" : "");
3729
3730        return 0;
3731
3732 fail_irq:
3733        free_irq(dev->irq, ohci);
3734 fail_msi:
3735        pci_disable_msi(dev);
3736 fail_contexts:
3737        kfree(ohci->ir_context_list);
3738        kfree(ohci->it_context_list);
3739        context_release(&ohci->at_response_ctx);
3740 fail_atreq_ctx:
3741        context_release(&ohci->at_request_ctx);
3742 fail_arrsp_ctx:
3743        ar_context_release(&ohci->ar_response_ctx);
3744 fail_arreq_ctx:
3745        ar_context_release(&ohci->ar_request_ctx);
3746 fail_misc_buf:
3747        dma_free_coherent(ohci->card.device, PAGE_SIZE,
3748                          ohci->misc_buffer, ohci->misc_buffer_bus);
3749 fail_iounmap:
3750        pci_iounmap(dev, ohci->registers);
3751 fail_iomem:
3752        pci_release_region(dev, 0);
3753 fail_disable:
3754        pci_disable_device(dev);
3755 fail_free:
3756        kfree(ohci);
3757        pmac_ohci_off(dev);
3758 fail:
3759        return err;
3760}
3761
3762static void pci_remove(struct pci_dev *dev)
3763{
3764        struct fw_ohci *ohci = pci_get_drvdata(dev);
3765
3766        /*
3767         * If the removal is happening from the suspend state, LPS won't be
3768         * enabled and host registers (eg., IntMaskClear) won't be accessible.
3769         */
3770        if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3771                reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3772                flush_writes(ohci);
3773        }
3774        cancel_work_sync(&ohci->bus_reset_work);
3775        fw_core_remove_card(&ohci->card);
3776
3777        /*
3778         * FIXME: Fail all pending packets here, now that the upper
3779         * layers can't queue any more.
3780         */
3781
3782        software_reset(ohci);
3783        free_irq(dev->irq, ohci);
3784
3785        if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3786                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3787                                  ohci->next_config_rom, ohci->next_config_rom_bus);
3788        if (ohci->config_rom)
3789                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3790                                  ohci->config_rom, ohci->config_rom_bus);
3791        ar_context_release(&ohci->ar_request_ctx);
3792        ar_context_release(&ohci->ar_response_ctx);
3793        dma_free_coherent(ohci->card.device, PAGE_SIZE,
3794                          ohci->misc_buffer, ohci->misc_buffer_bus);
3795        context_release(&ohci->at_request_ctx);
3796        context_release(&ohci->at_response_ctx);
3797        kfree(ohci->it_context_list);
3798        kfree(ohci->ir_context_list);
3799        pci_disable_msi(dev);
3800        pci_iounmap(dev, ohci->registers);
3801        pci_release_region(dev, 0);
3802        pci_disable_device(dev);
3803        kfree(ohci);
3804        pmac_ohci_off(dev);
3805
3806        dev_notice(&dev->dev, "removed fw-ohci device\n");
3807}
3808
3809#ifdef CONFIG_PM
3810static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3811{
3812        struct fw_ohci *ohci = pci_get_drvdata(dev);
3813        int err;
3814
3815        software_reset(ohci);
3816        err = pci_save_state(dev);
3817        if (err) {
3818                ohci_err(ohci, "pci_save_state failed\n");
3819                return err;
3820        }
3821        err = pci_set_power_state(dev, pci_choose_state(dev, state));
3822        if (err)
3823                ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3824        pmac_ohci_off(dev);
3825
3826        return 0;
3827}
3828
3829static int pci_resume(struct pci_dev *dev)
3830{
3831        struct fw_ohci *ohci = pci_get_drvdata(dev);
3832        int err;
3833
3834        pmac_ohci_on(dev);
3835        pci_set_power_state(dev, PCI_D0);
3836        pci_restore_state(dev);
3837        err = pci_enable_device(dev);
3838        if (err) {
3839                ohci_err(ohci, "pci_enable_device failed\n");
3840                return err;
3841        }
3842
3843        /* Some systems don't setup GUID register on resume from ram  */
3844        if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3845                                        !reg_read(ohci, OHCI1394_GUIDHi)) {
3846                reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3847                reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3848        }
3849
3850        err = ohci_enable(&ohci->card, NULL, 0);
3851        if (err)
3852                return err;
3853
3854        ohci_resume_iso_dma(ohci);
3855
3856        return 0;
3857}
3858#endif
3859
3860static const struct pci_device_id pci_table[] = {
3861        { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3862        { }
3863};
3864
3865MODULE_DEVICE_TABLE(pci, pci_table);
3866
3867static struct pci_driver fw_ohci_pci_driver = {
3868        .name           = ohci_driver_name,
3869        .id_table       = pci_table,
3870        .probe          = pci_probe,
3871        .remove         = pci_remove,
3872#ifdef CONFIG_PM
3873        .resume         = pci_resume,
3874        .suspend        = pci_suspend,
3875#endif
3876};
3877
3878static int __init fw_ohci_init(void)
3879{
3880        selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3881        if (!selfid_workqueue)
3882                return -ENOMEM;
3883
3884        return pci_register_driver(&fw_ohci_pci_driver);
3885}
3886
3887static void __exit fw_ohci_cleanup(void)
3888{
3889        pci_unregister_driver(&fw_ohci_pci_driver);
3890        destroy_workqueue(selfid_workqueue);
3891}
3892
3893module_init(fw_ohci_init);
3894module_exit(fw_ohci_cleanup);
3895
3896MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3897MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3898MODULE_LICENSE("GPL");
3899
3900/* Provide a module alias so root-on-sbp2 initrds don't break. */
3901MODULE_ALIAS("ohci1394");
3902